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Improving the Spectral Efficiency of Wireless Systems

Motivation from information theory: the system performance is
generally maximized by tolerating interference (in a controlled way)

= the system can no longer be regarded as a
collection of point-to-point links

= techniques that were originally designed for
wireline networks do not necessarily
perform well in a wireless context

=- some interference-related issues:

resource allocation

interference mitigation

adaptivity

cooperation and interference coordination
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Example: Interference Mitigation by Beamforming

X (1)
. down-
2O} conv.
L TUN
8 ADC
Xy ()
user K |channe| estimation |—|>| beamforming| 1. |user
K
L
K
o received array signal: x = Y hyxsy +n
k=1

@ output of the kth beamformer:

Yk = w,"jx = wthksk + Zw;‘jh,s, +w;‘jn
~—

desired signal I#k noise
N——

interference
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Signal-to-Interference Ratio (SIR)

@ Signal-to-Interference(-plus-Noise) Ratio:

E[‘thksk\z] «— useful power
E[|w!(x — hysc)[2] < interference+noise power

_ pi|wihy[?

where py = E[|sx|?] is the transmit power of user k

o this is maximized by wj = (021 + Y, piyh!') ! - hy

" SIRY™(p) = pihf! (021 + > pihhf!) hy
Ik
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Max-SINR Beamforming (“Optimum Combining”)

signal-to-interference-(plus-noise) ratios
(SIR) depend on the Tx power allocation

29T
p= [p13p2,"'apKa On ]
————
Tx powers noise
% residual interference:
1

= -1
hy (0204 32 i pihvh]T)

Zk(p)

e the function Zy(p) has a “nice” analytical structure (concave,
non-negative,monotonic,. .. ), which has facilitated many
interesting results and algorithms in the past

@ is there a more general underlying concept?
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Spatial Matched Filter

@ the matched filter wy = hy/||hk||2 is a single user receiver

@ assuming quasi-static channels, we have a constant link gain
matrix

V = [Vl,...,VK]T ZO
i the interference of the kth user is
Ti(p) = p vk

@ this linear interference function has a longstanding tradition in
power control theory [Aein'73]
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General Interference Functions

We say that 7 : R_’E — R is an interference function if it fulfills

Definition

the axioms:
Al (non-negativeness)
A2  (scale invariance)
A3 (monotonicity)

Z(p) = 0
Z(ap) = aZ(p) VaeRy
I(p) 2 Z(p') ifp>p

@ this framework generalizes the framework of standard
interference functions [Yates'95]

@ the beamforming example is a special case of this framework
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The Downlink Power Minimization Problem

@ joint optimization of beamformers uy, ..., ux and powers
p = [p1,.-.,pk], for given channels hy, ... hg

@ problem formulation: achieve SIR targets v = [y1,...,Vk]
with minimum total power:

. K
min > P
p>0,u1,...,ux Z’_l P

pi|uihel?
Z/;&k PI|U;-Ihk|2 +

s.t. > Yk=1,...K
O-I'l

lukll =
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Different Approaches to Downlink Beamforming

e [Rashid-Farrokhi/Tassiulas/Liu,1998]

e fixed-point iteration
e general approach

@ [Bengtsson/Ottersten,1999]
e semidefinite programming, interior-point algorithms
e exploits the special structure of the beamforming problem
convexity is commonly considered as the dividing line between
“easy” and “difficult” problems.
@ special properties of interference functions (axioms A1-A3)
also enable “easy” solutions
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Reformulation Based on Interference Functions

e exploiting uplink/downlink duality, the problem can be
rewritten in terms of uplink interference functions

K
i oo > uTep). k=1.2.... K
rgl;g;p/ s.t. px > 1 Zi(p), 2,0, K,
- 1
_ S—
hi (031 + 32 i pihih]) e

where  Z,(p)

the special structure of Zy(p) can be exploited
(a globally convergent algorithm will be discussed in part Il)
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The Linear Interference Model

e transmit power vector p = [p1,...,pk]” ( power allocation )

. transmitter &
@ non-negative

irreducible link
gain matrix

link gain Vi

receiver k

V:[Vl,...,VK]TZO

@ interference of gains Vi, L # &
the kth user:

Ti(p) = P vk
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[rreducibility

V is reducible < the directed graph is not fully connected

Via
Vio Viz Vi
0 Vo3 Vy Vi >< Vas
0 0 Via Vig
0 0 0 @ VV ©

O O O o

V is irreducible < the directed graph is fully connected

0 Vin Viz Vi

V— 0 0 Vi Vi

10 0 0 V34
Vai O 0 0
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SIR Balancing and Perron-Frobenius Theory

illustrating example: eigenvalues

@ SIR feasible set: of the non-neg. matrix I'V
in the complex plane
S= {7 : p(rV) < 1} ”Perron root”

) p(T'V)

where I = diag{~} and X

rv
p(FV) = inf max Vel

p>0 k Pk X

(Collatz/Wielandt)
e if V isirreducible , then the SIR balancing problem is solved
by the unique principal eigenvector associated with the

spectral radius
rvp® = p(r'V)p*
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The SIR Feasible Region of the Linear Model

. . A
@ observation: the function s

p(’Y) = p(rV) = p(diag{’y}V) is infeasible
an interference function
_ o p(y) >1
@ SIR requirements ~ are jointly
feasible if p(v) <1

. . . feasibl
@ the SIR region is defined as casiie

p(v) <1
S={yeR:p(v) <1} 51
> |ater, it will be shown that every SIR region is a sub-level set
of an interference function
m® interference calculus is not restricted to power control
problems, another application is the analysis of “performance
tradeoff regions”
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SIR Balancing with Adaptive Beamforming

@ [Gerlach/Paulraj'96] have studied the problem of maximizing
the minimum SIR (also referred to as SIR balancing)

m m Pk ) L 5
ax ! s.t. |uh =
p>0,uy,.. ,UK(1<k<K g | kpl|ul hk|2 | k k|

@ [Montalbano/Slock'98]: uplink/downlink duality leads to the
problem of Perron root optimization

71 0
popt(7) = min P |: . :| . V(u)
u={uy,...,ux} 0 YK

where p(+) is the spectral radius (“Perron root”) and V(u) is
a beamformer-dependent coupling matrix
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SIR Balancing — Reformulation

@ the Perron root minimization problem can be rewritten as

. Y Zk(P)
popr(v)—l;r;g L P

where  Zy(p) = minp vy (uy)
Uy

@ the optimum pop¢(7y) is a single criterion for the joint quality
of all K users

@ a globally convergent algorithm can be derived by exploiting
that popt(7y) is a concave interference function (in part Il)
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Utility Optimization

@ maximize the weighted sum u2 g maxy Y, Wik
utility:
K
Tu(w) = max g Wi U
ue
k=1 utility region U

@ Zy/(w) is a convex

: : u1
interference function
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Discussion

The examples show that there exist many different types of
interference functions, which are useful for different applications,

e.g.,
@ physical layer modeling
@ resource allocation

@ fairness

Is there a unifying framework for interference functions?

Next, we discuss the structure of different classes of interference
functions and applications
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General Interference Functions

We say that 7 : R_’E — R is an interference function if it fulfills

Definition

the axioms:
Al (non-negativeness)
A2  (scale invariance)
A3 (monotonicity)

Z(p) = 0
Z(ap) = aZ(p) VaeRy
I(p) 2 Z(p') ifp>p

@ this framework generalizes the framework of standard
interference functions [Yates'95]

@ the beamforming example is a special case of this framework
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Example: Robust Nullsteering

interference can be reduced by nullsteering beamforming:

interference direction h

array ga

beampattern u

@ assume that the
interference direction worst-case
is only known up to
an uncertainty ¢ from
a region C

angle of arrival

-
incertainty region C

@ the beamformer u minimizes the worst-case interference

Z(p) = min (mapr,|uHh,(c)\2)
I

power:
ul|=1\ ceC

= this is also an interference function (A1-A3 fulfilled)
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The Impact of Noise

@ in order to include noise, we consider the extended power
[+]
PK+1
stands for noise power

allocation p = { ] where the last component pxy1

@ an additional strict monotonicity property is required:
PK11 > Pri1, Withp>p' = I(p) > Z(p)

o If pxi+1 > 0 is constant, and , then Z(p) is ‘standard’ as
defined in [Yates'95]
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Fixed-Point Iteration

For standard interference functions it was shown [Yates'95]

If target SIR v = [71,...,7k] are feasible, i.e., C(v) <1, under a
sum-power constraint, then for an arbitrary initialization p(®) > 0,

the iteration
P;(<n+1) = Yk 'Ik(P(")), k=1,2,....K

converges to the optimum of the power minimization problem

K
. Pk
inf st. ——— > Yk, Yk,
p>0;Pk Zp) >
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Properties of the Fixed-Point Iteration

convergence to the optimal power levels

The fixed-point iteration has the
following properties: = '
@ component-wise monotonicity f Ol) =081
@ optimum achieved iff . f%f”x
(D) — 3 T (p(™), Yk
P =wIk(p'™), T
i
- W

@ optimizer lim,_. p(”) is

unique

Hd
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The Weighted Max-Min Optimum C(~)

@ example: K interference functions Z1,...,Zx and
weighting factors v = [v1,...,7k]| (e.g. SIR requirements).
The optimum of the weighted SIR balancing problem is

. Y Zk(P)
Cr) = inf (,max, %)

@ SIR feasible region

S={v:C(y) <1}

" level set of the interference function C(~)
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Comparison of Min-Max and Max-Min Balancing

@ alternative approach to SIR balancing:

T
c(’y):sup( min Lk(p)) :sup( min K )
p>0 \I<k<K  pi p>0 \1<k<K Fk(p)

in general, c(v) < C(v). "™ fairness gap

@ consider a fixed coupling matrix V € RfXK. Under special
conditions (V irreducible), both max-min and min-max
fairness equal the spectral radius p:

C(7) = pldiag{~}V) = inf max Vk[;lkp]k =c(v)
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Discussion

@ C(7y) and c(7y) are constructed by underlying interference
functions 74, ...,7Zk
" certain important operations are closed within the
framework of interference functions

o for all general interference functions (only the basic properties
A1-A3 fulfilled) algorithmic solutions exist (e.g. fixed point
iteration)

@ but more efficient solutions can be designed by exploiting the
structure of the interference functions
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Representation of General Interference Functions

Theorem

Let T be an arbitrary interference function, then
. Pk
Z(p) = min max —
() PEL(Z) k Pk

. Pk
= max min —
peL(Z) k Pk

<

@ Z(p) can always be represented as the optimum of a weighted
max-min (or min-max) optimization problem
@ The weights p are elements of convex/concave level sets

LT) = {p>0:T(p) < 1}
LT)={p>0:1(p) > 1)
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Interference Functions and Utility/Cost Regions

D2

o the set L(Z) is closed bounded and
monotonic decreasing

p<p, Pell) = pell)

e the set L(Z) is closed and monotonic
increasing

p>p . pell) — pel)

" every interference function can be interpreted as a utility/cost
resource allocation problem
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© Representation and Classification of Interference Functions

@ Concave Interference Functions
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Concave Interference Functions

Definition

We say that 7 : Rff — R is a concave interference function if it

fulfills the axioms:

Al (non-negativeness)
A2 (scale invariance)
A3 (monotonicity)

C1 (concavity)

Z(p)
Z(ap OAI(p)
(p) > Z(p')

(p) is

concave on RK

VQER+
ifp>p

I\/TI\/

I(p
p
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Examples for Concave Interference Functions

@ beamforming:
1

Zk(p) = 1
hy (031 + 3 i i) hy

@ generalization: receive strategy zj

ZEZ)
Interference Noise

Ik(p7gr27) = min (pTV(zk) +0—5nk(zk)) ) k = 1727 s
—— N —
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Cost/Loss Minimization

@ minimize the weighted sum

cost:

@ 7y/(w) is a concave
interference function

utility region U

w

maXy Y, Wk

ul

Fraunhofer | ot

L’



Representation of Concave Interference Functions

Theorem
Let Z(p) be an arbitrary concave interference function, then

K

Z(p) = min wipk , forallp > 0.
(p) weN’o(I); kPk p

where
No(Z) = {w € RY : Z*(w) = 0}

and Z%(w) = infpso (E;(zl wip; — I(p)) is the conjugate of T.
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Interpretation of Concave Interference Functions

K
A = min w,
(p) i Zl k Pk

o the set No(Z) is closed, w2
convex, and monotonic
increasing, i.e., w € Ny(Z)
implies w' > w belongs to
No(Z)
@ any concave interference
function can be interpreted
as the solution of a loss/cost

7,

region No(

(7)

minimization problem
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© Representation and Classification of Interference Functions
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Convex Interference Functions

Definition
We say that 7 : Rff — R is a convex interference function if it
fulfills the axioms:

Al (non-negativeness) Z(p) >0

A2 (scale invariance) Z(ap) =aZ(p) VaeR,
A3 (monotonicity) I(p) > Z(p') ifp=>p
C2 (convexity) Z(p) is convex on RK
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Example: Robustness

@ Another example is the worst-case model

Ti(p) = max p'v(c), Vk,

where the parameter ¢, models an ‘uncertainty’ (e.g. caused
by channel estimation errors or system imperfections).

@ the optimization is over a compact uncertainty region C

@ Z,(p) is a convex interference function

i
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Utility Maximization

@ maximize the weighted sum u2 g maxy Y, Wik
utility:
K
Tu(w) = max g Wi U
ue
k=1 utility region U

@ Zy/(w) is a convex

: : u1
interference function

i
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Representation of Convex Interference Functions

Theorem
Let Z(p) be an arbitrary convex interference function, then

K

Z(p) = max Wi - px , forallp > 0.
(p) weWo(I); k * Pk p

where
Wo(Z) ={w € R_’: : f*(w) =0}

and I*(w) = supp~g (E;(zl wip — I(p)) is the conjugate of .
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Interpretation of Convex Interference Functions

Z(p) = max Zwk Pk

WEW()(I)

@ the set Wy(Z) is closed, w2
convex, and monotonic p
decreasing, i.e., w € Wy(Z)
implies w' < w belongs to
Wo(Z)

@ any convex interference
function can be interpreted
as the solution of a utility -
maximization problem w1

Wo(Z)
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© Representation and Classification of Interference Functions

@ Log-Convex Interference Functions
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Log-Convex Interference Functions

Definition

We say that 7 : Rff — R, is a log-convex interference function if

it fulfills the axioms:

Al (non-negativeness)
A2 (scale invariance)
A3 (monotonicity)

C3 (log-convexity)

Z(p) =0
Z(ap)—aZ(p) Va e Ry
I(p) > I(p) ifp>p

Ik(es) is log-convex on RX
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Log-Convexity

Let f(s) := Z(exp{s}). The function f : RX = R, is said to be
log-convex on RX if log f is convex, i.e.,

log f((1-A)8+)8) < (1-A\)log f(8)+Alog f(¥), VA€ (0,1), 8,8 RN

taking exp on both sides, this is equivalent to [e.g.
Boyd/Vandenbergh]

F((1— N8+ A8) < F(8) 7 F(3)
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Example

@ Let 73,...,Tk be log-convex interference functions, then the
SIR-balancing optimum

C(v) = inf

p>0

max
1<k<K  py

( ’Ykﬂ(P))

is a log-convex interference function

i
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Basic Properties

@ the properties of log-convex interference functions are
preserved under certain operations

@ example: let Z; and 7, be log-convex interference functions,
and

Il(p) = a1Z1(p) + a2Z2(p), a1, € Ry
7'(p) = (T1(p)* - (Ta(p)) ", a€0,1]

" 7'(p) and Z"(p) are log-convex interference functions
(note: this is not valid for log-concave interference functions)

® |og-convex interference functions have a rich analytical and
algebraic structure.
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Representation of Log-Convex Interference Functions

Theorem

Every log-convex interference function Z(p), with p > 0, can be
represented as

Z(p) = max <f1(w ﬁ p/)W’> .
I=1

weL(Z

Z
where fr(w ):';2];1_[ ((pp))w, w € RK, kakzl
I 1

L(T) = {w e R : fr(w) > 0}
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Connection between Convex and Log-Convex Functions

@ every convex function Z(p) can be expressed as
Z(p) = max w,
(p) wess zk: k Pk

log Y ", wke’ is convex
= log maxwew, ), Wke’ is convex
= Z(e®) is log-convex

e if Z(p) is convex then Z(e®) is log-convex
(but the converse is not true)
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Categories of Interference Functions

/

convex interference functions | concave interference functions

log-convex interference functions

\\ general interference functions
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Outline

© SIR-Constrained Power Minimization
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Fixed-Point Iteration

@ consider the power minimization problem
K p
. k
inf st. —— > Y, Vk,
">°k2::1 R O

with feasible) target SIR v = [v1,...,7k] and interference
functions 71, ..., Zk.

@ it was shown [Yates'95] that the global minimum is achieved
by the fixed-point iteration

P = Tk(e™), k=1,2,...,K
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Concave Interference Functions and Receive Strategies

@ let 73,...,Zk be arbitrary concave interference functions

e from the representation result, it is clear that Zx(p) has a
matrix-based structure

Ti(p) = min (p'v(z) +m(z)), k=1,2,...,K
ZEZ ) N ——
Interference Noise

@ the parameter z, can be interpreted as a receive strategy

o for K users, we have an interference coupling matrix

V(Z) = [Vl(Zl), v ,VK(ZK)]T
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Example: MMSE Beamforming

@ The interference coupling V can depend on adaptive receive
beamforming vectors uy, ..., uk, with ||ug|]| = 1. In this case,
the normalized coupling matrix V(u) is defined as

uij/uk # k
[V(u)]k/ = (‘)’ZIRk“k L ’ where Ry = E[h/h;-l]

@ Under this model, we have an interference function

o2

Zupoo) = min (V) el + ggn) ()

The function (-1) fulfills A1-A3 and is concave. For every p,
ui,...,uxk are the respective MMSE beamformers
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Example: Zeroforcing beamforming

@ Under a different normalization ukHRkuk =1 we have

Zi(p,op) =  min  [V(u)-p], + o5 fucl2.  (0)

u,’:’Rkukzl

Assuming that K is less or equal to the number of antennas,
we can introduce the constraint ul’h; =0, / # k.

Ti(p,02) = min  [lugf>- 02 . (1)
u ' Reup=1
ul’h;=0,/#k

This is solved by the well-known least squares ‘zeroforcer’.

@ The function (1) is a concave interference function (though a
trivial one since Zx(p, 02) does no longer depend on p).
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Example: Base Station Assignment

@ Consider the problem of combined beamforming and base
station assignment [(?; 7; ?; 7)].
@ The kth user is received by a base station with index by € By.

( _ ukH(Z,;ﬁk p/RSbk) +03|)uk>
min .

uje:fJugf|=1 ukHRibk)uk

Ik(pv U%) = b:neigk

This is a concave interference function which fulfills A1-A3.
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Proposed Matrix-Based Iteration

By exploiting the special structure of concave interference
functions, a new iteration is obtained:

Alternating optimization of receive strategies z(") and power
allocation p(")

o z,E") =argmin,, cz, V(Z)P(") +n(z) o 9 kef{t,2,....K}
Q p(") = (1 —rv(z(M)~t.rn(z(")
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Convergence Behavior

power (5 users)

X
| Ik improved algorithm that
 exploits concavity fixed—point
x iteration
I %o
3
| R R MMM HHHHHHHHH K
XX
X
L XXX‘X-X-X-XXXXXXXXXXXXXXXXXXXXX
XX
L\ }X><'><><><><><><><><><><><><><><><><><><><><><><><><><><><
><‘><'><--><-><>(-><><><><><><><)<><><><><><)<><><><><><)<><><><
0 E‘) 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5

iterations
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Required Iteration Steps vs. System Load

1000 T T T T T T T T

100 fixed-point iteration

@ the convergence
behavior of the
proposed iteration is
almost independent
of the system load

iterations

proposed algorithm
10 |

1

0 01 02 03 04 05 06 07 08 09
spectral radius min,ecz p(¥(z))

1

i
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Direct Step-by-Step Comparison

0 5 _
P(. ) P 2
joint
initialization

3
o fixed-point: p(" F@ (M)
@ matrix-based

iteration: p("

7O @)
e

p®

@ the proposed iteration has the following advantages
o step-wise better than the fixed point iteration, p{” > p("
e achieves the SI(N)R targets T in each step
e componentwise monotonicity
@ both iterations converge to the global optimum of the power

minimization problem
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Problem Reformulation

@ approach: introduce auxilliary function d(p) = p — I'Z(p)
@ the global optimum of the power minimization problem is
completely characterized by d(p) = 0 (fixed-point)

di(p)

tangential hyperplane
(n)
g9 (P)

global optimum

e framework can be extended to non-smooth functions d(p)
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Super-Linear Convergence

Theorem

Let p(© be an arbitrary feasible initialization, then the new
algorithm has super-linear convergence

(n+1) _ 4%
im ||P() I:H:O
n—oo ||p{n) — p*||

@ quadratic convergence is achieved for the typical case of
semi-smooth interference functions (C2" compared to CJ')

@ the fixed-point iteration achieves only linear convergence in
general
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@ Utility Optimization Strategies
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Resource Allocation

@ can be regarded as the search for an “optimal” operating
point in the quality-of-service (QoS) feasible region

. . total power minimum
QoS link 2

max ming QoSy, (max-min fairness)

| max Yy, aQoSy (weighted sum optimization)
Q2 :

| | __— max ), QoS (best overall efficiency)
QoS feasib}e region
1

» QoS link 1

Q1

@ Here, QoS stands for some performance measure which still
needs to be specified

i
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Proportional Fairness

o [Kelly'98]: The proportionally fair

equilibrium @ is the one, at which % . maxming e (max-min faimess) |
El 15,2
the difference to any other utility z *
. B 16,4
vector u € Y measured in the _
. 65 max ), loguy, (prop. fairness)

aggregated proportional change .
Zk(uk _ ak)/ak is non_positive. 55 max ., u (utility efficiency)
This operating point can be found  °
by solving .

max E log Uy utility user 1

ueld

k=1

i
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QoS Model for Wireless Systems

@ signal-to-interference ratio

@ the QoS is a strictly monotonic function of the SIR

QoS(p) = 6(SIR(p)

examples:  ¢(x) = x SIR
#(x) = log(x) SIR in dB
#(x)=1/(1+x) Min. Mean Squared Error (MMSE)
d(x) =x"° BER slope, diversity order «
¢(x) =log(1l + x) capacity for Gaussian signals

Fraunhofer | ot
Nachrichtentechnik
Heinrich-Hertz-Institut



Some Examplary Resource Allocation Problems

QoS link 50La1 power minimum
{8} 1

max-min fairness

@ max-min fairness ~ L--f73

prop. fairness

Q2 :
sup(min &) Q:Sf 'bi ;
p>0\ k L (p) o ‘ QoS link 1
@ sum-power minimization @ proportional fairness
B ; [Kelly'97]
. k
inf Zpk st —— > v, Vk, K
0 1 7z
P> «(p) inf Zlog k(p) .
p>01— Pk

= efficient algorithmic solutions exist for certain types of
interference functions Zy(p)
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Feasible QoS Region for Log-Convex Interference Functions

log-SIR feasible region
o the log-SIR feasible region is

Q={qc¢c RK C(expq) < 1}

, Clexp{q}) =1
where

q2

Clexp{q}) <1

C(expa) = inf (| max M)

p>0\1<k=K Pk \tu 210?71

@ if Zy,...,Zk are log-convex, then C(expq) is a log-convex
interference function

% the log-SIR region is a convex set
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Extension to Other QoS Measures

o Let 7, be the inverse function of ¢x, then vx := vk(qk) is the
minimum SIR level needed to achieve the target g

@ assume log-convex interference functions 71, ...,Zk. The QoS
region is convex for all mappings QoS = ¢(SIR), for which the
inverse function v, (QoSk) is log-convex. Examples:

e capacity in the high SNR regime: ¢(SIR) = alog(SIR), with
a e R

o BER slope approximation: ¢(SIR) = SIR™%, for diversity order
a > 0.

o ...
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Proportional Fairness for Log-Convex Interf. Functions

o for utilities ux = px/Zx(p) the problem of proportional
fairness can be rewritten as

K

Z
PF(T) = inf 3" log Z<(P)
p>01— Pk
e if 73,...,Zk are log-convex interference functions, then this is

a convex optimization problem
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Weighted Proportional Fairness

@ consider weighting factors asi,...,ak. The weighted
proportionally fair optimum is

K
inf S ax g(Ta(e)/e™) st [eflls < Prnax
scRK 1

Theorem

Let Zy(e®) be log-convex Yk and g monotonic increasing. Then
the problem is convex if and only if g(e*) is convex on RK
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© Cooperative Game Theory

Fraunhofer | ot
Nachrichtentechnik
Heinrich-Hertz-Institut



A Game Theoretic View: Cooperative Bargaining

@ the service qualities of all K users
is modeled by a utility vector s
u=u,...,ukl, chosen from a
region U

@ The players try to reach an
unanimous agreement on some
outcome u > d

do

o If they fail, the disagreement
outcome or disagreement point d
results.

@ the solution outcome (i, d) is the
operating point of the system

bargaining game (U, d)

solution outcome
oU,d)

Uy
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Axiomatic Framework for Symmetric Nash Bargaining

WPO Weak Pareto Optimality: The players should not be able to
collectively improve upon the solution outcome.

[1A Independence of Irrelevant Alternatives: If the feasible set
shrinks but the solution outcome remains feasible, then the
solution outcome for the smaller feasible set should be the
same point.

SYM Symmetry: If the region is symmetric, then the outcome
does only depend on the employed strategies and not on the
identities of the users. Axiom SYM basically means that all
users have the same priorities.

STC Scale Transformation Covariance: The optimization strategy
is invariant with respect to a component-wise scaling of the
region.
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The Symmetric Nash Bargaining Solution

Let U be convex and u’ < u, u € U implies u’ € Y. Then, the
unique outcome fulfilling the axioms WPO, IIA, SYM, STC, is
called symmetric Nash bargaining solution (SNBS).

@ SNBS is equivalent to the solution of
K

max H(Uk — dk)

u>d
{uelf:u> }k:1

@ we can assume d = 0, thus

K
max H Uy
ueld

k=1
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Equivalence between SNBS and Proportional Fairness

@ the product optimization approach is equivalent to
proportional fairness [Kelly'98]

arg max H uy = arg maxlog H Uy = arg maxz log uy
ueld ucld ueld

@ if the region U is convex and monotonic, then symmetric
Nash bargaining and proportional fairness are equivalent
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Representation of the Convex Set U/

Every convex utility-region U/ can be represented as a sub-level set
of a convex function

U={uecRf Ty u) <1}

where
user 2: us
K
Ty, (p) = vrpeaxz Wk-pk, P>0
' k=1
and Uy = {u € R : 7y (u) < 1}
K utility region ¢
d 7 = . >0
and Ty(p) @; Wk Pk, P \
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Using the Representation of Log-Convex Interf. Functions

@ the product optimum over U is equivalently obtained by
computing fz,,(w), with w =[1,1,...,1]

max H ug =
ucld qu

@ this shows that the product optimization problem is closely
linked with the log-convex structure of U
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Mid-Point Dominance

fuiu>LoPU.d)+ Lob U, d)}
D
U Uu,d
o ©P(U,d) is the 20 g2 (Uod)
dictatorial solution for
user 1
° gog(l/{,d) is the
dictatorial solution for
user 2

the mid-point dominance axiom requires
K

U, d) > > P U, d)
k=1

" minimal amount of cooperation between users
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Disagreement Point Convexity

U2

(U, d)

u1

the “disagreement point convexity” axiom requires:

d(p) = (1 — p)d + ppUd,d) = U, d(n)) = ¢(U,d)
0<p<l)

® this models the impact of the user requirements
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Example of a Non-Standard Characterization of the SNBS

Theorem

the symmetric Nash bargaining solution is the only solution that
satisfies the axioms “mid-point dominance” and “disagreement
point convexity”

advantage: we can analyze the impact of user cooperation and
user requirements
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@ Conclusions
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Conclusions

o the framework of interference functions is applicable to
different areas
e physical layer design
e medium access control
e resource allocation and utility optimization for wireless systems
e how to operate a wireless system

@ many interesting open questions

i
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