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Basic Concept of Linear Codes

Encoding
Soft Decoding

Definition
A linear code X (N, K) is a K-dimensional subspace of FN.
X ={x|x=GTuucFX xcFN} X = {xHx =0}

F = GF(2) = {0,1}

u | ug x=Gu

x € X(3,2) C F?
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Basic Concept of Linear Codes

Encoding
Soft Decoding

Analog Codes

y=x-+w
X(3,2) = {x|Hx =0}
v  H=[1,0,1] & xq+x3=0

X3
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Basic Concept of Linear Codes

Encoding
Soft Decoding

Iterative Decoding

o MAP: X = arg maxxcx p(x|y) o arg maxxex p(y[x)p(x)
@ ML Decoding: X = arg maxxex p(¥|x)
@ For AWGN channel: & = arg mingex ||x — y||?

Least-Squares Solution: X = arg maxxex p(x|]y) =My -y

(y]x CHP )/n|Xn H[hmx = 0]

o lterative decoding: p(x,ly) = Z p(x|y)

~Xp

@ 3 .
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The Sum-Product Algorithm

Principle of the Iterative Decoding Update Rule of The Sum-Product Algorithm
Some Facts about the Iterative Decoding
The Structure of Turbo Codes and the Scheduling

An Example: The Factor Graph Representation

@ A linear code: X(9,3) = {x|Hx =0,x € "}, hj € F

hi1 hip i3 O 0 0 O O O
0 0 O hpghs hpg O 0O O
0 0 O O O O h3y hsg hyg
hygy O O hggy O O hg7 O O
0O hsp O O hss O O hsg O
O O hes O O heg O O hgg
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An Example: The Factor Graph Representation

@ A linear code: X(9,3) = {x|Hx =0,x € "}, hj € F

® Yn = Xp+ Wp, Xp= maxycF p(XnIY)
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@ A linear code: X(9,3) = {x|Hx=0,x € "}, hj € F
® Yn = Xp+ Wy, Xn=maxger p(Xnly)
o Initialize: f,,(xn) = p(yn|xn) ~ p(xnlyn) = N (¥n, 0?)
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The Sum-Product Algorithm

Principle of the Iterative Decoding Update Rule of The Sum-Product Algorithm
Some Facts about the Iterative Decoding
The Structure of Turbo Codes and the Scheduling

An Example: The Factor Graph Representation

@ A linear code: X(9,3) = {x|Hx=0,x € "}, h; € F
O Yp=Xn+ Wn, Xp= maXx, er P(XnIY)

o Initialize: £,,(xn) = p(yn|xn) ~ p(xnlyn) = N (¥n, 0?)
Check Equation: fl(l) = [h11x1 + h12x2 + h13x3 = 0]

hi1 hip i3 0O 0 0 O O O
0 0 O hpghps hpg O O O
0 0 O O O O h3y hsg hag
hgg O O hgg O O hg7 O O
0O hsp O O hss O O hsg O
O O hes O O heg O O hgo
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The Sum-Product Algorithm
Principle of the Iterative Decoding Update Rule of The Sum-Product Algorithm

Some Facts about the Iterative Decoding
The Structure of Turbo Codes and the Scheduling

' (Xn) *

fm

vy (xn) = H .U';(Xn) py(xn) = Z fm H an(xj)

im ~xa}  J#n

VAR(Ll,Lg) = L1+ L
CHK(Ly,Ly) = 2tanh~(tanh(L;/2)tanh(Ly/2)) .
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The Sum-Product Algorithm
Principle of the Iterative Decoding Update Rule of The Sum-Product Algorithm

Some Facts about the Iterative Decoding
The Structure of Turbo Codes and the Scheduling

GF field:

@ When the graph contains no cycle:
Xn = max p(xply) < X = max p(x]y) (ML Decoding).
xn€F xeX

@ When a graph contains cycles: No guarantee regarding the
decoding performance; Short cycles (especially cycles of
length 4) limit the decoding performance.

Continuous Real Field:

@ Always converges to the least-squares solution X = max p(x]y)
XE

even there are short cycles.

@ Can be intuitively illustrated in Euclidean space.
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Different Decompositions

The Geometric Properties

The Mean Vector Evolution (MVE)

The Geometric lllustration of the MVE
Simulation Results and the Geometric Analysis

Analysis in the Continuous Field

Two Decompositions

The 1st decomposition
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Analysis in the Continuous Field

Different Decompositions

The Geometric Properties

The Mean Vector Evolution (MVE)

The Geometric lllustration of the MVE
Simulation Results and the Geometric Analysis

Two Decompositions

The 1st decomposition

=O
HOO

Intuitive Understanding of Iterative Decoding

JACOBS UNIVERSITY




Different Decompositions
The Geometric Properties
.. . . The Mean Vector Evolution (MVE)
Analysis in the Continuous Field The Geometric lllustration of the MVE
Simulation Results and the Geometric Analysis

The Geometric Properties of Two Decompositions

o X=¢Wng®

The geometric illustration of the decompositions

G = {H®x = 0} G@ = (H®x =0}
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Different Decompositions

The Geometric Properties

The Mean Vector Evolution (MVE)

The Geometric lllustration of the MVE
Simulation Results and the Geometric Analysis

Analysis in the Continuous Field

The Algorithm Derivation

@ Check-to-variable: gi(x]) = (g2 ® g3)(—x{), x; = h1x1
@ Variable-to-check: gi(x1) = g2(x1) - g3(x1)
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Different Decompositions

The Geometric Properties

The Mean Vector Evolution (MVE)

The Geometric lllustration of the MVE
Simulation Results and the Geometric Analysis

Analysis in the Continuous Field

The Algorithm Derivation

@ Check-to-variable: gi(x]) = (g2 ® g3)(—x{), x; = h1x1

@ Variable-to-check: gi(x1) = g2(x1) - g3(x1)
@ All the densities are preserved to be Gaussian

@ Variance converges to a fixed value (by simulation)

@ Tracing the means is sufficient

Check-to-variable Variable-to-check

p = —%(hzuz + h3pi3) o7’ =052+ 052
o5 = (h2‘72 h303) py = B = o3 /03
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Different Decompositions

The Geometric Properties

The Mean Vector Evolution (MVE)

The Geometric lllustration of the MVE
Simulation Results and the Geometric Analysis

Analysis in the Continuous Field

The Overall Algorithm

Initialization: V(l)(O) (O) = Yn, V, 1)(O) = v,(,2)(0) = o2
MVE for the serial schedule
1) Update USM(t) 2) Update V{?(t)
gl UE”(%

vt — 1)
Uﬁ“(t)’/ T ‘\j Y
U@ (e — 1)
N
v (2)

Yot wiD (£) UL (t)+w 2(t-1)UP (t-1)
1w () +w? (1-1)

The estimate: X,(t) =
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Different Decompositions
The Geometric Properties
.. . . The Mean Vector Evolution (MVE)
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The Geometric lllustration of the MVE

g2 g(2)
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Different Decompositions

The Geometric Properties

The Mean Vector Evolution (MVE)

The Geometric lllustration of the MVE
Simulation Results and the Geometric Analysis

Analysis in the Continuous Field
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Different Decompositions

The Geometric Properties

The Mean Vector Evolution (MVE)

The Geometric lllustration of the MVE
Simulation Results and the Geometric Analysis

Analysis in the Continuous Field

log compound code
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Encoding
Decoding

More Insight for Analog Product Codes

u=I[x11,x12, ... Xkl — X
X1,1 ce X1,k X1,k+1
X =
Xk,1 co Xk, k Xk, k+1

Xk4+1,1 0 Xkt1,k | Xk4-1,k+1
T
x = vec (X) = [X1.1,X0 15+ 5 Xk 1y Xkt 1,15 - - o5+« oy Xk ket 1y Xkt 1 k+1]
Zx,-j:oHHlxzo./ Hi=(1217).
i
§ xj=0—Hx=0, Hy=(1"®]1).
J
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Encoding
Decoding

More Insight for Analog Product Codes

A Slightly Modified Version

@ The weight W(m)(t) is constant:
i(,j t)=-=1% m=12, ij=1...,n.
o UMW) =-1vW(t) and UB(t) = -vA(t)

Modification in the Variable-to-Check Operation:

VA (e-1)+wD (1)U (t-1)

. e 1y . (1) _
yig— V-1 Vi@ = e

@ 3 .
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Encoding
Decoding
More Insight for Analog Product Codes

Decoding Algorithm for Analog Product Codes

Serial Decoding

Y(t) = Y(t—-1)—-p(t—-1)Y(t—-1)E,
Y(t+1) = Y(t) — B(t)E Y (1)

Parallel Decoding

Y(t+1) = Y(£) - B(t)Y(£)E, — B(E)E,Y(2)

@ 3 .
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Encoding
Decoding
More Insight for Analog Product Codes

Exact Projection wy = wp, = 1/k, 3 =1

Y(2) =Yis Y@ c®
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Encoding
Decoding
More Insight for Analog Product Codes

At the bound W); = Wy — 2/(/(— 1),ﬁ: 2

c

Y1) <12 Y(0)

G

c

Y(2) &———>ev(3)

@ 3 .
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Encoding
Decoding
More Insight for Analog Product Codes

Converging Condition wy = wp < 2/(k —1),5 < 2

c
Y(1) »Y(0)
Y5) | Y
Yig |
vl )
v2) { Y(3)

@ 3 .
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Encoding
Decoding
More Insight for Analog Product Codes

Diverging wi = wp, > 2/(k —1),3 > 2

-3

<
~—~~
=
N—r

c)

t
<
=

e _~—~___L_r—
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Encoding
Decoding

More Insight for Analog Product Codes

Parallel Decoding

2
ge = 1
3-- e
_ = P /
-=" /:/ /
= T2 0 . e/l
_, // - // 5/
2 // // 7 /
g /
C (p= /
6 4 G




Summary

1
2

Iterative Decoding Algorithm for Analog Codes (MVE)
A novel geometric illustration of the iterative
decoding for analog codes.

Orthogonal decomposition of the analog compound
codes to achieve a faster convergence speed.

An intuitive tool to visualize the convergence behavior
of the iterative decoding in the analog case.
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Summary

Thanks!
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Summary

The trade off of the sparseness and the orthogonal decomposition
of a (7,4) analog compound code
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