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1 Introduction

1.1 Motivation

All measurements are subject to error or uncertainty. Common causes are noise or external
disturbances, imperfections in the experimental setup and the measuring devices, coarseness
or discreteness of instrument scales, unknown parameters, and model errors due to simpli-
fying assumptions in the mathematical description of an experiment. An essential aspect
of scientific work, therefore, is quantifying and tracking uncertainties from setup, measure-
ments, all the way to derived quantities and resulting conclusions.

In the following, we can only address some of the most common and simple methods of
error analysis. We shall do this mainly from a calculus perspective, with some comments on
statistical aspects later on.

1.2 Absolute and relative error

When measuring a quantity with true value xtrue, the measured value x may differ by a small
amount ∆x. We speak of ∆x as the absolute error or absolute uncertainty of x. Often, the
magnitude of error or uncertainty is most naturally expressed as a fraction of the true or
the measured value x. Since the true value xtrue is typically not known, we shall define the
relative error or relative uncertainty as ∆x/x.

In scientific writing, you will frequently encounter measurements reported in the form
x = 3.3± 0.05. We read this as x = 3.3 and ∆x = 0.05.

1.3 Interpretation

Depending on context, ∆x can have any of the following three interpretations which are
different, but in simple settings lead to the same conclusions.

1. An exact specification of a deviation in one particular trial (instance of performing an
experiment), so that

xtrue = x+ ∆x .
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Of course, typically there is no way to know what this true value actually is, but for
the analysis of error propagation, this interpretation is useful.

2. An error bound (which may or may not be strict). In this interpretation, we understand
that xtrue may lie anywhere in the interval [x−∆x, x+ ∆x].

3. Uncertainty in the statistical sense. If repeated measurements of x are expected to
follow a probability distribution, then ∆x is usually taken as the sample standard
deviation of a set of measurements.

Our focus is on analyzing how the error or uncertainty in the input of a calculation propagates
through the calculation, leading to error or uncertainty in the output.

2 Error propagation in one variable

Suppose that x is the result of a measurement and we are calculating a dependent quantity

y = f(x) . (1)

Knowing ∆x, we must derive ∆y, the associated error or uncertainty of y.
Let us recall the equation for the tangent line to f at point x,

`(x+ ∆x) = f(x) + f ′(x) ∆x . (2)

We use the tangent line equation as a (linear) approximation to f ; when ∆x is not too large,
we expect this approximation to be good. Thus,

∆y = f(x+ ∆x)− f(x) ≈ `(x+ ∆x)− f(x) = f ′(x) ∆x . (3)

If we think of ∆x as a positive number which specifies the (expected) magnitude of error,
we shall write the error propagation formula in the form

∆y ≈ |f ′(x)|∆x . (4)

Example 1. If you measure x = 49± 4, what should you report for y =
√
x together with

its uncertainty? To answer this question, we use (4) to compute

∆y ≈ 1

2
√
x

∆x =
1

2
√

49
· 4 =

2

7
≈ 0.3 . (5)

Thus, y = 7 ± 0.3. (Note that it does not make sense to compute an estimate for ∆y to a
large number of significant digits as there is no basis for reporting the resulting error with
great accuracy.)
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Example 2 (Area of circle). Suppose you can measure the radius of a circle with relative
uncertainty ∆r/r = 5%. We ask for the associated relative uncertainty of the computed area

A = π r2 . (6)

By (4), ∆A ≈ π 2r∆r. Thus, the relative uncertainty of the area is given by

∆A

A
≈ π 2r∆r

π r2
= 2

∆r

r
= 10% . (7)

Example 3 (Allometric relation). More generally, when y is allometrically related to x, i.e.,

y = k xα , (8)

the same type of computation (fill in the details!) gives

∆y

y
≈ α

∆x

x
. (9)

Example 4 (Exponential relation). When y is exponentially related to x, i.e.,

y = c eλx , (10)

we find ∆y ≈ |cλ| eλx ∆x, so that

∆y

y
≈ |cλ| e

λx ∆x

c eλx
= |λ|∆x . (11)

(We take c > 0 for simplicity.) Thus, in an exponential relation it is most natural to express
the relative error of the output in terms of the absolute error of the input data!

3 Error propagation in several variables

3.1 Linear approximation and simple error propagation

Suppose, for simplicity, that z = f(x, y) is a function of two variables. Once again, we may
use linear approximation, where

`(x+ ∆x, y + ∆y) = f(x, y) +
∂f

∂x
(x, y) ∆x+

∂f

∂y
(x, y) ∆y (12)

so that

∆z ≈ `(x+ ∆x, y + ∆y)− `(x, y) =
∂f

∂x
(x, y) ∆x+

∂f

∂y
(x, y) ∆y . (13)

As in Section 2, this leads to the error propagation formula

∆z ≈
∣∣∣∣∂f∂x (x, y)

∣∣∣∣∆x+

∣∣∣∣∂f∂y (x, y)

∣∣∣∣∆y . (14)

3



This formula is in fact the best we can do when ∆x and ∆y represent true interval constraints
on the error. It is, however, unnecessarily pessimistic in the case when the true error can be
though of as lying in a “ball of uncertainty” with a known radius in the x-y plane. This is the
case, for example, when measuring distances in the plane where the estimated uncertainty
should not depend on the particular choice of coordinates. Formula (14), however, is not
invariant under rotation of the coordinate axes.

3.2 A geometric view on error propagation1

Suppose you know that the true values xtrue and ytrue lie in an ellipse with center (x, y) and
semi-axes ∆x and ∆y.2 Then the maximum error in (13) is the maximum of

F (ξ, η) = a ξ + b η (15)

with

a =
∂f

∂x
(x, y) ∆x and b =

∂f

∂y
(x, y) ∆y . (16)

under the constraint that (ξ, η) is a point on the unit circle, i.e.,

g(ξ, η) ≡ ξ2 + η2 = 1 . (17)

This problem is easily solved using Lagrange multipliers. Setting up the Lagrange equations,

∂F

∂ξ
= λ

∂g

∂ξ
and

∂F

∂η
= λ

∂g

∂η
, (18)

we find a = λ 2ξ and b = λ 2η, so that

a

b
=
ξ

η
. (19)

Using this relation to eliminate η from the constraint ξ2 + η2 = 1, we find

ξ2 + ξ2
b2

a2
= 1 so that ξ2 =

a2

a2 + b2
. (20)

A similar expression is obtained by eliminating ξ and solving for η so that, taking square
roots, we have

ξ =
±a√
a2 + b2

and η =
±b√
a2 + b2

. (21)

Inserting this expression into (15) and maximizing the value of F by choosing the positive
sign on each root, we obtain

Fmax = a
a√

a2 + b2
+ b

b√
a2 + b2

=
a2 + b2√
a2 + b2

=
√
a2 + b2 . (22)

1Supplementary material, skip on first reading.
2The analogous geometric picture behind (14) is that xtrue and ytrue lie in a box with center (x, y) and

semi-widths ∆x and ∆y.
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Substituting the definitions of a and b back into this expression yields a formula for ∆z which
we write out in the next section.3

3.3 Propagation of independent uncertainties

The geometrically motivated computation in the previous section leads to the following error
propagation formula for z = f(x, y):

∆z ≈

√(
∂f

∂x
(x, y)

)2

∆x2 +

(
∂f

∂y
(x, y)

)2

∆y2 . (23)

The formula extends to more than two variables in the obvious way. Moreover, probability
theory shows that this formula is also correct in the case where x and y are independent ran-
dom variables with standard deviations ∆x and ∆y. A first-principles discussion is beyond
the scope of this class, but the concept is very frequently used in practice. We will discuss
some examples and implications.

Example 5. If you measure x = 6.0 ± 0.5 and y = 2.0 ± 0.1 independently, what should
you report for z = x/y together with its uncertainty? We compute

∂z

∂x
=

1

y
and

∂z

∂y
= − x

y2
(24)

and substitute these into (23) to find

∆z ≈

√(
1

2.0
0.5

)2

+

(
6.0

2.02
0.1

)2

≈ 0.3 . (25)

Thus, z = 3.0± 0.3.

Example 6 (Sum of independently measured quantities). Suppose you measure x and y
independently with uncertainties ∆x and ∆y. What is the uncertainty of their sum z = x+y?
Here, the partial derivatives ∂z/∂x = ∂z/∂y = 1, so that

∆z ≈
√

∆x2 + ∆y2 . (26)

This formula suggests that, geometrically, we may think of the absolute uncertainty ∆z as
the Euclidean length of the absolute uncertainty vector (∆x,∆y).

3Using vector calculus, there is an alternative, much shorter argument. The estimate for ∆z is the
maximal rate of ascend of φ(ξ, η) = f(x + ξ∆x, y + η∆y), so it is given by the length of the gradient of
φ. This directly yields (23). From this point of view, the argument in this section can be seen as a proof
that the gradient is the vector pointing in the direction of steepest ascend, its magnitude giving the rate of
change in this direction. This goes beyond what is covered in this class, but can be found in any standard
text on vector calculus, e.g. [1, Chapter 13].
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Example 7 (Product of independently measured quantities). In the setting of Example 6,
let us look at the product z = xy. Here, ∂z/∂x = y and ∂z/∂y = x, so that

∆z ≈
√
y2 ∆x2 + x2 ∆y2 . (27)

Dividing through by z on both sides, we find that

∆z

z
≈

√
∆x2

x2
+

∆y2

y2
. (28)

In other words, when taking products, it is the relative uncertainty ∆z/z which is the
Euclidean length of the relative uncertainty vector (∆x/x,∆y/y).

Example 8 (Atwood machine). The acceleration of two masses m1 and m2 in an Atwood
machine[3] is given by the formula

a = g
m1 −m2

m1 +m2

, (29)

where g = 9.81 m/s2 is the constant of gravity. When m1 = 100 ± 1 g and m2 = 50 ± 1 g,
estimate the uncertainty ∆a. After a short computation (fill in the details!), we find

∂a

∂m1

= g
2m2

(m1 +m2)2
and

∂a

∂m2

= g
−2m1

(m1 +m2)2
(30)

so that

∆z ≈ 2 g

(m1 +m2)2

√
(m2 ∆m1)2 + (m1 ∆m2)2 . (31)

Inserting the numbers gives a = 3.27 m/s2 and ∆a = 0.097 m/s2. We might want to report
this result as a = 3.27± 0.1m/s2.4

Example 9 (Volume of cylinder with independent errors). Suppose that you measure the
radius r and the height h of a cylinder each with an independent relative error of 1%. What
is the relative error of the computed volume V = πhr2? You could apply (23) directly and
go from there (try it!), but at this point it is quicker to refer to Example 3 which shows that
r2 has a relative error of 2%. Further, the relative error of h and the relative error of r2 add
according to Example 7, so the relative error of V is

√
5%. Thus, the relative error increases

by a factor
√

5 ≈ 2.24.

Example 10 (Volume of cylinder with dependent errors). Now suppose that the errors in
the measurements are actually dependent. Such a situation might arise, for example, due
to temperature sensitivity of the equipment which affects each measurement in exactly the
same way. In this case, we need to refer to (14). Leaving out the details of the computation
(try it!), we arrive at an increase of the relative error by a factor of 3.

4Example adapted from https://courses.washington.edu/phys431/propagation_errors_UCh.pdf.
There, it is suggested to report the final result as a = 3.3±0.1m/s2, but then the reported confidence interval
is clearly outside of the computed confidence interval, so I do not recommend rounding too aggressively.
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Warning. The last two examples show that assuming independence of uncertainty when
this is not actually guaranteed leads to an underestimate of the uncertainty of the result.
This is dangerous as it may lead to conclusions which are not supported by the measured
data.

Remark. When the quantities involved can be described in statistical terms, then (23) may
be corrected by covariance terms which represent correlations between the different errors,
see [4]. This, however, is beyond the scope of this class and also rarely used in practice as
the required covariances are typically difficult to estimate.

3.4 Repeated experiments

Sometimes, an experiment is repeated many times and the values recorded are averaged over
all trials. Suppose we have collected N readings x1, . . . , xN and we compute their mean

x =
x1 + · · ·+ xN

N
. (32)

When an individual reading has uncertainty ∆x1 = · · · = ∆xN ≡ ∆x, what is the uncertainty
of x? Extending (14) to N variables, we find

∆x ≈ ∆x1
N

+ · · ·+ ∆xN
N

= ∆x , (33)

so there is no advantage in repeating the experiment. However, when the uncertainties are
known to be independent, we may use (23), extended to N variables, instead, so that

∆x ≈

√(
∆x1
N

)2

+ · · ·+
(

∆xN
N

)2

=
∆x√
N
. (34)

Here, by taking the average over many measurements, errors partially cancel with high
probability and the uncertainty of x converges to zero at a rate of 1/

√
N as the number of

measurements goes to infinity.
Note that the benefit of repeated trials may be destroyed by unnoticed dependencies

between successive measurements—it is not helpful to make the same error twice!

4 Monte-Carlo testing

Monte-Carlo testing is a computational technique for estimating the propagation of uncer-
tainties. The idea is to perform the computation many times with randomly perturbed
input and use the statistics of the output to determine its uncertainty. With Scientific
Python/Pylab or similar mathematical software, Monte-Carlo testing is extremely easy and
quick so that it should be part of the tool set of every working scientist. We describe the
procedure in the setting of Example 5.
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Rather than assigning a single value for each input variable, we create a vector of values
that follow a probability distribution whose mean equals the measured value and whose
standard deviation equals the corresponding uncertainty. Typically, we choose a normal
distribution via the normal function; its first argument is the mean, the second argument
is the standard deviation, and the third argument the number of samples which we set to a
moderately large integer value:

In [1]: x = normal(6,0.5,10000)

In [2]: y = normal(2,0.1,10000)

Now we can perform the computation with all samples at once:

In [3]: z = x/y

The uncertainty of the output is then given by the standard deviation of z,

In [4]: std(z)

Out[4]: 0.29531173914816444

This corresponds well with the result suggested by our error propagation formula.
Monte-Carlo testing has a number of advantages: it can be done with ease in a routine

manner, it does not use linearization, thus will also work as expected in situations when
linear approximation is not appropriate, and it is possible to include dependencies between
the different errors in the input statistics if necessary.

The drawbacks are that it requires many repeated computations. This is not an issue
when testing simple function evaluations on contemporary computers as in the example
above. However, when dealing with much more complex models, computational cost may
become an issue. Another drawback is that the procedure is purely numerical. Thus, it is
not possible to see how the output uncertainty depends on parameters of the setup, which
is sometimes of interest. For this, the calculus-based error propagation formulas are better
suited.
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