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Motivations Motivations for UEP, OFDM, and MIMO

Realizing UEP

� UEP: invokes the need for non-uniform error protection.

� OFDM: suitable for adapting individual subcarriers using different
data rates, code rates, and powers

� MIMO: has high multiplexing gain and allows for channel layering.

� UEP MIMO-OFDM: devotes an arbitrary number of bits to different
classes, eigenbeams, and subcarriers
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Motivations Motivations for UEP, OFDM, and MIMO

Why UEP ?

� Source encoders of some applications deliver data of different importance.

� Matching the channel variations to enhance performance and spectral efficiency.

� The different error sensitivities of different communication devices, e.g., PDAs,
laptops,· · · .
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Motivations Motivations for UEP, OFDM, and MIMO

Why Multicarrier ?

The available bandwidth is divided into N individual sub-channels

x(t) ∗ h(t)

Y (f)

f
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f
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y(t)x(t)

Impulse noise

n(t)

i(t)

Background noise

Transfer function

Input signal

Due to its suitability for adapting individual subcarriers with different data rates, code
rates, and power according channel conditions.
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Motivations Motivations for UEP, OFDM, and MIMO

UEP Schemes in MCM

UEP coding Layer

Adapt coding scheme/rate (i.e., use
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UEP: Bit-Loading Previous Work

Principals

Modified Shannon’s Capacity:

bk = log2

(
1+ SNRk

γ

)
Three conceptual problems:

Bit-rate maximization problem (BRMP)
Power minimization problem (PMP)
Probability of error minimization problem(PEMP)

max
b̂∈Z

N−1

∑
k=0

b̂k

subject to

N−1

∑
k=0

Pk(b̂k) < PT
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UEP: Bit-Loading Previous Work

Bit-Loading Algorithms

Bit-loading solutions:
Optimum: add bits to the locations of minimum incremental power, e.g.:
Hughes-Hartogs and Campello

Sub-optimum: based on Shannon capacity (Chow et al.) or probability of error
minimization (Fischer-Huber and Yu-Willson)

Bit-Loading by Chow (BRMP):

bk = log2

(
1+

SNRk

γ

) Quantization Error:

b̂k = bbk +0.5cbmax
0

∆bk = bk − b̂k
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UEP: Bit-Loading Proposed Algorithm

UEP Bit-Loading and SNR-Sorting Algorithms

Compute b(j)
k,l using γ(j) = γ0 − j ·∆γ,

then adjust M (j) iteratively unit
∑k,l b(j)

k,l = T(j) or maximum iteration

If BT is not achieved, update γ0 and
recompute. If maximum iterations,
add/subtract bits according to ∆b(j)

k

The power is allocated according to
SER. If the target SER is not fulfilled,
reduce the total rate
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MIMO-OFDM and Eigen Beamforming MIMO Principals

Potential of MIMO wireless links:

substantial improvement in
QoS/throughput

Effectively exploit multipath

Scalability and adaptation
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MIMO-OFDM and Eigen Beamforming MIMO Principals

Eigen Channels Representation

Eigen channels (modes) Bit-loading for eigen channels
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MIMO-OFDM and Eigen Beamforming MIMO Principals

Channel side information feedback
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adaptivecoding

bit−
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MIMO-OFDM and Eigen Beamforming Beamforming in MIMO-OFDM

Beamforming Scheme

(eigen-beamforming)
pre-processing
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The rank = M & 0 < n ≤ M−1
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where V1 = [v1, ...,vn] and
V2 = [0n+1, ..,0M ].

Eigen beamforming selection

full-beamforming (full-BF) at
n = M

suppress weaker eigenbeams

shorter BF length due to antenna
correlation or CSI errors

- Direct BF: V1 are adjacent
columns.

- Selecte BF: V1 are selected
to minimize interference
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MIMO-OFDM and Eigen Beamforming Beamforming in MIMO-OFDM

Beamforming Analysis

CSI error: Ĥk = Hk +Ξk
where Ξk ∼ C N (0,σ2

Ξ
)

the received vector:

Yk = ĤkVkP1/2Xk +nk

=

Tk︷ ︸︸ ︷
ÛkD̂kV̂∗

kVkP1/2 Xk +ηk ,

ZF-MRC detection:

W = {T∗T}−1TH

x̂ = Wy

MMSE-MRC detection:

W = {T∗T+σ
2
NI}−1TH

x̂ = Wy
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Simulation Results Simulation Parameters

Channel Model and System Parameters:

� Channel: MIMO Rayleigh fading channel with different correlation models

� MIMO Parameters: 4×4 MIMO-OFDM system with 512 subcarriers for each
beam

� Bit-loading: the maximum allowed bits per subchannel is 8

� UEP Application: 3 classes, ∆γ(j) = 3 dB, T(j) = 1024 bits
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Simulation Results UEP Adaptive MIMO-OFDM Results

UEP Bit Power Allocation for perfect CSI:
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Simulation Results UEP Adaptive MIMO-OFDM Results

perfect and imperfect CSI (2D results @εe =0.1)
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Simulation Results UEP Adaptive MIMO-OFDM Results

Different CSI errors (2D results @εe =0.25):
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Simulation Results UEP Adaptive MIMO-OFDM Results

Different Beamforming Techniques (full beamforming):
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Conclusions

Conclusions

We described an UEP bit-allocation
scheme for MIMO-OFDM

Exploit channel layering using SVD,
thereby realize UEP

Allows for arbitrary margins, error
probabilities, and bit-rates

Selected beamforming is a practical
solution for suppressing CSI errors.

Ongoing Research:

We are studying the combination of spatial
equalizers, IC, beamforming, and STBC to
minimize the CSI errors effect.
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