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Abs~racf-In this paper,  coding for a  mult iple-access discrete memory-  
less channel  is investigated. Block codes which are uniquely decodahle 
and  capable of correcting errors are constructed. 

I. INTR~IXJCTI~N 

C ONSIDER a simple multiple-access communication 
system as depicted in Fig. 1. In this system, two 

geographically separated users attempt to communicate 
binary data to two data sinks over a common channel 
which is called a multi-access channel. User 1 sends code- 
words from a block code C, ; user 2 sends codewords from 
a block code CZ. The two users occupy the same frequency 
slot, transmit at the same time, and use the same type of 
modulation. We  also assume, admittedly somewhat un- 
realistically, that the two users maintain bit and word 
synchronization. There is one decoder that serves both data 
sinks. 

In this paper, we shall study coding for the two channel 
models depicted in Fig. 2. The first channel model is 
referred to as a noiseless multiple-access binary erasure 
channel. In this model, if the two transmitted bits from the 
two users are zeros, a  zero is transmitted over the channel 
to the receiver; if the two transmitted bits from the two 
users are ones, a one is transmitted over the channel to 
the receiver; if the two transmitted bits from the two users 
are different, an erasure symbol c is transmitted to the 
receiver. This noiseless multiple-access channel was studied 
first by Liao [l] and then by Gaarder and Wolf [2]. The 
capacity region of this channel is the shaded area shown in 
Fig. 3. Liao has proved that if the users transmit data with 
a rate pair (R,,R,) as a point inside the capacity region, 
encoders and a decoder exist for which each user can 
communicate with the receiver with an arbitrarily small 
probability of error [l]. 

The second channel model shown in Fig. 2(b) is also a 
multiple-access binary erasure channel, but noise is in- 
troduced. For this channel, we say that a  single error has 
occurred if any of the following transitions has taken place: 
1) the transition from the input pair (00) to the output 
symbol <; 2) the transition from the input pair (11) to the 
output symbol 5; 3) the transition from either the input 
pair (01) or the input pair (10) to either the output symbol 0 
or the output symbol 1. We  say that two errors have occurred 
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Fig. 1. Mult iple-access communicat ion system with two users. 
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Fig. 2. (a) Noiseless multiple-access binary erasure channel.  (b) Noisy 

mult iple-access binary erasure channel.  

Fig. 3. Capacity region of mult iple-access binary erasure channel.  

if the transition is either from (00) to 1 or from (11) to 0. 
For both channel models described above, the two code- 
words transmitted from the two encoders are combined 
into a single vector Y with symbols from the alphabet 
{0,1,5}. At the receiving end, the decoder will process the 
received vector r and decode it into two binary codewords, 
one in C, and the other in C1, for the two data sinks. 

In this paper, coding for the two multi-access channel 
models discussed above is investigated. Let 1  C, 1 and lCZl 
be the number of codewords in code C, and code C,, 
respectively. Let n  be the length of both codes. Then the 
rates for C1 and CZ are R, = (log, IC1 1)/n and R2 = 
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(log, jC,I)/n, respectively. The coding problem for the For a and b in {O,l,<}, define la,blr as follows: 
noiseless multi-access binary erasure channel is to construct 
the code pair C1 and C, such that 1) the decoder is capable 
of decoding the received vector r without ambiguity into la,blr = yY 

ifa = b 
if either a or b is 5 but not both 

the two codewords that were transmitted from users I and 2, 2: ifa = Oandb = 1 ora = l‘andb = 0. 

and 2) the rate pair (R,,R,) is a point inside the capacity 
region and is as close to the boundary as possible. A code 
pair (C,,C,) that has the first property is said to be uniquely 
decodable. The coding problem for the noisy multiple- 
access binary erasure channel is to construct a code pair 
(C,,C,) that is uniquely decodable and is capable of correct- 
ing t or fewer errors. 

II. DEFINITIONS AND LEMMAS 

Let V, be the vector space of all the n-tuples over the field 
GF(2). For II = (u1,u2;**,un) and v = (v~,D~;.*,v,) in 
V,, let E(u,v) denote the n-tuple 

@ (wd,E(wd,~ . . ,Ww4) 

Let V,(E) denote the set of all n-tuples over the set {O,l,~}. 
For a = (a1,a2,. . . ,a,,) and b = (b,,b,; . .,b,) in V,(t) 
define 

which will be referred to as the r-distance between a and b. 
Dejinition 2: Let C, and C, be two subsets of V,,. Then 

the pair (C,,C,) is said to be 6-decodable (6 > 0) if and only 
if, for any two distinct pairs (u,v) and (u’,v’) in C, x Cz, 
IE(U,V),E(zd,V’)I~ 2 6. 

Clearly, if (C,,C,) is 6-decodable, it must be uniquely 
decodable. For a 6-decodable pair (C,,C,), define the 
following set 

where the ith component @ (C,,C,) = {E(u,v): u E C,, v E C,}. (2) 

E(Ui,Ui) = ui = vi, for ui = z)~ 

E(“i,vi> = 5, for ui # vi. 

Thus E(u,v) is a vector over {O,l,t}. 
Dejinition 1: Let C, and C, be two subsets of V,,. Then 

(C,,CJ is said to be uniquely decodable if and only if, for 
any two distinct pairs (u,v) and (u’,v’) in C, x C,, 
E(u,v) # E(u’,v’). 

It is clear from the above definition that if (C,,C,) is 
uniquely decodable, then C, and C, can have at most one 
vector in common. 

Example I: For n = 2, it is -possible to construct a 
uniquely decodable pair with C, = {OO,ll} and C, = 
{00,01,10}. The rate pair for C, and C, is (0.5,0.7925) 
which is a point inside the capacity region of Fig. 3. For 
n = 2 and R, = 0.5 it is impossible to construct a uniquely 
decodable code pair (C,,C,) with R, > 0.7925. Form a 
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Fig. 4. Decoding table for uniquely decodable pair C1 = {(OO),(ll)) 
and Cz = {(OO),(Ol):(lO)}. 

two-dimensional array as shown in Fig. 4 where the column 
headings are the code vectors u of C,, the row headings 
are the code vectors v of C,, and the entry at the intersection 
of column u and row v is the n-tuple E(u,v). This array may 
be used as a decoding table for the noiseless multiple-access 
channel. The received vector r at the input of the decoder 
must be an entry in the array. By table look up, the received 
vector r can be decoded without ambiguity into two code- 
words, one in C, and the other in Cz. 

The parameter 6 is referred to as the minimum t-distance 
of @ (C,,C,). Suppose that a 6-decodable piar (C,,C,) is 
used for coding a noisy multi-access binary erasure channel. 
Let u and v be the transmitted codewords from C, and C,, 
respectively. The vector transmitted over the channel is 
E(u,v). If no errors occur during the transmission, the 
received vector at the output of the decoder is also E(u,v). 
By using the decoding array formed from C, and Cz, the 
decoder will decode E(u,v) without ambiguity into the two 
transmitted codewords u and v and deliver them to sinks 
1 and 2. If errors occur during the transmission, the trans- 
mitted vector E(u,v) is altered. Let r be the received vector. 
Suppose that there are t = [(S - I)/21 or fewer errors in 
r where Lq] denotes the largest integer less than or equal 
to q. It is easy to see that 

for any (u’,v’) in C, x C, such that (u’,v’) # (u,v). This 
says that if there are t or fewer errors in the received vector 
r, then r is closer to the transmitted vector E(u,v) than to 
any other vector E(u’,v’). However, if more than t errors 
occur during the transmission, there exists at least one 
case where an error pattern results in a received vector r 
such that 

Ir,E(u,v)lr 2 lr,E(u’,v’)IC 

for some pair (u’,v’) in C, x C,. Therefore, if the decoder 
decodes the received vector r into a vector which is closest 
to r, any error pattern oft or fewer errors will be corrected. 
From the above analysis, we see that a 6-decodable pair 
(C,,C,) is capable of correcting L(S - 1)/2] or fewer errors 
in a noisy multi-access binary erasure channel. 

In the rest of this section, we shall prove some properties 
of a 8-decodable code pair (C,,C,). Let I(u,v;u’,v’) denote 
the number of places in vectors u, v, u’, and v’, where 
ui = ui, ui’ = vi’, and ui # ui’. For a E V,, let w(a) denote 
the Hamming weight of a. It follows directly from the defini- 
tions that we have the following lemma. 



KASAMI AND LIN: MULTIPLE-ACCESS CHANNEL 131  

Lemma 1: Let (u,v) and (u’,u’) be two pairs in C, x C,. define 
Then 

~(C,S,) = min Z(u,u;u’,u’). (4) 
IE(U,U),E(U’,U’)I~ = 2Z(u,u;u’,u’) + w(u + u + u’ + u’). (u,v)+(u’,v’) in CI X C2 

u+v=n’+v’ 

(3) Lemma 3: Suppose that the minimum distance of C, + 
Corollary 1: If (C,,C,) is &decodable, then the minimum Cz is greater than 6 - 1. The code pair (C,,CJ is 6- 

Hamming distances of both C, and C, are greater than or decodable if, ‘for any two distinct pairs (u,u) and (u’,u’) in 
equal to 6. c, x c,, u  + 2, #  u’ + u’. 

Proof: Let u  = u’ and u # u’. Then Z(u,u;u’,u’) = 0. Proof: Let (u,u) and (u’,u’) be two distinct pairs in 
Since (C,,C,) is 8-decodable, it follows from (3) that C1 x Cz. Since u + u # u’ + u’, u + u and u’ + u’ are 
w(u + u’) 2 6. Thus the minimum distance of C, is two distinct vectors in C, + Cz. Since the minimum 
greater than or equal to 6. If we let u  # u’ and u = u’, we distance of C, + C, is greater than 6 - 1, w(u + u + 
can show that w(u + u’) 2 6. Thus the minimum distance u’ + u’) > 6 - 1. It follows from Lemma 1 that IE(u,u), 
of C1 is at least equal to 6. Q.E.D. E(u’,u’)l 2  6. Thus (C,,C,) is 6-decodable. Q.E.D. 

Let u = (ul,uz;~. ,u,) and u = (v1,v2; . *,u,) be two Lemma 4: Suppose that the minimum distance of C, + 
vectors in V,,. We  say that the ith component of u  covers C, is greater than 6 - I, and suppose that there exist 
the ith component of u  if the following conditions are distinct pairs (u,u) and (u’,u’) in C, x C, such that u  + 
satisfied: 1) if vi = 0, then ui = 0 or 1; 2) if ui = 1, then u = u’ + u’. Then the code pair (C,,C,) is 6-decodable if 
Ui = 1. Otherwise, we say that ui does not cover oi. and only if 2Z(C,,C,) 2  6. 

DeJnition 3: Let u  and u be vectors in V,,. We  say that u  
is an (n - t)-cover of u, denoted u f u, if there are n - t 

Proof: Let (u,u) and (u’,u’) be two distinct pairs in 

or more components of u  that cover the corresponding 
C, x Cz. It follows from Lemma 1 that 

components of u. Let u  A u denote that u  is not an IE(u,u),E(u’,u’)l~ = 2Z(u,u;u’,u’) + w(u + 2, + u’ + u’). 
(n - t)-cover of u; i.e., there are more than t components (5) 
of u  that do not cover the corresponding components of u. 

Lemma 2: The code pair (C,,C,) is uniquely decodable 
Assume that 2Z(C,,C,) 2  6. There are two cases to be 

if and only if, for any two distinct pairs (u,u) and (u’,u’) 
considered._Case 1: u  + u = U’ + u’. Clearly, w(u + u + 

in C, x C,, one of the following conditions is satisfied: 
u’ + u’) = 0. Since 2Z(C,,C,) 2  6, it follows from the 
definition of Z(C,,C,) that ~Z(U,U;U’,U’) 2 6. From (5), we 

1) u + 2) # u’ + u’; 

2) u + u = u’ + u’ but u + u4/- u  + u’. 

obtain 
IE(~,u),E(u’,u’)l~ 2 6. (6) 

Proof: Suppose that two distinct pairs (u,u) and (u’,u’) Case 2: u  + u # U’ + u’. Clearly, u  + u and u’ + u’ are 

in C, x C, satisfy the first condition. Then E(u,u) # two distinct vectors in C, + Cz. Since the minimum weight 

E(u’,u’). Suppose that the pairs (u,u) and (u’,u’) satisfy of C, + Cz is greaterthan - 1, w(u + u + u’ + u’) 2 6. 

the second condition. It follows from Definition 3 that there From (5), we obtain 

exists at least one component in u + 21, let us say ui + vi, IE(u,u),E(u’,~‘)l~ r 6. (7) 
that does not cover the corresponding component ui + vi’ 
of u  + u’; i.e., ui + vi = 0 and vi + vi’ = 1. Since ui + From (6) and (7), we conclude that (C,,C,) is 8-decodable. 

Z)i = Ui’ + Z)i’, thus pi = vi, pi’ = vi’, and ui #  vi’. There- Assume now that (C,,C,) is 8-decodable. It follows from 

fore, E(u,,v,) #  E(ui’,v;‘). This implies that E(u,u) # this assumption and (5) that 

E(u’,u’). it-follows from Definition 1 that (C,,C,) is uniquely 2Z(u,u;u’,u’) + w(u + u + u’ + u’) 2 6. (8) 
decodable. 

Now assume that (C,,C,) is uniquely decodable. Suppose For any two distinct pairs (~,a) and (u’,u’) such that u  + 

that there exist two distinct pairs (u,u) and (u’,u’) in C, x C, ’ = ” + “’ w(u + 2, + u’ + u’) = 0. It follows from 

which do not satisfy either of the two conditions stated in (8) that 2Z(u,u;u’,u’) 2 6. This implies that 2Z(C,,Cz) 2 6. 

the lemma. Then we must have u + u = u’ + u’ and Q.E.D. 
0 u+u---+u+u’. This implies that E(u,u) = E(u’,u’) Lemma 5: For any two distinct pairs (u,u) and (u’,u’) in 

which is a contradiction to the assumption that (C,,C,) C, x C, such that u  + u = U’ + u’, u + u & u + u’, 
is uniquely decodable. Therefore, if (C,,C,) is uniquely if and only if Z(C,,C2) > t. 
decodable, any two distinct pairs (u,u) and (u’,u’) in C, x C, 
must satisfy one of the two conditions of the lemma. Proof: Assume that Z(C,,C,) > t. It follows from the 

definition of Z(C,,C,) that, for any two distinct pairs 
Q*E.D. (u,u) and (u’,u’) in C, x C, such that u  + u = u’ + u’, 

Define C, + C, as the set of all distinct vectors u + u we have Z(u,u;u’,u’) > t. This implies that there are more 
with u E C, and u E C,. If there exist distinct pairs (u,u) than t places in u, u, u’, and u’, where ui = ai, ui’ = Z)i’, 
and (u’,u’) in C, x C, such that u  + u = u’ + u’, we and vi #  vi’. Therefore, there are more than t places in 
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uanduandu+u’,whereui+ui=Oandvi+vi’= 1. 
Thus there are more than t places where u + u does not 
cover u + u’. This implies that u + u 4 u + u’. 

Assume that, for any two distinct pairs (u,u) and (u’,u’) 
such that u + u = u’ + u’, u + u q u + u’. It follows 
from this assumption and the definition of the relation 
-!-+ that there are more than t places in u, u, u’, and u’, 
where ui = ai, ui’ = vi’, and ui # ui’. This implies that, 
for u + u = u’ + u’, Z(u,u;u’,u’) > t. It follows from the 
definition of Z(C,,CJ that Z(C,,&) > t. Q.E.D. 

III. BOUNDS 

In Section II we defined some basic concepts on coding 
a multi-access binary erasure channel. We also proved some 
general properties of the 6-decodable code pairs. In this 
and the following sections, we shall present some results 
on the construction of uniquely decodable and 6-decodable 
code pairs. Our approach to the construction is that oy2e 
code, let us say C,, is chosen as an (n,k) linear code, and the 
vectors in C, are chosen from the cosets of C,. Using this 
approach we must determine how many and what vectors 
from each coset of C, can be used as codewords in Cz. 

Theorem 1: Let C, be a linear code which contains the 
all-one vector (111 . . . 1). Let S be a coset of C, whose 
minimum weight w,,,~,, is greater than t. Then there exist 
at least two vectors u and u’ in S such that, for any vector u 
in S, u + 2, + u’. 

Proof: Since the minimum weight of S is w,,,~,,, the 
maximum weight of S is n - w,,,~“. Since w,,,~” > t, n - 
w,,,~” < n - t. This implies that every vector u in S has 
more than t zeros. Let u be any vector in S. Let u’ = 
(111 a.0 1) + u. Then u + u’ = (111 . . . 1). Clearly, for 
any vector u in S, there are more than t components in u 
which do not cover the corresponding components of 
u + u’ = (111 ... 1). Thus we have u & u + u’. 

Q.E.D. 

Theorem 1 implies a method of constructing a class of 
uniquely decodable code pairs. A code pair (C,,C,) in 
this class is constructed as follows. Let C, be a linear 
(n,k) code which contains the all-one vector (111 * . . 1). 
Let S be a coset of C, such that S # C,. Let u be the coset 
leader of S. Let u’ be the one’s complement of u. We include 
u and u’ in C,. There are 2”-k - 1 cosets of C, which 
are not equal to C,. From these 2”-k - 1 cosets, we can 
choose 2n-k’ 1 - 2 vectors and put them in Cz. We also 
choose the all-zero vector (000 * * . 0) from C, and include 
it in Cz. Therefore, C, has 2n-kf1 - 1 vectors. The code 
pair (C,,C,) is uniquely decodable. This can be seen as 
follows. Consider two distinct pairs (u,u) and (u’,u’) in 
C, x C,. If u and u’ are chosen from two different cosets 
of C,, then u + u # u’ + u’. Suppose that u and u’ are 
chosen from the same coset S. Then u + u’ = (111 . . . 1). 
Without loss of generality, we assume that u is the coset 
leader of S. Then u + u is a vector in S. Since the all-one 
vector is in C,, there is at least one component in u + u 
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which is zero. Therefore, if u + u = u’ + u’, then IL + 
u & u + u’. It follows from Lemma 2 that (C,,C,) is 
uniquely decodable. The sum rate R, + R, of this pair is 
about l/n bits higher than the rate achieved by using the 
time-sharing technique of Shannon [3]. 

For a uniquely decodable pair (C,,C,) with C, as a linear 
code, Theorem 1 provides a lower bound on the number of 
vectors that can be chosen from each coset of C, and used 
as vectors in C,. 

Corollary 2: Let C, be an (n,k) linear code that contains 
the all-one vector. Then at least two vectors can be chosen 
from each coset of C, as code vectors in C, so that (C,,C,) 
is a uniquely decodable pair. 

When the code length n is large, there may be many cosets 
of C, such that each may contribute more than two vectors 
in C,. The following lemma and theorem will give an upper 
bound on the number of vectors that each coset of C, 
may contribute to C,. 

Lemma 6: Let (C,,C,) be uniquely decodable. Suppose 
that C, contains a linear code So. Let S be a coset of S,. 
For any u E S, define the following set of vectors 

Let 
U-t 

S,(u) = {u: u E So and w(u + u) = w(u) + w(u)}. 

x and y be two distinct vectors in So. If u + x and 
y are in S n C,, then x + y $ S,(u). 

Proof: If u + x and u + y are in S n C,, (y, u + x) 
and (x, u + y) are two distinct pairs in C, x C,. Suppose 
that x + y is in S,(u). Then E(y, u + x) = E(x, u + y). 
This is a contradiction to the fact that (C,,C,) is uniquely 
decodable. Thus x + y $ So(u). Q.E.D. 

Theorem 2: Let (C,,C,) be a uniquely decodable pair 
where C, is an (n,k) linear code. Let S be a coset of C, 
whose maximum and minimum weights are w,,, and W,in, 
respectively. Then 

IC, f-7 SI I min (2”-Wmax,2wmin). (9) 

Proof: Let u be a vector in S such that w(u) = wmax. 
Consider the set 

I- = {E(u, u + u): u E C,}. 

The ith component of E(u, u + u) is 5, if and only if the 
ith component of u, ui = 1. Hence the number of distinct 
vectors in l7, denoted jr1, is less than or equal to 2”-wmaX. 
This implies that IC, n SI 2 2”-“maX. However, it follows 
from Lemma 6 that ICz n Sl I 2”min. Therefore, the 
theorem is proved. Q.E.D. 

Theorem 2 yields the following bound. 
Corollary 3: Let C, be an (n,k) linear code. Then at most 

min (~-Wmax,2”min) t vet ors can be chosen from each coset 
of C, as codewords in Cz so that (C,,C,) is a uniquely 
decodable pair, where wmaX and w,,,~~ are the maximum 
and minimum weights of the coset, respectively. 

Example 2: Let C, be the (2”’ - I, 2” - m  - 1) 
Hamming code with distance 3. This code contains the all- 
one vector. There are 2” - 1 cosets with respect to C,. 
The minimum weight wmin of each of these cosets is one, 



KASAMI AND LIN: MULTIPLE-ACCESS CHANNEL 133  

and the maximum weight w,,,,~ of each of these cosets is t < 2”-‘-l.Iff -L g, thenf = 1 + gh, where S = 1 + g, 
2” - 2. It fOllOWS from COrOllary 3 that IlO more than tW0 ,$ E p,-,, and h is independent ofg. 
vectors can be chosen from each coset of C, as codewords 
in CZ such that (C,,C,) is uniquely decodable. However, Proof: W ithout loss of generality, we assume that 
it follows from Corollary 2 that at least two vectors can g = X,. The polynomial f (X1,X,, 1  1 . ,X,) can be expressed 
be chosen from each coset of C, as codewords in C,. as follows: 
Therefore, exactly two vectors can be chosen from each 
coset of C, as codewords in C2 so that (C,,C,) is uniquely 

f(x,,x 
2,‘. *,Kl> = fo(X2J3;. -Ln) 

decodable. Hence we can construct C, with 2(2” - I) + 1 + ~lfi(~,,~,,. . ~xn) (12) 

codewords (two from each coset of C, plus the all-zero 
vector). This example shows that if C, is the (2” - 1, 
2” - m  - 1) Hamming code, then for (C,,C,) to be 
uniquely decodable, the maximum number of codewords 
that C, may contain is 2”’ ’ - 1. Let m  = 3. Then C, is 
the (7,4) Hamming code. We  can construct C, with 15 
codewords. For this code pair, the rate pair is (0.571,0.558). 

IV. CONSTRUCTIONOF SOME~DECODABLECODES 

Let V, be the vector space of all the 2” m-tuples over 
Gt;(2). For any integer i between zero and 2” - I, there 
exists one and only one m-tuple, (ail,ai2; . .,ai,,,), in V, 
such that ail,ai2; . . ,ai, are the coefficients in the radix-2 
expansion of i; i.e., i = ai, + ai + ai,22 + . . . + 
aim2m-1. We  shall refer to (ail,ai2; . .,a,,) as the coordinate 
vector of i. Let X1,X2; . . ,X, be m  variables over GP(2). 
We  define P, to be the set of polynomials f (X1,X2,. . .,X,) 
of degree m  or less in X1,X2,. . . J,,, with coefficients in 
GF(2). Clearly, f (X1,X2,. . . ,X,) is a  binary function over 
V,. Now, consider the vector space V,, over GF(2). It is 
known that each vector in V,, is uniquely specified by a 
polynomial in P, [4]. The vector in V,, that is specified 
byf (X,X,,. . . ,X,) is given below: 

where the degree off0 is less than or equal to r and the 
degree of fi is less than r. Setting X, = 1, we obtain 

f(lJ2;. . 3x*> = fo(~,,~,,. . ~,KfJ + fi(~,,~,,. . ~,Kn). 

(13) 
It follows from (12) and (13) that 

f(XlJ2;. ~x?l) 

= f(l,X,; * * 9X*) + (1 + ~,)fiW2,~3,~ * .,Kn) 

= f(l,X,; . . ,x*1 + X,f1(~2,~3,* * .Jm) 

= f (1,X,;. . ,xm> + 57fi(~2,~,, * . . Al) (14) 

where f (1 ,X2,. . .,X,) is a  polynomial of degree r or less 
in m  - 1 variables X,,X,;..,X,,,. Let u[f(l,X,;.-$,,,)I 
be the vector of length 2”-’ specified by f (1,X,, . . .,X,) 
with (X2,X,, . . . ,X,) running over V,-,. Let If(l,X,, 

. . .,X,,Jlm-l denote the weight of u[f(l,X,; * -,X,,,)]. Since 
fh,=, X, is a  linear polynomial, lglm = 2”- ‘. If f-L g, 

If(U2; * * ,Xm)lm-l 2  2”-’ - t. 

Since t < 2m-r-1, thus 

If(lJ2,. . * ,X*)l*-1 > 2m-’ - 2m-r-1. (15) 

with ith component 

ui = f(%4G2,‘ee&d 

Since the largest possible value off (1,X,, . . .,X,,,) is 2m-1 
and the next largest possible value of f (1,X2, 1. * ,X,) is 

(11) 2”-i - 2m-r-1 [4], it follows from (15) that If(l,X,, 

where (ail,ai2; . . ,a,J is the coordinate vector of i. We  
shall also refer to (ail,ai2; . . ,a,,) as the coordinate vector 
of the ith bit position of a  vector in V,,. Let f (X1,X2,. . . ,X,,,) 

and g(X,,X,; . . ,X,) be two polynomials in Pm. If u(f) f 
u(g), we write f 2 g. If f (X1,X2; . *,X,,,) can be trans- 
formed into g(X,,X,, . . . ,X,) by an invertible affine trans- 
formation, f (X1,X2,. . . ,X,) is said to be affine equivalent 
to &-1,x2,. . . ,X,). Let r be a nonnegative integer less 
than or equal to m. Let P, be the set of polynomials of 
degree r or less in P,. It is known that there exists a one-to- 
one correspondence between a code vector in the rth- 
order Reed-Muller (RM) code of length 2” and a poly- 
nomial f (X1,X2,. . . , Xm) in P,; i.e., each code vector in the 
r th-order RM code is uniquely specified by one polynomial 
in P, according to (10) and (1 l), and each polynomial in P, 
specifies a code vector in the rth-order RM code of length 
2” [4], [S]. Let If I,,, denote the weight of u(f). 

. . .,X,&,,-i = 2m-‘. This implies thatf(l,X,; . .,X,) = 1. 
From (14) we obtain f = 1 + gfi(X2,X,; . .,X,,,). Q.E.D. 

The proof of Lemma 7 implies the following lemma. 
Lemma 8: Suppose that f E P,. Let t be a nonnegative 

integer such that t < 2m-r-1. If f(l,X,; . *,X,,,) #  1, then 

fjL&. 

Let C, be a linear code of length 2”. Let S be a coset of 
C, such that S # C,. Let f (X1,X2; . . ,X,) be a polynomial 
in P,,, such that the vector u(f) is in S. Let Z(f) denote the 
number of independent linear factors off. Define 

l(S) = max l(f). 
W) ES 

(16) 

Lemma 7: Suppose that the f (X1,X2,. . .,X,,,) and 
g(X,,X,, . . . ,X,) are in P, and g(X,,X,, . . .,X,) is a  linear 
polynomial. Let t be a nonnegative integer such that 

Theorem 3: Suppose that C1 is the first-order RM code 
of length 2”. Let S be a coset of C, such that S # C1. 
Suppose that the polynomials which specify the vectors in 
S are in P,. Let f be a polynomial which satisfies the follow- 
ing conditions: 1) u(f) E S; 2) Z(f) = Z(S). Let Y,,Y,;.., 
Ylcsj be the independent linear factors off. Choose linear 
polynomials Ylcsj + 1, . . .,Y, in such a way that Y,,Y,; . *,Y, 
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are linearly independent. Form the following set 

So = U(g): g = f + Co + 
i 

C Ciri with Co, Ci E GF(2) . 
i>l(S) I 

(17) 

If t < 2m-r-1, then, for any two distinct pairs (u,u) and 
(u’,u’) in C, x So such that u + u = u’ + u’, we have 
ufu + u + u’. 

Proof: Without loss of generality, we use Y,,Y,; * *,Y, 
as independent variables. Let 

f = Y,,Y2,* . -&,hV,(s,+,,. . *,Yml 

where h E P,-,c,, and h has no linear factor. Let (u,u) 
and (u’,u’) be two distinct pairs in C1 x So such that 
u + u = u’ + u’. Note that 

u + u’ = u + u’ = u(Z) (18) 

where Z is a polynomial of the form co + Ci,I(s) ciYi. 
Also 

u + u = u(f + q) (19) 

where q (Xl ,X2,. . . ,X,) E P,. Clearly, f + q E P,. By the 
assumption, f 4 P,. Suppose that Z is not a constant. 
The variables Y,, Y,, . . . , Ylcsj, Z are linearly independent. 
Express f in the following form 

f = y,,y,,* * ., Y&ho + Zh,) 

where ho E P,-,c,,, h, E P,-lcsj-l, and ho and h, are 
independent of Y,, Y2, * * . ,Yrcsj, Z. If h, = 0, then fi= 1 = 
f # P,. If h, # 0 and fizl = Yl,Y2;-~,Y,~,,h, is in P,, 
then f + fi= 1 specifies a vector in S. The polynomial f + 
fizl has at least Z(S) + 1 linear factors. This is a contradic- 
tion to the definition of Z(S). Therefore, we conclude that 
fi = 1 6 P,. Hence, by Lemma 8, we have 

f+ 4+z. (20) 

It follows from (18), (19), and (20) that we have u + 

+ u + u’. If Z = 1, then the above relation holds. 
Q.E.D. 

If the first-order RM code of length 2” is used as C,, 
Theorem 3 tells us what vectors from each coset of C, can 
be used as vectors in C, so that the pair (C,,C,) is 6- 
decodable. The vectors that can be chosen from a coset of 
C, are the vectors in So of (17). The number of vectors in 
So is 2”- ‘(‘)+l. However, to be able to use Theorem 3, 
the coset leaders of the cosets of C, must be known. 
Several 6-decodable code pairs (C,,C,) with C, as the first- 
order RM code are given in the following examples. 

Example 3: Let C, be the first-order RM code of length 
16. The coset leaders of this code are listed in Table I 
which was obtained by Dick and Sloane [6]. Types of coset 
leaders in terms of Boolean polynomials are given in 
column 1. Each coset leader is an affine equivalent to one 
of the polynomials listed in column 1. The second column 
gives the numbed of coset leaders that are equivalent to the 
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TABLE I 
COSETLEADERS OFFIRST-ORDER RM CODE OF LENGTH 16 

coset Types 
(Boolean Polynomials) 

0 

v2 

XlX2 + x3x4 

x1x2x3 
X1(X2X3 + X4) 

xlx2x3x4 
X1X2(X3X4 + 1) 

x1x2x3x4 + xlx2 + x3x4 

No. of such 
cosets 

1 

35 

28 

120 

840 

16 

560 

448 

9. (S) 

TABLE II 
COSET LEADERS WITH POLYNOMIAL REPRESENTATION OF DEGREE 3 OR 

LESSFOR FIRST-ORDERRM CODEOFLENGTH 32 

Cosets with Boolean No. of Such 
Polynomials of degree 3 or less Cosets 

0 

xlx2 

XIXZ + X3X4 

x1x2% 

x1%?3 + X4% 

xlxzx3 + v4 

'1'2'3 + 3'4 + '2'5 

3'2'3 + '1'4'5 
x1x2x3 + x1x4x5 + x2x3 

x1x2x3 + x1x4x5 + xzx4 
x1x2x3 + %X4X5 + x2x3 + x2x4 + xix, 

1 

155 

868 

155 x 8 

155 x 512 

155 x 168 

155 x 336 

868 x 32 

868 x 320 

868 x 480 

868 x 192 

- - 

a(s) 

2 

0 

3 

0 

1 

0 

1 

0 

0 

0 

polynomials of the same row. The third column gives the 
value of Z(C) of each coset. Let r = 4 and t = 0. By 
Theorem 3, we can choose 1 + 35 * 23 + 28. 25 + 
120. 22 + 840. 24 + 16.2 + 560. 23 + 448 .2’ = 33945 
vectors from the cosets of C1 as vectors in C2 so that (C, ,C,) 
is uniquely decodable. C, and C, give a rate pair (0.312, 
0.941) which is very close to the boundary of the capacity 
region of the multiple-access binary erasure channel. 

Example 4: Let C, be the first-order RM code of length 
16. Let C, + C, be the second-order RM code. Let t = 1. 
It follows from Lemmas 4 and 5 and Theorem 3 that we 
can choose 1 + 35 . 23 + 28 . 25 = 1177 vectors from 
cosets of type X,X, and type X,X, + X3X4 as vectors in 
C2, so that (C,,C,) is 4-decodable and is capable of cor- 
recting any single error. The rate of C, is R, = 5/16, and 
the rate of C, is R, = (l/16) log, 1177 = (10.19116). The 
sum rate of (C,,C,) is R, + R, = 15.19/16. For n = 16, 
if we choose C, with R, = 5/16, it follows from Corollary 
I that the maximum possible rate of C, is less than or equal 
to 11/16. 
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Example 5: Let C, be the first-order RM code of length 
2’ = 32. Let C, + C, be the third-order RM code of the 
same length. The coset leaders of C, whose polynomial 
representations have degree 3 or less are given in Table II 
(obtained from Berlekamp and Welch [7]). Let t = I and 
r = 3. It follows from Lemmas 4 and 5 and Theorem 3 
that we can choose 65 309 809 vectors from those coset types 
given in Table II as vectors in C, so that (C,,C,) is a  4- 
decodable code and is capable of correcting any single 
error in noisy multiple-access binary erasure channel. This 
code pair has a rate pair (6/32,25.96/32). It follows from 
Corollary 1 that if we choose C, with R, = 6132, then 
R, I 26132 for (C,,C,) to be 4-decodable. 

Example 6: Again, let C, be the first-order RM code of 
length 32. Let C, + CZ be the second-order RM code. 
Let t = 3 and r = 2. Then we can choose 1 + 115 . 24 + 
868 . 26 = 58033 vectors from the cosets of type 0, X,X,, 
and X,X, + X,X, as vectors of C, so that (C,,C,) is 
8-decodable. This code pair is capable of correcting three 
or fewer errors in a noisy multi-access binary erasure 
channel. The rate pair for C, and C, is (6/32,15.824/32). 

V. ON A CLASS OF ~DECODABLE CODE PAIRS (C,,C,) W ITH 
R, = + 

In this section, a  class of 4-decodable (or single-error- 
correcting) code pairs are presented. For each code pair 
(C,,C,), one code, let us say C,, is a  linear (n,k) code; 
and the vectors of the second code are chosen from the 
cosets of Cr. 

Let IZ = 2”‘. Let each bit position i of an n-tuple in V, be 
represented by an m-tuple in V, which is the coordinate 
vector of position i. Let p  = &,b,, . . * ,b,) be a m  - 1 
tuple in V,- 1. Define the following set of polynomials in 
x1,x,, . . . ,X, over GJ(2), 

Fl = f(Xl,X,,. . -,-L> ( 
= p c -I c/?Gz + 62) (X, + h3)...(Xm + 6,): 

E m  
cg E GF(2) and BE”m--l CD = O c 

I (21) 

where gi = 1 + bi, for i = 2,3; * .,m. Based on (10) and 
(ll), FI specifies a subset of vectors in V,,, 

C, = {4f): f(x,J,,. . *,K,> E Fd. (22) 

It follows from the definition of F, that C, is a linear 
(2”, 2”-’ - 1) code which contains the all-one vector 
(111 ..* 1). For any vector v(f) in C,, the component at 
the bit position with coordinate vector (a1 = 0,az,a3,. . . ,a,) 
is identical to the component at the bit position with co- 
ordinate vector (a, = l,a,,a,, . . . ,a,). In fact, C, is equiv- 
alent to the product of the (2,l) code {(OO),(ll)} and the 
(2”‘-l, 2”‘-r - 1) even parity code. Also, since we note 
c B EYm-, cg = 0, that FI s P,,-z. Therefore, C, is a 
linear subcode of the (m - 2)th-order RM code of length 
2”. 

Any polynomial f(X,,X,; * *,X,) in P, can be expressed 
as 

f(X,,X,,- . .J,> 

= pEg- (qJl + ca>(x, + b) f . . (x, + 6,) (23) 
1 

where /? = (b&b,, . . . ,b,). Consider the coefficients of the 
following terms: X,X, . . . X,, X,X,X, . . * X,, X,X,X, f . . 
zn, x,x, . . . &...I, x,x, * * * X,. The polynomial f(X,,X,, 
.**,X,,,) of (23) is in P,,,-2, if and only if the following 
equalities hold 

c aa = 0 (244 
BEYm--1 

c ap = 0, for2 I i I m  (24b) 
BEVm-1 

6,=1 

c cp = 0. (24~) 
BEYm-1 

Now consider the cosets of Cl. Let 

fl(X,,X2,. . * ,&J 

= p $_, (apX1 + c&(X2 + 62) . . . GL + %J 

fi(Xl,X,, * . . ,zn) 

= BJ-l (ap’Xl + cp’)V2 + &I * * f GL + 0 

be two polynomials in P,,,-,. Then u(fl) and v(fi) belong 
to the same coset of Cl, if and only if aa = aS’, for any 
fi E V,-,. It follows from the definition of RM codes [8] 
that the coefficient vector 

a = (q0,0,. . . ,o)4+o,o,. ,l)T * . .dql,l,. . .,d (25) 

satisfies the equalities (24a) and (24b) if and only if CI is a 
code vector in the (m - 3)th-order RM code of length 
2”-‘. For each code vector, c( = (a(,,,, . . . o)~a(o,o,. . . 0, 
. . =,a(,,,,. . .,r,) in the (m - 3)th-order RM code of length 
2*-l, define the following set of polynomials in X1,X2, 
* + .,X, over GF(2): 

F,(a) = 
1 

c (X, + c&(X, + 6,). . . (X, + 6,): 
q=l 

C cg = 0 and cg E GF(2) 
i 

(26) 
l&q=1 

where fi E Vm-r, as is a component of CI, and the sum is 
over the b with aa = 1. Let w(a) be the weight of a. Then 
the number of polynomials on E;(X), denoted IFz(ct)l, is 

IF2(cc)I = 2++)--l. (27) 

If CI is the all-zero vector, then F,(a) = (0). 
Lemma 9: Assume that a is a code vector in the (m - 3)th- 

order RM code of length 2”‘-l and is not the all-zero vector. 
Let j”(X,,X,, . . . ,X,) and f’(X,,X,, * . * ,X,) be two distinct 
polynomials in F,(a). If there exist two polynomials 
9(X1,X,, . . . ,K,J and s’W lJ2,~ . . ,X,) in Fl such that 
f + g = f’ + g’, then 

s+f+f+f: (28) 
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Proof: Let 

~1 = (aco,O,. . .,opqo,o,. . .,l)Y’ * *,q1,1,. 

Let 

f-(X1,X,,. . -,Xm) 

= El (Xl + cLJv2 + 52) 
f’(Xl,XZ, . . ~2L> 

= Jl (Xl + 57%x2 + 62) 

and 

S(X,,X2,’ * ~,-?n) 

= J-, C~“(X2 + ~z)(X, + 63) * 

. . 

. . 

.,I) 1. 

* Pm -I- %I) 

* (Xm + hn) 

(Xm + 5,). 

Since f # f’ and 

El (9 + 6) = 0 

there exist different /? = [b2,b3; * *,b,) and p’ = (bZ’,b3’, 
. . . ,b,‘) such that 

%2,b3,. . . ,bm) + C;bA. . -1 .,bd - 

C(bi,b3’, . . . ,b,‘) + C;b$,bs’, . . .,b,‘) = 1 

a@d%. . .,b,) = a(b2’,b3’,. . .b,‘) = l. 

Hence for any ci&&, . . . ,b,) and c&‘,ba’, . . . ,b,,), we have 

@ + g)Xz=bz,.. ..X,=b,,, + %f- + fl)Xz=bz,. . .,X,=b, 

CW 

u(f + g)&=b2’;. .,X,=b,’ ’ 
+ 

@(f + fl)X2=b$,. . .,X,=b,’ 

(29b) 

where u(f + g)xzzbZ,. . .,X,=b, denotes the following two 
components 

[f Wz, * * . &ml + g(Wz,. . . ,bm), J-W,, * * . &ml 

+ dl,bz, - * . A,)1 
in the vector v(f + g), and u(f + f ‘)X2=b2,. . . ,X,=b, 
denotes the two components 

+ f ‘(1 ,bz>. . . A,)1 
in the vector v(f + f’). It follows from (29) that we obtain 
(20 Q.E.D. 

Now we define the following set of polynomials: 

F2 = U J’2b) (30) a 

where the union is over all the code vectors a in the 
(m - 3)th-order RM code of length 2”- ‘. Let C, be the 
following set of vectors of length 2” 

C2 = {v(f):fWJ,,* * *,T,J E F2). (31) 
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Consider the bit position with coordinate vector (b, = 0, 
b . . .,b,) and the bit position with coordinate vector 
(it; = 1, b,;. .,b,). This pair of bit positions is called a 
slot, and the (m - I)-tuple (b,,b,; + *,b,) is referred to as 
the coordinate vector of this slot. It follows from the 
definition of E;;(u) that the two components at any slot 
in a vector of C2 must be in one of the following three 
configurations (00), (Ol), and (10). Also, the number of 
configuration (10) in each vector is even. 

Let Ai denote the number of code vectors of weight i 
in the (m - 3)th-order RM code of length 2”- ‘. It follows 
from (27) and (30) that the number of vectors in C,, denoted 
by 1 C,I, is given below : 

lC2l = 1 + k yil Ai2’* (32) 

Since the (m - 3)th-order RM code of length 2”-’ is a 
Hamming code of distance 4, the weight generating function 
of this code is 
pn-1 
c A,X’ = 2-“((1 + x)2,-, + (1 - x)2,-, 

iy0 

+ 2(2”-l - l)(l - x2)2”-2}. (33) 

(See Peterson [S].) Combining (32) and (33), we obtain 

lc21 = + + 2-(m+r){32m-’ + 2(2m-1 - 1)3zmm2 + I}. 

(34) 
For large m, R2 M t log, 3. 

Now consider the code pair Cl and C2. It follows from 
the definitions of Fl and F, that Cl + C2 is the (m - 2)th- 
order RM code of length 2”. Based on Lemmas 4, 5, and 9, 
we obtain the following result. 

Theorem 4: Let C, be the code specified by 

F, = fG,,X,,- * *a-m) 
1 

= Jbl qx2 + 52)(X, + 63) . * - (Xrn + 6,): 

csEGF(2)and c cp =0 . 
BEVm-1 1 

Let C2 be the code specified by 

F, = ‘u C (X, + cs)(X2 + 62). *a (X, + 6,): 
01 ( up=1 

c cg = OandcaEGF(2) 
a#=1 1 

where the union is over all the code vectors CL in the 
(m - 3)th-order RM code of length 2m-i, and aa is the 
component of a at the bit position with coordinate vector 
/? = (bZ,b3,*.*,bm-1) E V,-,. Then C, and C2 form a 
4-decodable (or single error-correcting) code pair for a 
noisy multiple-access binary erasure channel. As m (or n) 
becomes large, the rates R, and R2 of the single error- 
correcting codes Cl and C2 of Theorem 4 approaches 
3 and 3 log, 3, respectively, which are the rates for the 
noiseless case of Example 1. 
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Decoding 

The decoding of the above class of 4-decodable code 
pairs is simple. Let Y be the received vector. Define a map- 
ping z from {O,l,t} to GF(2) as follows: 

z(0) = 0 z(1) = 0 T(S) = 1. 

Applying the mapping z to the components of r, we obtain 
a binary vector z(r). If there is no error in r, then z(r) 
is a  code vector in C1 + CZ which is the (m - 2)th-order 
RM code of length 2” (or the extended Hamming code of 
length 2”). If there is a single error in r at the certain 
location, then there is a single error in z(r) at the same 
location. The decoding of r consists of three steps. 

Step 1: The binary vector z(r) is decoded according to 
the decoding procedure for the (m - 2)th-order RM code. 
The error location is determined. Suppose that (b,,b,, . . .,b,) 
is the coordinate vector of the error position. 

Step 2: Each slot of r, except the one with coordinate 
vector (b,,b,, . * * ,b,),’ is decoded into two binary slots 
according to the decoding array of Fig. 4. Suppose that u 
and u were the transmitted vectors from C, and CZ, 
respectively. Then this step reproduces 2”‘-’ - 1  slots of 
u  and 2”- 1 - 1  slots of 2). 

Step 3: The slot of r with coordinate vector (b2,b,; * *,b,) 
is examined. If the symbol at the error location (b,,b,, . * * ,b,) 
is either zero or one, then change this symbol to &j and decode 

r This slot consists of two bits, one  with coordinate vector (br, 
b  Z, * . *,b,,,) and  the other with coordinate vector (6,,b,, * .,b,). 
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the corrected slot according to the decoding array in Fig. 4. 
If the symbol at the error location (b,,b,, . . * ,b,) is 5  and the 
symbol at location (6,,bz; * .,b,) is zero, then we change 
the symbol 5 at location (b,,b,; * *,b,) to zero and decode 
the slot according to the array in Fig. 4. (Due to the struc- 
ture of C, and C,, the combination with the symbol c at 
error location (b,,bz; . . ,b,) and the symbol 1 at location 
@A. . . ,b,) does not exist.) If the symbol at the error 
location (b,,b2, * * - ,b,) is 5  and the symbol at location 
(Lbz,. . . ,b,) is also 5, then the slot of u  and the slot of v 
at location (b,,b3, * . * ,b,) are either (0,O) and (0,l) or 
(1,l) and (l,O). Decode these slots in such a way that the 
number of slots in u with configuration (1,O) is even. 
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