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Abstract—In this paper we discuss distributed spectrum
allocation techniques in interference limited environment. We
analyze the well known iterative water-filling strategy for a
simplified two players interference game, and provide closed form
analysis of the cases in which the IWF is suboptimal due to
the occurrence of the well known prisoner’s dilemma. We then
propose some alternative distributed coordination algorithm and
show its superiority over IWF for real wireline access network.

I. INTRODUCTION

Distributed power and spectrum allocation is a fundamental
problem for optimizing the use of a shared medium, by users
that cannot apply a joint signaling scheme. The problem of
distributed power control has been studied in the context
of code division multiple access (CDMA) communication,
while distributed spectrum allocation of wideband signals is
much harder problem, due to the many degrees of freedom.
Much work on distributed spectrum control has been done in
the context of wireline networks. One of the most popular
solutions to the problem of distributed spectrum allocation is
the iterative water-filling (IWF) algorithm [8]. It is well known
that the fixed points of the iterative water-filling algorithm are
Nash equilibrium points of the Gaussian interference game
[8]. However much less is known on the global optimality
properties of these solutions. In this paper we concentrate
on a simple two players version of the Gaussian interference
game, and provide conditions under which the IWF solution
is suboptimal due to the prisoner’s dilemma phenomena,
where the stable equilibrium point is bad for both users.
The structure of the paper is as follows: In section II we
review the Gaussian interference game. In section III we define
the special two person version of the interference game. We
define the cooperative frequency domain multiplexing (FDM)
strategies and prove the division of the conditions under
which the prisoner’s dilemma occurs. The Near-Far problem
in the digital subscriber line (DSL) environment as well as
a simple distributed cooperative algorithm that solves this
problem are introduced in I'V. Finally in section V we provide
some simulated experiments demonstrating the results. In an
appendix we sketch an alternative existence proof of Nash
equilibrium in the Gaussian interference game. We end up
with some concluding remarks regarding possible extensions.

II. THE GAUSSIAN INTERFERENCE GAME

In this section we define the Gaussian interference game,
and provide some simplifications for dealing with discrete
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frequencies. The Gaussian interference game was defined in
[8]. In this section we define the discrete approximation of
this game. Let fy < .-+ < fk be an increasing sequence
of frequencies. Let I;, be the closed interval be given by
I, = [fk—1, fr]. We now define the approximate Gaussian
interference game denoted by GIyr, . 1y}

Let the players 1,..., N operate over K channels. As-
sume that the K channels have crosstalk coupling functions
hij(k). Assume that user i’th is allowed to transmit a to-
tal power of P;. Each player can transmit a power vector
p; = (pi(1),...,pi(K)) € [0,P]" such that p;(k) is
the Kpower transmitted in the interval Ij. Therefore we have
Y w1 Pi(k) = P;. The equality follows from the fact that
in non-cooperative scenario all users will use the maximal
power they can use. This implies that the set of power
distributions for all users is a closed convex subset of the
cube [T, [0, P,]¥ given by:

€]

where B; is the set of admissible power distributions for player
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K

B; = [0,P]" N {(p(l),---,p(K)) > p(k) = Pi} ()
k=1

Each player chooses a power spectral density (PSD) p, =

(pi(k) : 1 <k < K) € B;. Let the payoff for user 7 be given
by:

i K ki (k)|pi (k
Oy PY) = 2 08 (1 " Z|hij<1§>|)2|pf<z(c>)+n<k>>
| 3)
where C" is the capacity available to player ¢ given power
distributions py,...,py, channel responses h;(f), crosstalk
coupling functions h;;(k) and n;(k) > 0 is external noise
present at the ¢’th channel receiver at frequency k. In cases
where n;(k) = 0 capacities might become infinite using FDM
strategies, however this is non-physical situation due to the
receiver noise that is always present, even if small. Each C'?
is continuous on all variables.

Definition 1: The Gaussian Interference game
GIip,,...r,y = {C,B} is the N players non-cooperative
game with payoff vector C = (C*,...,CN) where C? are
defined in (3) and B is the strategy set defined by (1).

The interference game is an N players game, that captures
the process of independent users trying to optimize their own
data rate under power constraint and interference from other
users. One well known strategy for distributively optimizing



the spectrum is based on each user independently (and it-
eratively) optimizing its own rate by choosing a spectrum
(under power constraint) against the other users interference
and the background noise. This process is known as iterative
waterfilling (IWF) since for each user the optimal way to
allocate its own rate, given the power spectral density of all
other users is to distribute the power such that the sum of
the total interference and noise and its own power is constant
[10]. Convergence of the iterative process is assured in many
situations into unique spectrum allocation for the various users
[2]. Due to its local optimality the IWF algorithm gained
popularity for optimizing the spectrum in multiple access
channels for the single antenna as well as the vector case [8].
Interestingly the fixed point of the IWF algorithm is a Nash
equilibrium point in the interference game. It can be shown
that at least one Nash equilibrium point exists [1], and under
certain conditions this Nash equilibrium point is unique [2]
(See appendix for a sketch of an alternative proof that provides
more insight into the water-filling strategies). However as is
well known, Nash equilibrium might be highly suboptimal for
both players. This situation is known in the game theoretic
literature as the prisoner’s dilemma [6].

In this paper we will analyze a simple version of the two
players interference game and provide certain conditions under
which the prisoner’s dilemma occurs when using the IWF
algorithm.

III. THE PRISONER’S DILEMMA

The IWF algorithm maximizes each user’s rate (by allocat-
ing the power through waterfilling) without taking into account
the influence of such an allocation on the other user’s rate.
This strategy can be viewed as a very pragmatic one since
cooperation is not possible between the users, but a-priori
agreement regarding choice of strategies can be used. We will
show here that even without cooperation a better scheme of
allocating the power can be adopted in some cases, even for
very simple interference channels. To that end we introduce
a special case of the two players interference game. For this
case it is possible to determine analytically the channels for
which IWF is optimal and the set of channels where IWF leads
to prisoner’s dilemma, a situation discovered by Flood and
Dresher [7]. Furthermore we will also show a third case where
two Nash equilibrium points exist, and the IWF equilibrium
has lower sum-rate than the other Nash equilibrium. In this
special version of the interference game we assume that
the two users share two independent frequency bands, with
symmetric and identical channel conditions for each band.

We can represent the channel as follows:

)P =1mer =] @

where:
H(1) and H(2) are the normalized channel matrices for each
frequency band, and
h=1hi2(1)]? = [ha1 (D = [h12(2)]* = [h1(2)]
We also assume that both users have the same power constraint

P and the power allocation matrix is defined as
1-—a o
P-
|5 %]
where 0 < a, 5 < 1.

The capacity for user I is given by:

(1-a)-P
+m>

(&)

1
c' = 3 log, <1

1 a-P
+§10g2<1+N+(1—B)-P-h> (6)

where NV is the noise PSD. Simplifying (6) we obtain that user
I’s payoff (capacity) is:

1 1—«
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Similarly the capacity of user II is given by:
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We would like to interpret cooperation as choosing to use
only one of the two bands, providing the other player an
interference free band, while competition will be interpreted
as waterfilling over the two bands. « and /3 can be interpreted
as the level of mutual cooperation (o determines the level of
cooperation of user I with II, and 3 the level of cooperation
of user II with I). The cooperative strategy (FDM) is causing
no interference to the other user (by allocating all the power
at one band), this implies that = 5 = 0. A Competitive act
will be to maximize the capacity using water filling strategy.

We are now ready to analyze the impact of competitive
strategies on the two users payoffs (capacities). According to
water filling strategy, (in the case of equal power constraint
and white noise PSD) for given 8 we need to choose « such
that the following equation holds:

1
+§ log, <1

(1-Bh+a=6h+(1—a) 9)
which implies that
az(26—1)h+1 (10)
2
since the channel is symmetric 3 is given by
2 —1)h+1
= oz Dht] 2) (1

Therefore in the symmetric case the IWF will converge to

1

a=p 5 (12)

Table I and II summarize the payoffs of users LII in our

simplified game respectively at four different levels of mutual
cooperation.



TABLE I
USER I PAYOFFS AT DIFFERENT LEVELS OF MUTUAL COOPERATION

user II is fully cooperative

(8=0)

user II is fully competing

(6 _ (2a7;)h+1)

user I is fully cooperative

(a=0) 3logs (1+

svrT)
SNR-1

1 [ S
5 logs (1 + SNR71+(1;h) h)

user I is fully competing 1+h

(a _ (%’—;)M—l)

1+h 1-h
3 log, (1 + szv?a—l) + 3 logs (1 + SNR2—1+h)

1
log, (1 + m)

TABLE 11
USER II PAYOFFS AT DIFFERENT LEVELS OF MUTUAL COOPERATION

(8=0)

user II is fully cooperative

user II is fully competing
8= (2a—1)h+1)
— 2

user I is fully cooperative

(a=0) 3 logs (1+ sxp=r)

I+h

1—h
1 1
3 log, (1 + SN?:rl) + 3 log, (1 + SNR2*1+h)

user I is fully competing
_ (2B-Dh+1
(= 2 )

1 1
5 loga (1 + —SNR_1+(1;h)h>

1
log, (1 + m)

A prisoner’s dilemma situation is defined by the following
payoff relation - T'> R > P > N as well as 2R > T + N
[6], where

o T (Temptation) is one’s payoff for defecting (choosing a

competitive strategy) while the other cooperates.

o« R (Reward) is the payoff of each player where both
cooperate.

P (Penalty) is the payoff of each player where both
defect.
N (Naive) is one’s payoff for cooperating while the other
defects.

It is easy to show that the Nash equilibrium point in this case
is that both players will defect (P). This is caused by the fact
that given the other user’s act the best response will be to
defect (since T' > R and P > N). Obviously a better strategy
(which makes this game so interesting) is mutual cooperation
(since R > P).

In our context, the IW algorithm obtains the mutually com-
petitive payoff (2P), since each player maximizes its own data
rate while others can be severely harmed by its allocation. For
the cooperative action we choose in this paper the FDM like
algorithms which are cooperative since each user maximizes
its own rate without harming the other user’s data rates.

As before mentioned a prisoner’s dilemma situation
is characterized by the following payoff relations:
T > R > P > N, with additional condition on the
sum-rate: 2R > T + N. The latter condition implies that a
mixed strategy (i.e. one user is cooperating while the other
competing) will not achieve higher sum rate than mutual
cooperation. By examining the relations between the different
rates (payoffs) we can derive a set of conditions on h and
SNR for which the given interference game with the set of
action that can be carried out by the users IWF and FDM)
defines a prisoner’s dilemma situation:

(@) T > R:
1+h

1 1 1-h
21 14 —2 21 14 —2
2 °g2< +SNR—1> *3 °g2< +SNR—1+h>

1 1

this equation reduced to h? — 2 - h + 1 > 0 which holds for
every h # 1.
(b) T > P:
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5 8\ LT oypT ) T8\ Mt gy Ry

1
> 1 14 -—2 14
o8> ( T SNR 1+ %h) (14)

simplifying the equation we obtain
1 1 3 1
-2 2 N -1 [ >3 Y12 -
SNR <h+4h>+5 R <2h +4h +4h

1 1 1
—ht 4+ B3+ —h?) >0 15
+ <16 + 5 + 16 > (15)

since SNR and h are nonnegative the equation always true.

CcR>P
1log2 (1 + ;> > logs (1 + 4) (16)
2 SNR-1 SNR-'+ih
simplifying (15) we get
h*> +2hSNR™' = SNR™' >0 (17)

since h is nonnegative the equation holds for h > hyy, 1, where
Biim1 = SNR™* ,/1+#—1 (18)
lim1l — SNR71

dR>N

110 1+# >110 1+ L
g 082 SNR-1) ~ 2778 SNR 1+ (hy,
(19)




1—-h

which reduced to >

0<h<l.

- h > 0, this equation holds for every

@ P>N
1
1 1+ —2
082 < T SNR %h)

1 1
> 510g2 (1 + SN 1 “g’”h) 20)

or equivalently

R+ h2(0.54+2SNR™Y) —0.5h—SNR™' <0

21

since h is nonnegative the equation holds for h < hjjy, 2, where
hiim 2 1s the solution for (20) given by the cubic formula.
finally, since the maximization is done on the sum rate we
have to check whether -

®2R>T+ N:

1 1 1+h
logy (14— ) > S1og, [ 14+ —2Z
Og2<+SNR1>>2°‘32 T SNR 1
1 1—-h
21 14+ ——2
R R E vg a
+ = log,

1 1
log, | 1 22
2 <_+SNRL+Q—@h> @2
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which reduced to

SNR™? (6(1 — h?) + 8h)+SNR™" (9h+h*)+4h>(1—h) > 0

(23)
since h and SN R are nonnegative the equation is true in the
relevant region of 0 < h < 1 for every SNR.

Combining all the relation above we conclude that only
three situation are possible:

e (A)T>P>R>N |, for h < hiim,

e BYT >R>P>N, for hiim;, <h < hiim,

° (C)T>R>]\/v>P,fOl‘h]im2 <h

where hiim, and hiim, are given above.

The sum rate is either 2- R (for mutual cooperation), 2- P (for
mutual competition) or 7'+ N (for mixed strategy). Examining
the achieved sum rate for the two strategies (IWF and FDM)
yields the following:

The payoffs relations in (A) correspond to a game called
”Deadlock”. In this game there is no dilemma, since as in the
prisoner’s dilemma situation, no matter what the other player
does, it is better to defect (I' > R and P > N), so the Nash
equilibrium point is P. In contrast to prisoner’s dilemma, in
this game P > R thus there is no reason to cooperate. The
maximum sum rate is also 2P because 2- R > T + N and
P > R. Since applying the IWF strategy equals to P (by our
definition of competition), this is the region where the IWF
algorithm achieves the maximum sum rate.

The payoffs relations in (B) corresponds to the above
discussed prisoner’s dilemma situation. While the Nash equi-
librium point is P, the maximum sum rate is achieved by R.
In this region the FDM strategy will achieve the maximum
sum rate.

The last payoffs relations (C) corresponds to a game called
”Chicken”. This game is characterized by having two distin-
guished Nash equilibrium points, 7" and N. This is caused
by the fact that for each player’s strategy a different response
is better (if the other cooperates it is better to defect since
T > R, while if the other defects it is better to cooperate
since N > P). The maximum rate sum point is still at R
(since R > P and 2- R > T + N) thus, again FDM will
achieve the maximum rate sum while IWF won’t. The three
different regions as a function of SNR and channel coefficient
h are depicted in figure 1

h ,h.Vs.SNR

lim1 " "lim2

T>R>N>P ; Chicken region

T>R>P>N ; PD region

—h

lim1

— ~ im2

-121

T>P>R>N ; Deadlock region
-16

-18

_20 | | | |
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Fig. 1. hjjm, and hjjm, vs. SNR, The solid line corresponds to hyjp,, and
the dashed line corresponds to Myjpm,

IV. THE NEAR-FAR PROBLEM IN DSL

One of the most acute problem in the DSL environment is
having loops with different length sharing the same binder.
This problem is common both in the upstream where different
users with different loop length share the same central office
(CO) and in the downstream where a CO shares the same
binder with a remote terminal (RT) located closer to the
destination. The insertion loss (or the main channel path gain)
of a DSL loop have the characteristic of low pass filter while
the crosstalk coefficients have high pass nature. This behavior
of the DSL lines causes severe problem when having one or
more loops longer than others as it will be demonstrate in the
following.

Consider a general 2 x 2 channel matrix where both loops
have the same length L, the bands width are normalize to
1 and the power constraint for user I and Il are P; and P>
respectively. The channel matrices are of the form

Ll = | G el

| hai(k)  ha(k) @

where 1 <k < K

We use this basic channel to construct more complex topol-
ogy where the loops doesn’t share the same length. Consider
the general topology in Fig. 2, in this topology there is a far
user with a total length of [; - L, near user with a total length



of I - L and the overlap length is L (the terms far and near
correspond to the length from the loops overlap section). This
channel is represented by the following matrix

|H (k)" =
[ 1 0 ] ‘ [ hi(k)  hia(k) } _ { k) 0
0 h27'(k) ho1 (k) ho(k) 0 1
(25)
resulting in
|H(k>|2=[ o EE L he®) } 6)
s~ (k) hor ()R (k) hi? (k)

It is easy to see from the channel matrix that user I’s (the
far one) attenuation is severe (in comparison to the basic loop
attenuation) while his crosstalk coefficient remains the same as
for the basic loop. Combined with the above mentioned nature
of the DSL loops this scenario causes the far user to transmit
only at the low frequency region where he obtains positive
signal to noise ratio even in the presence of the far user’s
interference. Figure 3 depicts the channel transfer function and
crosstalk coefficient for such a topology where L =0.9 km ,
l1:4andl2:2.

Tx
Far

Tx
Near

Rx
Near

Fig. 2. Loop topology of the Near-Far problem in DSL.

Channel coupling and transfer function for L=0.9 km , I1=4 and I2=2
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Fig. 3. Main channels and crosstalk gain for 2 X 2 near far channel.
Obviously, user II (the near one) dominates the channel

since his crosstalk into the other line is large while the

crosstalk of the far user is negligible. Applying a rate adaptive

IWF (RA-IWF) in this case will influence badly on the far user

rate. This caused by the fact that RA-IWF will result in using

all the power available for the near user and the use of low
frequencies region (which have the lowest noise PSD profile).
The combination of using the low frequencies region with full
power available causes the maximum interference to the far
user resulting in poor achievable rate.

The “competitive” solution for such a scenario is the Fixed
Margin IWF (FM-IWF). In this form of IWF there is a design
rate R4 for the near user and we adjust the near user rate
by applying power backoff on the total power constraint. This
power backoff procedure mitigate the interference caused to
the far user.

A. The dynamic FDM algorithm

Inspired by the benefits of cooperative strategies and further
analysis that will be presented elsewhere [16] we propose the
cooperative solution for the near-far problem. The dynamic
FDM (DFDM) algorithm, first presented in [15], allocates the
power of the near user not only as a reaction of its noise PSD
(as the IWF does) but by minimizing the use of the lower part
of the spectrum. Since the far user can allocate its power only
at the lower part of spectrum, applying the DFDM on the far
user power allocation reduces the level of interference to the
far user by means of orthogonal transmitting bands. The idea
underlying the approach above is that the far user uses the
lower part of the spectrum (as explained above), and therefore
use of this part of the spectrum should be minimized for the
near user.

We define f. to be the cutoff frequency i.e. the minimal
frequency used by the near user. The power allocation method
in the DFDM algorithm is as following - given R4 the design
rate of the near user, the near user allocates its power such
that the rate achieved is equal to R4 along with maximizing
fe. Actually the algorithm is implemented in two steps, at the
first one the maximal f. is found (this step is performed by
applying RA-IWF at varying f. values). The second step is
reducing the total power by applying FM-IWF on the upper
part of the spectrum determined by the former step. The
implementation steps of the DFDM algorithm are summarized
in table III.

V. SIMULATION

In this section we provide some simulated experiments

demonstrating the rate region under various strategies. We
provide examples of the scenarios discussed above: The dead-
lock and the prisoner’s dilemma. Figures 2 and 3 shows the
rate of user I and the sum rate respectively for channel with
SNR = 20[dB] (for which hjip,, = 0.09) and h = 0.2. Since
h > hiim, FDM (a = 8 = 0) sum rate is higher than IWF
(a = B =0.5) sum rate.
Figures 4 and 5 shows the rate of user I and the sum
rate respectively for channel with the same SNR as before
(SNR = 20[dB]) and h = 0.01. Since h < hyjm, IWF
(o = B = 0) sum rate is higher than FDM (a = § = 0.5)
sum rate.

Finally we demonstrate results of the DFDM algorithm
in comparison to FM-IWF for wireline communications. We
present the rate region for two groups of modems. 8 located



TABLE III
DFDM IMPLEMENTATION FOR THE NEAR-FAR SCENARIO

1. Let R4 = preassigned target rate for the near user.

2. find fc, the minimal f such that the near user can achieve rate R; using frequencies above fe.

3. Allocate the minimal amount of power needed for achieving R; using only frequencies grater than f..

at a remote terminal located 900m from the customer, sharing
a binder with 8 CO based ADSL modems at distance of 4.5
km. We can clearly see the better rate region of cooperative
DFDM algorithm, compared to the FM-IWF algorithm.

User 1 rate ; SNR=20 [dB], h=0.2

Fig. 4. Graph of user I payoff for different levels of cooperation (0 <
a, < 0.5), since h = 0.2 > hjj,, = 0.09 QSNR = 20 [dB] a prisoner’s
dilemma holds for this game (i.e. 7> R > P > N).

sum rate ; SNR=20 [dB], h=0.2

Fig. 5. The sum rate of the two users Gaussian interference game for different
levels of cooperation (0 < «, < 0.5); mutual cooperation strategy (FDM
,a = [ = 0) maximizes the sum rate.

VI. CONCLUSIONS

In this paper we have discussed competitive and cooperative
distributed spectrum coordination techniques for the two users
Gaussian interference game. We have analyzed the cases where
IWF strategies are subject to the prisoner’s dilemma. We have
also demonstrated the possible gain in cooperative spectrum
allocation techniques on measured DSL channels. We note
that the results are equally relevant for wireline and wireless
channels. In an extension of this work [16] we define another

User 1 rate ; SNR=20 [dB] , h=0.01
T

52

4.8
46
4.4
42

38

135

Fig. 6. Graph of user I payoff for different levels of cooperation (0 <
a, B <0.5), since h = 0.01 < hyj, = 0.09 QSN R = 20 [dB] there is no
dilemma (i.e. T'> P > R > N).

sum rate ; SNR=20 [dB] , h=0.01

175

Fig. 7. The sum rate of the two users Gaussian interference game for different
levels of cooperation (0 < «a,8 < 0.5); IWF method (a« = B8 = 0.5)
maximizes the sum rate.

Rate region : 8 RT + 8 CO

55r

451

CO at 4.5km rate [Mbps]

350 [ —a— FM-IWF

DFDM

0 20 40 60 80 100
RT at 0.9km rate [Mbps]

Fig. 8. Comparison of the rate region for 8 Remote terminals at 900m and
8 central office ADSL modems at L=4.5 using FM-IWF and DFDM.



type of game that describes near-far problems. This game is
caled the “Bully game”. We then provide tight bounds on
rate region for FM-IWF and DFDM for the case of near-far
interference channel.
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VII. APPENDIX

In this section we prove that for every sequence of intervals
{L,...,I;} ,the Gaussian interference game has a Nash
equilibrium point. Our proof is based on the technique of [4],
(see also [5]), adapted to the water-filling strategies in the GI
game. While the result follows from standard game theoretic
results, it is interesting to see the continuity of the water-
filling strategy as the reason for the existence of the Nash
equilibrium.

Theorem 1: For any finite partition {Iy,...,I;} a Nash
equilibrium in the Gaussian interference game Gl . 1.}
exists.

Proof: For each player ¢ define the water-filling function
Wi(pi,.-.,Py) : B—B;, which is the power distribution
that maximizes C* given that for every j # i player j uses the

power distribution p; subject to the power limitation P;. The
value of W;(py,...,p,) is given by water-filling with total
power of P; against the noise power distribution composed of
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where for all k, n;(k) > 0 is the external noise power in the
k’th band.

Claim 2: W;(x1,...,xx) is a continuous function.
Proof: We shall not prove this in detail. However informally
this fact is very intuitive since small variations in the noise and
interference power distributions will lead to small changes in
the waterfilling response.

The proof of theorem 1 now easily follows from
the Brauwer fixed point theorem. The function W =
[Wi,...,Wn] maps B into itself. Since B is compact subset
of a finite dimensional Euclidean space W has a fixed point
[Pys--.,Py]". This means that

W(p,,. ..

By the definition of W this means that each p; is the result of
player ¢ water-filling its power against the interference gener-
ated by {p; : j # i} subject to its power constrain . Therefore
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is a Nash equilibrium for GIyy, . 13-



