
Interference Calculus
Part I:

Axiomatic Characterization of Interference in Wireless Networks

Part II:
Algorithms for Resource Allocation

Martin Schubert

joint work with Holger Boche

Fraunhofer Institute for Telecommunications HHI, Berlin, Germany

Fraunhofer German-Sino Lab for Mobile Communications (MCI)

Heinrich Hertz Chair for Mobile Communications
Technical University of Berlin

Fraunhofer

Heinrich−Hertz−Institut

Institut
Nachrichtentechnik

HHI

Fraunhofer German−Sino Lab
Mobile Communications

MCI



Outline

1 Introduction and Motivation
Interference in Wireless Systems: The Beamforming Example
Joint Beamforming and Power Allocation
SIR Balancing and Utility Optimization

2 Representation and Classification of Interference Functions
General Interference Functions
Concave Interference Functions
Convex Interference Functions
Log-Convex Interference Functions

3 SIR-Constrained Power Minimization

4 Utility Optimization Strategies

5 Cooperative Game Theory

6 Conclusions

Fraunhofer

Heinrich−Hertz−Institut

Institut
Nachrichtentechnik

HHI



Outline

1 Introduction and Motivation
Interference in Wireless Systems: The Beamforming Example
Joint Beamforming and Power Allocation
SIR Balancing and Utility Optimization

2 Representation and Classification of Interference Functions
General Interference Functions
Concave Interference Functions
Convex Interference Functions
Log-Convex Interference Functions

3 SIR-Constrained Power Minimization

4 Utility Optimization Strategies

5 Cooperative Game Theory

6 Conclusions

Fraunhofer

Heinrich−Hertz−Institut

Institut
Nachrichtentechnik

HHI



Improving the Spectral Efficiency of Wireless Systems

Motivation from information theory: the system performance is
generally maximized by tolerating interference (in a controlled way)

⇒ the system can no longer be regarded as a
collection of point-to-point links

⇒ techniques that were originally designed for
wireline networks do not necessarily
perform well in a wireless context

⇒ some interference-related issues:

resource allocation
interference mitigation
adaptivity
cooperation and interference coordination
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Example: Interference Mitigation by Beamforming
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received array signal: x =
K∑

k=1

hksk + n

output of the kth beamformer:

yk = wH
k x = wH

k hksk︸ ︷︷ ︸
desired signal

+
∑
l 6=k

wH
k hlsl︸ ︷︷ ︸

interference

+wH
k n︸︷︷︸

noise
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Signal-to-Interference Ratio (SIR)

Signal-to-Interference(-plus-Noise) Ratio:

E
[
|wH

k hksk |2
]

E
[
|wH

k (x− hksk)|2
] ← useful power
← interference+noise power

=
pk |wH

k hk |2

wH
k

(
σ2

nI +
∑

l 6=k plhlh
H
l

)
wk

where pk = E[|sk |2] is the transmit power of user k

this is maximized by w∗
k =

(
σ2

nI +
∑

l 6=k plhlh
H
l

)−1 · hk

à SIRmax
k (p) = pkh

H
k

(
σ2

nI +
∑
l 6=k

plhlh
H
l

)−1
hk
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Max-SINR Beamforming (“Optimum Combining”)

signal-to-interference-(plus-noise) ratios
(SIR) depend on the Tx power allocation

p = [p1, p2, . . . , pK︸ ︷︷ ︸
Tx powers

, σ2
n︸︷︷︸

noise

]T

à residual interference:

Ik(p) =
1

hH
k

(
σ2

nI +
∑

l 6=k plhlh
H
l

)−1
hk

SIR 4

SIR 3

SIR 2SIR 1

SIR 5

the function Ik(p) has a “nice” analytical structure (concave,
non-negative,monotonic,. . . ), which has facilitated many
interesting results and algorithms in the past
is there a more general underlying concept?

Fraunhofer

Heinrich−Hertz−Institut

Institut
Nachrichtentechnik

HHI



Spatial Matched Filter

the matched filter wk = hk/‖hk‖2 is a single user receiver

assuming quasi-static channels, we have a constant link gain
matrix

V = [v1, . . . , vK ]T ≥ 0

à the interference of the kth user is

Ik(p) = pTvk

this linear interference function has a longstanding tradition in
power control theory [Aein’73]
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General Interference Functions

Definition

We say that I : RK
+ 7→ R+ is an interference function if it fulfills

the axioms:

A1 (non-negativeness) I(p) ≥ 0

A2 (scale invariance) I(αp) = αI(p) ∀α ∈ R+

A3 (monotonicity) I(p) ≥ I(p′) if p ≥ p′

this framework generalizes the framework of standard
interference functions [Yates’95]

the beamforming example is a special case of this framework
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The Downlink Power Minimization Problem

joint optimization of beamformers u1, . . . ,uK and powers
p = [p1, . . . , pK ], for given channels h1, . . . ,hK

problem formulation: achieve SIR targets γ = [γ1, . . . , γK ]
with minimum total power:

min
p>0,u1,...,uK

∑K
i=1 pi

s.t.
pk |uH

k hk |2∑
l 6=k pl |uH

l hk |2 + σ2
n

≥ γk , ∀k = 1, . . . ,K

‖uk‖ = 1
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Different Approaches to Downlink Beamforming

[Rashid-Farrokhi/Tassiulas/Liu,1998]

fixed-point iteration
general approach

[Bengtsson/Ottersten,1999]

semidefinite programming, interior-point algorithms
exploits the special structure of the beamforming problem

convexity is commonly considered as the dividing line between
“easy” and “difficult” problems.

special properties of interference functions (axioms A1-A3)
also enable “easy” solutions
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Reformulation Based on Interference Functions

exploiting uplink/downlink duality, the problem can be
rewritten in terms of uplink interference functions

min
p>0

K∑
l=1

pl s.t. pk ≥ γkIk(p), k = 1, 2, . . . ,K ,

where Ik(p) =
1

hH
k

(
σ2

nI +
∑

l 6=k plhlh
H
l

)−1
hk

.

the special structure of Ik(p) can be exploited
(a globally convergent algorithm will be discussed in part II)
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The Linear Interference Model

transmit power vector p = [p1, . . . , pK ]T ( power allocation )

non-negative
irreducible link
gain matrix

V = [v1, . . . , vK ]T ≥ 0

interference of
the kth user:

Ik(p) = pTvk

gains Vkl, l 6= k

transmitter k

receiver k

link gain Vkk
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Irreducibility

V is reducible ⇔ the directed graph is not fully connected

V =


0 V12 V13 V14

0 0 V23 V24

0 0 0 V34

0 0 0 0


1 2

3

V14

4

V12

V23

V34

V24

V13

V is irreducible ⇔ the directed graph is fully connected

V =


0 V12 V13 V14

0 0 V23 V24

0 0 0 V34

V41 0 0 0


1 2

34

V12

V23

V34

V24

V13

V41V14
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SIR Balancing and Perron-Frobenius Theory

SIR feasible set:

S = {γ : ρ(ΓV) ≤ 1}

where Γ = diag{γ} and

ρ(ΓV) = inf
p>0

max
k

[ΓVp]k
pk

(Collatz/Wielandt)

in the complex plane

of the non-neg. matrix ΓV

illustrating example: eigenvalues

ρ(ΓV )

”Perron root”

if V is irreducible , then the SIR balancing problem is solved
by the unique principal eigenvector associated with the
spectral radius

ΓVp∗ = ρ(ΓV)p∗
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The SIR Feasible Region of the Linear Model

observation: the function
ρ(γ) := ρ(ΓV) = ρ(diag{γ}V) is
an interference function

SIR requirements γ are jointly
feasible if ρ(γ) ≤ 1

the SIR region is defined as

S = {γ ∈ RK
+ : ρ(γ) ≤ 1}

feasible

infeasible

ρ(γ) ≤ 1

ρ(γ) > 1

γ1

γ2

à later, it will be shown that every SIR region is a sub-level set
of an interference function

à interference calculus is not restricted to power control
problems, another application is the analysis of “performance
tradeoff regions”
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SIR Balancing with Adaptive Beamforming

[Gerlach/Paulraj’96] have studied the problem of maximizing
the minimum SIR (also referred to as SIR balancing)

max
p>0,u1,...,uK

(
min

1≤k≤K

pk∑
l 6=k pl |uH

l hk |2
)

s.t. |uH
k hk |2 = 1

[Montalbano/Slock’98]: uplink/downlink duality leads to the
problem of Perron root optimization

ρopt(γ) = min
u={u1,...,uK}

ρ

([ γ1 0

. . .
0 γK

]
· V(u)

)

where ρ(·) is the spectral radius (“Perron root”) and V(u) is
a beamformer-dependent coupling matrix
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SIR Balancing – Reformulation

the Perron root minimization problem can be rewritten as

ρopt(γ) = inf
p>0

max
1≤k≤K

γkIk(p)

pk

where Ik(p) = min
uk

pTvk(uk)

the optimum ρopt(γ) is a single criterion for the joint quality
of all K users

a globally convergent algorithm can be derived by exploiting
that ρopt(γ) is a concave interference function (in part II)
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Utility Optimization

maximize the weighted sum
utility:

IU (w) = max
u∈U

K∑
k=1

wkuk

IU (w) is a convex
interference function

u2 maxu

P

k
wkuk

u1

utility region U
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Discussion

The examples show that there exist many different types of
interference functions, which are useful for different applications,
e.g.,

physical layer modeling

resource allocation

fairness

Is there a unifying framework for interference functions?

Next, we discuss the structure of different classes of interference
functions and applications
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General Interference Functions

Definition

We say that I : RK
+ 7→ R+ is an interference function if it fulfills

the axioms:

A1 (non-negativeness) I(p) ≥ 0

A2 (scale invariance) I(αp) = αI(p) ∀α ∈ R+

A3 (monotonicity) I(p) ≥ I(p′) if p ≥ p′

this framework generalizes the framework of standard
interference functions [Yates’95]

the beamforming example is a special case of this framework

Fraunhofer

Heinrich−Hertz−Institut

Institut
Nachrichtentechnik

HHI



Example: Robust Nullsteering

interference can be reduced by nullsteering beamforming:

assume that the
interference direction
is only known up to
an uncertainty c from
a region C

incertainty region C
angle of arrival

beampattern u

interference

a
rr

a
y

g
a
in

worst-case

interference direction h

the beamformer u minimizes the worst-case interference
power:

I(p) = min
‖u‖=1

(
max
c∈C

∑
l

pl |uHhl(c)|2
)

⇒ this is also an interference function (A1–A3 fulfilled)
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The Impact of Noise

in order to include noise, we consider the extended power

allocation p =
[ p̃

pK+1

]
where the last component pK+1

stands for noise power

an additional strict monotonicity property is required:

pK+1 > p′K+1, with p ≥ p′ ⇒ I(p) > I(p′)

If pK+1 > 0 is constant, and , then I(p̃) is ‘standard’ as
defined in [Yates’95]
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Fixed-Point Iteration

For standard interference functions it was shown [Yates’95]

If target SIR γ = [γ1, . . . , γK ] are feasible, i.e., C (γ) ≤ 1, under a
sum-power constraint, then for an arbitrary initialization p(0) ≥ 0,
the iteration

p
(n+1)
k = γk · Ik(p(n)), k = 1, 2, . . . ,K

converges to the optimum of the power minimization problem

inf
p>0

K∑
k=1

pk s.t.
pk

Ik(p)
≥ γk , ∀k ,
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Properties of the Fixed-Point Iteration

The fixed-point iteration has the
following properties:

component-wise monotonicity

optimum achieved iff

p
(n+1)
k = γkIk(p(n)), ∀k

optimizer limn→∞ p(n) is
unique

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−4

convergence to the optimal power levels

C(γ) = 0.81
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The Weighted Max-Min Optimum C (γ)

example: K interference functions I1, . . . , IK and
weighting factors γ = [γ1, . . . , γK ] (e.g. SIR requirements).
The optimum of the weighted SIR balancing problem is

C (γ) = inf
p>0

(
max

1≤k≤K

γkIk(p)

pk

)
SIR feasible region

S = {γ : C (γ) ≤ 1}

à level set of the interference function C (γ)
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Comparison of Min-Max and Max-Min Balancing

alternative approach to SIR balancing:

c(γ) = sup
p>0

(
min

1≤k≤K

γkIk(p)

pk

)
= sup

p>0

(
min

1≤k≤K

γk

γ̃k(p)

)
in general, c(γ) ≤ C (γ). à fairness gap

consider a fixed coupling matrix V ∈ RK×K
+ . Under special

conditions (V irreducible), both max-min and min-max
fairness equal the spectral radius ρ:

C (γ) = ρ(diag{γ}V) = inf
p>0

max
k

γk [Vp]k
pk

= c(γ)
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Discussion

C (γ) and c(γ) are constructed by underlying interference
functions I1, . . . , IK
à certain important operations are closed within the
framework of interference functions

for all general interference functions (only the basic properties
A1–A3 fulfilled) algorithmic solutions exist (e.g. fixed point
iteration)

but more efficient solutions can be designed by exploiting the
structure of the interference functions
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Representation of General Interference Functions

Theorem

Let I be an arbitrary interference function, then

I(p) = min
p̂∈L(I)

max
k

pk

p̂k

= max
p̂∈L(I)

min
k

pk

p̂k

I(p) can always be represented as the optimum of a weighted
max-min (or min-max) optimization problem
The weights p̂ are elements of convex/concave level sets

L(I) = {p̂ > 0 : I(p̂) ≤ 1}
L(I) = {p̂ > 0 : I(p̂) ≥ 1}
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Interference Functions and Utility/Cost Regions

the set L(I) is closed bounded and
monotonic decreasing

p̂ ≤ p̂′ , p̂′ ∈ L(I) =⇒ p̂ ∈ L(I)

p̂2

p̂
′

p̂1

L(I)

the set L(I) is closed and monotonic
increasing

p̂ ≥ p̂′ , p̂′ ∈ L(I) =⇒ p̂ ∈ L(I)

p̂2

p̂1

p̂
′

L(I)

à every interference function can be interpreted as a utility/cost
resource allocation problem
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Concave Interference Functions

Definition

We say that I : RK
+ 7→ R+ is a concave interference function if it

fulfills the axioms:

A1 (non-negativeness) I(p) ≥ 0

A2 (scale invariance) I(αp) = αI(p) ∀α ∈ R+

A3 (monotonicity) I(p) ≥ I(p′) if p ≥ p′

C1 (concavity) I(p) is concave on RK
+
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Examples for Concave Interference Functions

beamforming:

Ik(p) =
1

hH
k

(
σ2

nI +
∑

l 6=k plhlh
H
l

)−1
hk

generalization: receive strategy zk

Ik(p, σ2
n) = min

zk∈Zk

(
pTv(zk)︸ ︷︷ ︸
Interference

+σ2
nnk(zk)︸ ︷︷ ︸
Noise

)
, k = 1, 2, . . . ,K
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Cost/Loss Minimization

minimize the weighted sum
cost:

IU (w) = max
u∈U

K∑
k=1

wkuk

IU (w) is a concave
interference function

u2

maxu

P

k
wkuk

w

u1

utility region U
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Representation of Concave Interference Functions

Theorem

Let I(p) be an arbitrary concave interference function, then

I(p) = min
w∈N0(I)

K∑
k=1

wkpk , for all p > 0.

where
N0(I) = {w ∈ RK

+ : I∗(w) = 0}

and I∗(w) = infp>0

(∑K
l=1 wlpl − I(p)

)
is the conjugate of I.
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Interpretation of Concave Interference Functions

I(p) = min
w∈N0(I)

K∑
k=1

wkpk

the set N0(I) is closed,
convex, and monotonic
increasing, i.e., w ∈ N0(I)
implies w′ ≥ w belongs to
N0(I)
any concave interference
function can be interpreted
as the solution of a loss/cost
minimization problem w1

p

w2

region N0(I)
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Convex Interference Functions

Definition

We say that I : RK
+ 7→ R+ is a convex interference function if it

fulfills the axioms:

A1 (non-negativeness) I(p) ≥ 0

A2 (scale invariance) I(αp) = αI(p) ∀α ∈ R+

A3 (monotonicity) I(p) ≥ I(p′) if p ≥ p′

C2 (convexity) I(p) is convex on RK
+
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Example: Robustness

Another example is the worst-case model

Ik(p) = max
ck∈Ck

pTv(ck), ∀k ,

where the parameter ck models an ‘uncertainty’ (e.g. caused
by channel estimation errors or system imperfections).

the optimization is over a compact uncertainty region Ck
Ik(p) is a convex interference function
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Utility Maximization

maximize the weighted sum
utility:

IU (w) = max
u∈U

K∑
k=1

wkuk

IU (w) is a convex
interference function

u2 maxu

P

k
wkuk

u1

utility region U
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Representation of Convex Interference Functions

Theorem

Let I(p) be an arbitrary convex interference function, then

I(p) = max
w∈W0(I)

K∑
k=1

wk · pk , for all p > 0.

where
W0(I) = {w ∈ RK

+ : Ī∗(w) = 0}

and Ī∗(w) = supp>0

(∑K
l=1 wlpl − I(p)

)
is the conjugate of I.
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Interpretation of Convex Interference Functions

I(p) = max
w∈W0(I)

K∑
k=1

wk · pk

the set W0(I) is closed,
convex, and monotonic
decreasing, i.e., w ∈ W0(I)
implies w′ ≤ w belongs to
W0(I)
any convex interference
function can be interpreted
as the solution of a utility
maximization problem

W0(I)

p

w1

w2
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Log-Convex Interference Functions

Definition

We say that I : RK
+ 7→ R+ is a log-convex interference function if

it fulfills the axioms:

A1 (non-negativeness) I(p) ≥ 0

A2 (scale invariance) I(αp) = αI(p) ∀α ∈ R+

A3 (monotonicity) I(p) ≥ I(p′) if p ≥ p′

C3 (log-convexity) Ik(es) is log-convex on RK
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Log-Convexity

Let f (s) := I(exp{s}). The function f : RK 7→ R+ is said to be
log-convex on RK if log f is convex, i.e.,

log f
(
(1−λ)̂s+λš

)
≤ (1−λ) log f (̂s)+λ log f (̌s), ∀λ ∈ (0, 1), ŝ, š ∈ RK

taking exp on both sides, this is equivalent to [e.g.
Boyd/Vandenbergh]

f
(
(1− λ)̂s + λš

)
≤ f (̂s)1−λf (̌s)λ
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Example

Let I1, . . . , IK be log-convex interference functions, then the
SIR-balancing optimum

C (γ) = inf
p>0

(
max

1≤k≤K

γkIk(p)

pk

)
is a log-convex interference function
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Basic Properties

the properties of log-convex interference functions are
preserved under certain operations

example: let I1 and I2 be log-convex interference functions,
and

I ′(p) = α1I1(p) + α2I2(p), α1, α2 ∈ R+

I ′′(p) =
(
I1(p)

)α · (I1(p)
)1−α

, α ∈ [0, 1]

à I ′(p) and I ′′(p) are log-convex interference functions
(note: this is not valid for log-concave interference functions)

à log-convex interference functions have a rich analytical and
algebraic structure.
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Representation of Log-Convex Interference Functions

Theorem

Every log-convex interference function I(p), with p > 0, can be
represented as

I(p) = max
w∈L(I)

(
fI(w) ·

K∏
l=1

(pl)
wl

)
.

where fI(w) = inf
p>0

I(p)∏K
l=1(pl)wl

, w ∈ RK
+,

∑
k
wk = 1

L(I) =
{
w ∈ RK

+ : fI(w) > 0
}
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Connection between Convex and Log-Convex Functions

every convex function I(p) can be expressed as

I(p) = max
w∈W0

∑
k

wkpk

log
∑

k wkesk is convex
=⇒ log maxw∈W0

∑
k wkesk is convex

=⇒ I(es) is log-convex

if I(p) is convex then I(es) is log-convex
(but the converse is not true)
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Categories of Interference Functions

general interference functions

log-convex interference functions

convex interference functions concave interference functions
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Fixed-Point Iteration

consider the power minimization problem

inf
p>0

K∑
k=1

pk s.t.
pk

Ik(p)
≥ γk , ∀k ,

with feasible) target SIR γ = [γ1, . . . , γK ] and interference
functions I1, . . . , IK .

it was shown [Yates’95] that the global minimum is achieved
by the fixed-point iteration

p
(n+1)
k = γk · Ik(p(n)), k = 1, 2, . . . ,K
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Concave Interference Functions and Receive Strategies

let I1, . . . , IK be arbitrary concave interference functions

from the representation result, it is clear that Ik(p) has a
matrix-based structure

Ik(p) = min
zk∈Zk

(
pTv(zk)︸ ︷︷ ︸
Interference

+ nk(zk)︸ ︷︷ ︸
Noise

)
, k = 1, 2, . . . ,K

the parameter zk can be interpreted as a receive strategy

for K users, we have an interference coupling matrix

V(z) = [v1(z1), . . . , vK (zK )]T
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Example: MMSE Beamforming

The interference coupling V can depend on adaptive receive
beamforming vectors u1, . . . ,uK , with ‖uk‖ = 1. In this case,
the normalized coupling matrix V(u) is defined as

[V(u)]kl =


uH

k Rluk

uH
k Rkuk

l 6= k ,

0 k = l .
where Rl = E[hlh

H
l ]

Under this model, we have an interference function

Ik(p, σ2
n) = min

‖uk‖=1

([
V(u) · p

]
k

+
σ2

n

uH
k Rkuk

)
(-1)

The function (-1) fulfills A1–A3 and is concave. For every p,
u1, . . . ,uK are the respective MMSE beamformers
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Example: Zeroforcing beamforming

Under a different normalization uH
k Rkuk = 1 we have

Ik(p, σ2
n) = min

uH
k Rkuk=1

[
V(u) · p

]
k

+ σ2
n · ‖uk‖2 . (0)

Assuming that K is less or equal to the number of antennas,
we can introduce the constraint uH

k hl = 0, l 6= k.

Ik(p, σ2
n) = min

uH
k Rkuk=1

uH
k hl=0,l 6=k

‖uk‖2 · σ2
n . (1)

This is solved by the well-known least squares ‘zeroforcer’.

The function (1) is a concave interference function (though a
trivial one since Ik(p, σ2

n) does no longer depend on p).
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Example: Base Station Assignment

Consider the problem of combined beamforming and base
station assignment [(?; ?; ?; ?)].

The kth user is received by a base station with index bk ∈ Bk .

Ik(p, σ2
n) = min

bk∈Bk

(
min

uk :‖uk‖=1

uH
k

(∑
l 6=k plR

(bk )
l + σ2

nI
)
uk

uH
k R

(bk )
k uk

)
.

This is a concave interference function which fulfills A1–A3.

Fraunhofer

Heinrich−Hertz−Institut

Institut
Nachrichtentechnik

HHI



Proposed Matrix-Based Iteration

By exploiting the special structure of concave interference
functions, a new iteration is obtained:

Alternating optimization of receive strategies z (n) and power
allocation p(n)

1 z
(n)
k = arg minzk∈Zk

[
V(z)p(n) + n(z)

]
k

, k ∈ {1, 2, . . . ,K}

2 p(n+1) = (I− ΓV(z(n)))−1 · Γn(z(n))
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Convergence Behavior
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Required Iteration Steps vs. System Load

the convergence
behavior of the
proposed iteration is
almost independent
of the system load
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Direct Step-by-Step Comparison

fixed-point: p̄(n)

matrix-based
iteration: p(n)

joint
initialization

p
(1)

p
(2)

p
(3)

p̄
(1)

p̄
(2)

p̄
(3)

f (1)(p(1))
f (2)(p(1))

f (1)(p(2))

p
(0)

the proposed iteration has the following advantages
step-wise better than the fixed point iteration, p̄(n) ≥ p(n)

achieves the SI(N)R targets Γ in each step
componentwise monotonicity

both iterations converge to the global optimum of the power
minimization problem
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Problem Reformulation

approach: introduce auxilliary function d(p) = p− ΓI(p)
the global optimum of the power minimization problem is
completely characterized by d(p) = 0 (fixed-point)

p

dk(p)

global optimum

p
(n)

p̂ p
(n+1)

tangential hyperplane

g
(n)
k

(p)

framework can be extended to non-smooth functions d(p)
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Super-Linear Convergence

Theorem

Let p(0) be an arbitrary feasible initialization, then the new
algorithm has super-linear convergence

lim
n→∞

‖p(n+1) − p∗‖
‖p(n) − p∗‖

= 0

quadratic convergence is achieved for the typical case of
semi-smooth interference functions (C 2n

1 compared to Cn
2 )

the fixed-point iteration achieves only linear convergence in
general
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Resource Allocation

can be regarded as the search for an “optimal” operating
point in the quality-of-service (QoS) feasible region

QoS link 1

QoS link 2

Q2

Q1

max mink QoSk (max-min fairness)

total power minimum

max
P

k
QoSk (best overall efficiency)

max
P

k
αkQoSk (weighted sum optimization)

QoS feasible region

Here, QoS stands for some performance measure which still
needs to be specified
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Proportional Fairness

[Kelly’98]: The proportionally fair
equilibrium û is the one, at which
the difference to any other utility
vector u ∈ U measured in the
aggregated proportional change∑

k(uk − ûk)/ûk is non-positive.
This operating point can be found
by solving

max
u∈U

K∑
k=1

log uk
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QoS Model for Wireless Systems

signal-to-interference ratio

SIR(p) =
pk

Ik(p)

the QoS is a strictly monotonic function of the SIR

QoS(p) = φ
(
SIR(p)

)
examples: φ(x) = x SIR

φ(x) = log(x) SIR in dB
φ(x) = 1/(1 + x) Min. Mean Squared Error (MMSE)
φ(x) = x−α BER slope, diversity order α
φ(x) = log(1 + x) capacity for Gaussian signals
. . .
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Some Examplary Resource Allocation Problems

max-min fairness

sup
p>0

(
min

k

pk

Ik(p)

)
sum-power minimization

inf
p>0

K∑
k=1

pk s.t.
pk

Ik(p)
≥ γk , ∀k ,

QoS link 2

Q2

Q1

max-min fairness

total power minimum

QoS link 1

prop. fairness

QoS feasible region

proportional fairness
[Kelly’97]

inf
p>0

K∑
k=1

log
Ik(p)

pk
.

⇒ efficient algorithmic solutions exist for certain types of
interference functions Ik(p)
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Feasible QoS Region for Log-Convex Interference Functions

the log-SIR feasible region is

Q = {q ∈ RK : C (expq) ≤ 1}

where

C (expq) = inf
p>0

(
max

1≤k≤K

exp(qk)Ik(p)

pk

)
q1 = log γ1

log-SIR feasible region

q
2

=
lo

g
γ
2

C(exp{q}) = 1

C(exp{q}) < 1

if I1, . . . , IK are log-convex, then C (expq) is a log-convex
interference function

à the log-SIR region is a convex set
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Extension to Other QoS Measures

Let γk be the inverse function of φk , then γk := γk(qk) is the
minimum SIR level needed to achieve the target qk

assume log-convex interference functions I1, . . . , IK . The QoS
region is convex for all mappings QoS = φ(SIR), for which the
inverse function γk(QoSk) is log-convex. Examples:

capacity in the high SNR regime: φ(SIR) = α log(SIR), with
α ∈ R.
BER slope approximation: φ(SIR) = SIR−α, for diversity order
α ≥ 0.
...
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Proportional Fairness for Log-Convex Interf. Functions

for utilities uk = pk/Ik(p) the problem of proportional
fairness can be rewritten as

PF (I) = inf
p>0

K∑
k=1

log
Ik(p)

pk

if I1, . . . , IK are log-convex interference functions, then this is
a convex optimization problem
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Weighted Proportional Fairness

consider weighting factors α1, . . . , αK . The weighted
proportionally fair optimum is

inf
s∈RK

K∑
k=1

αk g
(
Ik(es)/esk

)
s.t. ‖es‖1 ≤ Pmax

Theorem

Let Ik(es) be log-convex ∀k and g monotonic increasing. Then
the problem is convex if and only if g(ex) is convex on RK
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A Game Theoretic View: Cooperative Bargaining

the service qualities of all K users
is modeled by a utility vector
u = [u1, . . . , uk ], chosen from a
region U
The players try to reach an
unanimous agreement on some
outcome u ≥ d

If they fail, the disagreement
outcome or disagreement point d
results.

the solution outcome ϕ(U ,d) is the
operating point of the system

u2

u1

d

U

d1

d2

bargaining game (U ,d)

ϕ(U ,d)

solution outcome
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Axiomatic Framework for Symmetric Nash Bargaining

WPO Weak Pareto Optimality: The players should not be able to
collectively improve upon the solution outcome.

IIA Independence of Irrelevant Alternatives: If the feasible set
shrinks but the solution outcome remains feasible, then the
solution outcome for the smaller feasible set should be the
same point.

SYM Symmetry: If the region is symmetric, then the outcome
does only depend on the employed strategies and not on the
identities of the users. Axiom SYM basically means that all
users have the same priorities.

STC Scale Transformation Covariance: The optimization strategy
is invariant with respect to a component-wise scaling of the
region.
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The Symmetric Nash Bargaining Solution

Let U be convex and u′ ≤ u, u ∈ U implies u′ ∈ U . Then, the
unique outcome fulfilling the axioms WPO, IIA, SYM, STC, is
called symmetric Nash bargaining solution (SNBS).

SNBS is equivalent to the solution of

max
{u∈U :u>d}

K∏
k=1

(uk − dk)

we can assume d = 0, thus

max
u∈U

K∏
k=1

uk
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Equivalence between SNBS and Proportional Fairness

the product optimization approach is equivalent to
proportional fairness [Kelly’98]

û = arg max
u∈U

K∏
k=1

uk = arg max
u∈U

log
K∏

k=1

uk = arg max
u∈U

K∑
k=1

log uk

if the region U is convex and monotonic, then symmetric
Nash bargaining and proportional fairness are equivalent
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Representation of the Convex Set U
Every convex utility-region U can be represented as a sub-level set
of a convex function

U = {u ∈ RK
+ : IU1(u) ≤ 1}

where

IU1(p) = max
w∈U1

K∑
k=1

wk · pk , p > 0

and U1 = {u ∈ RK
+ : IU (u) ≤ 1}

and IU (p) = max
w∈U

K∑
k=1

wk · pk , p > 0

user 2: u2

user 1: u1

utility region U
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Using the Representation of Log-Convex Interf. Functions

the product optimum over U is equivalently obtained by
computing fIU (w), with w = [1, 1, . . . , 1]

max
u∈U

K∏
k=1

uk =
1

fIU (w)
.

this shows that the product optimization problem is closely
linked with the log-convex structure of U
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Mid-Point Dominance

ϕD
1 (U ,d) is the

dictatorial solution for
user 1

ϕD
2 (U ,d) is the

dictatorial solution for
user 2 U

d

u2

u1

{u : u ≥ 1

2
ϕD

1
(U ,d) + 1

2
ϕD

2
(U ,d)}

ϕD

1
(U ,d)

ϕD

2
(U ,d)

the mid-point dominance axiom requires

ϕ(U ,d) ≥ 1
K

K∑
k=1

ϕD
k (U ,d)

à minimal amount of cooperation between users
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Disagreement Point Convexity

U

d

u2

u1

ϕ(U ,d)

the “disagreement point convexity” axiom requires:
d(µ) = (1− µ)d + µϕ(U ,d) =⇒ ϕ(U ,d(µ)) = ϕ(U ,d)

(0 < µ < 1)
à this models the impact of the user requirements
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Example of a Non-Standard Characterization of the SNBS

Theorem

the symmetric Nash bargaining solution is the only solution that
satisfies the axioms “mid-point dominance” and “disagreement
point convexity”

advantage: we can analyze the impact of user cooperation and
user requirements
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Conclusions

the framework of interference functions is applicable to
different areas

physical layer design
medium access control
resource allocation and utility optimization for wireless systems
how to operate a wireless system

many interesting open questions
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