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Measurement of Time—Variant Linear Channels

G. E. Pfander and D. F. Walnut

Abstract— The goal of channel measurement or operator iden-
tification is to obtain complete knowledge of a channel operator
by observing the image of a finite number of input signals. In this
paper it is shown that the spreading support of the operator (that
is, the support of the symplectic Fourier transform of the Kohn—
Nirenberg symbol of the operator) has area less than one then the
operator is identifiable. If the spreading support is larger than
one, then the operator is not identifiable. The shape of the support
region is essentially arbitrary thereby proving a conjecture of
Bello. The input signal considered is a weighted delta train where
the weights are the window function of a finite Gabor system
whose elements satisfy a certain robust completeness property.

Index Terms— Bandlimited Kohn-Nirenberg symbols, channel
measurement, Gabor and time-frequency analysis, operator iden-
tification, spreading functions, underspread operators.

I. INTRODUCTION

HE measurement of incompletely known linear channel

operators based on the observation of a single input
and the corresponding output signal is a traditional goal in
communications engineering.

Starting in the late 1950s, Thomas Kailath analyzed the
question whether an unknown time—varying channel operator
H with a known restriction on time and frequency spread can
be measured by applying the operator to a single known input
signal f, that is, whether the operator H can be identified by
analyzing the single channel output H f [1], [2]. If so then
we say that the class of such operators is identifiable with
identifier f. Kailath considered operators formally given by

b
2

= ||

where T} is a time—shift by t, that is, T} f(z) = f(x — t),
t G;R,\and M, is the frequency shift or modulation given
by M, f(v) = f(’y: v), v € R =R, that is, M, f(z) =
e*™ f(z), where f(v) = [ f(z)e ™7 dx, v € R.!The
function ng is called spreading function of H, a denotes the
maximal time—delay and % is the maximal doppler spread of
H.

In the landmark paper Time—Variant Communication Chan-
nels [3], Kailath postulated that members in a collection
of communication channels that are characterized by having
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!Following standard mathematical practice, we identify the “time domain”
(R) as distinct from the “frequency domain” (R) even though each symbol
represents the real numbers.

common maximum delay a and common maximum Doppler
spread &, that is, all H such that ny(t,v) = 0 for (t,v) ¢
R =[0,a] x [-%,2], would be identifiable by a single input
signal if and only if the area of the rectangle R satisfies
vol (R) = Sgr ab < 1. To show the necessity of this
so—called underspread condition, Kailath provided ingenious
arguments based on the comparison of the degrees of freedom
of the operator, and degrees of freedom of the output signal.
To count these degrees of freedom, Kailath used the theoretical
construct of a bandlimited input signal with finite duration.

Being aware of the mathematical shortcomings of his ap-
proach, and understanding the contemporary and groundbreak-
ing work of Slepian, Landau, and Pollak on “the dimensions of
the space of essentially time- and bandlimited functions” [4]-
[6], Kailath conjectured that the underspread condition ab < 1
is necessary in general:

Recent work by Landau and Shannon has shown
that the concept of approximately 27T degrees of
freedom holds even in such cases. This leads us
to believe that our proof of the necessity of the
BL <1 [a = L,b = BJ condition is not merely
a consequence of the special properties of strictly
band-limited functions. It would be valuable to find
an alternative method of proof. [2]

Kailath’s assertion has been proven in general only recently
[7].

In the paper Measurement of Random Time—Variant Linear
Channels [8], Philip Bello postulated that the rectangular
support condition vol (R) = S = ab < 1 is too restrictive.
Bello considers operators given by

(Hf)(x)://A77H(75,V)TtMl,f(ac)alth7 r €R,

where A is an essentially arbitrary bounded region in the time—
frequency plane RxR and postulates:

Unfortunately the criterion Sp < 1 [of Kailath]
has been uncritically accepted subsequently as the
channel measurability criterion for random time—
varying linear channels, without paying sufficiently
careful attention to the conditions under which it was
derived. In this paper we shall show that the criterion
Sr < 1 is not the proper channel measurability
criterion, and we shall propose a new criterion,
Sa4 < 1 [S4 denotes the area of A], where the
parameter S 4 is called the area spread factor of the
channel. [8]

In other words, Bello claimed that one could replace the rect-
angle spanned by maximum delay ¢ and maximum Doppler
spread % by any bounded region A of time—frequency shifts.
The corresponding operator class would be identifiable if the



area of the region is smaller than one and not identifiable if it
is larger than one. Clearly, Kailath’s assertions can be seen as
a special case of Bello’s result, namely when A is a rectangle.
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Fig. 1. Spreading support regions of area less than or equal to one which
characterize identifiable operator classes.

Similar to Kailath’s approach, Bello discretizes the measure-
ment setup in order to apply dimension counting arguments.
In fact, he assumes that

the input to a channel is confined by a time gate to
the time interval 0 < ¢ < 7" and the output spectrum
is confined by a bandpass filter to the frequency
interval —%W <t< %W [8]
Hence, Bello measures operators of the form Hyyr = Qw o
H o Pp where Prf(x) = f(x)1j,7(x) is a time-limiting
operator, Cjw\f(y) = f(l/) 1[7%’%](1/) is a frequency—
limiting operator, and the spreading function ngy of H is
supported on A. The spreading function 7g,, , of Hw,r
is therefore not compactly supported and in particular not
restricted to A. For his class of operators, Bello was able to
prove necessity of S4 < 1 for identifiability, and to reduce
the sufficiency condition of S4 < 1 to linear algebra, that
is, to the invertibility of a matrix of a finite number of
time and frequency shifts of a prototype vector. Bello gave
heuristic arguments for the existence of a prototype vector
which guarantees the invertibility of this matrix. His assertion
has been proven only recently [9]. It is worth noting that the
same prototype vectors play a crucial role in this paper.
Using an approach similar to Bello’s together with more
novel techniques from Gabor analysis we shall give a complete
proof of both of Bello’s assertions. Our approach does not
require a time—gate for the input signal and a frequency—gate
for the output signal. In fact, letting vol ~ (M) and vol *(M)
denote the inner and outer Jordan content of M, respectively,
(see (9) and (10)), we prove the following theorem:
Theorem 1.1: H )y is identifiable if vol 7(M) < 1, and not
identifiable if vol ~ (M) > 1.
Here, H ), denotes a class of Hilbert—Schmidt operators
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with the property that their time—frequency spread is contained
in the set M, that is, those operators H with ng(t,v) = 0 for
(t,v) ¢ M.

The operator classes discussed in this paper are relevant
not only to communications engineering. In fact, the work
of Kailath and Bello was greatly influenced by the work of
Green and Price on radar measurements [10]-[12]. See [7] for
remarks on radar and other applications.

A comparison of our result to Heisenberg’s uncertainty
principle is described in [7], in particular, we would like to
point to connections with minimal rectangles in phase space
as described in [13].

The mathematical framework used in this paper is described
in Section II. In Section III, we shall prove that if the set M
satisfies vol *(M) < 1 then the corresponding operator class
allows identification, and in Section IV, we shall prove that
if vol (M) > 1, then the corresponding operator class does
not allow identification. Note that if vol * (M) = vol ~(M) =
vol (M) then M is Jordan measurable and vol (M) = Sy,
equals the Lebesgue measure of M (see Section II-E). More-
over, a set that is not Jordan measurable is pathological in
some sense (see Proposition 2.2). Consequently any spreading
support set likely to arise in engineering practice will be Jordan
measurable.

II. PRELIMINARIES

In Section II-A we motivate the use of Gabor analysis as
a natural tool in examining properties of operators related to
their spreading functions, and present some basic results in
that theory that are used in this paper. In Section II-B we
discuss the principles of channel measurement and operator
identification. We describe our choice of domain space X and
target space Y in Section II-C and the operator spaces H s in
Section II-D. In Section II-E we discuss Jordan domains and
the inner and outer Jordan content of sets in euclidean space.
These concepts will be used to describe spreading supports
and their sizes. In Section II-F, we present some results from
the theory of finite Gabor frames that are used in the proof of
Theorem 3.1.

Throughout this paper we are using the notation of [14] and

[7].

A. Gabor analysis on L*(R?)

One of the fundamental tools used in this paper is Gabor
theory. This is natural in light of the fact that the operator
models of communication channels we consider can be re-
alized as superpositions on time shifts and frequency shifts
(modulations) as seen in (3). Below we will describe some of
the basic notions from Gabor theory that are used in this paper
and indicate why they arise naturally in these investigations.

A Hilbert—Schmidt operator H is a bounded linear operator
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on L?(R?)? which can be represented as an integral operator
//{H(x,t)f(t) dt

/KJH(J}, x—t)f(x —t)dt (ae.), (1)
with kernel kg € L2?(R?) [15], [16]. The linear space of

Hilbert-Schmidt operators H.S(L?(R?)) is endowed with the
Hilbert space structure of L?(R?) by setting

Hf(x)

(Hi, Ha)us = (KH,, KH, ) L2-

The spreading function 7 of a Hilbert—Schmidt operator
H is given by

nu(t,v) = /RH(Q’J,.’L‘ —t)e " dr (a.e.) (2)

and leads to a representation of H as an operator valued
integral by means of

H= //nH(t, v)TyM, dtdv . 3)
Note that

el = kel = [[H| ms-

Equation (3) illustrates that support restrictions on 7z
reflect limitations on the maximal time and frequency shifts
which the input signals undergo: H f is a continuous superpo-
sition of time—frequency shifted versions of f with weighting
function 7.

Further, note that if an operator H satisfies supp 7 u(-v) C
[0,a] for all v € R, then ki (z,z —t) vanishes for z € R and
t ¢ [0,a], and for f with supp f C [0, 7] we have supp H f C
[0, T+a]. Similarly, if suppnu (t,-) S [—2, %] for all t €
R, then for f with supp f C [-9Q,Q] we have supp Hf fC
[—(Q+2), Q+2]. Hence, the condition

2,2 4)

for some a,b > 0, reflects a limitation on the maximal time
delay a and the maximal frequency spread produced by
H. An operator which satisfies (4) for a,b > 0 is called
underspread if ab < 1 and overspread if ab > 1.

A comparison of (1) to a time—invariant convolution op-
erator K given by K f(z) = [kk(t)f(xz — t)dt — whose
kernel kg is independent of the time variable x — together
with (2) shows that the condition 7y (t,-) C [—2, 2] for all
t € R, excludes high frequencies and therefore rapid change
of k(z,z —t) as a function of x. This further illuminates the
role of underspread and overspread operators in the analysis
of slowly time—varying communications channels.

The previous paragraphs emphasize the usefulness of 7y in
the time—frequency analysis of operators. Additional remarks
on the use of Hilbert—Schmidt operators as model of physical
time—varying linear systems, as they appear in radar and in
mobile communications can be found in [7], [17], [18].

suppng € Qap = [0,a] x

2L2(R) is the Hilbert space of complex valued, square—integrable functions,
that is, f € L2(R) provided that || f||Z = [, |f(2)|? dz < occ.

Equation (3) implies that for given functions f, g € L?(R%),

/// nu (t,v) T Myg(x) f(x) dt dv da
//nHt”/f )T, M, g(x) dz dt dv

where V, f(t,v) = (f,T;M,g), t € R? and v € R? is the
short-time Fourier transform (STFT) of f with respect to the
window function g. It is clear then that the STFT is a natural
tool to study the connection between the properties of the
operator H and its spreading function ny. If ||g[|2re) = 1
then the STFT is an isometric isomorphism of L?(R%) onto
a closed subspace of L2(RYxRR?). In this case the function f
can be recovered by

_ //ng(t,u) T, M,g(z) dt dv

whenever the integral makes sense.

One of the fundamental questions in Gabor theory is to show
when a function f € L2(R?) can be stably recovered from its
Gabor coefficients {(f, MipT1a9)} 1eze (here a, b > 0 and
g € L%(RY) are fixed) or whether any f can be approximated
by finite linear combinations of elements of the Gabor system
(g,a,b) = {Mkalag}k,ngd [14], [19]. Specifically, we ask
whether the system (g, a,b) is a frame for L?(R?), that is,
whether there exist A, B > 0 such that for all f € L?(R?),

(Hg, f)

A2 < 31U MisToag)? < BIFI2 ©)
If (6) holds then every f € L?(IRY) has a stable representation

Fo= 0 MwTiay) MigTiag
P

= ZZ<vakala'7>Mkalag in L2(RY)  (7)
ko1

where v € L?(R%) and (v,a,b) is called a dual frame of
(g,a,b). A frame is tight if A = B and is exact if it ceases
to be a frame upon the removal of a single element. A frame
which is not exact is also called overcomplete.

For each Gabor system (g, a, b) define the analysis map C,
on L2(R%) by

Cy(f) = {{f, MivT1a9) } 172

and the synthesis map E, on lo(Z??) (the space of finite
sequences on Z2?%) by
Eg({cki}) = Z kl MipTiag-
k.l

More details on time—frequency analysis with some rele-
vance to this paper can be found in [14].

Operator—theoretic applications of Gabor theory as pre-
sented in this paper have drawn increasing interest in applied
harmonic analysis, see, for example, [20]-[29].



Fig. 2. Identification of an operator class H by a vector f € X (R).

B. Channel measurements

The goal of operator (or channel) identification (or mea-
surement) is to select, for given normed linear spaces X and
Y and a normed linear space of bounded linear operators
H C L(X,Y)?, an element f € X which induces a bounded
and injective, or better, a bounded and stable linear map
&y :H — Y, H+— Hf (see Figure 2). An operator is
stable if it is invertible and the inverse operator is bounded.
Consequently, we call H identifiable by f € X, if there exist
A, B > 0 with

AllHllw < [[Hflly < Bl Hlx ®)

for all H € 'H. Note that the fact that we only con-
sider bounded linear operators H C L(X,Y") together with
|H|lzx,yy < |[H|# guarantees that for any f € X,
® is bounded. Hence B in (8) always exists. Establishing
identifiability is therefore equivalent to finding f so that for
some positive A we have A ||H||» < ||H f||y for all H € H.

C. The Feichtinger Algebra

In this section we will describe our choice of the Banach
spaces X and Y in the channel identification formalism
described in Section II-B and illustrated in Figure 2.

The identification problem considered in this paper requires
the use of tempered distributions such as Dirac’s delta § :
f+— f(0) and Shah distributions (also called comb—functions
or delta trains) 111, = Y ya0an, Where 0,4 = T}, and
a > 0, as identifiers. Hence, we have to choose a domain
space X (R) which includes some tempered distributions and,
therefore, we have to deviate from a standard L?(R) setup.*

3For Banach spaces X and Y, £(X,Y) denotes the Banach space
of bounded (that is, continuous) linear operators from X into Y. The
norm [|H||z(x,y) is the standard operator norm given by [|H||z(x,y) =
supgex [[Hzlly /=] x-

#A possible choice for X (R) would be the space of all tempered distri-
butions S’ (R), which is the dual of the Fréchet space of Schwartz functions
S(R) and which is equipped with the weak— topology. Certainly, we would
rather choose a Banach space as domain X (R), since this would give us the
convenience of expressing continuity (boundedness) and openness (stability)
of linear operators by means of norm inequalities.
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Our choice for X(R) is the dual S{(R) of Feichtinger’s
Banach algebra Sp(R) which has been introduced in [30] and
which has developed into a major tool in Gabor analysis.

The Feichtinger algebra So(R?) is defined as follows. Let
A(R?) be the space of Fourier transforms of functions in
LY(R?)3, with norm | flla = ||f|lz1, I*(Z?) the space of
absolutely summable sequences [31] and suppose that ¢ €
A(R?) has compact support and satsifies Y, .0 Tnt) = 1.
Then f € Sp(R?) provided that ZnGZd If - Thtplla < oc.
Moreover, for each such i) € A(R?),

Hf”So = Z HfT’rL¢||A

nezd

defines an equivalent norm on Sy(R?). Intuitively, f € So(R9)
if and only if f is locally in A(RY) with global decay of I'—
type. So(RY) is therefore the same as the Wiener amalgam
space W (A(R?),1*(Z%)) (see for example, [14]).

An equivalent characterization of Sy(R?) is the following.

So(Rd):{ FELA(RY) :

quf (ta V) = /f(I) 6_27”:”'%90(33 - t) dx

€ Ll(Rdxf&d)}

where Vg f is the STFT of f with respect to the gaus-
sian window go(z) = e —mllels 2 e Re In fact, Ifll =
||Vg0fHL1(RdX@d) is an equlvalent norm on Sp(R%).

The dual space Sj(R?) of the Feichtinger algebra satisfies
SH(RY) = W(A'(R?),1°°(Z4))[32]. Intuitively, f € Sj(R9)
if and only if f is locally the Fourier transform of a bounded
function (that is, in A’(R?)) and that these local norms are
uniformly bounded. Hence, Sj(R?) contains Dirac’s delta §
and Shah distributions.

Since we are considering only the one-dimensional setting
in this paper, we will take X = Sj(R) and Y = L?(R).

D. Hilbert—Schmidt operators with bandlimited symbols

In this section, we describe the operator class H C
L(X,Y) = L(S{(R), L*(R)) that appears in the channel iden-
tification formalism described in Section II-B and illustrated
in Figure 2.

As mentioned in Section II-C, our results require the use
of Shah distributions as identifiers. Not all Hilbert—Schmidt
operators in £(L?(R), L?(R)) can be extended to act on a
space of distributions containing the Shah distribution, hence,
we shall narrow the class of operators considered to those
which satisfy a regularity condition on their kernels. Since for
a>0 111, € S)(R), it is natural to choose

H={H e HS(L*(R)) : R?)},
since then H C L(SH(R), So(R)) C L(S}H(R), L2(R)) [33].

The results in this paper are consequences of the structure of the identifi-
cation problem at hand, and not of topological subtleties. Our choice to work
with the Banach spaces So(R) and Sj(R) as opposed to the Fréchet space
of of Schwartz functions S(R) C So(R) was made for convenience only.

SL'(R?) is the Banach space of complex valued, integrable functions, that
is, f € L*(R) provided that || f|1 = [; |f(2)] do < co.

Ky € So(
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Identifiability will be shown for operator classes with com-
pactly supported spreading functions, that is, we consider
operator classes of the form

Hy ={H € H: suppng C M},

Note that Hyy € Hy if M C M ’and that the linear
spaces H and Hpy;, M C RxR, are not closed as linear
subspaces of the space of Hilbert—Schmidt operators.

M C RxR.

E. Jordan domains and Jordan content

The stated goal of this paper is to extend the proof of
Kailath’s conjecture which is proved for rectangles and par-
allelograms in [7] to “essentially arbitrary” regions. In this
section we describe more precisely what is meant by “essen-
tially arbitrary” from a mathematical point of view. Taking
into account the requirements of the proof of Theorem 3.1, we
are led naturally to the notion of Jordan content and Jordan
domains. The definition we use for convenience differs from
but is equivalent to those found in most textbooks, for example,
see [34].

Definition 2.1: For K,L € N set R 1, = [0, %] x [0, &]
and

J
Z/{K,L = U (RK,L—F(%,WLK)) : k‘j,pj e€Z,J eN

Jj=1

Let M C Ri]@ be bounded and let ;1 be the Lebesgue
measure on RxIR. The inner content of M is defined as

vol ~ (M) =
sup{pu(U) : UCM and U€lg ;, for some K,LeN} (9)

and the outer content of M is given by

vol (M) =
inf{p(U) : UDM and U€cllk,, for some K,LeEN}(10)

Clearly, we have vol ~ (M) < vol *(M) and if vol = (M) =
vol T (M), then we say that M is a Jordan domain with Jordan
content vol (M) = vol = (M) = vol T (M).

In the following proposition we collect some relevant facts
on Jordan content (see for example, [34]).

Proposition 2.2: Let M C RxR.

1) If M is a Jordan domain, then M is Lebesgue measur-
able with (M) = vol (M).

2) If M is Lebesgue measurable and bounded and its
boundary OM is a Lebesgue zero set, that is, u(OM) =
0, then M is a Jordan domain.

3) If M is open, then vol ~(M) = u(M) and if M is
compact, then vol ¥ (M) = u(M).

4) If P C N is unbounded, then replacing the quantifier
“for some L € N” with “for some L € P” in (9) and
in (10) leads to equivalent definitions of inner and outer
Jordan content.

Proposition 2.2(1)—(3) suggest that the class of sets con-
sidered in our results is very broad. Bounded sets that are
Jordan measurable but not Lebesgue measurable are patho-
logical in some sense and hence unlikely to arise as the

spreading support of a physically realistic communication
channel. Proposition 2.2(4) will be used in the proof of
Theorem 3.1. The initial step in that proof is to approximate
the spreading support of our channel operator by a union of
boxes U € Uk 1, for some K, L € N. For technical reasons
(see Proposition 2.3) we must choose L to be a prime number
and K < L.

F. Gabor analysis on C

Discrete Gabor systems on finite dimensional spaces can be
defined in a natural way and properties of such systems will be
used in Section III. Let I € N be fixed and let w = e~ 27/ L,
The translation operator T is the unitary operator on C¥ given

by Tx = T(Io, AN ,JZL_l) = (J?L_l,Io, L1y oo ,xL_Q), and
the modulation operator M is the unitary operator given by
Mz = M(xg,...,xp_1) = (WOz,wlay,...,wr top ).

Given a vector ¢ € CL the full Gabor system with window
¢ is the collection {M'T* ¢}, L.

A more concrete representation of the full Gabor sys-
tem is obtained by realizing the elements of the system as
columns in a matrix. Given L € N, we define the discrete
L x L Fourier matrix Wy, by W = (w”q)igio. Let ¢ =
(co, €1, ..., cr—1) € CF be given and for k =0, 1, ..., L —
1, let Dy, be the diagonal matrix

Ck
Ck+1

Dy =

Define the L x L? full Gabor system matrix by

(Do-WL |D1WL| ‘DL_1~WL) = (AO | A1 ‘ |AL_1).
(11)

In fact,

Ar = (cptk wqp);L;,;io

where the subscript of ¢ is taken modulo L. It is clear that
the columns of the matrix (11) are the vectors { M lT’“c}f Lo
We will see that the matrix (11) arises naturally in the proof
of Theorem 3.1. The fundamental property of the full Gabor
system matrix is the following.

Proposition 2.3: If L is prime then for generic®choices of
c € CF, every subset of L columns of the full Gabor system
matrix is linearly independent in C%.

III. SUFFICIENCY OF vol (M) < 1 FOR THE
IDENTIFIABILITY OF H

In this section, we shall prove the following theorem.
Theorem 3.1: The class H ;s is identifiable if vol T (M)<1.

%Here the term “generic” means that the set of such c is a dense open set
of full Lebesgue measure in CL. In particular this means that the conclusion
of Proposition 2.3 holds for almost every c in the sense of Lebesgue measure.



A. Summary of the proof of Theorem 3.1

The case that M is a rectangle, that is, M
[a1,a2])X[b1,be] for some ay > a; > 0 and by > by >
has been considered by Kailath [1], [2]. If vol T(M)
(az —a1)(be — by) < 1, then 111, identifies Hj); whenever
az —ay; < a < (by —by)" !, since H1l1, records samples of
ke (-,- —t) at least at the critical sampling rate (by — by) ™1,
while @ > as — a; guarantees that no aliasing of samples
takes place. See Figure 3 for details. The situation for M not
being contained in a rectangle of volume at most one is more
complicated (see Figure 4).

In order to give an intuition of the proof, assume that the
support of 1y is contained in the rectangle [0, 1] x [0, K].
This means that for each ¢ € [0,1] the function kg (-, — t),
which is simply kg (z,y) restricted to the line y = = — ¢, is
bandlimited to the interval [0, K]. It is therefore sufficient to
obtain samples of the function kg (-,- — t) at the points 4,
for k € Z.

In essence, a similar approach to the proof for rectangles
(see [7]) allows us to obtain weighted sums of samples of
kg (-, - —t) rather than the samples themselves. By employing
a technique reminiscent of that used in Papoulis’ generalized
sampling we are able to reduce the problem to a finite linear
system of L equations in KL unknowns. While in general
unsolvable, we observe that by our assumptions on the support
size of ny, all but L of the unknowns are zero.

It remains only to establish that the L x L system we arrive
at admits a solution. The norm inequality (8) now follows from
standard considerations from linear algebra.

We divide the proof of Theorem 3.1 into four parts. In
Section III-B we slightly simplify our setup. For fixed M,
we construct in Section III-C a distribution f € S{(R) which
will be used for identification later in the proof. This f induces
a linear map

Oa

p:Hy — L*(R), H— Hf

whose injectiveness is shown in Section III-D. In Section III-
E we shall see that that ®; is indeed bounded and stable,
implying, finally, that H,, is identifiable by f.

B. Assume M C [0,1] x [0, 00)

As the first step in the proof, we assume without loss of
generality that if (¢,v) € M then t € [0,1] and v > 0. To
see why this can be done, suppose that for some a, b > 0,
M C[0,a] x [~%,%] and H € Hyy. Define H € H via

ki(r,y) = arg(ax,ay) eriabe,
Then it is easy to see that
/Iiﬁ(l’, T —t)e T dg

/a’KJH (G,x, a/(x — t)) eﬂ'iabx 6—2771'1/;3 dx

N (t, V)

v b
//{H(a:,x—at)e_%”(g_i)m dx

%)

2

and that if suppng C [0, a] x [—g, g] then suppnz C [0, 1] x
[0, ab].

n(at, 2 —
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2, 8]x[0,1] € Ua 5. A. Spreading

support set M, vol M = % < 1. B. Support of kernel kg of H € Hps. The

Fig. 3. Identification of H s for M = |

function s is bandlimited along the diagonals, that is, supp & Hﬁ~\— t) =
suppng(-,t) C [%, %] for all t € [0, 1]. Here, fo.2(z) = kg (z,z — (1 —
0.2)), z € R. C. Channel output H 1 1 | 5, which contains all sampling values

1 .
of kK needed to reconstruct xz; and therefore H. Sampling values of fo.2
are singled out.
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C. Construction of the identifier f
The identifying distribution will have the form

=2 exdy
k

for some K € N and some ¢ = (cg,c1, ..., c—1) € CE,
where indices of cj in the sum are taken modulo L. The goal
is to choose K, L, and c so that the aliasing in Figure 4.C
can be controlled in such a way that ky and therefore H can
be recovered from H f. Below we will determine appropriate
parameters K, L, and ¢ needed to define f.

Assume that vol *(M) < 1. With P denoting the set of
prime numbers, Proposition 2.2(4) says that we can choose
K, L € N with L prime so that (i) M C [0,1] x [0, K], (i)
L > K, and (iif) M C Uy with Ups € Uk 1, and vol (Ups) <
1, that is,

J—1
U (RK,L 4k ”-fLK)) . kjp€Z,JEN,
j=0

where Ry, = [0, =] x [0, £] and where (k;,p;) # (kjr,p;)
if j # j. Note further that 1 > vol (Up;) = Jvol (Rk,1) = %
implies J < L. Since Hy D Hpe if M D M, the
identifiability of Hj; implies the identifiability of Hjys D
‘H s, and, by adding some additional cells to M if necessary,
we can assume in the remainder of this section that J = L.

For any ¢ = (cg,c1, ..., ci—1) € CF, let A(c) denote the
L x KL matrix

12)

Un =

Alc) =[A0 Ay -+ Ag_1]

where the L x L matrices A are defined by (11) and have
the form

13)

Ap, = (cpanw™)b Ly

where w = e~2™/L and where the subscripts on ¢ are taken
modulo L. Since K < L, the matrix A is a submatrix of
the full Gabor system matrix (11). In light of Proposition 2.3
there exists ¢ € C¥ so that every L x L submatrix of A(c) is
invertible.

Choose such a ¢ and define f as in (12).

D. Determining H € H s from H(f).

The operator H € Hjs is completely determined by its
kernel kpg. Therefore it is sufficient to show that sz can be
recovered from H(f).

For convenience in the calculations that follow, we define
for t € [0, +] and 0 < k < K the function

kr(t,x) = kg(l—t— £ +z,2).

This means that the kernel x (z,x —t) can be recovered via
K-1
ka(x,x —1t) = Z kr(l—t— £ o —1t)
k=0
if we assume that (¢, 2) = 0 for ¢ ¢ [0, %].
Since H € Hys with M C [0,1] x [0, K] means that
suppng C [0,1] x [0, K] with ngy given by (2), it follows

y
B.
4 —
3 —
2 —
1 —_
ol . .
% : : - x
e 1 2 3 4
Y =Hf
0 1 2 3 4

Fig. 4.  Identification of Hp; for M € Uy 5 not being a rectangle. A.
Spreading support set M, vol M = 1. B. Support of kernel kg of H € H .
The bandlimitation of kg (-, - — t) along the diagonals depends on ¢. C. The
channel output H (3", cxd k) is the sum over all functions displayed here,
4
leading to aliasing of samples in the channel output H (3", cxdx ). Samples
4

of fo.2 contributing to the weighted sum are marked.



that ki (t,-) is bandlimited to [0, K] for each ¢ and k. The
Fourier transform of (¢, z) in the second variable is
; k
2miv(l—t—7e) ne(l—t— %’ v) = ni(t,v).
Therefore ny and subsequently sz is completely determined
by nk(t,u—i—%) for (t,v) € Rk, 0<k<Kand0<p<
L. In particular

n(fV—’-pK 27rzutznk1_t % +pT)

for (t,v) € Rk 1, if we assume nk(t, v) =0 fort ¢ [0, K].

With f as in (12)
ZCk(Sk . :chﬁH(x =
k

(H [f)(x)

As previously mentloned, in this sum and subsequently, all
subscripts of ¢ are taken modulo L. For t € [0, ] let 2, (t) =
(1 —t) + %. Because supp x g (z,y) is contained in the strip
between the line y = x and y = x — 1, it follows that for
each fixed z, kg (x,y) Vanishes for y outside [x — 1, z] (see
Figure 4). Hence rp(z,(t), &) # 0 only if n < k < n+ K,
(Hf)(zn(t)) reduces to a ﬁmte sum and we write

Sn(t)

I

=
~
S~—

8
3
~~

(14)

K—-1
= Y carnru(l—t+ 3,25

T
- O

k k ntk
Cnyk ki (1 —t — & + BEE bR

Z i bk (t, EE).
ke

0
Letting n = mL +p with m € Z and 0 < p < L, we write
st (t) = Smr4p(t). Then

K—
ptk
> CnLtpik K (ta S ol T)

H
,_.o

=

sp(t) =

b
Ll

15)

— ptk L
= ) Cprktn (t» o m?) :
k=0

For each 0 < p < L form the Fourier series

= Cp+k an (t,V+ ﬂ) 6727”( ;k> <V+%>
q
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where we have applied the Poisson Summation Formula on
the last line. Assuming that v € [0, %] and since n(t,-) is
supported in the interval [0, K], it follows that the above sum
over ¢ is finite and therefore for each 0 < p < L we have

K-1L-1 . p+k> ( ﬁ)
—2 +
ZZCerk??k(taV‘F%)e m(K e

k=0 q=0

Gp(t,v) =

Manipulating this expression, we arrive at the streamlined
system

K—

,_.
h
L

Cprne TP LG, (t, v+ %) (16)

k=0

where Gp(t,v) = Gp(t,v)e2 /K and fi(t,v) =

n(t,v) e 2™/ K n other words, we can derive a system
of L equations in K L unknowns for the functions

(i (o)

0<k<K, 0<g<L,(t,v) €

Q
Il
<)

0, &1x[0. £1}, a7

in which the coefficients in the equation do not depend on
(t,v). It is clear that the matrix for this system is A(c) (13),
and that the set of functions in (17) completely determine K.

Finally, note that since M C Uy, and for (t,v) € Rk 1,
we have 7y, (t, v+ %) = O unless (k,q) = (k;,p;) for some
0<j<J-—1= 1L —1. Therefore (16) has no more than
L nonzero terms in the double sum on the right hand side,
and (16) reduces to a system of L equations in I, unknowns.
The matrix for this reduced system is simply a choice of L
columns of the matrix A(c), specifically the j*"* column of
this matrix is the k;h column of the L x L matrix A, . Call
this matrix A ;. Our choice of ¢ guarantees that that A, is
invertible.

Define the CX—valued functions n(t,v) and G(t,v) on

]BK,L by
7 )) =
j=0

G(t,v) = (éw:,w)“ .

p=0

n(ta V) = (ﬁmj ( ,

and

The system (16) can therefore be written

Ay T](t,V) = G(ta V)a (t,l/) € RK,L~ (18)

Since A is invertible, we can recover 1) pointwise from G
which depends only on the channel output H f. From 1 we
can recover 1y and hence the kernel k(2,2 —t) of H.

E. Boundedness and stability

Here we show that (8) holds.
Lemma 3.2: With f given in Section IlI-C, H € Hj;, and
7n and G as in (18),

(a) IIH(f)IliQ(R)://R 1G(t, v)||%. dt dv.

In(t, v)|Ee dv dt.

K,L

®) [H7 = llka |72 @) =
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Proof: (a) Using the definition of s, in (14) and the

definition of s?, in (15), we have

IH(DIew = [ |HAwde

— 0o

= [T mra-opa

— 00

i
_ En:/}é:{ \HF(1L— 1) dt
— En:/OK Hf(1—t—2)dt
= X / ® o)

- Z/;( sa(t) 2 dt

- [FE S

p=0 m
1

_ /OK Z/OL G,y (t, 1) dt dv
= //R Z|G (t,v)|? dtdv

KLp 0

= //R Z|G (t,v)|? dt dv

K,L p=0

_ // IG(t, )|, dt dv.
Ry L

(b) Similarly,

| atwPasay
— 00 — 00 L -
// kg (z,z —t)|* da dt
0 —o0
1 o0
// kg (1 —t +x,2))* dedt

K—1
= / / kg (1 —t+x,x)* dedt
k=0
K—1
= / / |k (t, )| da dt
k=0
K—1
= / / e (t, v)|? dv dt
k=0
K—1 %
_ / (2, )2 do dt
o 7o Jo
K-1L-1 % %
= / / |nk(t,u+q%)|2dydt
k=0 ¢=0 0 0
K-1L-1

[k (t, v + q%)|2 dv dt

I
=

K,L

10

q

[~
Il
[ =]

= //R Z\nkj(t7y+pj%)|2dudt

K,L j=0

.

since 7y, (¢, v 4+ ¢%) = 0 unless (k, q) = (k;, p)). [ |

It is now clear that (8) holds by observing that by construc-
tion the matrix Aj; of (18) is invertible and independent of
(t,v) € Rk, 1. Hence, for (t,v) € Rk 1, we have

1
It w)]12e o dt
0

%12 In(t ) 1ge < IHE ) Ee < [Ax]? 0t v) |2
(Ll

where || - || is the Frobenius norm of a matrix, that is, the
operator norm of the matrix considered as an operator on
I>(Zy). Integrating this inequality over Ry ; and applying
Lemma 3.2 we obtain

1

AT [H 3 < IH(F)l2@) < Al I1H ]2

which is (8).

IV. NECESSITY OF vol (M) < 1 FOR THE IDENTIFIABILITY
OF H s

The goal of this section is to prove the following theorem.
Theorem 4.1: The class Hjp; is not identifiable if
vol (M) > 1.



10(Z?) C 1(2?)

—_— —_— —_— — =

\J/Cgoq)foE'

<
l2(Z2)

Fig. 5. Strategy for the proof that s is not identifiable if vol =~ (M) > 1.
We shall show that for all f € S{(R), the bounded operator Cy o @5 0 E is
not stable. The stability of the synthesis operator E and the analysis operator
Cy, together with the lack of stability of Cg o @ o E, shows that ¢ is not
stable.

A. Summary of the proof of Theorem 4.1

Given a bounded and measurable subset M with
vol = (M) > 1 we show that for every f € S| (R), the operator

®p:Hy — L*(R), H— Hf

is not stable, that is, that inequality (8) fails to hold.

As before, we assume without loss of generality that for
some K, L € N, there is a U € Uk, such that U C M
and vol (U) > 1. It will be sufficient to show that Hy is not
identifiable since Hy C H . Recall that

J-1
U= U Ry 1 + (%7 ijK)

=0

with Ri;, = [0, 2] x [0, £], 0 < k; < K, 0 < p; < L and
0<j<J<L.

We shall equip lo(Z?), the space of sequences on Z? with
only finitely many non-zero terms, with the [?-norm and
construct a bounded and stable synthesis map E : lg(Z?) —
Hy, and a bounded and stable (g,a’,b’)-analysis operator
Cy : L*(R) — [?(Z?) with the property that the composition

Cyo®ioE: 1g(Z*) — 12(Z?), f e SH(R)

is not stable. Since I/ and C; are stable, we have that all
operators ®¢ : Hy — L*(R), f € S{(R), are not stable.
Hence, there is no f that identifies Hy and identification of
‘H s is impossible (see Figure 5).

The synthesis map E is given by (19) and is defined to
be a linear combination of operators in Hy whose spreading
functions have the form

M()\Kk,%l) T(%m’%n) np

for some well-chosen A > 1 (see Lemma 4.5), k, [, m, n €
Z and P a time-frequency localization operator in Hg, .
Hence the boundedness and stability properties of ' can be
deduced from the corresponding properties of Gabor systems
on L?(R?) with compactly supported window functions (see
Section II-A).
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The analysis map C, given by (20) is a standard analysis
map for a Gabor system of the form { My, Ty go } &1z Where
a'=MKand V/ = ’}?—5, and go(z) = e ™",

The resulting operator C, 0 ® ;o £ can be represented in the
standard basis for lo(Z?) and [?(Z?) as a bi-infinite matrix
which is dominated by a skew diagonal. Such matrices are
shown in Lemma 4.6 to be unstable, that is, to not possess a
continuous inverse.

B. Proof of Theorem 4.1

The proof will require the following basic results.

Definition 4.2: A sequence {f,} in a Hilbert space H is a
Riesz basis for its closed linear span if there exist constants
¢1,¢2 > 0 such that for every finite sequence {c,}

2
o S el < Hz ol <o Sl
n n H n

Theorem 4.3: ([35]-[37]) Given a’, b’ > 0 with @'V’ < 1
and go(z) = e~ @* the Gabor system { Mo Tip Go ti ez is a
frame for L2(R) (see Section II-A).

We begin with a result concerning the composition of
Hilbert—Schmidt operators with time—frequency shifts.

Lemma 4.4: Let P € H with spreading function np €
So(RxR). For p,r € R and w,€ € R, define P =
Mpr_TPTTMg_w € HS. Then np = 627riT£M(w,r) T(p7§) np
and P € H.

Proof: Note that for any f,g € So(R) and P € H we
have by (5) that

(Pf,9) = (np,Vig)
where Vig(t,v) = (9, T;M,f), t € R and v € R. The
interchange of order of integration is justified since f, g, n are
in the Feichtinger algebra. R
Hence, for f,g € Sp(R) and s,r € R and w,p € R we
have
<MwTsPT7'Mpfa g> = <PTT'Mpf> T—sM—wg>
= <77P7VT7vMprfsM7wg>7
and
VTTMpr—SM—h)g(t7 V)
= (T-M_,g, TiM, T, M, f) = (g, M,T, T, M, T,. M, f)
— e—27‘riw(s+t) <g7 Ts+th+l/T’rMpf>
6_2F1(M(S+t)+(w+y)r) <ga TtJrrJrsMVer+w f>
emImiw(stn) =2V gt 4 (1 4 5), 0 + (p+ w)).
We have
(M,T,PT, M, f, g)
(np, 6_2mw(s+r)M—(w,r)T—(r+s,p+w)Vf9>
= <e27”w(s+r)T(r+s,w+p)M(w,r)7}PaVfg>
= (nr,Vy9),

where

627riw(s+7“)

R T(r+s,w+p)M(w,7‘)77P

eQWiT(P""“’) M(w,T‘) T(r+s,w+f7) ne.
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The choice s = p —r and p = £ — w concludes the proof. W
Lemma 4.5: Fix A > 1 with 1 < A < £ and choose
m,n2 € S(R) with values in [0, 1] and

1 fort € [25%,
m(t) = [QA 1
0 fort¢ 0, %]

ﬁ]
AK

=

and

ADK DK
1 forz/E[(Q/\L) 7(2+/\L) ]

m) = {0 for v ¢ [0, ]

Let np = m1 ® 12. Then suppnp C [0, %] x [0, %] = Rk.1,
and the operator P € Hpg, , has the following properties.
a) The operator family

My T, s, PToe, Mk, }
{ rm- il el T En—AKk kdomon€Z

is a Riesz basis for its closed linear span in HS(R).

b) The operator P € Hg, , is a time-frequency localization
operator in the following sense: There exist functions dy, ds :
R — R, which decay rapidly at infinity, that is, di,d> =
O(x~™) for all n € N, and which have the property that for
all f € Sy(R) we have |Pf(z)| < [/flls;di(x), * € R and

IPF(E)] < |1 flls; d2(). € € R.
Proof: a) Lemma 4.4 implies that

MygrTo . se; PTar; M }
{ rmo gl DRI AR ) mnez

is a Riesz basis for its closed linear span in HS(R) if and
only if

{M(,\ch,%l) T(%mv%") P }k,l,m,neZ

is a Riesz basis for its closed linear span in L? (Rx@).
We observe that

I Oktma Mg 320) T gm0y 1Pl e2)
k,l,m,n€”Z

= Z I Z Ok,l,m,n M(AKk,%l) T(%m,,%n) 77P||2L2
m,neZ k,I€Z

- Z I Z Tk,lm,n M(,\Kk,%l) el

m,n€”Z k,l€Z

where we have used the translation invariance of the L2 norm

and the fact that the support of np is contained in Ry 1. With

A 7A=1 A+l A-1)K (\+1)K
Ry 1 = lonie o) X[z —aaz)» we have

S oktmn M xrer,321) npl|7

m,n€”Z k,l€EZ
Z ” Z Ok,l,m,n M()\Kk,%l) 1R;(’LH%2(]R2)
m,n€Z k,l€Z

= )ﬁ% ||{Ok,l7m,n}||522

X

since by definition np is bounded below by 1 R}, and

bounded above by the characteristic function of finitely many

translates of R ;.

b) See [7], Lemma 3.4. [ |
Lemma 4.6 generalizes the fact that m x n matrices with

m < n have a non-trivial kernel and, therefore, are not

stable as operators acting on C". In fact, the bi-infinite

matrices M = (m ;);s jez> considered in Lemma 4.6 are not
dominated by their diagonals m; ; — which would correspond
to square matrices — but by skew diagonals m,; ;, with
A > 1, that is, mys ; is small if ||[A\j’ — j||~ is large. The
lemma is proven in [7]. The validity of Lemma 4.6, and
therefore of Theorem 4.1 does not depend on the choice of
(reasonable) topologies on domain and range. In fact, a more
general version of Lemma 4.6 can be found in [38].

Lemma 4.6: Given M = (mj: ;) : [*(Z*) — 1*(Z?). If
there exists a monotonically decreasing function w : R —
R with w = O (z727°), § > 0, and constants A > 1 and
Ko > 0 with [my. ;] < w(]]Aj' = jllao) for A7 = jllc > Ko,
then M is not stable, that is, for every € > 0 there is a 0 €
ZQ(ZQ) with HUle(Zz) = 1 such that ||M0H12(Zz) < €.

Now all pieces are in place to prove Theorem 4.1.

Proof of Theorem 4.1. Choose A, 11, 12, P, di, and dy as
in Lemma 4.5.

Define the synthesis operator E : [o(Z?) — Hy as follows.
For o = {0}, } € I>(Z?) write o, = 0%, 54 for | € Z and
0 < j < J and define

J—1
CEEDIDS

klcZ j=0
Okt g+ Mk T s ap) PTxp) Mgy s (19)

Since

Mg Tr o sn, PTan, M }
{ r®m— K KL Lo AKE k,l,m,n€Z

is a Riesz basis for its closed linear span in H.S(R), the subset

MygiTor oon) PT o) M. }
{ ?k‘JJ’_Tl Tl L Pj AKE k1€Z,0<j<J

is a Riesz basis for its closed linear span in Hy C HS(R).
We conclude that E is bounded and stable.

To construct a stable (g, a’,b’)—-analysis operator C,, we
choose as Gabor atom the Gaussian gy : R — RT, 2 —
e~™" By Theorem 4.3, the Gabor system (go,a’, V') =
{MyaTirrgo} is a frame for any o’,b" > 0 with a'b’ < 1,
and we conclude that the analysis map given by

Cgo: LAR) —13(2%),

fooe {<f7 M2k kT%lgd}kJ (20)

is bounded and stable since A\2K % = )\4§ <1
For simplicity of notation, set « = K and 3 = KLJ Fix
f € S)(R) and consider the composition

E Dy

W72 5 Hy B2 @ @
o — Fo +— Fof

{(Eo f, MyzarTozpr 9o) by -



Since

(Cgo o CI)f ol {O'k,lj+j}>

(%

k,l j=0

kU

Ok1i+; Miak Tﬁﬂﬁu

@

PT gy M%_,\ak I

Mz T2 90 >

J-1
= (MaakToy |y, PTorpts Moy
kil j—=0
My241'Th281190 ><Tk,w+j
J—1
= E E Mk 10 kel J+j Ok T4j »
kel j=0

we see that the operator Cy, o & o E' is represented — with
respect to the canonical basis {§(- —n)},, of [?(Z?) — by the
bi—infinite matrix

M

(mk’,l/,k,lJ+j>
(< Myar Tx; PT ygis M%,Mk I
Mx\Qak’T)\Zﬁl’ go >) .

2L4aBlT
We shall now use Lemma 4.6 to show that M, and,
therefore, C'y,o® o is not stable. Lemma 4.5, part b, together

with the rapidly decaying function
dy = d,

max
—ABj

T,
7=0,...,J-1 &

will provide us with the necessary bounds on the matrix entries
of M. In fact, for k,l,k',l’ € Z and 0 < j < J, we have

| 1 k17451

’<MW“ Trs i ap

PT gy M%,Mk I

Mz 281 90 >‘
(Tagren (Tr ‘PTfAmJ Mri sor f ‘ )

Th25190 )

< flls; <T/\B(U+j)T%7/\ﬁjd1 . Tr2p90 )

< N fllsy { Tapareidi s Theprgo )

< llsy (@ *g0) AB = (1T + ).

and

[0k 17 ke 1T+

— ‘<ka M_ty gy (PToxots My o )
Trzar M_x251 90 >‘

< (Trak ‘(PT—ABIJ M%,,\ak I Theargo)

< |Ifllsg (da * go)(Aa(AE" — k).

where we have used the Parseval-Plancherel identity and the
fact that g9 > 0, go = go, and go(—x) = go(x). Since dy,
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ds, and gg decay rapidly, so do dy * go and ds * go, that is,
dy * go, da * go = O(xz™™) for all n € N. We set

w(@) = ||flls; max {dy*go(Az), di*go(~ABx),
da % go(Aax), do * go(—Aaz)}.

and obtain |my v k| < w(max{|Ak’ — k|, [N’ —1|}) with
w = O (z~™) for n € N. Lemma 4.6 implies that M is not
stable, and, by construction, we can conclude that Cy,o® o E
and thus @ is not stable. n

V. CONCLUSIONS

In this paper we have provided a proof of a conjecture made
by Bello in [8] on the relationship between the identifiability
of a time varying communication channel and the size of
the support of the spreading function of the channel. Bello’s
conjecture is a generalization of a similar conjecture made by
Kailath in [3]. Kailath’s conjecture was proved recently in [7].

The conjecture states roughly that a communication channel
modelled by the operator H and with spreading function ng
is identifiable if vol (suppny) < 1 and is not identifiable if
vol (suppng) > 1. It is not known what happens when the
volume of the spreading support is exactly 1.

The proof of sufficiency, that is, the proof that a channel
is identifiable if the volume of its spreading support is less
than 1 is constructive in the sense that it suggests a way to
construct the spreading function for the channel operator H
from the measurement of H f where the identifier f is a delta
train weighted by a periodic sequence. While the paper does
not give a closed form formula for the spreading function,
it should be possible to design an algorithm to recover the
spreading function from the channel measurement.
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