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Abstract. We consider the evolution of a passive scalar in a shear flow in
its representation as a system of lattice differential equations in wave num-

ber space. When the velocity field has small support, the interaction in wave
number space is local and can be studied in terms of dispersive linear lattice
waves. We close the restriction of the system to a finite set of wave num-
bers by implementing transparent boundary conditions for lattice waves. This

closure is studied numerically in terms of energy dissipation rate and energy
spectrum, both for a time-independent velocity field and for a time-dependent
synthetic velocity field whose Fourier coefficients follow independent Ornstein–
Uhlenbeck stochastic processes.

1. Introduction

Transport in fluid flow is often characterized by the presence of vastly different
time and length scales. In particular, the simulation of most turbulent flows by
direct numerical simulation, i.e., by solving a discrete version of the Navier–Stokes
equations in a regime where a priori or a posteriori errors are small, is far beyond
the reach of current computers. Computation of large scale features of such flows
thus entails—explicitly or implicitly—the modeling of the impact of unresolved
small scales on the scales of interest.

One such approach is large eddy simulation (LES), where a spatial filter is applied
to the equation of motion. For a passive scalar θ advected by a divergence-free
velocity field u,

∂tθ + u · ∇θ = 0 , (1)

define filtered fields θ = G ∗ θ and u = G ∗ u through convolution with a suitable
mollifier G. Since multiplication and mollification do not commute, the filtered
equation reads

∂tθ + u · ∇θ = u · ∇θ − u · ∇θ ≡ ∇ · τ , (2)

where τ is called the subgrid stress. Equation (2) is obviously not closed; the art
of LES modeling consists in expressing τ in terms of θ and u such that, on the one
hand, important structural and statistical properties are maintained and, on the
other hand, the model is stable for computation on a coarse grid. Such closures—
either as above for the advection equation or, similarly, for the full equations of fluid
motion—are not approximations in the strict mathematical sense. They typically
lack a precise notion of metric, of small parameter, and thus of convergence, but
there is a vast body of experience through numerical and experimental validation
with different LES closures; see, e.g., the review by Meneveau and Katz [14]. Even
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though LES is often highly successful in simulation, the abstract “closure problem”
is still far from solved; indeed, a universal closure scheme cannot be expected
because any successful closure scheme must exploit a specific physical feature of
the flow under consideration, which makes closure schemes problem-dependent.

In this work, we address a very special case of the closure problem where a sys-
tematic subgrid model can be derived: the case when the support, in wave number
space, of the advecting velocity is small compared to the cut-off wavenumber of the
filter.1Physically, this corresponds to the Batchelor regime of passive advection, in
which the advecting velocity has much larger scale than the advected field. This
situation is very different from fully developed three-dimensional turbulence, where
advected and advecting fields coincide and possess features beyond the grid scale.
On the other hand, many flows of practical importance do fall into this category.
Stirring at large scales can induce chaotic mixing as exemplified by the ABC flow
[7]; instances of such mixing flows abound in engineering.

Another important example is that of large-scale flows in geophysical fluid dy-
namics. Typically, large-scale flows in the atmosphere and oceans are dominated
by layerwise quasi-two-dimensional motion along density stratification surfaces.
Mutatis mutandis, such flows are subject to the basic phenomenology of two-
dimensional turbulence with the attendant inverse cascade of kinetic energy to-
wards large scales; see, for example, [16]. This inverse cascade makes the Batchelor
regime directly relevant for tracer advection in geophysical flows [11].

Furthermore, large-scale geophysical flows are approximately governed by the
three-dimensional distributions of an active scalar tracer called the potential vor-

ticity (PV); see [16]. The large-scale velocity field can be approximately computed
by convolving the PV with a smoothing kernel, which implies that the advecting
velocity field is smoother than the advected PV field. This makes our approach
relevant to active tracers such as PV as well. However, in the present paper we
restrict ourselves to passive tracers.

When the advecting velocity field u has only very large scales, i.e., when its
support in wave number space is restricted to a small fraction of the numerically
resolvable scales, advection can be thought of acting locally in wave number space.
This locality of the interaction permits an analysis in terms of dispersive linear
lattice waves as are classical in solid state physics [3, 4] and have also been used in
the analysis of finite difference schemes for hyperbolic PDEs [20, 18, 22, 9].

The simplest truncation to a finite set of wave numbers is the Galerkin projection
onto the set of Fourier modes with wave numbers |k| ≤ N . The Galerkin-truncated
system is conservative. Correspondingly, in the lattice wave picture, we find that
waves are reflected at the cut-off boundary, thereby polluting the modes below the
cut-off and, in particular, altering the tracer energy (or variance) spectrum. To
avoid such reflections, we must implement nonreflecting boundary conditions in
wave number space which allow energy to move out of the resolved range without
being reflected.

Non-reflecting boundary conditions for linear advection and advection-diffusion
equations in physical space have a long history and are, by now, well understood
[10, 12, 5, 15]. Here, we generalize the approach of Colonius [5] and Rowley and

1Other assumptions about the advecting velocity field lead to other systematic closure schemes;
e.g., in the Kraichnan model for stochastic velocity fields substantial progress can be made (see
[1] and references therein).
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Colonius [15], based on earlier work of Vichnevetsky and co-workers [20, 22], to
allow dynamic computation of the nonreflecting boundary condition for complex
dispersion relations, and implement these boundary conditions in wave number
space.

Two remarks are in order. First, this situation is different from studying fully
developed turbulence, where the best one can hope for is correctness in the statisti-
cal sense and where closure means, above all, implementing correct time-averaged
energy fluxes. Second, the connection between non-reflecting boundary conditions
and LES closure is not new—Colonius and Ran [6], driven by the observation that
for fully nonlinear flow problems none of the established methods, all based on linear
wave theory, works unconditionally well, set out to derive nonlinear non-reflecting
boundary conditions by using an LES-like closure in wave number space. This is
the dual point of view of what we propose here, and of what is normally done.

In the present paper, we focus on shear flows in two dimensions where the closure
problem reduces to a computation on a one-dimensional lattice. The general case
is subject to a forthcoming paper. Specifically, we consider the advection equation

∂tθ + u · ∇θ = 0 (3)

on the doubly periodic domain T
2 ≡ [−π, π]2 with a velocity field

u(x, t) =

(

u(y, t)
0

)

. (4)

This simple shear flow example has the exact solution

θ(x, y, t) = θ

(

x −
∫ t

0

u(y, t) dt, y, 0

)

, (5)

which is characteristic for sheared-over disturbances and exhibits the secular devel-
opment of fine y-scales. In the Fourier representation, equation (3) reads

∂tθkl + ik
∑

m+n=l

um θkn = 0 , (6)

where we take the convention

fk =
1

2π

∫ +π

−π

e−ikx f(x) dx (7)

for the Fourier transform in one dimension.
Equation (6) exhibits the basic closure problem in spectral space because the

Fourier modes of θ are coupled to neighboring modes over a range of wavenumbers
proportional to the radius of spectral support of the u. In a numerical simulation
with a finite number of modes (6) must be truncated in some way near the boundary
of the spectral grid. At first sight, the usual Galerkin projection appears attractive
because it maintains a discrete version of the integral conservation law for the
variance θ2. However, this conservation law is precisely what one does not wish to
see in a faithful simulation of the advection equation truncated to a finite spectral
domain. Instead, the variance of θ associated with a finite wavenumber domain
should decrease due to the flux of θ2 across the boundary of the spectral grid.

In practice, this variance-diminishing flux is often modeled by adding a scale-
selective artificial diffusion term on the right-hand side of (3). A common choice
in spectral schemes is the ‘hyperdiffusion’ (or ‘hyperviscosity’ in the geophysical
literature) term ν (−1)p−1∇2pθ of order 2p. Here p ≥ 1 is an integer and p = 4
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is a typical choice. In essence, this artificial diffusion acts as a damping layer
near the boundary of the spectral grid and as such it approximates a non-reflecting
boundary condition. One problem with this approach is how to tune the resolution-
dependent coefficient ν. For instance, it is well known that in forced–dissipative
simulations of statistically steady states the chosen value of ν can affect the energy
spectrum over a large range of wavenumbers and not just near the cut-off. This
gives rise to subtle controversies over the nature of observed and simulated spectral
characteristics [19, 17].

In this paper we pursue a different idea, namely whether the spectral truncation
of the advection equation can be modeled by a non-reflecting boundary condition for
the waves on the spectral lattice defined by (6). The paper is organized as follows.
We first review the Vichnevetsky–Colonius approximate nonreflecting numerical
boundary conditions and reformulate their algorithm in a framework that is more
amenable to generalization. In Section 4 we introduce our general setting, explain
several variants of the algorithm, derive the energy dissipation rate for closures
of this type and define generalized reflection coefficients which are based on the
error in the energy dissipation rate. The various closures are numerically tested
and compared in the following Section 5. Our synthetic time-dependent velocity
fields are based on simple Ornstein–Uhlenbeck stochastic processes. In Section 6,
we modify the lattice wave picture to account for dispersion curves with such time-
dependent coefficients. These ideas are numerically validated in the final Section 7.

So far, we have chosen a a simple, quasi-onedimensional setting—shear flows
where the shearing velocity field is supported on only a few largest-scale modes in
the Fourier domain. In principle, similar closures can be used in higher dimensions
which, however, are complicated by the fact that the normal modes used in the
analysis of Section 3 cease to be exact solutions of the system of lattice ODEs.
Moreover, a quantitative validation of such nonreflecting closures in the case where
the velocity field has unbounded support in Fourier space, but its coefficients decay
at a rapid, specified rate, is of particular importance for active PV advection. Both
problems will be addressed in forthcoming work.

2. Setup

Throughout the paper, we work in the following setting. In the Fourier rep-
resentation of advection by a shear flow, the horizontal wave number k acts as a
parameter, so that the only dynamically relevant index is the vertical wave number
l. We thus drop the k-subscript and write (6) in the form

θ̇l =

M
∑

j=−M

cj θl−j (8)

where

cj = −ikuj . (9)

Since u is real, u−j = uj and therefore

c−j = −cj . (10)

Moreover, we assume that there is no overall drift, so that c0 = 0.
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Figure 1. Sketch of right lattice boundary.

2.1. Group velocity. The behavior of (8) is best understood in terms of dispersive
lattice waves. The concept of group velocity, the velocity at which energy (or
variance) is traveling along the lattice, is of central importance. We give a brief
motivation, following the stationary phase argument as used in [18].

We look for normal mode solutions of the form

θl = eiωt−ilξ ≡ eiωt κl (11)

where κ = κ(ξ) = exp(−iξ). Substitution into (8) leads to the dispersion relation

ω(ξ) = −i

M
∑

j=−M

cj κ−j . (12)

Note that ω(ξ) = −k u(ξ); in other words, the dispersion curve is nothing but the
shear profile. The solution to (8) is then given by the Fourier integral

θl(t) =
1

2π

∫ π

−π

eil(ω(ξ)t/l−ξ) θ(ξ, 0) dξ . (13)

When l is large, the exponential factor oscillates rapidly, unless

d

dξ

(

ω(ξ)
t

l
− ξ

)

= 0 . (14)

In other words, if we track the solution along a line moving with the group velocity

l/t = ω′(ξ), we see only waves of wavenumber ξ as t, l → ∞.

2.2. Closure conditions. In a computational setting, the resolvable wavenumbers
will be restricted to a finite range |l| ≤ N . Thus, the differential equation (8) couples
the highest represented mode θN to M off-grid nodes θN+1, . . . , θN+M . To specify
the values for these quantities, we seek a linear map A : R

S → R
M between the

rightmost S on-grid nodes to the leftmost M off-grid nodes, see Figure 1, so that






θN+1

...
θN+M






= A







θN−S+1

...
θN






. (15)

The matrix A shall be determined such that outgoing waves, i.e. normal mode
solutions (11) with positive group velocity, will be left as undisturbed as possible,
in other words, that reflections of outgoing to incoming waves will be minimized.
The situation at the left boundary l = −N is symmetrical.
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3. Colonius’ discretely nonreflecting boundary conditions

In the following, we discuss several ways of computing a suitable closure map A.
We first review the derivation of Colonius [5], further discussed and extended to
several dimensions in Rowley and Colonius [15]. Our goal is to cast this procedure
into a different, but equivalent framework which is more amenable to generalization.

Essentially, the Colonius closure scheme is based on controlling the outgoing
waves in the neighbourhood of the zero-frequency roots ω(ξ) = 0 of the dispersion
relation. This is natural in the finite-difference application studied in [5] because
in this application ω → 0 as the grid spacing h → 0. In our case, there is nothing
special about zero-frequency roots, which in physical space correspond to locations
y = ξ at which the shear flow u = −ω/k = 0. However, the Colonius scheme can
easily be generalized and therefore used as a starting point.

A few further remarks are in order. First, lattice ODEs of the form (8) are not
precisely the system that Colonius worked with. We, on the one hand, consider
stencils of arbitrary size from the outset. Colonius, on the other hand, permits
linear couplings between neighboring time derivatives on the left hand side of (8);
in our situation there is no need for doing so, but there is also no fundamental
obstacle to including systems of this type into our framework.

Second, in [5] the relation ω(0) = 0 always held due to consistency requirements.
Thus, the limit h → 0 corresponds to ξ → 0, so that lattice waves near ξ = 0 are of
particular interest. Our situation is completely different: ξ corresponds to physical
space so that there is nothing special about ξ = 0; moreover, the lattice spacing
relates to the physical domain size and therefore is not small. These differences
require modifications which are discussed in Section 4.

Third, as far as the boundary conditions go, there is nothing special about l = N .
Therefore, we translate the computations on the lattice to a location which allows
for the most convenient indexing. The assumption that N ≫ M is nonetheless
important in that it guarantees that we are close to the stationary phase limit
in the solution integral (13). Only in this limit do lattice waves provide a good
description of the true dynamics.

The basic idea is that the boundary condition is determined by the condition
that the vector

Θ = (θ1, . . . , θS , θS+1, . . . , θS+M ) (16)

(where, without loss of generality, we have fixed the boundary at N = S) lies in a
certain subspace that characterizes outgoing waves. In the following, we character-
ize this subspace as the kernel of a certain linear map.

3.1. Boundary condition for M = 1. For M = 1 the shear flow has simple a
sinusoidal profile, i.e. modulo translation and scaling, u(ξ) = − sin ξ, and the lattice
equations can be solved explicitly (see Appendix A), which allows easy comparison
with the closure scheme. The corresponding dispersion relation ω = −ku = k sin ξ
has two distinct zero-frequency roots at ξ1,2 = {0, π}, say. The first root corre-
sponds to a wave with positive group velocity, the second to a wave with negative
group velocity. Let us consider the right lattice boundary, where the root with
positive group velocity, in the following denoted by κ1 = exp(−iξ1), corresponds
to an outgoing, hence physical wave, and the root with negative group velocity
corresponds to an incoming, hence spurious wave.
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For a given boundary stencil of size S, let Q ≡ S denote the order of the scheme
in the terminology of [5]. Then

Θ(κ) = eiωt (1, κ, . . . , κQ) (17)

denote Q + 1 consecutive samples of a normal mode (11). The sample nodes cor-
respond to a boundary stencil of size S plus the M = 1 off-grid node required to
close the system.

Since we want to optimally characterize outgoing waves near the root κ = κ1, we
seek a linear functional ℓ(Θ) that not only annihilates (17), but also its first Q− 1
derivatives with respect to ω. In other words, we require that

djℓ(Θ)

dωj

∣

∣

∣

∣

ω=0

= 0 for j = 0, . . . , Q − 1 (18)

where the differentiation with respect to ω is carried out implicitly with the un-
derstanding that the inversion is near the root κ = κ1 which corresponds to the
outgoing wave. In the case of finite difference schemes, where ω is scaled with the
spatial stepsize h, (18) implies that the resulting reflection coefficients go to zero
with order Q as h → 0 [21, 5]. Note, however, that a small parameter of this kind
is not available in our setting.

For actual computation, it is easier to express (18) directly in terms of κ deriva-
tives. Indeed, through successive implicit differentiation, we find the equivalent
condition

djℓ(Θ)

dκj

∣

∣

∣

∣

κ=κ1

= 0 for j = 0, . . . , Q − 1 . (19)

When the order condition is written this way, it is easy to see that

ℓ(Θ) =

Q
∑

k=0

(

Q

k

)

(−κ1)
k θQ−k (20)

possesses property (18) since, by (11) and the binomial theorem, the sum on the
right equals

eiωt

Q
∑

k=0

(

Q

k

)

(−κ1)
k κQ−k = eiωt (κ − κ1)

Q . (21)

The approximate nonreflecting boundary condition is now obtained by solving
ℓ(Θ) = 0 for the single off-grid node θQ. Substituting this relationship back into
(8) yields the same ODE for the boundary node θQ−1 as stated in [5].

Remark 1. The error committed by the extrapolation identity (20) can be assessed
in terms of the closed form solution (76) as follows. Recall the recurrence identity
for Bessel functions [2, 9.1.27],

Jl−1(t) − 2
l

t
Jl(t) + Jl+1(t) = 0 . (22)

In the cases considered in [5], the dispersion curve always passes the origin, so that
κ1 = 1. Consequently, the recurrence identity (22) for the exact solution coincides
with the closure condition ℓ(Θ) = 0 for Q = 2 in the limit l/t → 1. This corresponds
to following the wave packet with maximal group velocity. For other values of Q,
we can compute a “consistency error” by plugging the exact solution (76) into ℓ(Θ).
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For exact closure, the expression should vanish, so the magnitude of the remainder
can be used to quantify the error. In particular, for Q = 0, we obtain

Jl(l) = O(l−1/3) as l → ∞ (23)

and for Q = 1,

Jl(l) − Jl+1(l) = J ′
l (l) = O(l−2/3) as l → ∞ , (24)

see [2, 9.3.31/33]. For Q > 2, the error committed when plugging (76) into (20)
can be expressed, after using Bessel function recurrence identities, in terms of (23),
(24), and 1− l/t. Hence, the analysis of this error involves the interplay of the two
limits l → ∞ and l/t → 1.

Remark 2. We can also derive (20) from a different point of view. Condition (19)
implies that the coefficient vector of ℓ spans the one-dimensional kernel of the
Q × (Q + 1) matrix

B(κ1) ≡

















κ0
1 κ1

1 κ2
1 · · · κQ

1

0 κ1
1 2κ2

1 · · · QκQ
1

0 κ1
1 4κ2

1 · · · Q2κQ
1

...
...

...
...

0 κ1
1 2Q−1 κ2

1 · · · QQ−1κQ
1

















. (25)

Thus, (20) can be derived by direct Gauss elimination. This ansatz is particularly
amenable to automated computation of the boundary operators and can easily be
generalized to the case when M > 1.

Remark 3. It is straightforward to generalize the above ideas to the case when the
boundary operator involves derivatives at different grid nodes and higher order time
derivatives as in some of the closures proposed by Colonius [5].

3.2. Boundary condition for M ≥ 2. In general, we must relate the M nodes
that lie outside of the boundary to S nodes within the domain. Counting multiplic-
ities, the dispersion relation now has 2M distinct zeros, which we label κ1, . . . , κ2M .
These roots have to be classified according to whether they correspond to spurious
or physical waves. There are two cases: the roots where κ is on the unit circle
in the complex plane, corresponding to real values of ξ, and those where |κ| 6= 1,
corresponding to a nonzero imaginary part of ξ. While the former represent unat-
tenuated waves, the latter have exponential growth or decay in l, and are called
evanescent waves. If the roots are distinct, there are exactly M spurious and M
physical waves. A wave corresponding to a unit root is physical if its group velocity
is pointing out of the boundary and spurious if its group velocity is pointing into the
boundary. An evanescent wave is spurious if it is increasing toward the boundary,
and physical if it is decreasing toward the boundary.

Remark 4. Our assumptions on the cl restrict the patterns of roots that can occur.
First, κ = ±1 is necessarily a pair of roots. If κ is a root, then κ−1 is also a root.
Finally, if κ is a root, then κ is also a root.

Remark 5. Pairs of roots on the unit circle are structurally stable with respect to
small perturbations of the coefficients, as they have to either pass through ±1 or
“collide” with another pair of unit roots in order to get off the unit circle.
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Remark 6. In our case, the initial data do not contain evanescent waves. Since
traveling waves do not reflect into evanescent waves, we can set up our extrapolation
operators to extrapolate traveling waves only. Since, for a fixed sized stencil, this
allows for better extrapolation of traveling waves, we will do so in the remainder of
this paper.

If we want to find a closure of the same fixed order Q near each of the roots,
then we must take a boundary stencil of size S = MQ and need the corresponding
number of equations to specify the boundary condition uniquely. In other words,
we are looking for a linear map L : R

S+M → R
M which satisfies condition (19)

at each of the roots of the dispersion relation that correspond to outgoing lattice
waves. When M ≥ 2, there is no obvious way of finding a closed form expression
for L, but we can easily generalize the linear algebra of the M = 1 case.

Let κ1, . . . , κM denote the physical waves at the chosen boundary. Then L is the
(S + M) × M matrix with linearly independent columns which satisfies











B(κ1)
B(κ2)

...
B(κM )











L = 0 , (26)

where each B(κi) is a Q × (S + M) block of the form (25). When this equation is
solved by standard Gauss elimination, L emerges naturally in the form

L =

(

AT

−I

)

(27)

where A is the M × S matrix featuring in the boundary closure (15).

3.3. Example. As an example, we consider the case M = 2 with c−2 = 1/2,
c−1 = c0 = c1 = 0, and c2 = −1/2. Thus, we have two uncoupled, interleaved
systems of the form (71). The dispersion relation reads

ω = sin 2ξ (28)

on the fundamental domain ξ ∈ (−π, π]. The roots are at −π/2, 0, π/2, and π; we
consider the right boundary so that we need to select the roots corresponding to a
positive group velocity, which are ξ = 0 and ξ = π corresponding to κ1 = 1 and
κ2 = −1. We choose the simplest nontrivial case, Q = 2, and must therefore solve









1 1 1 1 1 1
0 1 2 3 4 5
1 −1 1 −1 1 −1
0 −1 2 −3 4 −5









L = 0 , (29)

the solution to which is readily computed as

LT =

(

−1 0 2 0 −1 0
0 −1 0 2 0 −1

)

, (30)

so that, as expected, the boundary condition decouples into two interleaved Colo-
nius-type order 2 closures.
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4. General nonreflecting boundary conditions

4.1. Setup. We observe that our lattice ODE does not have a built-in spatial step-
size scaling; thus, we are not in a situation where a (rescaled) ω can be considered
small. Consequently, we must sample the dispersion relation at a more general set
of lattice wave numbers ξ. In physical space, this corresponds to sampling the shear
flow u = −ω/k at more than one location y = ξ. We consider, for ease of notation,
the case of the right hand boundary only, and fix S sample wavenumbers ξ1, . . . , ξS

which correspond to outgoing, here rightgoing, waves. As before, κj = exp(−iξj)
denote the corresponding multipliers.

At each of these sample modes, we require an order Q = 1 closure condition,
i.e., we require that the suitable linear functionals annihilate the relevant S + M
function values that correspond to outgoing normal modes. The matrix whose row
space is the set of chosen modes, analogous to the left hand matrix in (26), then
reads

(B,C) =







κ1
1 . . . κS

1 κS+1
1 . . . κS+M

1
...

...
...

...

κ1
S . . . κS

S κS+1
S . . . κS+M

S






, (31)

which we separate into blocks B ∈ R
S×S and C ∈ R

S×M ; we assume that B is
nonsingular. The row space of (B,C) is invariant with respect to left multiplication
by a nonsingular matrix and, hence, is also spanned by (I,B−1C). Thus, the
nonreflecting boundary condition is







θS+1

...
θS+M






= (B−1C)T







θ1

...
θS






, (32)

where θ1, . . . , θS are grid values within the lattice domain, and θS+1, . . . , θS+M the
virtual grid points outside the domain of computation which are necessary to close
the lattice ODE.

There is no a priori best choice of sample wave numbers ξ1, . . . , ξS . Before
discussing strategies for choosing the sample modes in our setting, we remark that
a closure of order Q > 1 at a certain wavenumber ξ can be obtained via the above
procedure by taking ξ, ξ+h, . . . , ξ+(Q−1)h among the sample wavenumbers, then
letting h → 0. Thus, there is no need to explicitly consider higher order closures.

4.2. Equidistant sampling. When the velocity field (and correspondingly, the
dispersion relation) is smooth, equidistant sampling is an obvious choice. Equidis-
tant sampling is easy to implement and guarantees a well-conditioned matrix in-
version in (32).

We adopt the following notation. Let Ssmpl denote the number of sample wave
numbers and set h = 2π/Ssmpl. We then sample the dispersion relation, for exam-
ple, at wave numbers

ξj = −π + jh for j = 1, . . . , Ssmpl . (33)

The modes are then sorted into right and leftgoing waves according to the sign
of their group velocity. At the right boundary, only rightgoing sample modes are
physical and can be used to span the subspace in which to extrapolate. Generally,
we will have Sout ≤ Ssmpl outgoing modes which we label ξr(j) with corresponding
multipliers κr(j) = exp(−iξr(j)) for j = 1, . . . , Sout. A natural choice is to let
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S = Sout, i.e. the size of the boundary stencil equals the number of available
equations, so that matrix (31) takes the form

(B,C) =









κ1
r(1) . . . κS

r(1) κS+1
r(1) . . . κS+M

r(1)

...
...

...
...

κ1
r(S) . . . κS

r(S) κS+1
r(S) . . . κS+M

r(S)









. (34)

The nonreflecting boundary condition is again given by (32).

4.3. Least-norm solution. Equidistant sampling has two drawbacks. First, the
size of the boundary stencil at each boundary depends on the dispersion curve. As
such, it is not something we could easily control. Second, when the velocity field
is a smooth function of time, the extrapolation operators, depending only on the
partition of the sample modes into left- and right-going waves, are discontinuous
in t. This can, in particular, cause problems for the step size control of the time
integrator. These problems can be overcome, on the expense of increasing the size of
the linear system (34), by oversampling the dispersion curve. The resulting system
for the coefficients of the extrapolation is then underdetermined and needs to be
solved in a least-norm sense.

We fix the size of the boundary stencil S and, independently, the number of
sample points Ssmpl. As we demonstrate numerically in Section 5, the quality of
the extrapolation depends very little on Ssmpl. Hence, Ssmpl should be chosen such
that, on the one hand, it is large enough so that for every dispersion curve under
consideration there are at least S samples of waves in each direction. On the other
hand, Ssmpl should not be too much larger for computational efficiency.

We begin by noting that the direct solution to the closure problem, equation
(32), can be formulated as follows. Solve

BT z =







θ1

...
θS






, (35)

then set






θS+1

...
θS+M






= CT z . (36)

Here, however, we do not have an invertible B-matrix. All we can say is that, at
the right boundary, there are Sout < Ssmpl outgoing modes which we label ξr(j)

with corresponding multipliers κr(j) = exp(−iξr(j)) for j = 1, . . . , Sout. In general,
S ≤ Sout, so that the B-block in (31) has more rows than columns; we write

(B,C) =









κ1
r(1) . . . κS

r(1) κS+1
r(1) . . . κS+M

r(1)

...
...

...
...

κ1
r(Sout) . . . κS

r(Sout) κS+1
r(Sout) . . . κS+M

r(Sout)









. (37)

Our least-norm problem then is the following. Minimize

‖z‖2
W = zHWz (38)

subject to (35), then set (36). The positive definite weight matrix W is useful if we
want to preserve continuity of the resulting extrapolation operator when a sample
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wave crosses over from being rightgoing to being leftgoing, or vice versa, in the
time-dependent case. To this end, we choose

W = diag
(

|ω′(ξr(1))|−1, . . . , |ω′(ξr(Sout))|−1
)

, (39)

so that slow waves are most heavily penalized against. It is known that the solution
to this least-norm problem can be computed via the QR-decomposition

QR = W−1/2B , (40)

where the least-norm solution is given by

z = W−1/2 QR−T







θ1

...
θS






(41)

and the resulting boundary condition reads






θS+1

...
θS+M






= (R−1QHW−1/2C)T







θ1

...
θS






. (42)

Note that, although the definition of the weights may be singular, the resulting
QR-decomposition (40) and the final extrapolation operator in (42) are not.

4.4. Other choices. If high accuracy over short times is required, it is best to
concentrate the sample points near the maxima of the group velocity. Such closures
behave like the Colonius-type closures of Section 3 (often, as in the cases considered
in [5], the roots of the dispersion relation coincide with the maxima of the group
velocity). However, they have larger long-time energy errors and are more difficult
to implement as compared to equidistant sampling.

In general, our nonreflecting boundary conditions (32) require the inversion of
a matrix or, in the least-norm setting, a QR-decomposition. If efficiency of this
inversion is an issue, there is the following computationally cheap alternative. In-
stead of oversampling the dispersion relation, we may undersample equidistantly,
taking S = Ssmpl.

U =







κ1
1 . . . κS

1
...

...
κ1

S . . . κS
S






(43)

is then (a multiple of) a unitary matrix. (In fact, it is the matrix of the discrete
Fourier transform.) The matrix B as analogous to (37) is then obtained from U
by deletion of all rows which correspond to leftgoing waves. Hence, the rows of
B are orthogonal and the pseudoinverse of B is BH/Ssmpl. This pseudoinverse
is then used in the nonreflecting boundary condition (32), which is equivalent to
projecting the vector of grid values (θN−S+1, . . . , θN ) onto the select set of outgoing
modes, then extrapolating these modes onto their off-grid values. In our situation,
the undersampled closure has, for a stencil of given size, reflections that are much
stronger as compared to using the optimal stencil S = Sout. We might be tempted
to compensate for this by further increasing the size of the boundary stencil as the
computations are cheap. This, however, takes us farther away from the stationary
phase limit in (13), hence increasing an independent source of error.
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4.5. Energy equation. We consider the ℓ2 energy on the half lattice j ≤ S,

E =
∑

j≤S

|θj |2 . (44)

By direct computation,

dE

dt
= 2 Re

∑

j≤S

θj

M
∑

l=−M

cl θj+l

= 2 Re





M
∑

l=1

cl

∑

j≤S

θj θj+l −
M
∑

l=1

cl

∑

j≤S−l

θj+l θj





= 2 Re
M
∑

l=1

cl

l
∑

j=1

θS+j−l θS+j (45)

provided that θk → 0 as k → −∞. Assuming a boundary closure of the form

θS+j =

S
∑

m=1

aj,m θm (46)

for j = 1, . . . ,M , we obtain

dE

dt
= 2 Re

M
∑

l=1

cl

l
∑

j=1

θS+j−l

S
∑

m=1

aj,m θm

= 2 Re

M
∑

l=1

cl

S
∑

n=S+1−l

θn

S
∑

m=1

an+l−S,m θm

= 2 Re

S
∑

m,n=S0

θn θm

M
∑

l=S+1−n

cl an+l−S,m , (47)

where S0 = min{1, S − M + 1} and an,m ≡ 0 for m ≤ 0.
A similar computation on the half-lattice j > M yields an equation for the

energy transfer through a left boundary with linear closure

θj =
S

∑

m=1

aj,m θM+m , (48)

namely

dE

dt
= 2 Re

S1
∑

m,n=0

θM+n θM+m

M
∑

l=n

cl aM+n−l,m , (49)

where S1 = max{M,S} and an,m ≡ 0 for m > S. Note that in each case, (47) and
(49) are quadratic forms in max{M,S} boundary nodes. These quadratic forms
are not necessarily negative definite. However, the construction of the boundary
conditions ensures that the energy decreases in typical cases (see Figure 8), resulting
in a mostly, but not strictly monotonic decrease in energy.
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Figure 2. Dispersion relation ω(ξ), group velocity ω′(ξ), normal-
ized energy dissipation rate d(ξ), and relative dissipation rate error
ρ(ξ) for a Colonius-type boundary closure of order 5. Note that d
and ρ are plotted for the left boundary for leftgoing waves and for
the right boundary for rightgoing waves.

4.6. Reflection coefficients. A reflection coefficient at the boundary is commonly
defined as follows. If, for a given frequency ω, there exist one leftgoing and one
rightgoing normal mode (within a certain range of permissible frequencies), the
approximate transparent boundary condition defines an amplitude ratio between
the two modes at the boundary, the reflection coefficient [21].

For general nonreflecting boundary conditions as derived in this section, this
construction becomes unwieldy, as there may be many incoming or outgoing modes
with the same frequency ω. In principle, we could define a reflection matrix, but
this would not yield a single scalar diagnostic quantity. Moreover, the dimension
of this matrix depends on the shape of the dispersion curve which can be quite
arbitrary and would have to be determined numerically using a global root finding
method. We thus abandon the concept of reflection coefficient as a diagnostic tool
and look instead at the error in the rate of energy dissipation as a function of lattice
wave number ξ. The exact rate at which energy contained in wavenumber ξ leaves
the domain of computation is proportional to the group velocity ω′(ξ), as can be
seen by the following argument.

Fix ξ ∈ [−π, π] such that it is not a critical point of the group velocity, let N ≫ 1
be the largest resolved wave number (in the sense of the Fourier representation of
the original advection equation), and let t = N/ω′(ξ) be the time when the phase in
the Fourier integral (13) is stationary, i.e. when the wave packet with lattice wave
number ξ leaves the domain of computation. (Recall that lattice wave numbers
correspond to physical distance in the original advection problem, hence forming a
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Figure 3. Relative dissipation rate error ρ(ξ) for Colonius-type
boundary closures of varying order Q. Qualitatively, ρ plays the
role of a reflection coefficient.

Figure 4. Comparison of the relative dissipation rate error ρ(ξ)
for a Colonius-type closure vs. a least-norm fit of an oversampled
extrapolation.
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continuum.) By the implicit function theorem,

dt ω′(ξ) + t ω′′(ξ) dξ = 0 , (50)

so that, by the Parseval identity,

dE =
1

2π
|θ(ξ, 0)|2 dξ = −|θ(ξ, 0)|2 ω′(ξ)

2π t ω′′(ξ)
dt (51)

We recognize 1/
√

2πtω′′(ξ) as the amplitude of the leading order contribution to
the stationary phase asymptotics in (13). Thus, the energy of a wave packet with
normalized amplitude leaves the computational domain with group velocity ω′(ξ).

Our approximate transparent boundary conditions have corresponding energy
dissipation rates for normalized lattice waves on the right hand and left hand bound-
aries which read, according to (47) and (49), respectively,

dr(ξ) = 2 Re
S

∑

m,n=S0

eiξ(n−m)
M
∑

l=S+1−n

cl an+l−S,m (52)

and

dl(ξ) = 2 Re

S1
∑

m,n=0

eiξ(n−m)
M
∑

l=n

cl aM+n−l,m . (53)

The error in the energy dissipation rate is therefore

dEerr = −|θ(ξ, 0)|2 ω′(ξ) − d(ξ)

2π t ω′′(ξ)
dt = |θ(ξ, 0)|2 ω′(ξ) − d(ξ)

2π ω′(ξ)
dξ (54)

Motivated by this expression, we define a relative dissipation rate error function

ρl,r(ξ) =
ω′(ξ) − dl,r(ξ)

|ω′(ξ)| + |dl,r(ξ)|
. (55)

This function takes values between −1 and 1; it is zero if the wave with lattice wave
number ξ passes the boundary unhindered. Thus, ρ can be seen as a generalized
reflection coefficient.

5. Numerical tests for time-independent velocity

5.1. Colonius-type closures. We demonstrate the Colonius-type closures of Sec-
tion 3 for M = 1. The velocity field is specified by c1 = 1. This is the case to which
the closed form solution of Appendix A applies.

Figure 2 shows the dispersion curve ω(ξ) on [0, π]; the behavior on [−π, 0] is
symmetric to the window shown. Also shown are the corresponding group velocity
ω′(ξ) and the actual energy dissipation rate d(ξ). It is clearly seen that d(ξ) approx-
imates the group velocity very well near its extrema, but displays rapid, unphysical
energy growth near the zeros of the group velocity. This behavior is reflected by
the relative dissipation error rate.

Figure 3 shows how the dissipation rate error depends on order. Figure 4 com-
pares Colonius-type closures with the least-norm oversampled method described in
Section 4.3 with an equal-sized boundary stencil. The relative energy dissipation
rate error of the least-norm computation is more uniformly distributed and, except
for a small region near the zeros of the group velocity, does not exceed 10%.
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Figure 5. Dispersion relation ω(ξ), group velocity ω′(ξ), normal-
ized energy dissipation rate d(ξ), and relative dissipation rate error
ρ(ξ) for the equidistantly sampled boundary closure with Ssmpl = 8
sample points.

Figure 6. Dispersion relation ω(ξ), group velocity ω′(ξ), normal-
ized energy dissipation rate d(ξ), and relative dissipation rate er-
ror ρ(ξ) for the equidistantly over-sampled boundary closure with
Ssmpl = 32 sample points and a boundary stencil of size S = 4
computed by a weighted least-norm fit.
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Figure 7. Comparison of the relative dissipation rate error ρ(ξ)
for a direct solution of the extrapolation equations vs. a least-norm
fit of an oversampled extrapolation. Since the sample points are
divided up between the left and the right boundary, a boundary
stencil of size S corresponds to Ssmpl = 2S direct sample points.

5.2. Equidistant closures. The two equidistant closures, direct and least-norm,
are evaluated on a test problem with M = 3 and c1 = 3, c2 = −0.6, c3 = −1.2. The
group velocity now has two maxima of different magnitude as well as two additional
zeros.

Figure 5 shows the dispersion plot of direct equidistant sampling—sample points
being indicated with bullets—and the resulting dissipation rate and error curves.
The corresponding situation for the oversampled least-norm method with boundary
stencils of equal size is shown in Figure 6. The qualitative difference between
the two methods is marginal with the distribution of the error of the least-norm
computation slightly more uniform. Thus, the biggest practical advantage of the
least-norm computation is code simplification due to the predictable size of the
boundary stencil—this point is moot in one, but significant in higher dimensions—
and the time continuity of the boundary condition.

We compare a reference solution (computed on a grid five times larger) with a
low order transparent boundary closure (for higher order closures some of the errors
would be indiscernible in the plots) and with a brute-force Galerkin truncation.
Figure 7 demonstrates that the quality of the boundary conditions depends mostly
on the size of the stencil while there is no clear winner when comparing the direct
solution technique with an oversampled least-norm solution. Thus, as mentioned
before, the chief advantage of the least-norm solution is that it allows to specify
stencil sizes a priori, and that it can guarantee continuity in time of the boundary
conditions for nonstationary flows. Figure 7 also shows clearly that the approximate
nonreflecting boundary conditions do worst for waves with near-vanishing group
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Figure 8. Time evolution of the energy for the solutions that
correspond to the dispersion curve of Figure 5 and Figure 6. The
initial data are concentrated on the zero mode. Shown are a ref-
erence computation on a much larger grid (solid line), a boundary
closure with least-norm extrapolation and stencil size S = 2 (dot-
ted line) and a Galerkin truncation (dashed line).

velocity. These, however, are the waves for which the absolute energy dissipation
rate is very small.

Figure 8 shows that, while the Galerkin truncation does not dissipate energy,
the transparent boundary conditions yield a qualitatively good approximation of
the energy dissipation rate. Since the approximation error is mostly concentrated
in the slow waves, the long-time error is worse than the behavior for short times.

Figure 9 gives time slices of the solutions on the Fourier grid. The large spurious
reflections in the Galerkin case can be clearly seen. The fully two-dimensional
field in physical space corresponding to the final time slice of Figure 9 is shown in
Figure 10.

6. Time-dependent velocity fields

We generate an artificial time-dependent velocity field by letting its Fourier co-
efficients follow independent Ornstein–Uhlenbeck stochastic processes of the form

dc(t) = −α c(t) dt +
√

2β dW (t) , (56)

where W (t) is standard Brownian motion. This process admits a stationary Gauss-
ian probability distribution which is controlled by only two parameters, the inverse
correlation time α and the variance β/α; its time integral has a k−1 power spec-
trum. A more detailed description of the properties of the Ornstein–Uhlenbeck is
given in Appendix B.
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Figure 9. The evolution of the solution corresponding to the dis-
persion curve of Figure 5 and Figure 6 on the Fourier grid. The
initial data are concentrated on the zero mode. Shown are a win-
dow into a reference solution computed on a much larger grid (solid
line), a boundary closure with least-norm extrapolation and stencil
size S = 2 (dotted line) and a Galerkin truncation (dashed line).
The solution is shown at t = 0, 15

8 , . . . , 15
1 .

Figure 10. The solutions corresponding to the final time slice of
Figure 9 in physical space.
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We now reexamine the lattice ODE (8) under the assumption that the coefficients
cj depend on time. The normal mode solutions now take the more general form

θl = eiΩ(t)−iξl , (57)

so that substitution into (8) gives

ω(ξ, t) ≡ Ω̇(ξ, t) = −i

M
∑

j=−M

cj(t) eijξ . (58)

Integration yields the dispersion relation

Ω(ξ, t) = −i
M
∑

j=−M

Cj(t) eijξ with Cj(t) =

∫ t

0

cj(t) dt . (59)

The general solution to (8) is given by the Fourier integral

θl(t) =
1

2π

∫ π

−π

eiΩ(ξ,t)−ilξ θ(ξ, 0) dξ . (60)

For large l, the exponential oscillates rapidly unless

d

dξ

(

Ω(ξ, t) − lξ
)

= 0 . (61)

Thus, ideal transparent boundary conditions at a wave number N ≫ 0 behave
asymptotically as follows. A wave packet with wave number ξ will remain in the
domain of computation until it reaches the boundary, i.e. if the corresponding phase
in (60) becomes stationary at the boundary. The packet is then absorbed by the
boundary and will not re-enter the domain of computation. In particular, the mean
time for a wave packet to remain in the domain is the mean exit time of the random
variable dΩ/dξ from the domain [−N,N ].

If the coefficients cj of the velocity field follow Ornstein–Uhlenbeck processes with
identical parameters, then Ω as well as dΩ/dξ are the time integrals or displacements

of an Ornstein–Uhlenbeck process whose parameters are determined as follows. The
coefficient process (58) can be written, using the symmetry (10),

ω(ξ, t) = −i

M
∑

j=1

(

cj eijξ − cj e−ijξ
)

= 2

M
∑

j=1

(

bj(t) cos jξ + aj(t) sin jξ
)

, (62)

where cj ≡ aj + ibj , and therefore

dω

dξ
= 2

M
∑

j=1

j
(

aj(t) cos jξ − bj(t) sin jξ
)

. (63)

According to Lemma 5, for fixed j the process aj(t) cos jξ − bj(t) sin jξ is also
distributed according to an Ornstein–Uhlenbeck process driven by white noise with
variance parameter β, and dω/dξ follows an Ornstein–Uhlenbeck process driven by
white noise with variance parameter

βM ≡ β
M
∑

j=1

(2j)2 = 2
3 β M (M + 1) (2M + 1) . (64)
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Figure 11. Evolution of total energy for the shear flow forced
by the stochastic process of Section 6 on the Fourier lattice of size
N = 100. The energies are obtained by using a transparent closure
at N = 200, then truncating to the smaller N = 100 grid.

According to Hagan, Doering, and Levermore [13], the mean exit time is given by

E[Tex] =
1

2

α2

βM

(

N − β
1/2
M

α3/2
ζ( 1

2 )

)2

− 1

2α
Var

[

dω

dξ
(0)

]

+
1

α
κ

=
1

2

α2

βM

(

N − β
1/2
M

α3/2
ζ( 1

2 )

)2

− 1

2

βM

α2
+

1

α
κ , (65)

where ζ is the Riemann zeta function so that −ζ( 1
2 ) = 1.4603545 . . . and κ =

0.2274981 . . . is another numerical constant, up to exponentially small errors in

r ≡ N α

√

α

βM
. (66)

Since βM/α is the variance of the group velocity process dω/dξ, the limit r ≫ 1
is the regime where the size of the lattice domain is much larger than the typical
distance a wave travels on the correlation time scale 1/α. Also note that the
parameters of [13] are identified with our notation via

εHDL =
1√
α

and σHDL =

√
βM

α
. (67)

7. Numerical tests for time-dependent velocity

We now test out the transparent boundary conditions with a time dependent
velocity field which is generated, as described in the previous section, by having
the Fourier coefficients follow independent Ornstein–Uhlenbeck processes.
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Figure 12. Evolution of total energy for the shear flow forced by
the stochastic process of Section 6 with α = 8. This graph com-
pares the reference computation of Figure 11 with a transparent
closure and a Galerkin truncated simulation with hyperdiffusion of
order 8 and ν = 10−16

We are interested in the time-averaged energy spectrum in a statistical steady-
state. Thus, we must consider a forced-dissipative setting where the forcing is
confined to low wavenumbers and dissipation arises exclusively through passage of
wave packets through the nonreflecting boundary. We force the system such that
the energy flux is kept constant. In our implementation the forcing function is a
multiple of the modes |k| ≤ Sdrv where the radius of the driving stencil Sdrv is
small; here Sdrv = 1. The constant of proportionality is adjusted to keep the rate
of energy injection constant. (A fixed forcing function whose amplitude is adjusted
leads to small denominators and subsequent stability problems.)

Since the right hand side of the differential equation is not differentiable in time,
we do not need high order in the time integrator. Moreover, standard time stepping
control will fail on this type of data. On the other hand, we need an i-stable
scheme—an integrator whose stability region includes part of the imaginary axis.
We thus settle for the standard fourth order Runge–Kutta scheme where the time
step is determined by the CFL condition of the advection problem. Moreover, we
discretize the stochastic process such that it is constant throughout a full Runge–
Kutta time step. This ensures that at least the energy balance is accurate to order
four, even though the full trajectory error cannot be better than order one. If
the Ornstein–Uhlenbeck process is not frozen throughout the time step, we see
significant energy drift even in situations where no energy is passing through the
boundary.

In our test we fix M = 3, the variance of the Ornstein–Uhlenbeck processes to be
1 so that β = 1/α, compute the boundary operators using least-norm equidistant
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Figure 13. The time-averaged energy spectra corresponding to
Figures 11 and 12. In each triple of curves with same α, the upper
curve belongs to the “Reference” computation with transparent
boundary closure on a Fourier lattice of size N = 200, the middle
curve to a transparent boundary closure at N = 100, and the
bottom curve a Galerkin truncation with hyperdiffusion of order 8
and ν = 10−16.

oversampling with Ssmpl = 20 sampling points, and use a boundary stencil of
size S = 4 and the rate of energy influx equal to 1 where only the modes with
wavenumbers k = −1, 0, 1 are forced.

Figure 11 shows the evolution of the total energy on a Fourier lattice of size N =
100 for varying time constant α. The effect of a transparent closure vs. a Galerkin
truncation with hyperdiffusion is seen in Figure 12. The diffusion coefficient was
chosen as small as possible, namely, such that a pile-up of energy at the cut-off
is barely visible (and remains outside of the window shown). The energy spectra
corresponding to various combinations of method and parameter α are shown in
Figure 13.

We identify three different regimes. When α is small, corresponding to r ≪ 1,
the rate of change of velocity is slow compared to the group velocity of most lattice
waves, and the system behaves almost like with a static velocity field. When α is
large, corresponding to r ≫ 1, the diffusion of energy to high wave numbers is slow
and energy is piling up in the low modes; the transparent boundary conditions are
not exercised significantly. In the intermediate regime, we see that the transparent
boundary conditions are significantly more dissipative on the smaller Fourier lattice,
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because with high probability the group velocity of wave packets which have left
the smaller Fourier lattice will change such that they return to it. A transparent
boundary condition, however, will simply dissipate the wave packet at its first
passage time.

8. Concluding remarks

In this paper, we have investigated transparent boundary conditions in spectral
space for the numerical simulation of passive-tracer advection by a one-dimensional
shear flow. The boundary condition is based on the assumption that the shear flow
has compact spectral support. We formulated an asymptotic boundary closure
scheme that exploits a small parameter, namely, the size of the spectral support
of the shear flow divided by the spectral truncation of the numerical scheme. This
brings the numerical problem into a form that can be analyzed based on a dispersion
relation for waves in spectral space, and the boundary condition in spectral space
can then be formulated based on a group-velocity decomposition into outgoing
and incoming waves in spectral space. In physical space, the dispersion relation is
proportional to the shear flow profile and these waves correspond to the singular
neutral modes that form the continuous spectrum of the original shear flow. Several
different boundary schemes were formulated and tested based on different sampling
strategies from the underlying dispersion relation.

For steady shear flows the performance of the transparent boundary condition
in spectral space was tested successfully against simple exact solutions and against
alternative numerical approaches such as the standard Galerkin truncation. Here
the scheme performed very well. For randomly fluctuating shear flows the per-
formance of the scheme was dependent on the ratio between the timescale of the
flow fluctuations and the straining rate; a somewhat less clear result emerged from
the simulations in these scenarios. Finally, we have begun to investigate the two-
dimensional version of this scheme. Here the straight streamlines of the shear flow
are replaced by the curved streamlines of an incompressible two-dimensional flow
and the analysis in spectral space is significantly complicated by the rotation of
advected tracer structures along the curved streamlines. We hope to report on this
on-going project in the future.

Appendix A. Exact solution for sinusoidal velocity fields

When the velocity field contains only a single wave number, so that, without loss
of generality,

u(y) = − sin(y) , (68)

the closure problem can be solved explicitly. However, if more than one wave
number pair is active, explicit formulas of this type do not appear to be available
and we have to resort to approximately nonreflecting boundary closures. In the
following, we state the one-mode solution as a benchmark and illustration of the
more general procedure.

For u as in above,

u1 = − 1

2i
, u−1 =

1

2i
, and ul = 0 for all j 6= ±1 . (69)
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Plugging (69) into (6), we obtain

∂tθkl −
k

2
θk,l−1 +

k

2
θk,l+1 = 0 . (70)

Since the equation is linear in θ, it is sufficient to consider the evolution of one
particular horizontal wavenumber, k = 1, say. Different k can be achieved by
rescaling time; more general functions in x are treated by superposition. Dropping
the horizontal wave number index for notational simplicity, we arrive at a system
of coupled ODEs,

θ̇l = 1
2 θl−1 − 1

2 θl+1 . (71)

We seek a solution in terms of the generating function

φ(t; ε) =
∑

l∈Z

θl(t) εl , (72)

which is a formal power series in the artificial parameter ε. Equation (71) implies
that

φ̇ = 1
2 ε−1 φ − 1

2 ε φ , (73)

so that

φ(t; ε) = φ(0; ε) e
1

2
(ε−1/ε)t . (74)

The exponential factor is recognized as the generating function of the Bessel func-
tions of the first kind [2, 9.1.41],

e
1

2
(ε−1/ε)t =

∑

l∈Z

Jl(t) εl , (75)

so that, if the profile is initially vertically homogeneous, i.e., φ(0; ε) = 1,

θl(t) = Jl(t) . (76)

More generally, if

φ(0; ε) =
∑

l∈Z

θl(0) εl , (77)

we find that

θl(t) =
∑

n+m=l

θn(0)Jm(t) . (78)

Appendix B. Ornstein–Uhlenbeck process

In this appendix, we review some elementary properties of the Ornstein–Uhlen-
beck process for the benefit of the reader and also to fix notation and scalings. This
is essentially textbook material and can, for example, be found in [8].

Lemma 1. The Ornstein–Uhlenbeck process has the explicit solution

c(t + s) = e−αs c(t) +
√

2β

∫ t+s

t

eα(s−r) dW (t + r) . (79)

In particular,

E[c(t + s)] = e−αs
E[c(t)] . (80)
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Proof. Without loss of generality, we take s = 0 and define

C(t) =

∫ t

0

c(r) dr . (81)

(Since c is continuous, this is a classical integral.) Then the integral version of the
Ornstein–Uhlenbeck SDE (56) reads

Ċ(t) = c(0) − α C(t) +
√

2β W (t) . (82)

We multiply with an integrating factor, so that

eαt c(t) + α eαt C(t) = eαt c(0) +
√

2β eαt W (t) , (83)

then integrate and multiply by α,

α eαt C(t) = c(0) (eαt − 1) + α
√

2β

∫ t

0

eαr W (r) dr . (84)

Noting that the Itô formula implies the integration by parts identity
∫ t

0

eαr dW (r) = eαt W (t) − α

∫ t

0

eαr W (r) dr , (85)

we find, by subtracting (84) from (83), that

eαt c(t) = c(0) +
√

2β

∫ t

0

eαr dW (r) . (86)

This identity is directly equivalent to that stated in the lemma. �

Lemma 2. If c(t) is a random variable which evolves according to the Ornstein–

Uhlenbeck process (56), then

E[c2(t)] = e−2αt
E[c2(0)] +

β

α
(1 − e−2αt) . (87)

Proof. By the Itô formula,

c2(t) − c2(0) =

∫ t

0

(

−2α c2(r) + 2β
)

dt + 2
√

2β

∫ t

0

c(r) dW (r) . (88)

Taking the expectation, noting that a(r) and the increments dW (r) are indepen-
dent, we obtain

E[c2(t)] − E[c2(0)] = −2α

∫ t

0

E[c2(r)] dr + 2βt . (89)

This is easily written as an ODE in E[c2(t)] and readily solved. �

Corollary 3. The co-variance of the Ornstein–Uhlenbeck process satisfies

Cov[c(t), c(t + s)] = Var[c(0)] e−α(2t+s) +
β

α
(1 − e−2αt) e−αs , (90)

Cov[c(t), c(t + s) | c(0) = γ] =
β

α
(1 − e−2αt) e−αs , (91)

and in the stationary case,

Cov[c(t), c(t + s)] =
β

α
e−αs . (92)
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Proof. Use Lemma 1 to express c(t + s) in terms of c(t) and note that c(t) and
∫ t+s

t

eα(s−r) dW (t + r) (93)

are independent random variables, so that

Cov[c(t), c(t + s)] = E[c(t) c(t + s)] − E[c(t)] E[c(t + s)]

= E[c2(t)] e−αs − E[c(t)]2 e−αs (94)

The first identity follows by (80), the other two are direct consequences. �

Corollary 4. A discrete-time sample time series for the Ornstein–Uhlenbeck pro-

cess is given by

c(t + ∆t) = c(t) e−α∆t + N(0, σ) , (95)

where N(0, σ) is a normally distributed random variable with mean 0 and variance

σ2 =
β

α
(1 − e−2α∆t) . (96)

Proof. Lemma 1 shows that the increments are Gaussian with zero mean. Their
variance is explicitly given by (91). This fully characterizes the discrete time sample
process. �

Lemma 5. If a(t) and b(t) are Ornstein–Uhlenbeck processes with identical corre-

lation time 1/α and variance 2β, then c(t) = σ a(t) + ρ b(t) follows an Ornstein–

Uhlenbeck process with correlation time 1/α and variance 2β(σ2 + ρ2).

Proof. By definition, c(t) follows the integral form of the SDE

c(t) − c(0) = −α

∫ t

0

c(s) ds +
√

2β
(

σ W1(t) + ρW2(t)
)

, (97)

where W1 ∼ N(0, t) and W2 ∼ N(0, t) are independent Wiener processes. Hence,

σ W1(t) + ρW2(t) ∼ N(0, (σ2 + ρ2)t) ∼
√

σ2 + ρ2 N(0, t). Thus, c(t) is distributed
according to

dc(t) = −α c(t) dt +
√

2β(σ2 + ρ2) dW (t) , (98)

where W (t) is standard Brownian motion. �
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