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Topology versus geometry
Knots and Links

@ Closed curves embedded in space
o Classified topologically up to isotopy

@ Two knotted curves are equivalent (same knot type)
if one can be deformed into the other
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Topology versus geometry

(Topological) Knot Theory

@ Classify knot/link types

@ Look for easily computed invariants
to distinguish knots/links

@ 3-manifold topology of complement
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Topology versus geometry
Geometric Knot Theory

Two threads:

Geometric properties of knotted space curve

determined by knot type or implied by knottedness
(e.g. Fary/Milnor: TC > 27br > 4m)

Optimal shape for a given knot
usually by minimizing geometric energy

Geometric optimization problems:
seek best geometric form for topological object
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Finite Total Curvature Total Curvature

Total Curvature

@ For K smooth, TC ::/r.;ds
K
@ For K polygonal, TC := sum of turning angles (exterior angles)
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Finite Total Curvature Total Curvature

Total Curvature

Definition (Milnor)
For K arbitrary, TC(K) := supremal TC of inscribed polygons

@ Achieved by any limit of ever finer polygons.
@ Analogous to Jordan’s definition of length.
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Finite Total Curvature Total Curvature

Curves of Finite Total Curvature

@ FTC means TC < oo
@ Unit tangent vector

Bounded variation (BV) function of arclength
@ Curvature measure

dT = kN ds as Radon measure

@ Countably many corners
where T, # T_
(curvature measure has atom)

See my survey in Discrete Differential Geometry, Birkauser, 2008;
arXiv:math.GT/0606007
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arXiv:math.GT/0606007

Finite Total Curvature Total Curvature

Approximation of FTC curves

@ FTC knot has isotopic inscribed polygon [Milnor]
@ Tame (not wild) knot type

@ K,K’ each FTC and “C'-close” — isotopic [DS]
@ FTC < *“geometrically tame”
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Finite Total Curvature Projections and curvature

Projection of FTC curves

Given an FTC curve K C R" and some k < n, consider all projections
of K to R¥s. Their average TC equals TC(K).

@ Average is over Grassmannian

@ Suffices to prove for polygons (dominated convergence)
and thus for single corner
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Finite Total Curvature Projections and curvature

Projection of FTC curves (Proof)

@ Given angle 6, average turning angle of its projections
is some function £*(0)

@ By cutting corner into two, f* additive
Ji(a+B) = £l () +£(B)

@ Continuous additive function is linear
T(0) = ;o

@ What is the constant ¢;? Should we try 6 = /27
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Finite Total Curvature Projections and curvature

Projection of FTC curves (Proof)

@ Given angle 6, average turning angle of its projections
is some function £ (0)
@ By cutting corner into two, f* additive
fi(a+B8) =f(a) + f1(B)
@ Continuous additive function is linear
(0)=cpo
@ Any projection of a cusp (angle ) is a cusp, so fi'(7) =7
Hence ¢} = 1 as desired
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Finite Total Curvature Projections and curvature

Fenchel's Theorem

~v C R" closed curve — TC(v) > 27

?77
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Finite Total Curvature Projections and curvature

Fenchel's Theorem

~v C R” closed curve — TC(v) > 27

Consider any inscribed 2-gon. O

This is true in R!, where every angle is 0 or O
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Finite Total Curvature Fary/Milnor

Fary/Milnor Theorem

K C R? knotted = TC(K) > 4r

Proof [Milnor]:

No projection to R! can just go up & down,
so true in R! O
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Finite Total Curvature Fary/Milnor

Fary/Milnor Theorem: Fary’s Proof

Proof [Fary]:

True for knot diagrams in R? because some region enclosed twice

(perhaps not winding number two) O

John M. Sullivan (TU Berlin)
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Second Hull

Second Hull: Intiuition

@ Fary/Milnor says knot K “wraps around” twice

@ Intuition says K “wraps around some point” twice
@ Some region (second hull) doubly enclosed by K
@ How to make this precise?
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Second hull: Definition

p € cvx(K) <= every plane through p cuts K (at least twice)

Definition
p € n" hull of K <= every plane through p cuts K at least 2n times
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Second Hull
Second hull: Theorem

Amer. J. Math 125 (2003) pp 13351348, arxiv:math.GT/0204106
with Jason Cantarella, Greg Kuperberg, Rob Kusner

A knotted curve has nonempty second hull l
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arXiv:math.GT/0204106

Second Hull
Second hull: Proof

Proof for prime FTC knot:

An essential halfspace contains all of K except one unknotted arc.
Intersection of all essential halfspaces is (part of) second hull. O

One notion of “where knotting happens”
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Optimal Shapes Knot Energies

Maobius energy

@ Inspired by Coulomb energy (repelling electrical charges)

// dxdy
kxk X —YP

@ Renormalize to make this finite [O’Hara]
@ Scale-invariant for p =2
@ Invariant under Mébius transformations [FHW]
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Optimal Shapes Knot Energies

Maobius energy

@ Minimizers for prime knots [FHW]
@ Probably no minimizers for composite knots
@ Flow perhaps untangles all unknots
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Optimal Shapes Ropelength

Ropelength

Definition
@ Thickness of space curve = reach
= diameter of largest embedded normal tube

@ Ropelength = length / thickness

Positive thickness implies C"!

Definition

@ Gehring thickness = minimum distance between components

works with Milnor’s link homotopy
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Optimal Shapes Ropelength

Ropelength

Inventiones 150 (2002) pp 257-286, arXiv:math.GT/0103224
with Jason Cantarella, Rob Kusner

@ Minimizers exist for any link type

@ Some known from sharp lower bounds

@ Simple chain = connect sum of Hopf links
Middle components stadium curves: not C?
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Optimal Shapes Ropelength

Minimizers
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Optimal Shapes Ropelength

Lower bounds

Geom. & Topol. 10 (2006) pp 1-26,
arXiv:math.DG/0408026
with Elizabeth Denne and Yuanan Diao

K knotted —> ropelength > 15.66 (within 5% for trefoil) I

Proof uses essential alternating quadrisecants:
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Optimal Shapes Ropelength

Quadrisecant

@ Line intersecting a curve four times
@ Every knot has one (Pannwitz — 1933 Berlin)

Three order types

simple flipped alternating

Theorem (Denne thesis)
Every knot has an essential alternating quadrisecant

(Essential means no disk in R \. K spans secant plus arc of K.)

John M. Sullivan (TU Berlin) Geometric Knot Theory 2015 July 7 28/51



Optimal Shapes Ropelength

Lower bound: Proof

Ropelength > 15.66 for any knotted curve I

@ Denne gives essential alternating quadrisecant abcd

@ Writelengthsas r:=|a—b|, s :=|b—c|, t :=|c—d|
@ Scaling to thickness 1, we have r,s,t > 1

@ Define f(x) := v/x2 — I + arcsin(1 /x)

© lac = f(r) +£(s), loa = f(5) + (1), baa = f(r) + 5+ (1),
@ (> mand {y > 21 — 2arcsins/2 if s < 2.

@ Minimize sum separately in r, s, z.
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Ropelength criticality
Criticality

Balance Criterion: tension vs. contact force
Characterizes ropelength-critical links by force balance
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Ropelength criticality
Criticality papers

Gehring case — no curvature bound

Geom. & Topol. 10 (2006) pp 2055-2115,
arXiv:math.DG/0402212
with Jason Cantarella, Joe Fu, Rob Kusner, Nancy Wrinkle

Ropelength case — with curvature bound

Geom. & Topol. 18 (2014) pp 1973-2043, arxiv:1102.3234
with Cantarella, Fu, Kusner
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arXiv: math.DG/0402212
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Ropelength criticality

The clasp

@ Clasp: one rope attached to ceiling, one to floor
@ Again with semicircles?
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Ropelength criticality
The Gehring clasp

@ Gehring clasp has unbounded curvature (is C'2/3 and W23-¢)
@ Half a percent shorter than naive clasp
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Ropelength criticality
The Gehring clasp

@ Gehring clasp has unbounded curvature (is C'2/3 and W23-¢)

@ Half a percent shorter than naive clasp
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The tight clasp

@ Tight clasp slightly longer
@ Kink (arc of max curvature) at tip
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Ropelength criticality

The tight clasp

@ Tight clasp slightly longer
@ Kink (arc of max curvature) at tip
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Example Tight Link

Critical Borromean rings — IMU logo
@ maximal (pyritohedral) symmetry, each component planar

@ piecewise smooth (42 pieces in total)
@ some described by elliptic integrals
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Ropelength criticality

Borromean Rings

@ Uses clasp arcs and circles; 0.08% shorter than circular
@ Curvature < 2 everywhere — also ropelength-critical
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Interlude

Linked table stands

From Africa, 3 components, Borromean rings
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Interlude

Linked table stands

b
J

From Ghana, 7 components
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Interlude

Linked table stands

From Turkey, 8 components!
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Distortion
Distortion

@ Given p,q € K, subarcs v,4, vgp
have lengths ¢,,, ¢,

@ d(p,q) :=min(lpy, )

® 4(p,q) :=d(p,q)/Ip — 4l D q
arc/chord ratio

@ Distortion: §(K) := sup, ,3(p,q)-

@ §(K) > /2, equality only for round circle

@ Can every knot be built with § < 1007?
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Distortion

Distortion: Upper bounds

Computations
@ Trefoil can be built with § < 8.2
@ Open trefoil has more distortion, but still 6 < 11
@ So infinitely many (even wild) knots with 6 < 11

A R
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Distortion

Distortion: Lower bounds

Proc. AMS 137 (2009) pp 1139—-1148, arXiv:math.GT/0409438v2
with Elizabeth Denne

K knotted — 6 > 57/3 (within 30% for trefoil)

Theorem (Pardon)
Torus knot T, , has 6 > min(p, q) /160

Theorem (Studer)
3(Trq) < 7q/logq
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Distortion Essential secants

Essential arcs

Given p, g € K, when is v,, essential?

@ Construct free homotopy class h,, in R* \ K
@ h,, parallel to v,, U gp, zero linking with K

@ 4 essential <= hy, nontrivial
< 7,4 Ugp spanned by no disk in R \ K

h
ﬂ @ K unknotted —

all arcs inessential (7 = H;)

p q @ ,, and v,, inessential
= K unknotted (Dehn)
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Distortion Essential secants

Essential secants

Definition
Secant pg essential if both ~,, and v,, are
ﬁh]

| -)
SN

@ )\ € m is meridian
@ Commutators [, h,4] = [A, hyp] NONZero only when pg essential
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Distortion Essential secants

Arcs becoming essential

As r varies, when does ~,, become essential?
@ Change in i, happens when pr crosses g € K
@ Change is [\, h,q| = [\, hy
@ Both pg and gr must be essential
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Distortion Essential secants

When pr becomes essential, pq is essential
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Distortion Essential secants

Distortion: Theorem

d > 57/3 for any knot r

ﬁ_

Proof:
@ Find shortest essential secant ps

@ Scaleso p—s|=1
@ Find first r € ,, with -, essential p 5
@ Getgqe Knpr

@ If gx essential Vx € ), then ~,, stays
outside B;(g), S0 £, > (5/6)2m

o’

To become inessential, must go outside B>(gq), thus even longer
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