Planning Cellular Networks

Andreas Eisenblätter Thorsten Koch

DFG Research Center MATHEON *Mathematics for key technologies* Modelling, simulation, and optimization of real-world processes

Jacobs University Bremen, 5.7.2007

Radio Network Planning

Goal To create a radio network that provides the users with seamless wireless services.

Coverageto provide sufficientPlanningsignal strength in the whole planning area.

Capacityto provide sufficientPlanningradio resources for all users to be served.

Degrees of Freedom

- Base Station Placement
- Antenna Configuration
- Radio Resource Management

7411B

	GSM	UMTS
	Global System for Mobile Communications	Universal Mobile Telecommunications System
Introduced	1992	2003
Services	Voice, Data	Voice, Video, Streaming, Web,
Radio Access	TDMA/FDMA	WCDMA
Problems	Coverage Planning, Frequency Assignment	Coverage and capacity coupled through interference

Radio network planning is harder for UMTS than for previous technologies

7411B

Degrees of Freedom

or

What do we have to decide?

74HB4

Base Station Placement

Given a set of possible locations, select those where to place base station.

Sectorization of the base stations

7718

Antenna Configuration

Antenna Type

Isotropic Prediction

 Available for each potential antenna location

Antenna Configuration

- Azimuth
- Tilt
- Height

Antenna Diagram

 Signal propagation in different directions

Antenna Prediction

74118

74189

Coverageto provide sufficientPlanningsignal strength in the whole planning area.

If everything is fixed, we can compute the signal strength for each pixel in the planning area.

Input

A set *S* of potential site locations and a set *I* of potential antenna installations and their propagation properties

2411B

74118

Radio Signal Propagation

Capacity Planning

to provide sufficient radio resources for all users to be served.

Average User Density

Then a miracle occurs...

Covered pixel are served pixel

Define set of pixels which can be served by antenna *i*:

74118

$$C_i := \{ p \in A : \gamma_{ip} \ge \gamma^{\min} \}$$

 $C_{\mathbf{3}}$

 C_2

Coverage and Capacity Planning for Cellular Networks, Thorsten Koch, Bremen, 5.7.2007

Set Covering Model

- S set containing all possible sites.
- *P* set containing all pixel.

I

- set containing all installations.
- I(s) set of possible installations for site $s \in S$
- I(p) set of installations covering pixel $p \in P$
- P(i) set of pixels covered by installation $i \in I$
- x_p binary, 1 iff pixel $p \in P$ is covered.
- y_s binary, 1 iff site $s \in S$ is chosen.
- z_i binary, 1 iff installation $i \in I$ is active.

Get revenue for covered pixels, pay for opening sites and installations:

$$\max\sum_{p\in P} c_p x_p - \sum_{s\in S} c_s y_s - \sum_{i\in I} c_i z_i$$

Installation $i \in I$ can only be active if sites $s \in S$ is chosen:

 $z_i \leq y_s$ for all $s \in S, i \in I(s)$

Site $s \in S$ can not have more than σ_s active installations:

$$\sum_{i \in I(s)} z_i \leq \sigma_s \text{ for all } s \in S$$

To cover pixel $p \in P$ at least one installation from I(p) has to be active:

$$\sum_{i \in I(p)} z_i \ge x_p \text{ for all } p \in P$$

120°

120 Installations

7411 B

Sizes of real-word problems that can be solved

Sites	S	700
Installations	 I 	700,000
Pixel	P	2,000,000
Covers	Σ P(i)	500,000,000
IP rows		1,000,000
IP cols		1,500,000
IP non zeros		100,000,000

How to handle large problem instances

- Sophisticated preprocessing
- Decomposition of problem, both in area and decisons
- Use of OpenMP to parallelize programs
- Use of 64bit multiprocessor multicore SUN V40
- Fast evaluation tools to assess optimization results