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The PAR in DMT systems

The average power of anM-QAM point set

PM−QAM( f )
=

a2

6
· (M−1)

With a minimum point distancea. The peak power is defined by the edges

P̂M−QAM( f )
=

a2

2
· (
√

M−1)
2

In the following, we use the IDFT in the form

fl =
N−1

∑
m=0

Fmej 2π
N l m
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Splitting up the IDFT in two parts yields

fl =

N
2 −1

∑
m=1

(

Fmej 2π
N l m +FN−mej 2π

N l (N−m)
)

=

N
2 −1

∑
m=1

(

|Fm| ej ( 2π
N l m+ϕm) + |Fm| e− j ( 2π

N l m+ϕm)
)

=

N
2 −1

∑
m=1

2|Fm| cos

(
2π
N

l m
︸ ︷︷ ︸

ϕd

+ϕm

)

.

The average power in time domain will then be

P(t) =
1
N

N−1

∑
l=0

| fl |2

=
1
N

N−1

∑
l=0

N
2 −1

∑
m=1

2|Fm| cos

(
2π
N

l m+ϕm

) N
2 −1

∑
n=1

2|Fn| cos

(
2π
N

l n+ϕn

)
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=
1
N

N−1

∑
l=0

N
2 −1

∑
m=1

N
2 −1

∑
n=1

4|Fm| · |Fn|
1
2

[

cos

(
2π
N

l (m+n)+ϕm+ϕn

)

+

+cos

(
2π
N

l (m−n)+ϕm−ϕn

)]

︸ ︷︷ ︸

= 0 for all m 6= n

=
1
N

N−1

∑
l=0

N
2 −1

∑
m=1

2|Fm|2

Note that this is actually the Parseval formula for a DFT/IDFT when 1/N is part of
the DFT. Before, we usually split it equally as 1/

√
N making the average power

the same in time and DFT domain. Here, we instead have

1
N

N−1

∑
i=0

| fi |2

︸ ︷︷ ︸

P(t)

= N
1
N

N−1

∑
m=0
Fm6=0

|Fm|2

︸ ︷︷ ︸

P( f )
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First, let us consider a pair of 2 conjugate carriers,i.e., single-carrier QAM:

P2con j.compl.carr.(t) =
a2

3
· (M−1) .

P̂2con j.compl.carr.(t) = 4|Fmax|2

= 2a2 · (
√

M−1)
2

.

We obtain the PAR of single-carrier modulation

PAR2con j.compl.carr.(t) = 6· (
√

M−1)

(
√

M +1)
.
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Often, a continuous approximation is used to model bigger QAM constellations

Pkont.QAM( f )
=

(
1

2Amax

)2 Amax
Z

−Amax

Amax
Z

−Amax

(x2 +y2)dxdy

=
1

4A2
max

Amax
Z

−Amax

(
2
3

A3
max+2Amaxy

2)dy

=
2
3

A2
max

The time-domain value combining 2 carriers will bePkont.QAM(t)
= 2· 2

3 A2
max

P̂kont.QAM( f )
= 2A2

max

The time-domain value combining 2 carriers will beP̂kont.QAM(t)
= 22 ·2A2

max

and finally, the PAR of the continous quadratic ‘constellation’ results in

PARkont.QAM(t)
= lim

M→∞
PAR2con j.compl.carr.(t) = 6
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When going over to multicarrier modulation with many carriers, we approach a Gaussian

distribution which would have unlimited peak values. However, due to the still limited

number of carriers, also the possible peaks will be limited.Often this is not significant,

since it does not have an influence on the probability (e.g., 10−7) of esceeding a certain

threshold at,e.g., 10-14 dB PAR. Nevertheless, we’d like to show that the PAR is

proportionally toN, the number of carriers.

1

1 2

a) b)

2

2

With the right constellation, the peak in time domain will easily be obtained at
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t = 0. The left constellation will lead to a multiple of

1.064·
(

1+
1√
2

)
N
4

relative to single-carrier (2 conjugate carriers) modulation.
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We finally obtain

P̂N(t)
=

(

1.064·
(

1+
1√
2

))2

·
(

N
4

)2

2a2(
√

M−1)
2

Using Parseval’s formula,

PN(t)
= N

a2

6
(M−1) ,

we obtain

PARN(t)
=

(

1.064·
(

1+
1√
2

))2

·6/8·N · (
√

M−1)

(
√

M +1)
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Theoretical PAR limits

Let ŝbe the voltage limit. The average power belonging to a limited Gaussian
density is given by

P̄ =
2· R ŝ

0 x2 e
− x2

2σ2√
2πσ dx

2· R ŝ
0

e
− x2

2σ2√
2πσ dx

=
2σ2

√
π

2 erf( ŝ√
2σ

)

Z ŝ√
2σ

0
x2e−x2

dx . (1)

The probability of an amplitude lower than ˆs is P i = erf( ŝ√
2σ

). The probability that

this is the case for allN time-domain samples is∏N−1
i=0 P i = erfN( ŝ√

2σ
). The code

rateR follows to be

R=
log2(2

mNact ∏N−1
i=0 P i)

mNact
= 1+

N · log2(erf( ŝ√
2σ

))

Nact ·m
, (2)

N/Nact =constant, being the ratio of the number of DFT components relative to
the number of independently usable carriers (N/Nact ≈ 2 for baseband
transmission due to conjugacy constraints)
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Results with Gaussian assumption

N = 2
Z ∞

Lc
√

P
(u−Lc

√
P)2 1√

2πP
e−

u2
2P du pd =

1
2

erfc

(
a/2√

2N

)
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m
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/L l P=

Gaussian assumption not justified,

due to low number of clips.

Bit-error rate forecasts are far to op-

timistic!
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Bahai’s assumptions and shortcomings

Shape of the excursions assumed to be

parabolic

-t/2

p t( )
t

t/2 t

pτ(t) =

(
1
2

x′′t2 − 1
8

x′′τ2
)

· rect
( t

τ

)

From a Taylor expansion where constant

term ensures zeros at t = ±τ/2

x′′ ≈ R′′
xx(0) · x

x ≈ l ???

pτ(t) =

(

−1
2

lm2t2 +
1
8

lm2τ2
)

·rect
( t

τ

)

,

with

mi =







1
2π

R

ωiSx(ω)dω , i = 2u

0 , i = 2u+1

Khaled Hassan
Rectangle
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Bahai’s assumptions and shortcomings

Discrete disturbance spectrum corresponding to parabolic excursion:

Fk =

√
N f m2T lτ
4π2k2 e−( j2πk(t0+ τ

2 )/T ) · (1)

·
(

sinc

(
πkτ
T

)

− cos

(
πkτ
T

))

, (2)

Unfortunately, this spectral shape does not materialize!

Khaled Hassan
Rectangle
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Simulated average single-clip PSD
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Simulation results
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Tellado‘s Tone Reservation Algorithm
The idea

Subtraction of Dirac-like functions in time 
domain



Tellado‘s Tone Reservation Algorithm
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Tellado‘s Tone-Reservation Algorithm
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Low-complexity peak-reduction methods

Tone reservation (real case, DMT)

x(i+1) = x(i) −α · (x(i)
m − sign(x(i)

m ) · xtarget) · (p→ m)

Tone reservation (complex case, OFDM)

x(i+1) = x(i)−α · (x(i)
m − e jarc(x

(i)
m ) · xtarget) · (p→ m)

Khaled Hassan
Rectangle



Oversampling by, e.g., L=4

Generating Dirac-like functions in the oversampled
time domain after the filter response

Processing non-oversampled and oversampled
sequences in parallel

Precomputing L pairs of non-oversampled and 
oversampled Dirac-like functions

In the iteration: according to the maximum pos. m 
select one of the L pairs and shift it to the maximum
pos. 

The oversampled new Tellado-like proc.
The idea



The oversampled new Tellado-like proc.
The idea

The shift property of the DFT is used

in precomputing the L shifted versions of the
Dirac-like pairs

to shift the selected functions to the desired
maximum position

2

(( ) mod ( )) ( )
jkl

LNx n l LN X k e
π

−
−



The oversampled new Tellado-like proc.
Generation of the Dirac-like pairs



The oversampled new Tellado-like proc.
The iterations



The oversampled new Tellado-like proc.
The oversampled Dirac-like functions
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The oversampled new Tellado-like proc.
The oversampled Dirac-like functions

Fo
r B

ut
te

rw
or

th
fil

te
r:

Sample no.

normalized sample value

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100



The oversampled new Tellado-like proc.
Results

without
  processing
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Tone reservation
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Low-complexity peak-reduction methods

Trellis Partial Transmit Sequences

. . .

time domain

IDFT

. . .

+

0 1 NB -1

. . .

e
jj1 -jj

e 1

N

N

xi

Xi

i

N

(B=N/NB )

B DFT domain

0◦

180◦

180◦

90◦

270◦
270◦

90◦

0◦

Khaled Hassan
Rectangle



W. Henkel et al., ISITA 2004, Parma, Italy, Oct. 10-13, 2004 14

Low-complexity peak-reduction methods
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The PAR-reduction method “Selected Mapping (SLM)”

diff. enc.
if applied

diff. enc.
if applied

diff. enc.
if applied

p1

p2

pµ

IFFT

IFFT

IFFT

side information,
if necessary

pseudo-noise
sequences for
phase shifts in
DFT domain

interleaving,

mapping

coding,

conversion,

parallel

Serial-to-

PAR

lowest

with

symbol

of

Selection

data
bits signal

PAR-reduced

The procedure multiplies the DFT-

frame with phase-shift vectors, typ-

ically generated fromm-sequences

and after performing IDFTs for all

resulting vectors, just selects the

time-domain signal with the low-

est PAR. Four possible phases ad-

dressed by the pseudo-noise se-

quences usually suffice. Side in-

formation needs to be transmitted

with high reliability such that the

receiver knows the chosen PN se-

quence. However, there are also re-

alizations that do not require this

side information.
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