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method for compressible fluid flow with Hamiltonian structure. We present a numer-
ical short-time study of the rate of convergence of HPM in terms of its three main
governing parameters. We find that the rate of convergence is much better than
the best available theoretical estimates. Our results indicate that HPM performs
best when the number of particles is on the order of the number of grid cells, the
HPM global smoothing kernel has fast decay in Fourier space, and the HPM local
interpolation kernel is a cubic spline.
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1 Introduction

The Hamiltonian Particle-Mesh (HPM) method is a particle-in-cell method for
compressible fluid flow with the special property that the discrete equations
of motion form a Hamiltonian N -particle mechanical system. It was originally
proposed in the context of the shallow water equations by Frank, Gottwald
and Reich [6], and tested on a variety of two-dimensional geophysical flow
problems [3, 4, 5]. Moreover, the HPM method was shown to be convergent
[10, 11] as the number of particles N tends to infinity.

Comparing the HPM method with classical smoothed particle hydrody-
namics (SPH) which also possesses a Hamiltonian structure and associated
conservation laws [7, 9, 13], we note that the known convergence results are
very similar in the sense that both can be shown to be of order O(N2−ε) for
any ε > 0 provided the underlying kernel functions satisfy certain technical
conditions [11]. On the other hand, one time step of the HPM method can be
computed in O(N) or O(N lnN) operations. The computational complexity
of SPH is algebraically superlinear in N as the number of interactions per
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particle must grow without bound as N → ∞. These facts suggest that HPM
may be regarded as a “fast” implementation of the SPH algorithm.

In addition to the number of particles N , the HPM method has two length
scale parameters—the size λ of the auxiliary mesh, and a smoothing length
scale µ. A priori, these three parameters may be chosen independently. The
theory in [11] yields a relation for the scaling of λ and µ as a function of N to
achieve a certain rate of convergence; however, it is not known if this relation is
optimal. Further, it requires technical conditions on the kernel functions not all
of which are met in [6]. Even though satisfactory error behavior is frequently
reported, this has not yet been investigated systematically. Finally, it is not
known whether the grid itself has a positive impact on the scheme beyond
facilitating fast computation of long-range interactions. Thus, the purpose of
this paper is to take a very simple, well-controlled numerical setting to study
the behavior of HPM as a function of its governing parameters and of the
relevant properties of the HPM kernels, and to compare its performance to
the classical SPH algorithm.

In this paper, we restrict ourselves to studying the short-time behavior
of the HPM method. This corresponds to the analytic results in [11], where
the error constants may grow exponentially in time as is typical for general
trajectory error estimates for evolution equations. Thus, the Hamiltonian as-
pects of HPM shall not be considered further. Moreover, we restrict ourselves
to two known exact solutions as test cases, namely Burgers’ solution in space
dimension one and the Iacono cosine vortex in space dimension two. The for-
mer is a special solution to the plain irrotational shallow water equations; for
the latter, we must include the non-inertial effects of rotation as well as non-
trivial bottom topography. Burgers’ solution is considered only up to before
the time of shock formation. It tests the ability of the particle scheme to cope
with increasingly inhomogeneous particle distributions. The cosine vortex is
an Eulerian steady state with Lagrangian particle velocities of order one. As
such, it serves as a prototype of an optimally well-behaved exact solution
which yet poses nontrivial challenges to a particle scheme.

We find that the rate of convergence is much better than the best available
theoretical estimates in [11]. Further, our results indicate that HPM performs
best when the number of particles is on the order of the number of grid cells,
the HPM global smoothing kernel has fast decay in Fourier space, and the
HPM local interpolation kernel is a cubic spline.

The outline of the paper is as follows. Section 2 introduces the continuum
shallow water equations and their discretization with the HPM method. Sec-
tion 3 states a simplified version of the convergence result of [11]. Section 4
introduces the exact special solutions of the shallow water equation that we
benchmark against. The numerical results are detailed in Section 5, and the
paper concludes with a brief discussion of these results in Section 6.
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2 The HPM method for shallow water

We apply the HPM method to the rotating shallow water equations with
bottom topography. On the one hand, the rotating shallow water equations
can be seen as a simple example of a barotropic flow. On the other hand,
the Coriolis force and bottom topography terms allow for nontrivial exact
two-dimensional steady states which we will use as one of our benchmarks.

The continuum equations of motions describe the evolution of a d-dimen-
sional velocity field u = u(x, t) and a density field ρ = ρ(x, t) via

∂tu + u · ∇u + Ju = −∇(ρ + b) , (1a)

∂tρ + ∇ · (ρu) = 0 , (1b)

where J is a zero-order skew-symmetric operator, b = b(x) is a smooth,
time-independent function, and x = (x1, . . . , xd). When considered on a two-
dimensional spatial domain, then u describes the evolution of the vertically
averaged velocity field, ρ describes the layer depth, and b the spatial varia-
tion of the bottom topography of a thin layer of fluid. In the shallow water
literature, the layer depth is usually denoted h. Here, as in [11], we disregard
the physical connotations and write h to denote the numerical approximation
to ρ. More generally, the forcing term ∇ρ arises from the choice of barotropic
fluid pressure p(ρ) = ρ2/2.

In our experiments, we take d = 1, 2 and supply periodic boundary con-
ditions on Td ≡ [−π, π)d. When d = 1, we take J = 0; when d = 2, we use
the standard so-called f -plane Coriolis term Ju = (−u2, u1). The physical
constant of gravity and the Coriolis constant have been set to unity.

To define the HPM method, we introduce a regular grid with K nodes in
each dimension. The locations of the mesh nodes are given by {xα ≡ λα : α ∈
Gd} on Td, where G = Z ∩ [K/2,K/2) is the index set, always interpreted in
modulo K arithmetic, and λ = 2π/K is the mesh size.

We first define a local partition of unity kernel via a compactly supported
shape function Ψ . Here, we restrict ourselves to considering tensor-product B-
splines of varying order. We note that the spline of order r satisfies a so-called
Strang–Fix condition of order p = r + 1 which expresses that polynomials of
degree less than p can be composed of integer translates of the shape function
Ψ ; it plays a crucial role in the analysis in [11]. All results in the following
are labeled by the order p of the Strang–Fix condition used. Once the shape
function Ψ is specified, the scaled kernel

ψλ(x) = λ−d Ψ(x/λ) (2)

and its translates form a periodic partition of unity on the mesh.
Second, we define a global smoothing operator via discrete convolution on

the mesh as follows. For a mesh function h = (hα)α∈Gd , the action of the
smoothing operator Sλ,µ on h at grid node α ∈ Gd is computed by filtering
high frequencies in discrete Fourier space via
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(Sλ,µh)α =
∑

γ∈Gd

eiγ·xα
1

(1 + |µγ|2)q
h̃(γ) , (3)

where µ defines a global smoothing length scale and

h̃(γ) =
1

Kd

∑

β∈Gd

e−iγ·xβ hβ (4)

denotes the discrete Fourier transform of h. In other words, Sλ,µ is a discrete
approximation to the q-th power of the inverse Helmholtz operator 1 − µ2∆.

The HPM approximation [6] to (1) is a set of ordinary differential equations
describing the motion of N fluid particles of mass mk at positions Xk

N , where
k = 1, . . . N , via

d

dt
Xk

N (t) = Uk
N (t) , (5a)

d

dt
Uk

N (t) = −JUk
N (t) −∇(h̄(x, t) + b̄(x))

∣

∣

∣

x=Xk
N

(t)
, (5b)

where the smoothed layer depth h̄ and smoothed bottom topography b̄ are
computed from the finite ensemble of particles in a three-step process. First,
we obtain an interpolated layer depth on the grid via

hα(t) =

N
∑

k=1

mk ψλ(xα − Xk
N (t)) . (6a)

Second, we introduce a smoothed layer depth on the grid,

h̄α(t) = (Sλ,µh)α , (6b)

where h = (hα)α∈Gd denotes the layer depth approximation on the grid. Third,
we interpolate the layer depth field from the grid onto the entire domain by
using the partition of unity kernels from (2) once more, setting

h̄(x, t) = λd
∑

α∈Gd

h̄α(t)ψλ(x − xα) . (6c)

Similarly, the bottom topography contribution is computed via

b̄α = (Sλ,µb)α (7a)

where, in abuse of notation, we use b to also denote the topography function
evaluated on the grid, and set

b̄(x) = λd
∑

α∈Gd

b̄α ψλ(x − xα) . (7b)
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Expressions (6c) and (7b) can now be analytically differentiated and used
on the right hand side of the discrete momentum equation (5b). The reason
for using the same interpolation kernel ψλ in (6a) and in (6c) is that only
then the HPM dynamics has a Hamiltonian structure [6], which can be seen
as a direct discrete analog of the parcel Hamiltonian continuum formulation
of [2]. This, however, will not play any further role in this paper.

We remark that our scaling of the masses mk in (6a) is that commonly
used in the SPH literature. It differs from the definition of mk and ψλ used
in [6]. In our scaling, sums over the grid such as appear in (6c) can be read
as a Riemann sum approximation of an integral over the torus where λd is
the volume of a single cell. Moreover, we can cleanly discuss the SPH limit of
HPM, namely the limit that λ → 0 with N and µ fixed (the mk as defined in
[6] become singular in this limit).

In our tests, we initially place L particles in each dimension on a regular
particle mesh, so that N = Ld and the initial particle positions Xk

N can be
identified, by enumeration, with the initialization mesh points {Xβ ≡ Λβ : β ∈
Hd} where H = 1/2 + Z∩ [−L/2, L/2) with particle mesh spacing Λ = 2π/L.

Then, with the same identification between enumeration index k and multi-
index β, we set, at time t = 0, mβ to be an approximation to the mass in cell
β given by the d-dimensional trapezoidal rule

mβ =
Λd

2d

∑

γ

ρ(Xβ + Λ
2 γ, 0) ≈

∫

Xβ+[−Λ/2,Λ/2]d
ρ(a) da , (8)

where the sum ranges over all possible d-vectors γ whose entries are 1 or −1.

3 Theoretical estimates and consequences

We measure the error in terms of the L2-like error functional

Q =
1

2

N
∑

k=1

mk

∣

∣Uk
N − u(Xk

N )
∣

∣

2
+

λd

2

∑

α∈Gd

∣

∣(Sr
λ,µhtot)α − ρtot(xα)

∣

∣

2

≡ Qkin + Qpot (9)

where htot = h + b and ρtot = ρ + b are the approximate and exact total
layer depths, respectively, and Sr

λ,µ denotes the convolution square root of
Sλ,µ which acts, due to the Fourier convolution theorem, on the grid function
h via

(Sr
λ,µh)α =

∑

γ∈Gd

eiγ·xα
1

(1 + |µγ|2)q/2
h̃(γ) . (10)

The error functional can be seen as a direct generalization of the HPM
Hamiltonian [6] where the convolution square root arises from symmetrizing
the expression for the potential energy. Our error functional is also motivated
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by the one used in [12], where the integral over the layer depth error used
there is replaced by its grid-approximation here. Under mild smoothness as-
sumptions, the difference between the two error measures vanishes as λ → 0.

Vanishing of the error functional Q as N → ∞ corresponds to convergence
of the numerical solution of (5–7) to a solution of (1). The following theorem
states sufficient conditions for convergence and an associated error bound.

Theorem 1 ([11]). Suppose that the shallow water equations possess a clas-

sical solution of class

u, ρ ∈ C1
(

[0, T ];H4+d(Td)
)

(11)

for some T > 0. Apply the Hamiltonian particle-mesh method with a tensor-

product cardinal B-spline of order p − 1 ≥ 2 as local interpolation kernel and

with (3) as the global smoothing operator. Then, with q > p + d/2,

λ ∼ N−
1
d , and µ ∼ L

−
p−1

p+2+d (12)

as N → ∞, there exist constants C1 and C2 such that

Q(t) ≤ C1 eC2t L
−

2(p−1)
p+2+d (13)

for all t ∈ [0, T ].

A few remarks are in order. First, the theorem was proved for a flat bottom
and without rotation; there is, however, no principle obstacle to obtaining a
corresponding result in the presence of nontrival topography.

Second, the condition q > p + d/2 excludes the bi-Helmholtz operator
used in most of the previous work on HPM. This condition is not sharp,
but is technically convenient as it ensures a strict ordering of the various
contributions to the total error in the proof of the theorem. Hence, we expect
that as q is decreased, the rate of convergence in (13) decreases as well.

Third, the rate of convergence in (13) can be improved to any exponent less
than two by choosing a local interpolation kernel which satisfies a sufficiently
high order of polynomial reproduction, and subject to choosing q large enough.

Finally, it is possible to let the mesh size λ → 0 while N and µ remain fixed.
Although this limit is not computationally relevant as the computational cost
tends to infinity while the accuracy remains finite, it is the limit in which
the HPM method tends to the classical SPH algorithm while the sum in the
potential energy term of the error functional tends to an integral, so that
the error functional converges to the one used by Oelschläger in his proof of
convergence of the SPH method [12]. The result is therefore of theoretical
interest and can be stated as follows.

Theorem 2 ([11]). In the setting of Theorem 1, suppose that the shallow

water equations are solved by the SPH method with periodic kernel given by
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(3) with q > max{3+d/2, d}. Then there exist constants C1 and C2 such that,

letting

µ ∼ N
−

q−d
q+2 (14)

as N → ∞, we obtain the error bound

Q(t) ≤ C1 eC2t N
−

2(q−d)
d(q+2) (15)

for all t ∈ [0, T ].

In particular, the order of convergence in (15) can be raised to any expo-
nent less than two by choosing q large enough.

4 Special solutions

4.1 Burgers’ solution for d = 1

We consider the one-dimensional, non-rotating shallow water equations with-
out bottom topography,

∂tu + u ∂xu = −∂xρ and ∂tρ + u ∂xρ = −ρ ∂xu , (16)

for x ∈ [−π, π) with periodic boundary conditions. This system has an ana-
lytical solution in terms of the function J(x, t) = K−3

√

ρ(x, t) satisfying the
inviscid Burgers’ equation

∂tJ + J ∂xJ = 0 (17)

provided that the Riemann invariant u+2
√

ρ initially equals the constant K.
We choose

ρ(x, 0) = 1
9 (K + sinx)2 and u(x, 0) = K − 2

√

ρ(x, 0) (18)

with K = 3. This solution develops a discontinuity at the earliest time the
characteristics of Burgers’ equation intersect, so that

tshock = −1/min ∂xJ(x, 0) = 1 . (19)

The steepening of the wave in time is shown in Figure 1. Since HPM does not
contain shock handling, we are not interested in the behavior at or beyond
the singularity. Rather, we perform a multi-parameter study of the behavior
of HPM on the time interval 0 ≤ t ≤ 0.95, which is close enough to the time
of shock solution that the final particle distribution is very nonuniform. This
example has also been used in [1, 16].
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Figure 1. Burgers’ solution of the one-dimensional shallow water equations at times
t = 0, 0.25, 0.5, 0.75, 0.95.

0 Π-Π Π

2
-
Π

2

0

Π

-Π

Π

2

-
Π

2

x1

x2

Figure 2. Stream function ξ and stream lines of the cosine vortex (25) with a = 1
and c = −1, ρ0 = 2.5, and b0 = 1.

4.2 Cosine vortex over topography for d = 2

The cosine vortex in our test case belongs to the family of Iacono vortex
solutions [8], special Eulerian steady-state solutions to the two-dimensional
shallow water equations. These steady-states are interesting as they pose a
nontrivial challenge to Lagrangian methods.

Following [8], we impose that the flow is steady with divergence-free hor-
izontal velocity field. Under these assumptions, the shallow water equations
decouple if we consider the Bernoulli function as given. The bottom topogra-
phy b will then become one of the unknowns.

We begin by defining the relative vorticity ζ = ∇⊥ · u ≡ ∂1u2 − ∂2u1 and
the Bernoulli function B(x) = 1

2 |u(x)|2 + ρ(x) + b(x), so that the shallow
water momentum equations read

(1 + ζ)u⊥ + ∇B = 0 . (20)
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We then note that the transport stream function Ψ , defined via

ρu = ∇⊥Ψ , (21)

is in the steady state only a function of x, and constant along parcel tra-
jectories. It is known that the potential vorticity q = (1 + ζ)/ρ is materially
conserved. Under the steady-state assumption, this implies q(x) = q(Ψ(x)).
Plugging (21) into (20), we find that q(Ψ)∇Ψ = ∇B, so that

dB

dΨ
= q(Ψ) =

1 + ζ

ρ
. (22)

In the special case that u is divergence free, we can introduce a second stream
function ξ via

u = ∇⊥ξ . (23)

Since Ψ is constant along parcel trajectories, Ψ(x) = Ψ(ξ(x)). Plugging (23)
into (21) yields ρ∇ξ = ∇Ψ , so that ρ as function of ξ satisfies ρ(ξ) = dΨ/dξ.
Hence, (22) can be written as

dB

dξ
= 1 + ζ = 1 + ∆ξ . (24)

We now specialize to the class of cosine vortex solutions by setting

ξ(x) = c (cos x1 + a cos x2) , (25)

where a and c are constants. Consequently, ∇2ξ = −ξ so that (24) reads
dB/dξ = 1 − ξ. Integrating this relation, we obtain

B(ξ) = −1

2
ξ2 + ξ + B0 . (26)

Recalling that

B(ξ) =
1

2
|∇ξ|2 + ρ(ξ) + b , (27)

we can determine ρ(x) = ρ(ξ(x)) and a consistent bottom profile b(x). Namely,
combining (26) and (27), and using (25), we obtain

ρ(ξ(x)) + b(x) = −c2

2
(1 + a2 + 2a cos x1 cos x2) + ξ(x) + B0 . (28)

This equation can be consistently partitioned into two relations ρ(ξ) = ξ + ρ0

and b(x) = −a c2 cos x1 cos x2 + b0, where the constant ρ0 is chosen large
enough to ensure that ρ(x) > 0. The cosine vortex with the choice of param-
eters used in our benchmarks is shown in Figure 2. We remark that the x1-x2

plane can be seen as the planar phase space for the dynamics of a single fluid
parcel. In this view, (0,−π) and (−π, 0) and their periodizations are equi-
librium points; the line segments x2 = ±x1 ± π are heteroclinic connections
of these equilibrium points. The vortex appears stable, although a stability
analysis using the standard energy-Casimir method [15] is inconclusive. This
shall be discussed in more detail in a forthcoming paper.
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Figure 3. Error levels for the cosine vortex with initially n = 2 particles per cell
per dimension, q = 6, p = 4, and final time T = 0.5.

5 Results

In the following, we present a number of multi-parameter studies of the be-
havior of the HPM method for the two benchmark cases. To decouple the
effects of the mesh size λ and the smoothing length µ as much as possible, we
present the results in terms of the relative smoothing

µrel = µ/Λ , (29)

where Λ = 2π/L is the initial inter-particle distance. Thus, for µrel = 1, the
smoothing length scale and the inter-particle distance are comparable. We
further let n denote the initial number of particles per cell per dimension, i.e.,

L = nK and N = Ld = nd Kd . (30)

As time integrator, we use the standard fourth order explicit Runge–Kutta
scheme which is accurate and robust. In our simulations, time integration
errors were consistently subdominant for time step τ = 10−4. As we are not
working on long-time integration, there is no advantage in using a symplectic
time integrator as in [6].

5.1 Optimal global smoothing

In the first series of benchmarks, we fix the initial number of particles per cell
as this is the only regime where the computational effort of the grid operations
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Figure 4. Error levels for the cosine vortex with initially n = 1 particle per cell per
dimension, q = 6, p = 4, and final time T = 0.5.
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Figure 5. Error levels for the cosine vortex with initially n = 0.5 particles per cell
per dimension, q = 6, p = 4, and final time T = 0.5.
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and of the particle-to-grid operations remain asymptotically comparable (up
to logarithms). In the first set of tests, we also make sure that the sufficient
conditions on the order of the Strang–Fix condition and on the order of the
global smoothing under which Theorem 1 asserts convergence of the HPM
method are satisfied. In Sections 5.3 and Section 5.4, we later investigate
what happens when these conditions are violated.

The qualitative behavior of the error under the change of the number
of particles and of the global smoothing length is very similar in all cases.
Figures 3 to 5 are examples for the cosine vortex; the behavior for the one-
dimensional Burgers’ solution is very similar. Two features are worth pointing
out. First, when the global smoothing is too large, errors rise. In the regime of
large global smoothing, contours of constant error have slope 1 in the µrel-L
plot; however this is simply saying that µ = const and therefore to be trivially
expected. Second, and more interestingly, when there is a sufficient number of
particles per cell, lowest errors are obtained without global smoothing at all.
With an increasing number of particles, however, global smoothing appears
to become necessary to reduce errors, see Figure 4. We do not know if, as the
number of particles increases, global smoothing always becomes necessary,
in other words, whether Figure 3 will look like Figure 4 if it were extended
toward the larger number of particles regime.

The above indicates that typically, though not always, there is a unique
nonzero minimum of the error with respect to the global smoothing for a fixed
number of particles. Moreover, these minima lie approximately on a straight
line when the coordinate axes are logarithmically scaled, implying that the
optimal global smoothing satisfies a power law relationship with the number
of particles.

Figure 6 shows the optimal global smoothing for four different initial num-
bers of particles per cell. The cases n = 2, n = 1, and n = 0.5 correspond
directly to Figure 3, Figure 4, and Figure 5, respectively. For even more initial
particles per cell, the behavior is very close to that of n = 2; for even fewer
initial particles per cell, the behavior is very close to that of n = 0.25. The
scaling of the corresponding optimal error is shown in Figure 7.

5.2 Optimal number of particles per cell

We can add another level of analysis to the preceding set of simulation data:
suppose that for fixed values of the initial number of particles per dimension L
and number of particles per cell per dimension n we always choose the optimal
global smoothing length scale. How then does the error behave as a function
of L and n? And further, for given L, what is the optimal number of particles
per cell?

If the cells are too coarse, then clearly we expect the local interpolation
error to increase. Whether the error should increase in the opposite extreme,
when we refine the mesh without adding more particles, is less obvious. Indeed,
Figure 8 shows that this is so for the cosine vortex benchmark, but that there
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Figure 8. Error levels for the optimally smoothed cosine vortex simulation with
q = 6, p = 4, and final time T = 0.5.
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Figure 9. Error levels for the optimally smoothed simulation of Burgers’ solution
with q = 6, p = 4, and final time T = 0.95.
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Figure 10. Optimal choice of initial number of particles per cell per dimension n
for the optimally smoothed HPM benchmarks shown in Figure 8 and Figure 9.
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Figure 11. The behavior of the optimal error corresponding to Figure 10.
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is almost no distinct minimum of error for an intermediate number of particles
per cell in the Burgers’ benchmark, Figure 9.

The optimal number of particles in the vortex case follows very roughly a
power law, see Figure 10. For Burgers’ solution and and a small number of
particles, the scaling behavior is very similar, but Figure 9 makes clear that
in this case this behavior is very fragile and indeed breaks down when taking
more particles. Yet, the optimal error follows a relatively stable power law in
both cases, see Figure 11.

The crucial difference between the two cases is that in the cosine vor-
tex benchmark, the particle distribution remains relatively uniform, while in
Burgers’ benchmark the particles bunch up toward the right hand side of the
domain. In the latter case, HPM cannot do any better than SPH—the SPH
limit is characterized by n → 0 in Figures 8 and 9. However, in the “good”
case when the particles remain approximately uniformly distributed, HPM has
a distinct error optimum when the scale particle grid is roughly comparable
with that of the HPM grid. This phenomenon was conjectured on theoretical
grounds in [11, Remark 1] and is clearly seen in these numerical benchmarks.
It also explains why the optimal error scaling in the cosine vortex case is better
than for Burgers’ solution although generically we expect higher dimensional
HPM to do worse than HPM in lower dimensions.

5.3 The role of the global smoothing order q

Figures 12 and 13 for the cosine vortex and Figures 14 and 15 for Burgers’
solution, respectively, show the influence of q on the optimal global smoothing
length scale and the corresponding optimal rate of convergence. In the proof
of Theorem 1 given in [11], a decay condition of the Fourier symbol of the
smoothing kernel implies the requirement q > p + d/2. Numerically, we do
not find any indication that convergence fails when this condition is violated.
However, the value of q does feature significantly into the rate of convergence
whenever the number of particles per cell drop below unity. (When n ≫ 1,
the optimal smoothing length is zero and the value of q does not enter the
computation at all.)

The optimal error in the theoretical estimate is obtained by balancing the
influence of the initialization error with that of a dynamical error contribution.
This implies that the initialization error, which is essentially dominated by the
smoothing error, should scale like the total observed error. Let us therefore
look at the scaling of the pure smoothing error. To do so, we recall a well-
known result regarding the Lp error for convolution smoothing on Rd [14].
Namely, provided the kernel function satisfies a first order moment condition
and some further technical requirements, the smoothing error is of second
order in the smoothing length scale µ. Disregarding grid effects, this implies
that whenever the optimal smoothing length has scaling µ ∼ L−κ, the pure
smoothing error contribution would scale like

Qsmooth ∼ L−4κ ≡ L−γsmooth . (31)
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Figure 12. Optimal global smoothing as a function of the number of particles for
the cosine vortex with n = 0.25, p = 4, and T = 0.5.
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Figure 14. Optimal global smoothing as a function of the number of particles for
Burgers’ solution with n = 0.25, p = 4, and T = 0.95.
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Figure 15. Corresponding minimal error as a function of the number of particles
for Burgers’ solution with n = 0.25, p = 4, and T = 0.95.
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q Vortex γact Vortex γsmooth Burgers γact Burgers γsmooth

1 1.22 1.7 0.98 2.19
2 1.94 2.09 1.35 2.62
3 2.35 2.37 1.59 2.85
4 2.6 2.59 1.74 2.97
5 2.71 2.68 1.83 3.08
6 2.82 2.86 1.94 3.14

Table 1. Scaling exponents for the error so that Q ∼ L−γ for the two test cases
with cubic splines and n = 0.25. Compared are actual measured scaling exponents
with scaling exponents for pure smoothing error where the smoothing length is given
by the actual measured optimal smoothing length.

κtheory κact γtheory γact

Vortex 0.38 0.71 0.75 2.82
Burgers 0.43 0.79 0.85 1.94

Table 2. Scaling exponents for optimal smoothing µ ∼ L−κ and corresponding
error Q ∼ L−γ for the two test cases with cubic splines, q = 6, and n = 0.25. Notice
that µ ∼ µrel/L.

Obviously, the HPM dynamics and the grid approximation introduce many
further contributions to the total error Q but, by comparing the respective
scaling exponents, we shall be able to tell whether the smoothing error is
dominant or subdominant.

The results of this analysis are displayed in Table 1, where the behavior for
the two test cases is markedly different: for the cosine vortex, the smoothing
error is the dominant error contribution except for q = 1, 2 when the order of
the operator is way below that required by current theory. We see clearly that,
within the expected accuracy, the smoothing error scaling exponent γsmooth

provides an upper bound for the actual measured scaling exponent γact. For
Burgers’ solution, the scaling of the total error is dominated by contributions
other than the smoothing error. We conjecture that the particle distribution
for the cosine vortex can be seen as a perturbation of a uniform grid for
time intervals of order one so that the dynamical error behaves qualitatively
similar to the initialization error. For Burgers’ solution, on the other hand,
the final particle distribution is very nonuniform, so that the dynamical error
is distinctly worse than the initialization error; therefore it must be distinctly
worse than pure smoothing error scaling. We further believe that the two
examples give two extremes of the behavior of HPM under the assumption that
the true solution is smooth, and that generic behavior should be within the
range covered by these examples. This clearly requires further investigation.

Let us also compare the numerical values of the observed to the theo-
retically predicted scaling exponents (12) and (13) for cubic splines as local
interpolation kernels which, for p = 4, read
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µ ∼ L
−

3
6+d and Q ∼ L

−
6

6+d . (32)

The comparison for q = 6 is summarized in Table 2. Clearly, the error bounds
given by Theorem 1 are far from sharp. In the case of the cosine vortex
where the error behavior is dominated by the smoothing error, the follow-
ing interpretation is possible: The scaling exponent of the initialization error
is underestimated in [11] by a factor of 2 due to the L1-L∞ splitting used
there. As the dynamical error of the cosine vortex behaves qualitatively like
the initialization error, this would put the optimal global smoothing scaling
exponent off by a factor of 2, and then again the scaling relation between µ
and Q off by a factor of 2, so that we might expect an underestimate by a fac-
tor of 4 altogether. The data is roughly consistent with this explanation, but
a more in-depth investigation will be necessary to come to a firm conclusion.
In the case of Burgers’ solution, the underestimate is not as dramatic as the
dominant error contributions are due to other effects which are presumably
captured better by the theory.

5.4 The role of the Strang–Fix order p

To our surprise, the order of the Strang–Fix condition has very little influence
on the performance of the HPM method, as Figure 16 illustrates. The support
of a linear spline is simply too small to ensure consistent approximation.
However, in the quadratic case where p = 3, the approximation is already quite
good with only a slight degradation for large numbers of particles. Moreover,
there is no improvement going beyond cubic splines; indeed, the error even
rises very slightly, which is likely due to the increased support of the higher
order splines and the fact that the examples are taken in a regime where global
smoothing for providing long-range interactions is not required.

6 Conclusion

We have achieved a comprehensive numerical study of the parameter depen-
dence of the HPM method in a simple, controlled setting. Within the con-
straints of this setting (looking at the short-time error only, special solutions
instead of generic data, and limited parameter ranges), we found that the error
behavior as a function of the parameters smoothing length µ, mesh size λ, and
number of particles N is very well characterized by power law dependencies,
and thus can be described in simple terms.

We conclude the following. The HPM method performs at least as good
as SPH with the same number of particles, although the asymptotic compu-
tational cost is much lower. HPM may even perform better than SPH with
the same number of particles so long as the particles remain well distributed.
Whether this is relevant in the generic situation remains to be studied.
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Figure 16. Minimal error as a function of the number of particles for the cosine
vortex with n = 2, q = 6, and T = 0.5. The values p = 3, . . . , 6 correspond to
quadratic, cubic, quartic, and quintic cardinal B-splines, respectively.

HPM performs best when the number of particles and the number of cells is
approximately comparable. In the case when the particle distribution remains
favorable, best performance is achieved with a slight asymptotic increase of the
number of particles per cell as the number of particles increases. This, however,
is likely not relevant in practice, so that a constant number of particles per
cell at, or slightly above unity, appears advisable.

The decay exponent q of the global smoothing kernel plays a big role in
determining the observed rate of convergence, where larger powers yield better
results, although improvements are slight beyond q = 3 or 4. However, we do
not see a break-down of convergence for low values of q as might be expected
from theory.

In contrast, the order of the local interpolation spline plays almost no role
for the error behavior. We see a possible slight improvement going from spline
order 2 to 3, but no further benefit beyond that. As the number of interacting
grid nodes and the associated computational cost increases with the spline
order, the cubic spline appears to be the best choice. Whether an optimally
written code with quadratic splines might beat out the cubic version in terms
of error per CPU time is beyond what we can assess presently.

We finally remark that our scalings are stated in terms of the number of
particles. Since the computational complexity is log-linear in the number of
particles, this correlates approximately with scaling in terms of CPU time.
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However, as the discussion of the spline order shows, the constant factors can
differ appreciably.

In a forthcoming study, we shall look specifically into the role of the Hamil-
tonian structure for simulations over longer time scales, and into the behavior
with generic data.
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