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Topology versus geometry

Knots and Links

Closed curves embedded in space
Classified topologically up to isotopy
Two knotted curves are equivalent (same knot type)

if one can be deformed into the other
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Topology versus geometry

(Topological) Knot Theory

Classify knot/link types

Look for easily computed invariants
to distinguish knots/links

3-manifold topology of complement
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Topology versus geometry

Geometric Knot Theory

Two threads:

Geometric properties of knotted space curve
determined by knot type or implied by knottedness
(e.g. Fáry/Milnor: TC > 2πbr ≥ 4π)

Optimal shape for a given knot
usually by minimizing geometric energy

Geometric optimization problems:
seek best geometric form for topological object
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Finite Total Curvature Total Curvature

Total Curvature

For K smooth, TC :=

∫
K
κ ds

For K polygonal, TC := sum of turning angles (exterior angles)
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Finite Total Curvature Total Curvature

Total Curvature

Definition (Milnor)
For K arbitrary, TC(K) := supremal TC of inscribed polygons

Achieved by any limit of ever finer polygons.

Analogous to Jordan’s definition of length.
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Finite Total Curvature Total Curvature

Curves of Finite Total Curvature

FTC means TC <∞
Unit tangent vector

Bounded variation (BV) function of arclength

Curvature measure
dT = κN ds as Radon measure

Countably many corners
where T+ 6= T−
(curvature measure has atom)

See my survey in Discrete Differential Geometry, Birkäuser, 2008;
arXiv:math.GT/0606007
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Finite Total Curvature Total Curvature

Approximation of FTC curves

FTC knot has isotopic inscribed polygon [Milnor]

Tame (not wild) knot type

K,K′ each FTC and “C1-close” =⇒ isotopic [DS]

FTC ⇐⇒ “geometrically tame”
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Finite Total Curvature Projections and curvature

Projection of FTC curves

Theorem
Given an FTC curve K ⊂ Rn and some k < n, consider all projections
of K to Rks. Their average TC equals TC(K).

Average is over Grassmannian

Suffices to prove for polygons (dominated convergence)
and thus for single corner
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Finite Total Curvature Projections and curvature

Projection of FTC curves (Proof)

Given angle θ, average turning angle of its projections
is some function f n

k (θ)

By cutting corner into two, f n
k additive

f n
k (α+ β) = f n

k (α) + f n
k (β)

Continuous additive function is linear
f n
k (θ) = cn

k θ

What is the constant cn
k? Should we try θ = π/2?
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Finite Total Curvature Projections and curvature

Projection of FTC curves (Proof)

Given angle θ, average turning angle of its projections
is some function f n

k (θ)

By cutting corner into two, f n
k additive

f n
k (α+ β) = f n

k (α) + f n
k (β)

Continuous additive function is linear
f n
k (θ) = cn

k θ

Any projection of a cusp (angle π) is a cusp, so f n
k (π) = π

Hence cn
k = 1 as desired
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Finite Total Curvature Projections and curvature

Fenchel’s Theorem

Corollary
γ ⊂ Rn closed curve =⇒ TC(γ) ≥ 2π

Proof:
???
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Finite Total Curvature Projections and curvature

Fenchel’s Theorem

Corollary
γ ⊂ Rn closed curve =⇒ TC(γ) ≥ 2π

Proof 1:
Consider any inscribed 2-gon.

Proof 2:
This is true in R1, where every angle is 0 or π
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Finite Total Curvature Fáry/Milnor

Fáry/Milnor Theorem

Theorem
K ⊂ R3 knotted =⇒ TC(K) ≥ 4π

Proof [Milnor]:
No projection to R1 can just go up & down,
so true in R1

John M. Sullivan (TU Berlin) Geometric Knot Theory 2015 July 7 16 / 51



Finite Total Curvature Fáry/Milnor

Fáry/Milnor Theorem: Fáry’s Proof

Proof [Fáry]:
True for knot diagrams in R2 because some region enclosed twice
(perhaps not winding number two)
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Second Hull

Second Hull: Intiuition

Fary/Milnor says knot K “wraps around” twice

Intuition says K “wraps around some point” twice

Some region (second hull) doubly enclosed by K

How to make this precise?
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Second Hull

Second hull: Definition

Convex hull
p ∈ cvx(K) ⇐⇒ every plane through p cuts K (at least twice)

Definition
p ∈ nth hull of K ⇐⇒ every plane through p cuts K at least 2n times
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Second Hull

Second hull: Theorem

Amer. J. Math 125 (2003) pp 1335–1348, arXiv:math.GT/0204106
with Jason Cantarella, Greg Kuperberg, Rob Kusner

Theorem
A knotted curve has nonempty second hull
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Second Hull

Second hull: Proof

Proof for prime FTC knot:
An essential halfspace contains all of K except one unknotted arc.
Intersection of all essential halfspaces is (part of) second hull.

One notion of “where knotting happens”
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Optimal Shapes Knot Energies

Möbius energy

Inspired by Coulomb energy (repelling electrical charges)∫∫
K×K

dx dy
|x− y|p

Renormalize to make this finite [O’Hara]

Scale-invariant for p = 2

Invariant under Möbius transformations [FHW]
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Optimal Shapes Knot Energies

Möbius energy

Minimizers for prime knots [FHW]

Probably no minimizers for composite knots

Flow perhaps untangles all unknots
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Optimal Shapes Ropelength

Ropelength

Definition
Thickness of space curve = reach

= diameter of largest embedded normal tube

Ropelength = length / thickness

Positive thickness implies C1,1

Definition
Gehring thickness = minimum distance between components

works with Milnor’s link homotopy
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Optimal Shapes Ropelength

Ropelength

Inventiones 150 (2002) pp 257–286, arXiv:math.GT/0103224
with Jason Cantarella, Rob Kusner

Results
Minimizers exist for any link type

Some known from sharp lower bounds

Simple chain = connect sum of Hopf links
Middle components stadium curves: not C2
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Optimal Shapes Ropelength

Minimizers
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Optimal Shapes Ropelength

Lower bounds

Geom. & Topol. 10 (2006) pp 1–26,
arXiv:math.DG/0408026

with Elizabeth Denne and Yuanan Diao

Theorem
K knotted =⇒ ropelength ≥ 15.66 (within 5% for trefoil)

Proof uses essential alternating quadrisecants:
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Optimal Shapes Ropelength

Quadrisecant

Line intersecting a curve four times

Every knot has one (Pannwitz – 1933 Berlin)

Three order types

simple flipped alternating

Theorem (Denne thesis)
Every knot has an essential alternating quadrisecant

(Essential means no disk in R3 r K spans secant plus arc of K.)
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Optimal Shapes Ropelength

Lower bound: Proof

Theorem
Ropelength > 15.66 for any knotted curve

Denne gives essential alternating quadrisecant abcd

Write lengths as r := |a− b|, s := |b− c|, t := |c− d|
Scaling to thickness 1, we have r, s, t ≥ 1

Define f (x) :=
√

x2 − 1 + arcsin(1/x)

`ac ≥ f (r) + f (s), `bd ≥ f (s) + f (t), `da ≥ f (r) + s + f (t),

`cb ≥ π and `cb ≥ 2π − 2 arcsin s/2 if s < 2.

Minimize sum separately in r, s, t.
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Ropelength criticality

Criticality

Balance Criterion: tension vs. contact force
Characterizes ropelength-critical links by force balance

C1 2C

S

c1 c2
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Ropelength criticality

Criticality papers

Gehring case – no curvature bound
Geom. & Topol. 10 (2006) pp 2055–2115,
arXiv:math.DG/0402212

with Jason Cantarella, Joe Fu, Rob Kusner, Nancy Wrinkle

Ropelength case – with curvature bound
Geom. & Topol. 18 (2014) pp 1973–2043, arXiv:1102.3234
with Cantarella, Fu, Kusner
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Ropelength criticality

The clasp

Clasp: one rope attached to ceiling, one to floor

Again with semicircles?
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Ropelength criticality

The Gehring clasp

Gehring clasp has unbounded curvature (is C1,2/3 and W2,3−ε)

Half a percent shorter than naive clasp
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Ropelength criticality

The tight clasp

Tight clasp slightly longer

Kink (arc of max curvature) at tip
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Ropelength criticality

Example Tight Link

Critical Borromean rings – IMU logo
maximal (pyritohedral) symmetry, each component planar

piecewise smooth (42 pieces in total)

some described by elliptic integrals
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Ropelength criticality

Borromean Rings

Uses clasp arcs and circles; 0.08% shorter than circular

Curvature < 2 everywhere =⇒ also ropelength-critical
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Interlude

Linked table stands

From Africa, 3 components, Borromean rings
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Interlude

Linked table stands

From Ghana, 7 components
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Interlude

Linked table stands

From Turkey, 8 components!
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Distortion

Distortion

Notation
Given p, q ∈ K, subarcs γpq, γqp

have lengths `pq, `qp

d(p, q) := min(`pq, `qp)

δ(p, q) := d(p, q)/|p− q|
arc/chord ratio

Distortion: δ(K) := supp,q δ(p, q).

p q

γpq

γqp

Gromov
δ(K) ≥ π/2, equality only for round circle

Can every knot be built with δ < 100?
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Distortion

Distortion: Upper bounds

Computations
Trefoil can be built with δ < 8.2

Open trefoil has more distortion, but still δ < 11

So infinitely many (even wild) knots with δ < 11
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Distortion

Distortion: Lower bounds

Proc. AMS 137 (2009) pp 1139–1148, arXiv:math.GT/0409438v2
with Elizabeth Denne

Theorem
K knotted =⇒ δ > 5π/3 (within 30% for trefoil)

Theorem (Pardon)
Torus knot Tp,q has δ > min(p, q)/160

Theorem (Studer)
δ(T2,q) ≤ 7q/ log q
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Distortion Essential secants

Essential arcs

Given p, q ∈ K, when is γpq essential?

Construct free homotopy class hpq in R3 r K

hpq parallel to γpq ∪ qp, zero linking with K

γpq essential ⇐⇒ hpq nontrivial
⇐⇒ γpq ∪ qp spanned by no disk in R3 r K

p q

hpq K unknotted =⇒
all arcs inessential (π1 = H1)

γpq and γqp inessential
=⇒ K unknotted (Dehn)
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Distortion Essential secants

Essential secants

Definition
Secant pq essential if both γpq and γqp are

p q

[λ, h]

λ ∈ π1 is meridian

Commutators [λ, hpq] = [λ, hqp] nonzero only when pq essential
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Distortion Essential secants

Arcs becoming essential

As r varies, when does γpr become essential?
Change in hpr happens when pr crosses q ∈ K

Change is [λ, hpq] = [λ, hqr]

Both pq and qr must be essential

p

q

r
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Distortion Essential secants

When pr becomes essential, pq is essential

p

q

r

p

q

r

p

q

r
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Distortion Essential secants

Distortion: Theorem

Theorem
δ ≥ 5π/3 for any knot

Proof:
Find shortest essential secant ps

Scale so |p− s| = 1

Find first r ∈ γps with γpr essential

Get q ∈ K ∩ pr

If qx essential ∀x ∈ γps then γps stays
outside B1(q), so `ps ≥ (5/6)2π

p

q

r

s

To become inessential, must go outside B2(q), thus even longer
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