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Abstract

These notes provide some additional material supporting Chapter 3 on “Geometric
Transformations” from O.A. Ivanov’s book “Easy as π”.

1 Transformations in Cartesian coordinates

In the following, we look more systematically at coordinate expressions for the different
geometric transformations. As Ivanov argues [1, p. 37], coordinate-free arguments are often
shorter and more elegant—try, for example, to solve Problems 14 and 15 both ways. On
the other hand, coordinate expressions often lead to a more direct solution approach; in
addition, they are needed for computational algorithms.

Notation. Points are denoted by capital letters, while vectors, which specify a direction and
a magnitude or length, are denoted by small boldface letters. In particular, to every point
P we associate the coordinate vector p pointing from the origin O to P . In components, we
write p = (p1, p2).
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Recall that HA denotes the central reflection or point reflection about the point A. In
coordinates, p′ = a− (p− a), see figure,
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so that
HA(p) = 2a− p . (1)

Moreover, let Πv denote the translation by the vector v; in coordinates,

Πv(p) = p + v . (2)

Lemma 1. HB ◦HA = Π2(b−a).

Proof. HBHA p = HB (2a− p) = 2b− (2a− p) = p + 2(b− a) = Π2(b−a) p.

Let ` denote the line through the origin in the direction of a unit vector u. Then, for
any vector p, the projection of p onto the line ` is given the the expression

Pu p = uu · p , (3)

where u · p = u1 p2 + u2 p2 denotes the vector dot product.
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Expression (3) is easily proved by elementary trigonometry, recalling that

cos∠(a, b) =
a · b
‖a‖ ‖b‖

, (4)

where ‖a‖ =
√
a · a denotes the Euclidean length of a vector a, and cos∠(a, b) denotes the

cosine of the angle between vectors a and b.
Let us give a second, analytical argument for (3). The vector Pu p describes the point

on the line ` which has minimal distance to p. A general point on the line is given by tu
for some real number t. We find the projection by minimizing

f(t) = ‖p− tu‖2 , (5)

which is nonnegative and quadratic in t. To find the minimum, compute

f ′(t) =
d

dt
(p− tu) · (p− tu) = −2u · (p− tu) . (6)

So f has a critical point when t = u · p, which proves (3).
We write R` to denote the reflection of the plane about some line `. Let us give two

constructions which coincide on the plane, but generalize differently into higher dimensions.
A line ` (in any dimension) is uniquely specified by a point A on the line and a direction,

expressed by a unit vector u. To reflect an arbitrary point P about this line, we first compute
the coordinates of the projection of P onto `.
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As can be seen from this figure,

c = a + Pu (p− a) . (7)

Then the coordinates of P ′, the image of P under the reflection, are given by p′ = 2c − p,
so that

R`(p) = 2uu · p− p− 2uu · a + 2a . (8)

Alternatively, a line in the plane is be uniquely specified by a point A and a direction
normal to the line, expressed by a unit vector n. (In d dimension, this construction defines
a (d− 1)-dimensional hyperplane.)

A

a
O

P

`

P ′

p− a
Pn (a− p)

Pn (p− a)

n

Then, clearly,
R`(p) = p− 2Pn (p− a) = p− 2nn · (p− a) . (9)

2 Matrix expressions

Looking at the expressions for central reflections, line reflections, and translations, we notice
that they are all linear affine, i.e. of the form F (p) = Mp + b for some matrix M and some
vector b. Here we adapt the convention that all vectors are read as column vectors and write
aT to denote the transpose of a vector a, so that a · b ≡ aTb. We further write I to denote
the identity matrix. Then

Pu p = uuTp (10)
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and

R`(p) = (2uuT − I) (p− a) + a = (I− 2nnT )p + 2nnTa (11)

where, as before u denotes some unit vector. Let us now denote the angle between the x-axis
and u by φ, so that

u =

(
cosφ
sinφ

)
. (12)

Assuming further that line of reflection passes through the origin, we can take a = 0 in (11).
Hence, the reflection about a line at angle φ with the x-axis is represented by multiplication
with the matrix

Rφ = 2uuT − I = 2

(
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

)
−
(

1 0
0 1

)
=

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
, (13)

where the last equality is due to the trigonometric double-angle identities.
Let Φα denote the matrix of rotation about the origin through the angle α. It is easy to

find the coefficients by elementary trigonometry, see [1]. Alternatively, we may recall that
the composition of two reflections about intersecting lines is a rotation about the point of
their intersection through an angle equal to twice the angle between them. Taking the line
in the direction of u and the x-axis, respectively, this implies that

Φ2φ = Rφ R0 =

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)(
1 0
0 −1

)
=

(
cos 2φ − sin 2φ
sin 2φ cos 2φ

)
. (14)

Setting α = 2φ, we conclude that

Φα =

(
cosα − sinα
sinα cosα

)
. (15)
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