List Decoding: **Geometrical Aspects and Performance Bounds**

Maja Lončar

Department of Information Technology Lund University, Sweden

Summer Academy: Progress in Mathematics for Communication Systems

Bremen, Germany, July 2007

Outline

- Maximum-likelihood decoding
- ► List decoding
- ► List configuration matrix
- ► List distance
- ► List error probability for a worst-case list
- New bound for the list decoding error probability
- Summary

Maximum-Likelihood Decoding

- ▶ Let $S = \{s_0, s_1, ..., s_{M-1}\}$ be a set of M distinct signal vectors used to communicate over the AWGN channel.
- ▶ Let $s \in \mathcal{S}$ denote the transmit signal. Then the received signal is r = s + n.
- ▶ Optimum decision strategy at the receiver:

minimize the error probability

$$\hat{\boldsymbol{s}}_{\text{MAP}} = \arg\min_{\hat{\boldsymbol{s}} \in \mathcal{S}} \left\{ \Pr(\hat{\boldsymbol{s}} \neq \boldsymbol{s}) \right\} = \arg\max_{\hat{\boldsymbol{s}} \in \mathcal{S}} \left\{ \Pr(\hat{\boldsymbol{s}} = \boldsymbol{s}) \right\} = \arg\max_{\hat{\boldsymbol{s}} \in \mathcal{S}} \left\{ \sum_{\boldsymbol{r}} \Pr(\hat{\boldsymbol{s}} = \boldsymbol{s} | \boldsymbol{r}) p(\boldsymbol{r}) \right\}$$

that is, for every $m{r}$ decide in favour the most probable signal $m{s} \in \mathcal{S}$

$$\hat{\boldsymbol{s}}_{\text{MAP}} = \arg \max_{\boldsymbol{s} \in \mathcal{S}} \{ p(\boldsymbol{s}|\boldsymbol{r}) \}$$

This is the maximum a posteriori probability decoder.

From Bayes' formula we have

$$\hat{\boldsymbol{s}}_{\text{MAP}} = \arg\max_{\boldsymbol{s} \in \mathcal{S}} \left\{ \frac{p(\boldsymbol{r}|\boldsymbol{s})p(\boldsymbol{s})}{p(\boldsymbol{r})} \right\} = \left[\arg\max_{\boldsymbol{s} \in \mathcal{S}} \left\{ p(\boldsymbol{r}|\boldsymbol{s})p(\boldsymbol{s}) \right\} \right]$$

Maximum-Likelihood Decoding

▶ If the signals $s \in S$ are a priori equiprobable: p(s) = 1/M.

Then the MAP decoder reduces to

$$|\hat{\boldsymbol{s}}_{\mathrm{ML}} = \arg\max_{\boldsymbol{s} \in \mathcal{S}} \{p(\boldsymbol{r}|\boldsymbol{s})\}|$$

This is the maximum likelihood decoder.

► For the AWGN channel

$$p(\boldsymbol{r}|\boldsymbol{s}) \propto e^{-rac{1}{N_0}||\boldsymbol{r}-\boldsymbol{s}||^2}$$

$$|\hat{\boldsymbol{s}}_{\mathrm{ML}}| = \arg\min_{\boldsymbol{s}\in\mathcal{S}} \{ \|\boldsymbol{r} - \boldsymbol{s}\|^2 \}$$

ML decoder is the minimum Euclidean distance decoder. It chooses the point with the smallest $d_{\rm E}({m r},{m s}) = \|{m r} - {m s}\|.$

- ▶ Decoding error occurs if $d_E(\mathbf{r}, \mathbf{s}_i) \leq d_E(\mathbf{r}, \mathbf{s}_0)$, for some i. Let $\varepsilon_i | \mathbf{s}_0$ denote this event.
- ► Union bound on the ML error probability:

$$P_{e|s_0} \le \sum_{i=1}^{M-1} \Pr(\varepsilon_i|s_0)$$

List Decoding

- ▶ Generalization of ML decoding for $L \ge 1$ most likely codewords.
- ▶ List decoder finds a list of the L best codewords. For Gaussian channel, these are L codewords s_i closest to the received vector r.
- List decoding error occurs if transmitted signal s_0 is not on the list, that is, if,

$$d_{\mathrm{E}}(\boldsymbol{r},\boldsymbol{s}_i) \leq d_{\mathrm{E}}(\boldsymbol{r},\boldsymbol{s}_0), \quad i=1,2,\ldots,L$$

or, equivalently, if projections of the noise n along $(s_i - s_0)$ are larger than $d_{\rm E}(s_i, s_0)/2$

$$\underbrace{\langle \mathbf{n}, \mathbf{s}_i - \mathbf{s}_0 \rangle}_{t_i} \ge \underbrace{d_{\mathrm{E}}^2(\mathbf{s}_i, \mathbf{s}_0)/2}_{d_{\mathrm{E}0i}^2/2}, \quad i = 1, 2, \dots, L$$

that is,

$$(t_1 \ t_2 \ ... \ t_L) \ge (d_{\text{E}01}^2 \ d_{\text{E}02}^2 \ ... \ d_{\text{E}0L}^2)/2$$

$$\boxed{\boldsymbol{t} \ge \boldsymbol{w}/2}$$

List Configuration Matrix

 \blacktriangleright Components of t, $\langle n, s_i - s_0 \rangle$, are Gaussian distributed with covariance matrix

$$\mathrm{E}[oldsymbol{t}^{\mathrm{T}}oldsymbol{t}] = \sigma^2 oldsymbol{W}$$

where W is the Gram matrix of the vectors $(s_i - s_0)$, i = 1, 2, ..., L with elements

$$w_{ij} = \langle \mathbf{s}_i - \mathbf{s}_0, \mathbf{s}_j - \mathbf{s}_0 \rangle = (d_{E0i}^2 + d_{E0j}^2 - d_{Eij}^2)/2$$

$$\boldsymbol{W} = \begin{pmatrix} d_{\text{E}01}^2 & (d_{\text{E}01}^2 + d_{\text{E}02}^2 - d_{\text{E}12}^2)/2 & \dots & (d_{\text{E}01}^2 + d_{\text{E}0L}^2 - d_{\text{E}1L}^2)/2 \\ (d_{\text{E}01}^2 + d_{\text{E}02}^2 - d_{\text{E}12}^2)/2 & d_{\text{E}02}^2 & \dots & (d_{\text{E}02}^2 + d_{\text{E}0L}^2 - d_{\text{E}2L}^2)/2 \\ \vdots & \vdots & \ddots & \vdots \\ (d_{\text{E}01}^2 + d_{\text{E}0L}^2 - d_{\text{E}1L}^2)/2 & (d_{\text{E}02}^2 + d_{\text{E}0L}^2 - d_{\text{E}2L}^2)/2 & \dots & d_{\text{E}0L}^2 \end{pmatrix}$$

 \blacktriangleright W is a list configuration matrix. It determines the list error probability for a given list:

$$P_{eL}(\mathbf{W}) = \Pr(\mathbf{t} \ge \mathbf{w}/2),$$

▶ Union-type bound for list decoding error probability:

$$P_{eL} \leq \sum_{\boldsymbol{W}} N(\boldsymbol{W}) P_{eL}(\boldsymbol{W})$$

List Distance

 \blacktriangleright List radius R_L for a given signal set $\mathcal{S}_L = \{s_0, s_1, \ldots, s_L\}$ and a given reference (transmit) signal s_0 , is the point of the list-error region that is closest to s_0 .

This is a radius of the smallest sphere S that contains (encompasses) all the signal points from S_L (points on or inside the sphere).

- ▶ Euclidean list distance for a given signal set S_L is $d_{EL} = 2R_L$.
- ightharpoonup Theorem 1: The radius R_L of the sphere $\mathbb S$ that passes through all the points of $\mathcal S_L$ (all the points on the sphere) is given by

$$\widetilde{R}_L(\boldsymbol{W}) = \frac{1}{2} \sqrt{\boldsymbol{w} \boldsymbol{W}^{-1} \boldsymbol{w}^{\mathrm{T}}}$$

 \blacktriangleright Theorem 2: The list radius R_L of the smallest sphere $\mathbb S$ that passes through s_0 and encompasses the points s_i , i = 1, 2, ..., L, is given by

$$R_L(\boldsymbol{W}) = \max_{\mathcal{I}: \boldsymbol{w}_{\mathcal{I}} \operatorname{adj}(\boldsymbol{W}_{\mathcal{I}}) \geq \boldsymbol{0}} \left\{ \frac{1}{2} \sqrt{\boldsymbol{w}_{\mathcal{I}} \boldsymbol{W}_{\mathcal{I}}^{-1} \boldsymbol{w}_{\mathcal{I}}^{\mathrm{T}}} \right\}$$

List Distance

Example:

$$L=2$$

$$\boldsymbol{s}_0 = (0\ 0)$$

$$\mathbf{s}_1 = (0 \ 2)$$

$$\mathbf{s}_2 = (1\ 3)$$

$$\mathbf{W} = \begin{pmatrix} 4 & 6 \\ 6 & 10 \end{pmatrix}$$

$$\widetilde{R}_L = \frac{1}{2} \sqrt{\boldsymbol{w} \boldsymbol{W}^{-1} \boldsymbol{w}^{\mathrm{T}}} = \sqrt{5}$$

$$\mathbf{w} \operatorname{adj}(\mathbf{W}) = (-20 \ 16)$$

$$R_L = \sqrt{10}/2$$

$$d_{\mathrm{E}L} = 2R_L = \sqrt{10}$$

List Distance

Example:

$$L=2$$

$$\boldsymbol{s}_1 = (0\ 0)$$

$$\boldsymbol{s}_0 = (0\ 2)$$

$$\boldsymbol{s}_2 = (1\ 3)$$

$$\mathbf{W} = \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix}$$

$$\widetilde{R}_L = \frac{1}{2} \sqrt{\boldsymbol{w} \boldsymbol{W}^{-1} \boldsymbol{w}^{\mathrm{T}}} = \sqrt{5}$$

$$w \operatorname{adj}(W) = (12 \ 16)$$

$$R_L = \widetilde{R}_L = \sqrt{5}$$

$$d_{\mathrm{E}L} = 2R_L = \sqrt{20}$$

ightharpoonup Minimum list radius R_L for a list size L is

$$R_{L\min} = \min_{\boldsymbol{W}} \{R_L(\boldsymbol{W})\} = \min_{\boldsymbol{W}} \max_{\mathcal{I}: \boldsymbol{w}_{\mathcal{I}} \operatorname{adj}(\boldsymbol{W}_{\mathcal{I}}) \geq \boldsymbol{0}} \left\{ \frac{1}{2} \sqrt{\boldsymbol{w}_{\mathcal{I}} \boldsymbol{W}_{\mathcal{I}}^{-1} \boldsymbol{w}_{\mathcal{I}}^{\mathrm{T}}} \right\}$$

- ▶ Minimum Euclidean list distance for a list size L is $d_{EL\min} = 2R_{L\min}$.
- ▶ For binary linear codes and BPSK signaling, $d_{\mathrm{E}ij}^2 = 4E_s d_{\mathrm{H}ij}$.

 Minimum Hamming list distance of a code, for list size L is $\boxed{d_{\mathrm{H}L\mathrm{min}} = d_{\mathrm{E}L\mathrm{min}}^2/(4E_s)}$.
- ▶ Minimum list distance determines the performance of the list decoder at higher SNR, in the same way as the minimum distance determines the performance of the ML decoder.
- ▶ Theorem 3: For any binary linear code the minimum Hamming list distance is

$$d_{\mathrm{H}L\mathrm{min}} \ge \frac{2L}{L+1} d_{\mathrm{Hmin}}$$

For any binary linear code with odd $d_{\rm Hmin}$, we have

$$d_{\mathrm{H}L\mathrm{min}} \ge \frac{2L}{L+1} d_{\mathrm{Hmin}} + \frac{L-1}{L+1}$$

 \blacktriangleright For even d_{Hmin}

Worst-case list configuration yielding minimum list distance

$$d_{\rm HLmin} = \frac{2L}{L+1} d_{\rm Hmin}$$

consists of L codewords of weight $d_{\rm Hmin}$ at pairwise distances $d_{\rm Hmin}$:

$$m{W}_{
m H} = egin{pmatrix} d_{
m Hmin} & d_{
m Hmin}$$

The codewords form an L-dimensional simplex.

Example:

even d_{Hmin}

$$L=2$$

$$R_{L\min} = \frac{1}{\sqrt{3}} d_{\text{Emin}}$$

$$d_{\mathrm{E}L\mathrm{min}} = \frac{2}{\sqrt{3}} d_{\mathrm{E}\mathrm{min}}$$

\blacktriangleright For odd d_{Hmin}

Worst-case list configuration yielding minimum list distance

$$d_{\mathrm{H}L\mathrm{min}} = \frac{2L}{L+1}d_{\mathrm{Hmin}} + \frac{L-1}{L+1}$$

consists of

(L+1)/2 codewords of weight $d_{\rm Hmin}$

(L-1)/2 codewords of weight $d_{Hmin}+1$

at pairwise distances d_{Hmin} and $d_{\text{Hmin}} + 1$. For example, for L = 5:

$$m{W}_{
m H} = egin{pmatrix} d_{
m Hmin} & rac{d_{
m Hmin}-1}{2} & rac{d_{
m Hmin}-1}{2} & rac{d_{
m Hmin}-1}{2} & rac{d_{
m Hmin}+1}{2} & rac{d_{
m Hmin}+1}{2} \ rac{d_{
m Hmin}-1}{2} & d_{
m Hmin} & rac{d_{
m Hmin}+1}{2} & rac{d_{
m Hmin}+1}{2} \ rac{d_{
m Hmin}-1}{2} & rac{d_{
m Hmin}-1}{2} & d_{
m Hmin} & rac{d_{
m Hmin}+1}{2} & rac{d_{
m Hmin}+1}{2} \ rac{d_{
m Hmin}+1}{2} & rac{d_{
m Hmin}+1}{2} & rac{d_{
m Hmin}+1}{2} & rac{d_{
m Hmin}+1}{2} \ rac{d_{
m Hmin}+1}{2} & rac{d_{
m Hmin}+1}{2} & rac{d_{
m Hmin}+1}{2} & rac{d_{
m Hmin}+1}{2} \ \end{pmatrix}$$

List Error Probability for Worst-Case List

- ▶ Worst-case list configuration determines the performance of list decoder at high SNR Therefore, we want to estimate the list error probability $\Pr(t \ge w/2)$ for the worst-case list configuration
- ▶ Problem: Finding $\Pr(t \ge w/2)$ involves L-dimensional integration over the PDF of t
- ► Solution: Consider instead the orthogonalized vector

$$q = tV$$

The components of $m{q}$ are uncorrelated and its PDF breaks up into a product of L 1-dimensional PDFs

By estimating the integration limits for q we obtain an upper bound on $\Pr(t \ge w/2)$.

List Error Probability for Worst-Case List

 \blacktriangleright For even d_{Hmin}

Lemma 1: The list-error probability $\Pr(t \geq w/2)$, for a worst-case list configuration, for a code with even d_{Hmin} is upper-bounded by

$$\left| \Pr(\boldsymbol{t} \ge \boldsymbol{w}/2) \le \int_{\frac{\alpha L}{\sqrt{\sigma_1}}}^{\infty} f(y) \prod_{l=2}^{L} \left(\int_{v_l(y)}^{u_l(y)} f(x) dx \right) dy \right|$$

with equality for $L \leq 2$. f(x) and f(y) denote Gaussian $\mathcal{N}(0,1)$ PDF.

The integration intervals are determined by the eigenvalues of $oldsymbol{W}$.

 \blacktriangleright For odd $d_{\rm Hmin}$

Lemma 2: The list-error probability $\Pr(t \geq w/2)$, for a worst-case list configuration, for a code with odd $d_{\rm Hmin}$ is upper-bounded by

$$\Pr(\boldsymbol{t} \geq \boldsymbol{w}/2) \leq \int_{\frac{\phi(\alpha,\eta)}{\sqrt{\sigma_L}}}^{\infty} f(y_1) \int_{g(y_1)}^{h(y_1)} f(y_2) dy_2 \prod_{l=1}^{\frac{L-1}{2}} \left(\int_{v_l(y_1)}^{u_l(y_1)} f(x) dx \right) \prod_{l=\frac{L+1}{2}}^{L-2} \left(\int_{w_l(y_1)}^{z_l(y_1)} f(x) dx \right) dy_1$$

Generalized Tangential Bound on List Decoding Error Probability

- \blacktriangleright We want to improve the union bound on the list-error probability $P_{\mathrm{e}L}$ for binary codes
- ► Tangential-bound approach:

Decompose noise vector n into

• one radial component x, along transmitted signal s_0 :

$$x = \langle \boldsymbol{n}, \boldsymbol{s}_0 \rangle$$

• L components y_l orthogonal to the radial component:

$$\mathbf{y}_l = \langle \mathbf{n}, \mathbf{s}_l \rangle - (1 - d_{\mathrm{H}0l}/N)x, \quad l = 1, 2, \dots, L$$

▶ List decoding error probability $P_{eL} \equiv \Pr(\varepsilon)$ is upper-bounded by (few-many errors)

$$P_{eL} = \Pr(\varepsilon, x \le T) + \Pr(\varepsilon, x > T)$$

$$\le \int_{-\infty}^{T} \Pr(\varepsilon | x) f(x) dx + \Pr(x > T)$$

This yields

$$P_{\mathrm{e}L} \leq \min_{T} \left(\int_{-\infty}^{T} \min \left\{ 1, \sum_{\boldsymbol{K}_{y}} N(\boldsymbol{K}_{y}) P_{\mathrm{e}L}(\boldsymbol{K}_{y}, x) \right\} f(x) \mathrm{d}x + Q(T) \right)$$

Generalized Tangential Bound on List Decoding Error Probability

▶ New generalized tangential union bound for list decoding error probability

$$\left| P_{eL} \leq \min_{T} \left(\int_{-\infty}^{T} \min \left\{ 1, N(\boldsymbol{K}_{y}) P_{eL}(\boldsymbol{K}_{y}, \boldsymbol{x}) + \sum_{\boldsymbol{W}} N(\boldsymbol{W}) P_{eL}(\boldsymbol{d}_{HL}(\boldsymbol{W}), \boldsymbol{x}) \right\} f(\boldsymbol{x}) d\boldsymbol{x} + Q(T) \right) \right|$$

- The dominant term is estimated using the upper bound on worst-case-list error probability
- The remaining terms are upper-bounded only by using the list distance $d_{\rm H}L(\boldsymbol{W})$, which is equivalent to replacing the codeword sets with list configuration matrix \boldsymbol{W} by an "average codeword" \boldsymbol{s}^* at distance $d_{\rm H}L(\boldsymbol{W})$ from the transmitted codeword.

Generalized Tangential Bound on List Decoding Error Probability

ightharpoonup Comparison of bounds for (24,12,8) Golay code with list size L=2

Summary

- ► List configuration matrix describes the list geometry and list error probability
- ► List radius and list distance are defined via the list configuration matrix
- ► Minimum list distance is determined by the worst-case list configuration
- ▶ Upper bound on the list error probability for the worst-case lists is derived
- ▶ New generalized tangential union bound for the list decoding error probability is derived

