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Spring 2018

Analysis II

Homework 5

Due on April 3, 2018

Problem 1 [8 points]: More about convergence: root and ratio test

(a) State carefully the root test and the ratio test for series: in which cases do they imply
convergence (absolute or conditional?) or divergence, in which cases are they inconclu-
sive?

(b) Give three examples that were not yet treated in class: one each where the root test
proves convergence of a series, where it proves divergence, and where it is not conclusive.

(c) Same for the ratio test (different examples, please).

Problem 2 [8 points]: More about convergence
Let (an)n∈N be a sequence of positive real numbers. Show that convergence of

∑
n an implies

convergence of
∑
n

√
an
n

.

Problem 3 [16 points]: More about convergence: infinite products
Let (pn)n∈N be a sequence of non-zero complex numbers. Define Pn =

∏n
i=0 pi. If the sequence

(Pn)n∈N converges then we denote its limit by
∏∞

n=0 pn. If the limit exists and is not zero,
then we say that the infinite product

∏∞
n=0 pn converges, otherwise the product is said to

diverge.

(a) Assume that pn are positive real numbers. Show that
∏∞

n=0 pn converges if and only if∑∞
n=0 ln pn converges.

(b) Show that if pn ≥ 1 for all n this latter condition is equivalent to the fact that
∑

n(pn−1)
converges.

(c) Find a sequence (pn)n∈N of real numbers such that
∑∞

n=1 (pn − 1) converges but
∏∞

n=1 pn
diverges.

(d) Find a sequence (pn)n∈N of real numbers such that
∑∞

n=1 (pn − 1) diverges but
∏∞

n=1 pn
converges (and is greater than zero).
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(e) [2 bonus points] Use the integral
∫ π/2
0

cosn x dx to prove Wallis’s formula for π:

∞∏
n=1

(
2n

2n− 1
· 2n

2n+ 1

)
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · = π

2
.

Hint: Use the “squeeze theorem” (squeeze your sequence between two known ones).

(f) [1 bonus point] Show that

sinx = x

∞∏
n=1

(
1− x2

π2n2

)
and obtain another proof of Wallis’s formula.

Problem 4 [8 points]: More about convergence: Dirichlet series
A Dirichlet series is a series of the form f(s) =

∑∞
n=1 ann

−s where all an ∈ C.

(a) Show that there is an s1 ∈ R ∪ {±∞} so that the series converges absolutely for s > s1,
and even for all s ∈ C with Re s > s1, but not for s < s1. (This s1 is called the absolute
convergence abscissa.)

(b) [2 bonus points] It may happen that the series converges conditionally for s < s1.
Show that this is possible only when s ≥ s1 − 1.

(c) [2 bonus points] Show that there is an s0 ∈ R ∪ {±∞} so that the series converges
conditionaly for s > s0 and even for all s ∈ C with Re s > s0, but not for s < s0. (This
s0 is called the conditional convergence abscissa.)

(d) [1 bonus point] What are the absolute and conditional convergence abscissas for f(s) =∑
n≥1(−1)nn−s ?
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Problem 1 [12 points]: Rectifiable graphs and their arc length
Let I = [a, b] ⊂ R be a closed and bounded interval and f : I → R a continuous function.
The graph of f is the curve Γ: I → R2 given by t 7→ (t, f(t)).

(a) If f is continuously differentiable, express the length of the graph of f in terms of an
integral.

(b) Find the length of the graph of f(x) =
√

1− x2 for x ∈ [0, 1]. Why should you have
expected this answer?

(c) Find the length of the α-helix γ : [0, x]→ R3 given by γ(t) = (cos t, sin t, αt), for α ∈ R.

(d) Find the length of the graph of the function t 7→ cosh t = (et + e−t)/2 over the interval
[0, x].

Problem 2 [12 points]: The snowflake: a non-rectifiable curve (the “von Koch”-
curve)
Let us take a closer look at the von-Koch curve introduced in class. It is constructed itera-
tively in the following way:

1. Start with an equilateral triangle with sides of unit length.

2. On the middle third of each of the three sides, build an equilateral triangle with sides
of length 1/3. Erase the base of each of the three new triangles.

3. On the middle third of each of the twelve sides, build an equilateral triangle with sides
of length 1/9. Erase the base of each of the twelve new triangles.

The boundary after the n-th step is a piecewise linear curve, say γn; parametrize it as a
map γn : [0, 1]→ R2 so that ‖γ′n‖ is constant.

(a) How many pieces does each γn have and what is their total length?

(b) Show that the sequence of maps γn converges uniformly to a continuous map γ : [0, 1]→
R2.
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(c) Show that γ is not rectifiable.

(d) [1 bonus point] Show that the image of the snowflake curve is homeomorphic to the
unit circle. (More precisely, find a continuous injective and surjective map from the circle
to the image of the snowflake curve; continuity of the inverse will follow. How?)

(e) [1 bonus point] Prove that the snowflake is nowhere differentiable.

Problem 3 [16 points]: The hyperbolic metric
On the upper half plane H = {(x, y) ∈ R2 : y > 0}, define the hyperbolic length of a continu-
ously differentiable curve γ : [a, b]→ H (with γ(t) = (x(t), y(t))) by

ΛH(γ) :=

∫ b

a

‖γ′(t)‖
y(t)

dt .

This is (up to a multiple) the only metric on H that is preserved by all Möbius transformations
z 7→ (az + b)/cz + b with a, b, c, d ∈ R and ad − bc = 1, where z = x + iy = (x, y) ∈ H; the
purpose of this problem is to prove this invariance.

(a) Compute the length of the curves γn : [1, 2]→ H given by γn(t) = (0, 2nt) connecting the
two points (0, 2n) and (0, 2n+1).

(b) Define a mapping Tu : H → H given by Tu(x, y) := (x + u, y) (with u ∈ R) (horizontal
translation). Show that any two curves γ and Tu ◦ γ have equal lengths (if defined).

(c) Do the same for the mapping Sr : H → H given by Sr(x, y) = (rx, ry), where r > 0
(scaling by a factor r).

(d) Do the same for the mapping I : H→ H given by I(x, y) =

(
x

x2 + y2
,

y

x2 + y2

)
(inversion

in the unit circle).

(e) Conclude that the same result holds for any map M(z) = az+b
cz+d

with a, b, c, d ∈ R and
ad− bc = 1 (where z = x+ iy). (Hint: this does not involve a lot of writing.)

Bonus Problem 1 [2 points]: Devil’s staircase
Find the length of the graph of the Devil’s Staircase function (see Bonus Problem 2 from
Homework 1).
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Bonus Problem 2 [4 points]: Space-filling curves
The goal of this problem is to prove that there is a map φ : [0, 1]→ [0, 1]2 (from the closed unit
interval to the closed unit square) which satisfies any two of the three properties: injectivity,
surjectivity and continuity. (If φ satisfied all three properties, it would be a continuous
bijection, but then [0, 1] and [0, 1]2 would be homeomorphic, which is not the case. Why?)

(a) Find an injective continuous map φ : [0, 1]→ [0, 1]2.

(b) Find an injective surjective map φ : [0, 1]→ [0, 1]2.

Hint: Write x ∈ [0, 1] in base 2 as x =
∑

k≥1 bk2
−k, where bi ∈ {0, 1} are binary digits.

Remember that this representation has ambiguities!

(c) Find a continuous surjective map φ : [0, 1]→ [0, 1]2 (i.e. a space-filling curve).

Hint: Construct a sequence of continuous maps φn : [0, 1] → [0, 1]2 that converges uni-
formly to a limiting map, so that for every (x, y) ∈ [0, 1]2 there is a t ∈ [0, 1] such that
‖(x, y)−φn(t)‖ < 2−n/2. This can be done by considering continuous curves going through
the vertices of some equally-spaced grids in [0, 1]2.
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