LULEÅ UNIVERSITY OF TECHNOLOGY

A Discrete Model for the Efficient Analysis of Time-Varying Narrowband Communication Channels

Niklas Grip¹ and Götz Pfander²

¹Luleå University of Technology, Sweden ²Jacobs University Bremen, Germany

To appear in Multidimensional Systems and Signal Processing

Supported by the German Research Foundation (DFG) Project PF 450/1-1. Final preparations supported by the Swedish Research Council, project registration number 2004-3862.

Riesz bases...

 $L^2(\mathbb{R})$ is the set of square integrable functions, with norm

$$\|u\| = \left(\int_{\mathbb{R}} |u(x)|^2 dx\right)^{1/2} < \infty$$

and inner product

$$\langle u, v \rangle = \int_{\mathbb{R}} u(x) \overline{v(x)} dx.$$

A basis $\{e_k\}$ for $L^2(\mathbb{R})$ is called a *Riesz basis* for $L^2(\mathbb{R})$ if there are some A, B > 0 such that for all $s \in L^2(\mathbb{R})$,

$$A\sum_{k} |\langle s, e_k \rangle|^2 \le ||s||^2 \le B \sum_{k} |\langle s, e_k \rangle|^2.$$

LULEA UNIVERSITY OF TECHNOLOGY

...provide numerically stable series expansions

To every Riesz basis $\{e_k\}$ corresponds a dual/biorthogonal

basis $\{\widetilde{e_k}\}$ such that all $s \in L^2(\mathbb{R})$ have series expansions

$$s = \sum_{k} \langle s, e_k \rangle \widetilde{e_k} = \sum_{k} \langle s, \widetilde{e_k} \rangle e_k$$

Gabor basis:

 $g_{q,r}(t) = e^{i2\pi bqt}g(t-ar) =$ the qth frequency component in OFDM/DMT symbol number r.

Matrix representation:

$$\mathbf{a} = \mathbf{Gc}, \quad \mathbf{G}_{q',r';q,r} = \langle Hg_{q,r}, \gamma_{q',r'} \rangle$$

Channel matrix

Goal: approximate diagonalization

$$\mathbf{a} = \mathbf{Gc}, \ \mathbf{G}_{q',r';q,r} = \langle Hg_{q,r}, \gamma_{q',r'} \rangle$$
 Channel matrix

• For time-invariant channels, $H(s(\cdot - T)) = (Hs)(\cdot - T)$ so that

$$s_{\xi}(t) = \chi_{[0,L]}(t)e^{i2\pi\xi t} \Rightarrow Hs_{\xi}(t) = \lambda_{\xi}s_{\xi}(t) \text{ for } t \in [L_h, L]$$

$$g = \chi_{[0,L]}, \ \gamma = \chi_{[L_h,L]}, \ L,a,b = \cdots \Rightarrow \text{diagonal channel matrix G}$$

 $\Rightarrow \mathbf{c} = \mathbf{G}^{-1}\mathbf{a} \text{ for all time-invariant } H$

• Wireless channels: time-varying \Rightarrow only approximate diagonalization \Rightarrow need for an efficient algorithm for computing G for numerical comparisons of diagonalization properties of different g, γ on a given H.

Direct calculation of the channel matrix

Q carrier frequencies and R OFDM symbols.

- $\circ \geq Q$ samples of each basis function $g_{q,r}$.
- \circ Compute $Hg_{q,r}$ with $Q \times Q$ matrix.
- \circ This takes $\mathcal{O}(Q^2)$ arithmetic operations each for QR basis functions $g_{q,r}$.
- The inner product $\langle Hg_{q,r}, \gamma_{q',r'} \rangle$ takes $\mathcal{O}(Q)$ arithmetic operations each for QR basis functions $\gamma_{q',r'}$.

Altogether: $R^2 \cdot \mathcal{O}(Q^5)$ arithmetic operations.

The multipath propagation model

$$Hs(t_0) = \iint_{\mathbb{R}} S_H(\nu, t) e^{j2\pi\nu(t_0 - t)} s(t_0 - t) d\nu dt = \iint_{\mathbb{R}} h(t_0, t) s(t_0 - t) dt$$
 $S_H = \text{Spreading function} \qquad h = \text{time-varying impulse response}$

To which function(al) space should S_H belong?

•
$$Hg_{q,r}(t_0) = \iint_{\mathbb{R}} S_H(\nu, t) e^{j2\pi\nu(t_0 - t)} g_{q,r}(t_0 - t) d\nu dt = \int_{\mathbb{R}} h(t_0, t) g_{q,r}(t_0 - t) dt$$

- Common enginering practice: Model H to be a Hilbert-Schmidt operator, that is, $S_H \in L^2(\mathbb{R} \times \mathbb{R})$. Only standard Fourier analysis necessary, hence no distribution theory and therefore more accessible to engineers.
- Reasonable objection: "A good channel operator model should include (small perturbations of) the identity operator $(S_H = \partial)$ and time invariant operators $(h(t_0, t) = h(0, t))$ and $S_H(\nu, t) = \delta(\nu) h(0, t)$. Such operators are not compact and therefore not Hilbert-Schmidt."

LULEÅ UNIVERSITY OF TECHNOLOGY

Useful channel and basis function properties

•
$$Hg_{q,r}(t_0) = \iint_{\mathbb{R}} S_H(\nu, t) e^{j2\pi\nu(t_0 - t)} g_{q,r}(t_0 - t) d\nu dt = \int_{\mathbb{R}} h(t_0, t) g_{q,r}(t_0 - t) dt$$

- •g very well TF-localized $\Rightarrow \tilde{g}$ very well TF-localized
- •We are modelling the *short* time behaviour of the channel,

thus we can do a smooth cut-off h to compact rectangular support.

$$C^{\infty} \ni h(\boldsymbol{t}_{0}, \boldsymbol{t}) \stackrel{\mathcal{F}_{t \to \boldsymbol{\xi}}}{\longmapsto} \sigma_{H}(\boldsymbol{t}_{0}, \underline{\boldsymbol{\xi}}) \qquad C^{\infty} \ni h(\underline{\boldsymbol{t}_{0}, \boldsymbol{t}}) \stackrel{\mathcal{F}_{t \to \boldsymbol{\xi}}}{\longmapsto} \sigma_{H}(\underline{\boldsymbol{t}_{0}, \boldsymbol{\xi}}) \qquad \downarrow^{\mathcal{F}_{t_{0} \to \boldsymbol{\nu}}} \qquad \downarrow^{\mathcal{F}_{t_{0} \to \boldsymbol{$$

Fig. 3 (a) Bandlimiting properties of the physical channel provides a compactly supported B_H . Thus $h \in C^{\infty}$, but S_H may be a tempered distribution, for example, if $h(\mathbf{t_0}, \mathbf{t}) = h(\mathbf{0}, \mathbf{t})$. (b) We get a *finite lifelength* channel with well localized $S_H \in C^{\infty}$ from a smooth truncation of h such that the shape of S_H still is close to the exponential decay with \mathbf{t} in (19c). In (a) and (b) we denote with underlining subexponential decay and compact support.

LULEÅ UNIVERSITY OF TECHNOLOGY

Resulting formulas

Proposition:
$$\langle Hg_{q,r}, \gamma_{q',r'} \rangle = \sum_{k \in \mathcal{K}} Hg_{q,r}(kT) \overline{\mathrm{BPF}_{g_{q,r}} \gamma_{q',r'}(kT)}$$

Proposition: H
$$g_{q,r}(kT) = T_0 \sum_{m \in \mathcal{M}} g_{q,r}(mT) \mathcal{F} \left\{ S_{\mathrm{H}}^{\Omega_c,\Omega}(\cdot,kT-mT_0) \right\} (-mT_0)$$

Proposition

$$\mathcal{F}\left\{S_{\mathbf{H}}^{\Omega_c,\Omega}(\cdot,t)\right\}(t_0) = \omega_0 T'' \chi_{I_{C_0,L_0}}(t-t_0) \sum_{p \in \mathcal{P}} e^{i2\pi \left\langle \Omega_{c,q} + \omega_c, t-pT'' \right\rangle} \operatorname{sinc}_{\Omega}(t-pT'') \sum_{\mathbf{n} \in \mathcal{N}} S_{n,p} e^{i2\pi (t-t_0-p\cdot T'')n\omega_0}$$

Complexity:

If g and γ have M nonzero Nyquist frequency samples, then the channel matrix for Q carrier frequencies and R OFDM symbols can be computed in $R^2 \cdot \mathcal{O}(M^2 \cdot Q^2)$ arithmetic operations ($< R^2 \cdot \mathcal{O}(Q^5)$ with the "naive approach").

LULEÅ UNIVERSITY OF TECHNOLOGY

In the following plots: "Gaussian" window

OFDM 1990 band example: Spreading function

LULEÅ UNIVERSITY OF TECHNOLOGY

OFDM 1990 band example: log₁₀ Channel matrix

$$G_{(q,r);(q',r')} = \langle Hg_{q,r}, \gamma_{q',r'} \rangle$$

OFDM 1990 band example: Off-diagonal decay

OFDM 1990 example: Smoother spreading function

Off-diagonal decay

