Tutorial On: Unequal Error Protection in Multicarrier Mutliantenna Systems

Khaled Hassan - Werner Henkel

School of Engineering and Science

Summer Academy, 2007

K. Hassan (Jacobs University) [Unequal Error Protection in MC-MIMO](#page-53-0) Summer Academy, 2007 1/27

Outline

[Motivations](#page-2-0)

• [Motivations for UEP, OFDM, and MIMO](#page-3-0)

[UEP: Bit-Loading](#page-16-0)

- **[Previous Work](#page-17-0)**
- **[Proposed Algorithm](#page-23-0)**

[MIMO-OFDM and Eigen Beamforming](#page-26-0)

- [MIMO Principals](#page-27-0)
- [Beamforming in MIMO-OFDM](#page-34-0)

[Simulation Results](#page-37-0)

- **[Simulation Parameters](#page-38-0)**
- [UEP Adaptive MIMO-OFDM Results](#page-42-0)

[Conclusions](#page-47-0)

Outline

[Motivations](#page-2-0)

[Motivations for UEP, OFDM, and MIMO](#page-3-0)

[UEP: Bit-Loading](#page-16-0)

- **[Previous Work](#page-17-0)**
- **[Proposed Algorithm](#page-23-0)**

[MIMO-OFDM and Eigen Beamforming](#page-26-0)

- [MIMO Principals](#page-27-0)
- [Beamforming in MIMO-OFDM](#page-34-0)

[Simulation Results](#page-37-0)

- **[Simulation Parameters](#page-38-0)**
- [UEP Adaptive MIMO-OFDM Results](#page-42-0)

[Conclusions](#page-47-0)

4 0 5

E K

UEP: invokes the need for non-uniform error protection.

- **OFDM**: suitable for adapting individual subcarriers using different
- **MIMO**: has high multiplexing gain and allows for channel layering.
- **UEP MIMO-OFDM**: devotes an arbitrary number of bits to different

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

- **UEP**: invokes the need for non-uniform error protection.
- **OFDM**: suitable for adapting individual subcarriers using different data rates, code rates, and powers
- **MIMO**: has high multiplexing gain and allows for channel layering.
- **UEP MIMO-OFDM**: devotes an arbitrary number of bits to different

 Ω

 $A \equiv 0.4 \equiv$

- **UEP**: invokes the need for non-uniform error protection.
- **OFDM**: suitable for adapting individual subcarriers using different data rates, code rates, and powers
- **MIMO**: has high multiplexing gain and allows for channel layering.
- **UEP MIMO-OFDM**: devotes an arbitrary number of bits to different

3 E X 3 E

- **UEP**: invokes the need for non-uniform error protection.
- **OFDM**: suitable for adapting individual subcarriers using different data rates, code rates, and powers
- **MIMO**: has high multiplexing gain and allows for channel layering.
- **UEP MIMO-OFDM**: devotes an arbitrary number of bits to different classes, eigenbeams, and subcarriers

Why UEP ?

\circ Source encoders of some applications deliver data of different importance.

- \circ Matching the channel variations to enhance performance and spectral efficiency.
- \circ The different error sensitivities of different communication devices, e.g., PDAs, **K ロメ K 御 メ K 君 メ K 君 X** 299

Why UEP ?

- \circ Source encoders of some applications deliver data of different importance.
- \Diamond Matching the channel variations to enhance performance and spectral efficiency.
- The different error sensitivities of different communication devices, e.g., PDAs, イロト イ御 トイモト イ毛 299

Why UEP ?

- Source encoders of some applications deliver data of different importance.
- ◇ Matching the channel variations to enhance performance and spectral efficiency.
- \circ The different error sensitivities of different communication devices, e.g., PDAs, laptops,···. イロト イ押ト イヨト イヨ 299

Why Multicarrier ?

The available bandwidth is divided into *N* individual sub-channels

 Ω

4 (D) 3 (F) 3 (F) 3 (F)

Why Multicarrier ?

The available bandwidth is divided into *N* individual sub-channels

Due to its suitability for adapting individual subcarriers with different data rates, code rates, and power according channel conditions.

 Ω

4 0 8 \leftarrow \sim ÷

←ロト ←部 ト ←語 ト ←語

 290

∍

UEP coding Layer

Adapt coding scheme/rate (i.e., use puncturing or pruning)

 290

K ロメ K 御 メ K 君 メ K 君 X

UEP Physical Layer

Adapt bit/power loading and Physical Transport, e.g.: MIMO Channel

Þ

 299

K ロメ K 御 メ K 君 メ K 君 X

UEP Physical Layer

4 0 8 1 \leftarrow \leftarrow \leftarrow

Adapt bit/power loading and Physical Transport, e.g.: MIMO Channel

 299

化重压 不重

Outline

[Motivations](#page-2-0)

[Motivations for UEP, OFDM, and MIMO](#page-3-0)

[UEP: Bit-Loading](#page-16-0)

- **[Previous Work](#page-17-0)**
- **[Proposed Algorithm](#page-23-0)**

[MIMO-OFDM and Eigen Beamforming](#page-26-0)

- [MIMO Principals](#page-27-0)
- [Beamforming in MIMO-OFDM](#page-34-0)

[Simulation Results](#page-37-0)

- **[Simulation Parameters](#page-38-0)**
- [UEP Adaptive MIMO-OFDM Results](#page-42-0)

[Conclusions](#page-47-0)

TELES

Principals

Modified Shannon's Capacity:

$$
b_k=\log_2\left(1+\tfrac{\text{SNR}_k}{\gamma}\right)
$$

Three conceptual problems:

- Bit-rate maximization problem (BRMP) \bullet
- \bullet
- \bullet

$$
\max_{\hat{b}\in Z}\sum_{k=0}^{N-1}\hat{b}_k
$$
\nsubject to\n
$$
\sum_{k=0}^{N-1}P_k(\hat{b}_k) < P_T
$$

Principals

Modified Shannon's Capacity:

$$
b_k = \log_2\left(1+\tfrac{\text{SNR}_k}{\gamma}\right)
$$

Three conceptual problems:

- Bit-rate maximization problem (BRMP)
- Power minimization problem (PMP)
- \bullet

$$
\min_{\hat{b} \in Z} \sum_{k=0}^{N-1} P_k
$$
\nsubject to\n
$$
\sum_{k=0}^{N-1} \hat{b}_k = B_T \text{ and } \sum_{k=0}^{N-1} P_k \le P_T
$$

K. Hassan (Jacobs University) Compared [Unequal Error Protection in MC-MIMO](#page-0-0) Summer Academy, 2007 9/27

∍ $\left\langle \cdot \right\rangle$

Principals

Modified Shannon's Capacity:

$$
b_k=\log_2\left(1+\tfrac{\text{SNR}_k}{\gamma}\right)
$$

Three conceptual problems:

- Bit-rate maximization problem (BRMP)
- \bullet
- **•** Probability of error minimization problem(PEMP)

$$
\min_{\hat{b}\in Z}\sum_{k=0}^{N-1}\mathcal{P}_{e,k}
$$
\nsubject to\n
$$
\sum_{k=0}^{N-1}\hat{b}_k = B_T \text{ and } \sum_{k=0}^{N-1}P_k \leq P_T
$$

K. Hassan (Jacobs University) Compared [Unequal Error Protection in MC-MIMO](#page-0-0) Summer Academy, 2007 9/27

Bit-Loading Algorithms

Bit-loading solutions:

- Optimum: add bits to the locations of minimum incremental power, e.g.: Hughes-Hartogs and Campello
- **Sub-optimum: based on Shannon capacity (Chow et al.) or probability of error** minimization (Fischer-Huber and Yu-Willson)

Bit-Loading by Chow (BRMP):

$$
b_k = \log_2\left(1 + \frac{\text{SNR}_k}{\gamma}\right)
$$

4 D.K.

$$
\begin{array}{rcl}\n\hat{b}_k &=& \lfloor b_k + 0.5 \rfloor_0^{b_{\max}} \\
\Delta b_k &=& b_k - \hat{b}_k\n\end{array}
$$

 Ω

Barrist

Bit-Loading Algorithms

- Optimum: add bits to the locations of minimum incremental power, e.g.:
- Sub-optimum: based on Shannon capacity (**Chow et al.**) or probability of error

Bit-Loading by Chow (BRMP): $b_k = \log_2\left(1 + \frac{\textsf{SNR}_k}{\gamma}\right)$ γ \setminus

Quantization Error:

$$
\begin{array}{rcl}\n\hat{b}_k &=& [b_k + 0.5]_0^{b_{\text{max}}}\\
\Delta b_k &=& b_k - \hat{b}_k\n\end{array}
$$

イロト イ押ト イヨト イヨ

Bit-Loading Algorithms

- Optimum: add bits to the locations of minimum incremental power, e.g.:
- **Sub-optimum: based on Shannon capacity (Chow et al.) or probability of error**

Quantization Error:

$$
\begin{array}{rcl}\n\hat{b}_{k,l}^{(j)} & = & [b_{k,l}^{(j)} + 0.5]_0^{b_{\text{max}}}\\
\Delta b_{k,l}^{(j)} & = & b_{k,l}^{(j)} - \hat{b}_{k,l}^{(j)}\n\end{array}
$$

イロト イ押ト イヨト イヨ

UEP: Bit-Loading Proposed Algorithm

UEP Bit-Loading and SNR-Sorting Algorithms

- Compute $b_{k,l}^{(j)}$ using $γ^{(j)} = γ_0 j \cdot Δγ$, then adjust $\mathscr{M}^{(j)}$ iteratively unit $\sum_{k,l} b^{(j)}_{k,l} = T^{(j)}$ or maximum iteration
- **If** B_T is not achieved, update γ_0 and
- The power is allocated according to

UEP: Bit-Loading Proposed Algorithm

UEP Bit-Loading and SNR-Sorting Algorithms

- Compute $b_{k,l}^{(j)}$ using $γ^{(j)} = γ_0 j \cdot Δγ$, then adjust $\mathscr{M}^{(j)}$ iteratively unit $\sum_{k,l} b^{(j)}_{k,l} = T^{(j)}$ or maximum iteration
- **If** B_T **is not achieved, update** γ_0 **and** recompute. If maximum iterations, add/subtract bits according to $\Delta b_k^{(j)}$
- The power is allocated according to

UEP: Bit-Loading Proposed Algorithm

UEP Bit-Loading and SNR-Sorting Algorithms

- Compute $b_{k,l}^{(j)}$ using $γ^{(j)} = γ_0 j \cdot Δγ$, then adjust $\mathscr{M}^{(j)}$ iteratively unit $\sum_{k,l} b^{(j)}_{k,l} = T^{(j)}$ or maximum iteration
- **If** B_T **is not achieved, update** γ_0 **and** recompute. If maximum iterations, add/subtract bits according to $\Delta b_k^{(j)}$
- The power is allocated according to SER. If the target SER is not fulfilled, reduce the total rate

Outline

[Motivations](#page-2-0)

[Motivations for UEP, OFDM, and MIMO](#page-3-0)

[UEP: Bit-Loading](#page-16-0)

- **[Previous Work](#page-17-0)**
- **[Proposed Algorithm](#page-23-0)**

[MIMO-OFDM and Eigen Beamforming](#page-26-0)

- [MIMO Principals](#page-27-0)
- [Beamforming in MIMO-OFDM](#page-34-0)

[Simulation Results](#page-37-0)

- **[Simulation Parameters](#page-38-0)**
- [UEP Adaptive MIMO-OFDM Results](#page-42-0)

[Conclusions](#page-47-0)

TELES

- substantial improvement in QoS/throughput
- Effectively exploit multipath \bullet
- **•** Scalability and adaptation

4 0 8 k. 画 \sim × ÷. \sim Þ

- substantial improvement in QoS/throughput
- **•** Effectively exploit multipath
- **•** Scalability and adaptation

4 0 8 1 \leftarrow

$$
C_E = E \left[\det \left(\log_2 \left\{ I_{M_R} + \frac{\rho}{N_T} \mathbf{H} \mathbf{H}^H \right\} \right] \right)
$$

bits/sec/Hz

Þ

 299

重す

× \prec

- substantial improvement in QoS/throughput
- **•** Effectively exploit multipath
- **•** Scalability and adaptation

4 0 8 \leftarrow × $\overline{4}$ ÷. **B**

$$
C_E = E \left[\det \left(\log_2 \left\{ I_{M_R} + \mathbf{H Q H}^H \right\} \right] \right)
$$

bits/sec/Hz
where $Q = E[x * x^H]$

Þ

- substantial improvement in QoS/throughput
- **•** Effectively exploit multipath
- Scalability and adaptation

4 日 ト 4 何 ト

$$
C_E = \sum_{i=1}^{M} \log_2 \left(1 + \frac{\rho_{\text{WF}}}{N_T} \lambda_i \right)
$$

bits/sec/Hz
where tr(**Q**) $\leq \rho_{\text{WF}}$

$$
\rho_{\text{WF}} = \sum_{i=1}^{M} \left(\mu - \lambda_i^{-1} \right)^+
$$

Þ

 299

医毛囊 医牙骨

- substantial improvement in QoS/throughput
- **•** Effectively exploit multipath
- **O** Scalability and adaptation

$$
C_E = \sum_{i=1}^{M} \log_2 \left(1 + \frac{\rho_{\text{WF}}}{N_T (1 + \sigma_E \overline{P})} \lambda_i \right)
$$

bits/sec/Hz
where tr(**Q**) $\leq \rho_{\text{WF}}$

$$
\rho_{\text{WF}} = \sum_{i=1}^{M} \left(\mu - \lambda_i^{-1} \right)^+
$$

 \mathbf{b}

E

 299

←ロト ←部 ト ←語 ト ←語

MIMO-OFDM and Eigen Beamforming MIMO Principals

Eigen Channels Representation

K. Hassan (Jacobs University) [Unequal Error Protection in MC-MIMO](#page-0-0) Summer Academy, 2007 14/27

∍

 299

4 0 8

MIMO-OFDM and Eigen Beamforming MIMO Principals

Channel side information feedback

- **O** Channel mean: $\hat{\mathbf{H}} = \mathbf{H} \varepsilon_r$. $\overline{\text{UD}}{}^{\frac{1}{2}}\overline{\text{V}}{}^{\text{H}}$
- Channel corelation: \bullet $R_{\hat{\mathbf{H}}^H\hat{\mathbf{H}}} = E\{\hat{H}\hat{H}^*\} = \overline{\mathbf{V}}\mathbf{D}\overline{\mathbf{V}}^{\mathbf{H}}$
- **O** Channel estimation error
- **Quantization error**
- **e** errors included by the feedback channel
- Variation during channel fee[db](#page-32-0)a[ck](#page-34-0)

Beamforming Scheme

The rank =
$$
M
$$
 & 0 < n \le M - 1
\n $\therefore \overline{\mathbf{V}} = [\overline{\mathbf{V}}_1 \overline{\mathbf{V}}_2],$
\nwhere $\overline{\mathbf{V}}_1 = [v_1, ..., v_n]$ and $\overline{\mathbf{V}}_2 = [0_{n+1}, ..., 0_M].$

Eigen beamforming selection

4 D.K.

- full-beamforming (full-BF) at $n = M$
- suppress weaker eigenbeams \bullet
- shorter BF length due to antenna \bullet correlation or CSI errors
	- Direct BF: \overline{V}_1 are adjacent columns.
	- Selecte BF: \overline{V}_1 are selected to minimize interference

Beamforming Analysis

 \mathbf{CSI} error: $\hat{\mathbf{H}}_k = \overline{\mathbf{H}}_k + \Xi_k$ where $\Xi_k \sim \mathscr{CN}(0,\sigma_{\Xi}^2)$ the received vector:

$$
\mathbf{Y}_k = \hat{\mathbf{H}}_k \overline{\mathbf{V}}_k \mathbf{P}^{1/2} \mathbf{X}_k + n_k
$$

=
$$
\overbrace{\hat{\mathbf{U}}_k \hat{\mathbf{D}}_k \hat{\mathbf{V}}_k^* \overline{\mathbf{V}}_k \mathbf{P}^{1/2} \mathbf{X}_k + \eta_k}^{T_k},
$$

 $\mathbf{W} = \{\mathbf{T}^*\mathbf{T}\}^{-1}\mathbf{T}^{\mathrm{H}}$ $\mathbf{W} = {\mathbf{T}^* \mathbf{T} + \sigma_N^2 \mathbf{I}}^{-1} \mathbf{T}^H$

イロト イ押ト イヨト イヨ

Þ

Beamforming Analysis

 \mathbf{CSI} error: $\hat{\mathbf{H}}_k = \overline{\mathbf{H}}_k + \Xi_k$ where $\Xi_k \sim \mathscr{CN}(0,\sigma_{\Xi}^2)$ the received vector:

$$
\mathbf{Y}_{k} = \hat{\mathbf{H}}_{k} \overline{\mathbf{V}}_{k} \mathbf{P}^{1/2} \mathbf{X}_{k} + n_{k}
$$

$$
= \overbrace{\hat{\mathbf{U}}_{k} \hat{\mathbf{D}}_{k} \hat{\mathbf{V}}_{k}^{*} \overline{\mathbf{V}}_{k} \mathbf{P}^{1/2} \mathbf{X}_{k} + \eta_{k}}^{T_{k}},
$$

ZF-MRC detection: $\mathbf{W} = \{\mathbf{T}^*\mathbf{T}\}^{-1}\mathbf{T}^{\mathrm{H}}$ $\hat{\mathbf{x}} = \mathbf{W}\mathbf{y}$

MMSE-MRC detection:

$$
W = \{T^*T + \sigma_N^2 I\}^{-1} T^H
$$

$$
\hat{x} = Wy
$$

イロト イ押 トイラト イラト

Þ

Outline

- **[Previous Work](#page-17-0)**
- **[Proposed Algorithm](#page-23-0)**
- [MIMO-OFDM and Eigen Beamforming](#page-26-0) • [MIMO Principals](#page-27-0)
	- [Beamforming in MIMO-OFDM](#page-34-0)

[Simulation Results](#page-37-0)

- **[Simulation Parameters](#page-38-0)**
- [UEP Adaptive MIMO-OFDM Results](#page-42-0)

[Conclusions](#page-47-0)

TELES

Channel: MIMO Rayleigh fading channel with different correlation models

- **MIMO Parameters**: 4×4 MIMO-OFDM system with 512 subcarriers for each
- **Bit-loading**: the maximum allowed bits per subchannel is 8
- \bullet UEP Application: 3 classes, $\Delta\gamma^{(j)}=$ 3 dB, $T^{(j)}=$ 1024 bits

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

- **Channel**: MIMO Rayleigh fading channel with different correlation models
- \circ **MIMO Parameters**: 4×4 MIMO-OFDM system with 512 subcarriers for each beam
- **Bit-loading**: the maximum allowed bits per subchannel is 8
- \bullet UEP Application: 3 classes, $\Delta\gamma^{(j)}=3$ dB, $T^{(j)}=1024$ bits

 Ω

イロト イ押ト イヨト イヨ

- **Channel**: MIMO Rayleigh fading channel with different correlation models
- \circ **MIMO Parameters**: 4×4 MIMO-OFDM system with 512 subcarriers for each beam
- **Bit-loading**: the maximum allowed bits per subchannel is 8
- \bullet UEP Application: 3 classes, $\Delta\gamma^{(j)}=3$ dB, $T^{(j)}=1024$ bits

 Ω

イロト イ押ト イヨト イヨ

- **Channel**: MIMO Rayleigh fading channel with different correlation models
- \circ **MIMO Parameters**: 4×4 MIMO-OFDM system with 512 subcarriers for each beam
- **Bit-loading**: the maximum allowed bits per subchannel is 8
- \diamond UEP Application: 3 classes, $\Delta\gamma^{(j)}=3$ dB, $T^{(j)}=1024$ bits

UEP Bit Power Allocation for perfect CSI:

 \mathcal{A} . 舌

4 0 8 1 \leftarrow \leftarrow \leftarrow Þ

Simulation Results UEP Adaptive MIMO-OFDM Results

perfect and imperfect CSI (2D results @ε*^e* =0.1)

4日下 \leftarrow \leftarrow \leftarrow Simulation Results UEP Adaptive MIMO-OFDM Results

Different CSI errors (2D results @ε*^e* =0.25):

K. Hassan (Jacobs University) [Unequal Error Protection in MC-MIMO](#page-0-0) Summer Academy, 2007 22/27

Different Beamforming Techniques (full beamforming):

Simulation Results UEP Adaptive MIMO-OFDM Results

Different Beamforming Techniques (full beamforming):

Outline

Brand C

Conclusions

● We described an UEP bit-allocation scheme for MIMO-OFDM

- **•** Exploit channel layering using SVD,
- \bullet
- Selected beamforming is a practical

 Ω

イロト イ押ト イヨト イヨ

Conclusions

- We described an UEP bit-allocation scheme for MIMO-OFDM
- Exploit channel layering using SVD, thereby realize UEP
- Allows for arbitrary margins, error
- Selected beamforming is a practical

イロト イ押ト イヨト イヨ

Conclusions

- We described an UEP bit-allocation scheme for MIMO-OFDM
- Exploit channel layering using SVD, thereby realize UEP
- Allows for arbitrary margins, error probabilities, and bit-rates
- Selected beamforming is a practical

イロト イ押ト イヨト イヨ

Conclusions

- We described an UEP bit-allocation scheme for MIMO-OFDM
- Exploit channel layering using SVD, thereby realize UEP
- Allows for arbitrary margins, error probabilities, and bit-rates
- Selected beamforming is a practical solution for suppressing CSI errors.

4 0 8 **A**

Ongoing Research:

We are studying the combination of spatial equalizers, IC, beamforming, and STBC to minimize the CSI errors effect.

∋⇒

Conclusions

- \bullet
- **•** Exploit channel layering using SVD,
- \bullet
- Selected beamforming is a practical

Questions!

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

4 0 8

CSI Error Effect

K. Hassan (Jacobs University) [Unequal Error Protection in MC-MIMO](#page-0-0) Summer Academy, 2007 27/27