Intuitive Understanding of Iterative Decoding

Fangning Hu

School of Engineering and Science Jacobs University Bremen, Germany

Summer Academy 2007, Jacobs University Bremen, Germany

Basic Concept of Linear Codes Principle of the Iterative Decoding Analysis in the Continuous Field More Insight for Analog Product Codes Summary

Outline

• Basic Concept of Linear Codes

- Principle of the Iterative Decoding
- Analysis in the Continuous Real Field
- More Insight of Analog Product Codes
- Summary

Basic Concept of Linear Codes Principle of the Iterative Decoding Analysis in the Continuous Field More Insight for Analog Product Codes Summary

Outline

- Basic Concept of Linear Codes
- Principle of the Iterative Decoding
- Analysis in the Continuous Real Field
- More Insight of Analog Product Codes
- Summary

Basic Concept of Linear Codes Principle of the Iterative Decoding Analysis in the Continuous Field More Insight for Analog Product Codes Summary

Outline

- Basic Concept of Linear Codes
- Principle of the Iterative Decoding
- Analysis in the Continuous Real Field
- More Insight of Analog Product Codes
- Summary

Basic Concept of Linear Codes Principle of the Iterative Decoding Analysis in the Continuous Field More Insight for Analog Product Codes Summary

Outline

- Basic Concept of Linear Codes
- Principle of the Iterative Decoding
- Analysis in the Continuous Real Field
- More Insight of Analog Product Codes

• Summary

Basic Concept of Linear Codes Principle of the Iterative Decoding Analysis in the Continuous Field More Insight for Analog Product Codes Summary

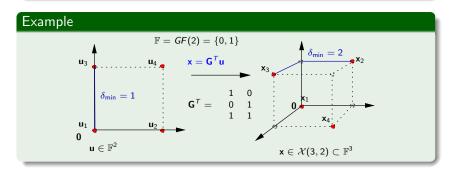
Outline

- Basic Concept of Linear Codes
- Principle of the Iterative Decoding
- Analysis in the Continuous Real Field
- More Insight of Analog Product Codes
- Summary

Encoding Soft Decoding

Definition

A linear code $\mathcal{X}(N, K)$ is a *K*-dimensional subspace of \mathbb{F}^N . $\mathcal{X} = \{\mathbf{x} | \mathbf{x} = \mathbf{G}^T \mathbf{u}, \mathbf{u} \in \mathbb{F}^K, \mathbf{x} \in \mathbb{F}^N\}, \quad \mathcal{X} = \{\mathbf{x} | \mathbf{H}\mathbf{x} = \mathbf{0}\}$

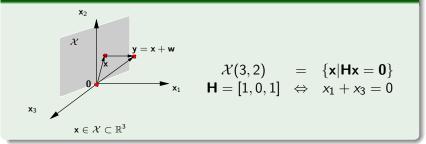


Fangning Hu

Encoding Soft Decoding

Analog Codes

 $\mathbb{F} = \mathbb{R}$



Encoding Soft Decoding

Iterative Decoding

- MAP: $\hat{\mathbf{x}} = \arg \max_{\mathbf{x} \in \mathcal{X}} p(\mathbf{x}|\mathbf{y}) \propto \arg \max_{\mathbf{x} \in \mathcal{X}} p(\mathbf{y}|\mathbf{x}) p(\mathbf{x})$
- ML Decoding: $\hat{\mathbf{x}} = \arg \max_{\mathbf{x} \in \mathcal{X}} p(\mathbf{y}|\mathbf{x})$
- For AWGN channel: $\hat{\mathbf{x}} = \arg \min_{\mathbf{x} \in \mathcal{X}} ||\mathbf{x} \mathbf{y}||^2$

$\mathbb{F} = \mathbb{R}$

Least-Squares Solution: $\hat{\mathbf{x}} = \arg \max_{\mathbf{x} \in \mathcal{X}} p(\mathbf{x}|\mathbf{y}) = \Pi_{\mathcal{X}} \cdot \mathbf{y}$

$\mathbb{F} = GF(q)$

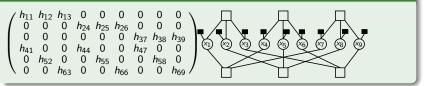
•
$$p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) = C \prod_{n} p(y_{n}|x_{n}) \prod_{m} [\mathbf{h}_{m}\mathbf{x} = 0]$$

• Iterative decoding: $p(\mathbf{x}_n | \mathbf{y}) = \sum_{n \geq \infty} p(\mathbf{x} | \mathbf{y})$

The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling

An Example: The Factor Graph Representation

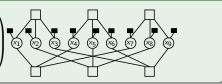
- A linear code: $\mathcal{X}(9,3) = \{\mathbf{x} | \mathbf{H}\mathbf{x} = \mathbf{0}, \mathbf{x} \in \mathbb{F}^n\}, h_{ij} \in \mathbb{F}$
- $y_n = x_n + w_n$, $\hat{x}_n = \max_{x_n \in \mathbb{F}} p(x_n | \mathbf{y})$
- Initialize: $f_{y_n}(x_n) = p(y_n|x_n) \sim p(x_n|y_n) = \mathcal{N}(y_n, \sigma^2)$ Check Equation: $f_1^{(1)} = [h_{11}x_1 + h_{12}x_2 + h_{13}x_3 = 0]$



The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling

An Example: The Factor Graph Representation

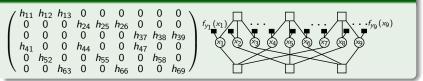
- A linear code: $\mathcal{X}(9,3) = \{\mathbf{x} | \mathbf{H}\mathbf{x} = \mathbf{0}, \mathbf{x} \in \mathbb{F}^n\}, h_{ij} \in \mathbb{F}$
- $y_n = x_n + w_n$, $\hat{x}_n = \max_{x_n \in \mathbb{F}} p(x_n | \mathbf{y})$
- Initialize: $f_{y_n}(x_n) = p(y_n|x_n) \sim p(x_n|y_n) = \mathcal{N}(y_n, \sigma^2)$ Check Equation: $f_1^{(1)} = [h_{11}x_1 + h_{12}x_2 + h_{13}x_3 = 0]$



The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling

An Example: The Factor Graph Representation

- A linear code: $\mathcal{X}(9,3) = \{\mathbf{x} | \mathbf{H}\mathbf{x} = \mathbf{0}, \mathbf{x} \in \mathbb{F}^n\}, h_{ij} \in \mathbb{F}$
- $y_n = x_n + w_n$, $\hat{x}_n = \max_{x_n \in \mathbb{F}} p(x_n | \mathbf{y})$
- Initialize: $f_{y_n}(x_n) = p(y_n|x_n) \sim p(x_n|y_n) = \mathcal{N}(y_n, \sigma^2)$ Check Equation: $f_1^{(1)} = [h_{11}x_1 + h_{12}x_2 + h_{13}x_3 = 0]$

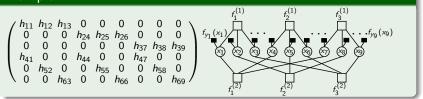


The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling

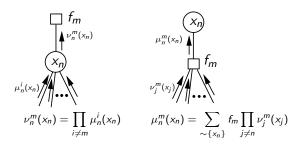
An Example: The Factor Graph Representation

- A linear code: $\mathcal{X}(9,3) = \{\mathbf{x} | \mathbf{H}\mathbf{x} = \mathbf{0}, \mathbf{x} \in \mathbb{F}^n\}, h_{ij} \in \mathbb{F}$
- $y_n = x_n + w_n$, $\hat{x}_n = \max_{x_n \in \mathbb{F}} p(x_n | \mathbf{y})$
- Initialize: $f_{y_n}(x_n) = p(y_n|x_n) \sim p(x_n|y_n) = \mathcal{N}(y_n, \sigma^2)$ Check Equation: $f_1^{(1)} = [h_{11}x_1 + h_{12}x_2 + h_{13}x_3 = 0]$

Example



The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling



Binary case $(L = \log \frac{p_0}{p_1})$:

$$\begin{array}{lll} \mathsf{VAR}(L_1,L_2) &=& L_1+L_2\\ \mathsf{CHK}(L_1,L_2) &=& 2 \tanh^{-1}(\tanh(L_1/2) \tanh(L_2/2)) \ . \end{array}$$

Fangning Hu

The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling

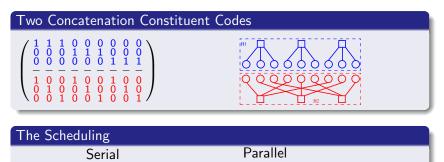
GF field:

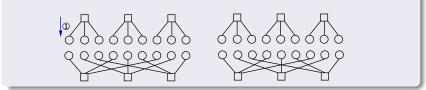
- When the graph contains no cycle:
 - $\hat{x}_n = \max_{x_n \in \mathbb{F}} p(x_n | \mathbf{y}) \Leftrightarrow \hat{\mathbf{x}} = \max_{\mathbf{x} \in \mathcal{X}} p(\mathbf{x} | \mathbf{y}) \quad (\mathsf{ML Decoding}).$
- When a graph contains cycles: No guarantee regarding the decoding performance; Short cycles (especially cycles of length 4) limit the decoding performance.

Continuous Real Field:

- Always converges to the least-squares solution $\hat{\mathbf{x}} = \max_{\mathbf{x} \in \mathcal{X}} p(\mathbf{x}|\mathbf{y})$ even there are short cycles.
- Can be intuitively illustrated in Euclidean space.

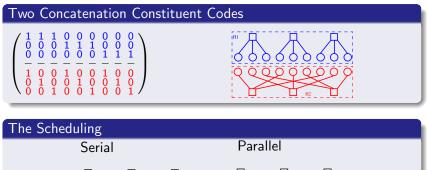
The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling

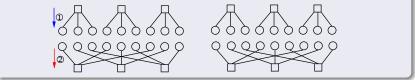




Fangning Hu

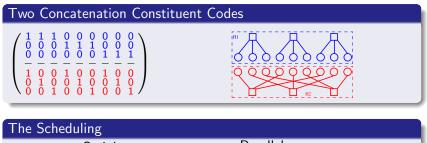
The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling

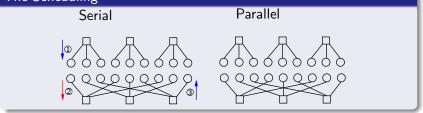




Fangning Hu

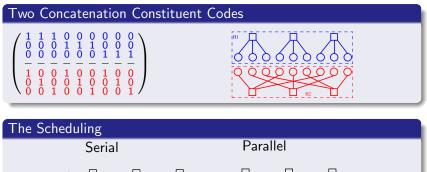
The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling

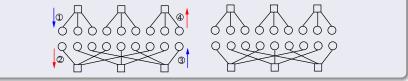




Fangning Hu

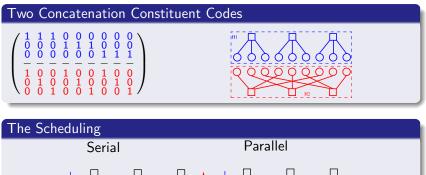
The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling

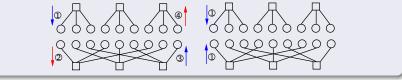




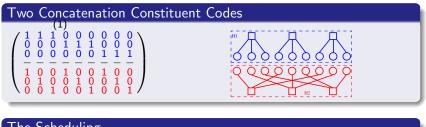
Fangning Hu

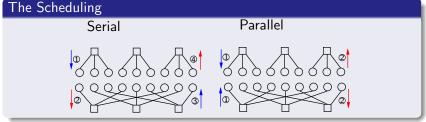
The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling





The Sum-Product Algorithm Update Rule of The Sum-Product Algorithm Some Facts about the Iterative Decoding The Structure of Turbo Codes and the Scheduling





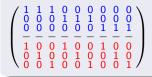
Fangning Hu

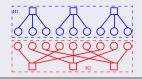
Two Decompositions

Different Decompositions

The Geometric Properties The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The 1st decomposition





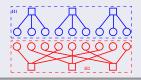
The 2nd decompositior

Different Decompositions

The Geometric Properties The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

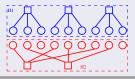
Two Decompositions

The 1st decomposition



The 2nd decomposition

$$\left(\begin{array}{cccccccccc} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & - & - & - & - & - & - & - \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{array}\right)$$

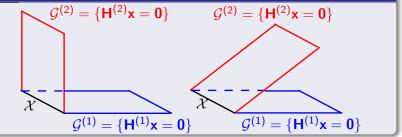


Different Decompositions **The Geometric Properties** The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The Geometric Properties of Two Decompositions

- $\mathcal{X} = \mathcal{G}^{(1)} \cap \mathcal{G}^{(2)}$
- $\triangleleft(\mathbf{y}_1^{\perp},\mathbf{y}_2^{\perp}) = \triangleleft(\mathcal{G}^{(1)},\mathcal{G}^{(2)})$
- $\bullet \ < \mathbf{y}_1^{\perp}, \mathbf{y}_2^{\perp} >= \mathbf{0} \Leftrightarrow \mathcal{G}^{(1)} \perp \mathcal{G}^{(2)}$

The geometric illustration of the decompositions

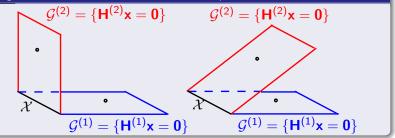


Different Decompositions **The Geometric Properties** The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The Geometric Properties of Two Decompositions

- $\mathcal{X} = \mathcal{G}^{(1)} \cap \mathcal{G}^{(2)}$
- $\triangleleft(\mathbf{y}_1^{\perp},\mathbf{y}_2^{\perp}) = \triangleleft(\mathcal{G}^{(1)},\mathcal{G}^{(2)})$
- $\bullet \ < \mathbf{y}_1^{\perp}, \mathbf{y}_2^{\perp} >= \mathbf{0} \Leftrightarrow \mathcal{G}^{(1)} \perp \mathcal{G}^{(2)}$

The geometric illustration of the decompositions

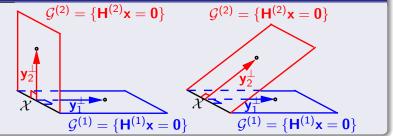


Different Decompositions **The Geometric Properties** The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The Geometric Properties of Two Decompositions

- $\mathcal{X} = \mathcal{G}^{(1)} \cap \mathcal{G}^{(2)}$
- $\triangleleft(\mathbf{y}_1^{\perp},\mathbf{y}_2^{\perp}) = \triangleleft(\mathcal{G}^{(1)},\mathcal{G}^{(2)})$
- $\bullet \ < \mathbf{y}_1^{\perp}, \mathbf{y}_2^{\perp} >= \mathbf{0} \Leftrightarrow \mathcal{G}^{(1)} \perp \mathcal{G}^{(2)}$

The geometric illustration of the decompositions



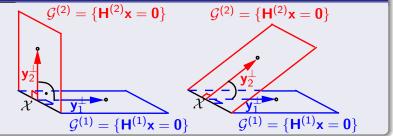
Fangning Hu

Different Decompositions **The Geometric Properties** The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The Geometric Properties of Two Decompositions

- $\mathcal{X} = \mathcal{G}^{(1)} \cap \mathcal{G}^{(2)}$
- $\triangleleft(\mathbf{y}_1^{\perp}, \mathbf{y}_2^{\perp}) = \triangleleft(\mathcal{G}^{(1)}, \mathcal{G}^{(2)})$
- $\bullet \ < \mathbf{y}_1^{\perp}, \mathbf{y}_2^{\perp} >= \mathbf{0} \Leftrightarrow \mathcal{G}^{(1)} \perp \mathcal{G}^{(2)}$

The geometric illustration of the decompositions



Different Decompositions **The Geometric Properties** The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

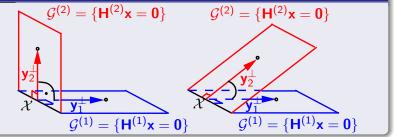
The Geometric Properties of Two Decompositions

• $\mathcal{X} = \mathcal{G}^{(1)} \cap \mathcal{G}^{(2)}$

•
$$\triangleleft(\mathbf{y}_1^{\perp},\mathbf{y}_2^{\perp}) = \triangleleft(\mathcal{G}^{(1)},\mathcal{G}^{(2)})$$

• $<\mathbf{y}_1^{\perp},\mathbf{y}_2^{\perp}>=0\Leftrightarrow \mathcal{G}^{(1)}\perp \mathcal{G}^{(2)}$

The geometric illustration of the decompositions



Different Decompositions The Geometric Properties The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The Algorithm Derivation

Facts

- Check-to-variable: $g_1(x'_1) = (g_2 \circledast g_3)(-x'_1), x'_1 = h_1 x_1$
- Variable-to-check: $g_1(x'_1) = g_2(x'_1) \cdot g_3(x'_1)$
- All the densities are preserved to be Gaussian
- Variance converges to a fixed value (by simulation)
- Tracing the means is sufficient

Check-to-variable

 $\mu_1 = -\frac{1}{h_1}(h_2\mu_2 + h_3\mu_3)$ $\sigma_2^2 = \frac{1}{h^2}(h_2^2\sigma_2^2 + h_3^2\sigma_3^2)$

Variable-to-check

$$\begin{aligned} \sigma_1^{-2} &= \sigma_2^{-2} + \sigma_3^{-2} \\ \mu_1 &= \frac{\mu_2 + w \mu_3}{1 + w}, w = \sigma_2^2 / \sigma_3^2 \end{aligned}$$

Different Decompositions The Geometric Properties The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The Algorithm Derivation

Facts

- Check-to-variable: $g_1(x'_1) = (g_2 \circledast g_3)(-x'_1), x'_1 = h_1 x_1$
- Variable-to-check: $g_1(x'_1) = g_2(x'_1) \cdot g_3(x'_1)$
- All the densities are preserved to be Gaussian
- Variance converges to a fixed value (by simulation)
- Tracing the means is sufficient

Check-to-variable

 $\mu_1 = -\frac{1}{h_1}(h_2\mu_2 + h_3\mu_3)$ $\sigma_2^2 = \frac{1}{h^2}(h_2^2\sigma_2^2 + h_3^2\sigma_3^2)$

Variable-to-check

$$\begin{aligned} \sigma_1^{-2} &= \sigma_2^{-2} + \sigma_3^{-2} \\ \mu_1 &= \frac{\mu_2 + w \mu_3}{1 + w}, w = \sigma_2^2 / \sigma_3^2 \end{aligned}$$

Fangning Hu

Different Decompositions The Geometric Properties The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The Algorithm Derivation

Facts

- Check-to-variable: $g_1(x'_1) = (g_2 \circledast g_3)(-x'_1), x'_1 = h_1 x_1$
- Variable-to-check: $g_1(x'_1) = g_2(x'_1) \cdot g_3(x'_1)$
- All the densities are preserved to be Gaussian
- Variance converges to a fixed value (by simulation)
- Tracing the means is sufficient

Check-to-variable

 $\mu_1 = -\frac{1}{h_1}(h_2\mu_2 + h_3\mu_3)$ $\sigma_2^2 = \frac{1}{h^2}(h_2^2\sigma_2^2 + h_3^2\sigma_3^2)$

Variable-to-check

$$\begin{aligned} \sigma_1^{-2} &= \sigma_2^{-2} + \sigma_3^{-2} \\ \mu_1 &= \frac{\mu_2 + w \mu_3}{1 + w}, w = \sigma_2^2 / \sigma_3^2 \end{aligned}$$

Different Decompositions The Geometric Properties The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The Algorithm Derivation

Facts

- Check-to-variable: $g_1(x'_1) = (g_2 \circledast g_3)(-x'_1), x'_1 = h_1 x_1$
- Variable-to-check: $g_1(x'_1) = g_2(x'_1) \cdot g_3(x'_1)$
- All the densities are preserved to be Gaussian
- Variance converges to a fixed value (by simulation)
- Tracing the means is sufficient

Check-to-variable

 $\mu_1 = -\frac{1}{h_1}(h_2\mu_2 + h_3\mu_3)$ $\sigma_2^2 = \frac{1}{h^2}(h_2^2\sigma_2^2 + h_3^2\sigma_3^2)$

Variable-to-check

$$\begin{aligned} \sigma_1^{-2} &= \sigma_2^{-2} + \sigma_3^{-2} \\ \mu_1 &= \frac{\mu_2 + w \mu_3}{1 + w}, w = \sigma_2^2 / \sigma_3^2 \end{aligned}$$

Different Decompositions The Geometric Properties The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The Algorithm Derivation

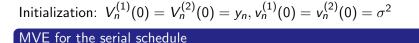
Facts

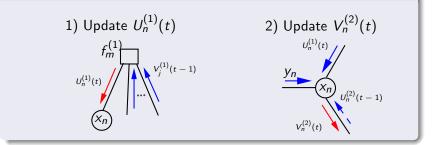
- Check-to-variable: $g_1(x_1') = (g_2 \circledast g_3)(-x_1'), x_1' = h_1 x_1$
- Variable-to-check: $g_1(x_1') = g_2(x_1') \cdot g_3(x_1')$
- All the densities are preserved to be Gaussian
- Variance converges to a fixed value (by simulation)
- Tracing the means is sufficient

Check-to-variable $\mu_{1} = -\frac{1}{h_{1}}(h_{2}\mu_{2} + h_{3}\mu_{3})$ $\sigma_{2}^{2} = \frac{1}{h_{1}^{2}}(h_{2}^{2}\sigma_{2}^{2} + h_{3}^{2}\sigma_{3}^{2})$ Variable-to-check $\sigma_{1}^{-2} = \sigma_{2}^{-2} + \sigma_{3}^{-2}$ $\mu_{1} = \frac{\mu_{2} + w\mu_{3}}{1 + w}, w = \sigma_{2}^{2}/\sigma_{3}^{2}$

Different Decompositions The Geometric Properties The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

The Overall Algorithm

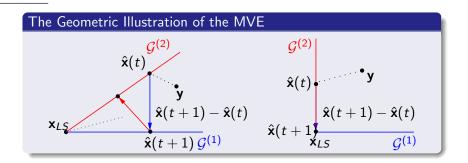




The estimate:
$$\hat{x}_n(t) = \frac{y_n + w_n^{(1)}(t)U_n^{(1)}(t) + w_n^{(2)}(t-1)U_n^{(2)}(t-1)}{1 + w_n^{(1)}(t) + w_n^{(2)}(t-1)}$$

Different Decompositions The Geometric Properties The Mean Vector Evolution (MVE) **The Geometric Illustration of the MVE** Simulation Results and the Geometric Analysis

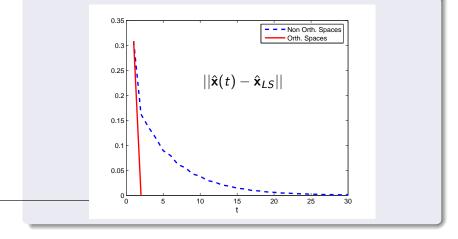
The Geometric Illustration of the MVE



Fangning Hu

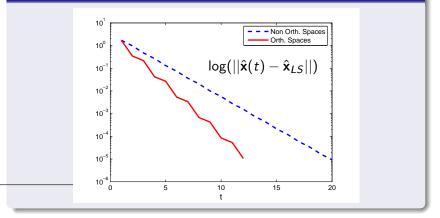
Different Decompositions The Geometric Properties The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

Comparing convergence speed of a (25, 16) analog product code



Different Decompositions The Geometric Properties The Mean Vector Evolution (MVE) The Geometric Illustration of the MVE Simulation Results and the Geometric Analysis

Comparing convergence speed of a (7, 4) analog compound code



Encoding Decoding

$$\mathbf{u} = [x_{1,1}, x_{1,2}, \dots, x_{k,k}] \mapsto \mathbf{X}$$

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,k} & \mathbf{x_{1,k+1}} \\ \vdots & \ddots & \vdots & \vdots \\ x_{k,1} & \cdots & x_{k,k} & \mathbf{x_{k,k+1}} \\ \hline \mathbf{x_{k+1,1}} & \cdots & \mathbf{x_{k+1,k}} & \mathbf{x_{k+1,k+1}} \end{bmatrix}$$

 $\mathbf{x} = \text{vec} (\mathbf{X}) = [x_{1,1}, x_{2,1}, \dots, x_{k,1}, x_{k+1,1}, \dots, x_{k,k+1}, x_{k+1,k+1}]^T$ $\sum_{ij} x_{ij} = 0 \to \mathbf{H}_1 \mathbf{x} = \mathbf{0}, \quad \mathbf{H}_1 = (\mathbf{I} \otimes \mathbf{1}^T).$ $\sum_{ij} x_{ij} = 0 \to \mathbf{H}_2 \mathbf{x} = \mathbf{0}, \quad \mathbf{H}_2 = (\mathbf{1}^T \otimes \mathbf{I}).$

Encoding Decoding

A Slightly Modified Version

Lemma

• The weight
$$w_{i,j}^{(m)}(t)$$
 is constant:
 $w_{i,j}^{(m)}(t) = \frac{1}{n-1} = \frac{1}{k}, \quad m = 1, 2, \quad i, j = 1, ..., n.$
• $\mathbf{U}^{(1)}(t) = -\overline{\mathbf{I}}\mathbf{V}^{(1)}(t) \text{ and } \mathbf{U}^{(2)}(t) = -\mathbf{V}^{(2)}(t)\overline{\mathbf{I}}$

Modification in the Variable-to-Check Operation:

$$y_{i,j} \rightarrow V_{i,j}^{(2)}(t-1): V_{i,j}^{(1)}(t) = rac{V_{i,j}^{(2)}(t-1) + w_{i,j}^{(2)}(t-1)U_{i,j}^{(2)}(t-1)}{1 + w_{i,j}^{(2)}(t-1)}$$

Encoding Decoding

Decoding Algorithm for Analog Product Codes

$$\mathbf{V}(0) = \mathbf{Y}, \quad \mathbf{V}(t) = \mathbf{Y}(t)$$

Serial Decoding

$$\begin{array}{lll} \mathbf{Y}(t) &=& \mathbf{Y}(t-1) - \beta(t-1)\mathbf{Y}(t-1)\mathbf{E}_n \\ \mathbf{Y}(t+1) &=& \mathbf{Y}(t) - \beta(t)\mathbf{E}_n\mathbf{Y}(t) \end{array}$$

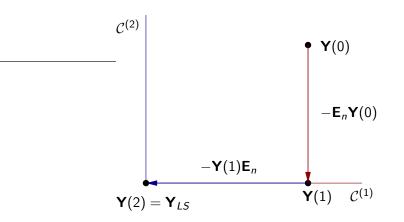
Parallel Decoding

$$\mathbf{Y}(t+1) = \mathbf{Y}(t) - \beta(t)\mathbf{Y}(t)\mathbf{E}_n - \beta(t)\mathbf{E}_n\mathbf{Y}(t)$$

Fangning Hu

Encoding Decoding

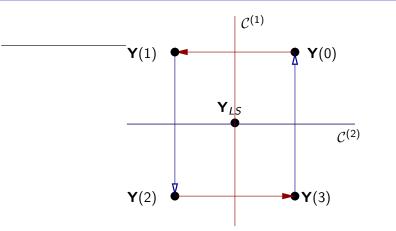
Exact Projection $w_1 = w_2 = 1/k, \beta = 1$



Fangning Hu

Encoding Decoding

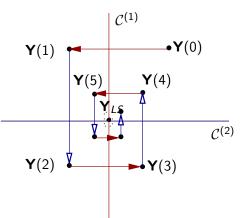
At the bound
$$w_1 = w_2 = 2/(k-1), \beta = 2$$



Encoding Decoding

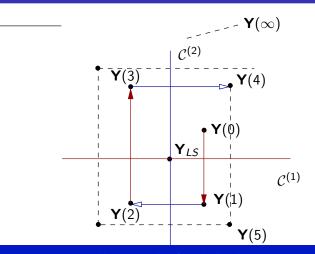
Converging Condition $w_1 = w_2 < 2/(k-1), \beta \le 2$

replacements



Encoding Decoding

Diverging $w_1 = w_2 > 2/(k-1), \beta \ge 2$



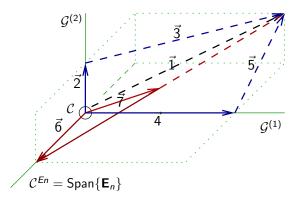
Fangning Hu

Outline

Basic Concept of Linear Codes Principle of the Iterative Decoding Analysis in the Continuous Field More Insight for Analog Product Codes Summary

Encoding Decoding

Parallel Decoding



Summary

- 1 Iterative Decoding Algorithm for Analog Codes (MVE)
- 2 A novel geometric illustration of the iterative decoding for analog codes.
- 3 Orthogonal decomposition of the analog compound codes to achieve a faster convergence speed.
- 4 An intuitive tool to visualize the convergence behavior of the iterative decoding in the analog case.

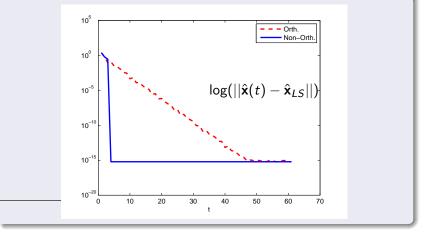
Thanks!

Fangning Hu

Reference

- F.R. Kschishang and B.J. Frey, "Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models," *IEEE JSAC*, vol.16, no.2, Feb. 1998.
- F.R. Kschishang, B.J. Frey, and H. Loeliger, "Factor Graphs and the Sum-Product Algorithm," *IEEE Trans. on Information Theory*, vol. 47, no. 2, Feb. 2001.
- H.A. Loeliger, "An introduction to factor graphs," *IEEE Signal Proc. Mag.*, pp. 28-41, Jan. 2004.
- F. Hu, W. Henkel, "A Geometric Description of the Iterative Least-Squares Decoding of Analog Block Codes", 4th International Symposium on Turbo Codes and Related Topics, Munich, April 3-7, 2006.

The trade off of the sparseness and the orthogonal decomposition of a (7, 4) analog compound code



Fangning Hu

