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Abstract

We compute the group of automorphisms of an arbitrary ind-variety of (possibly isotropic)
generalized flags. Such an ind-variety is a homogeneous ind-space for one of the ind-groups SL(∞),
O(∞) or Sp(∞). We show that the respective automorphism groups are much larger than SL(∞),
O(∞) or Sp(∞), and present the answer in terms of Mackey groups. The latter are groups of
automorphisms of nondegenerate pairings of (in general infinite-dimensional) vector spaces. An
explicit matrix form of the automorphism group of an arbitrary ind-variety of generalized flags is
also given. The case of the Sato grassmannian is considered in detail, and its automorphism group
is the projectivization of the connected component of unity in the group Japanese GL(∞).

Keywords: ind-variety, ind-group, generalized flag, homogeneous space, automorphism group,
Makey group, Sato grassmannian, Japanese GL(∞).

AMS subject classification: 14L30, 14M15, 14M17, 14J50.

Introduciton

Given a homogenous space X, it is a natural problem to compute its automorphism group AutX.
In the case when X is a complex flag variety, that is, X = G/P for a connected reductive complex
algebraic group and a parabolic subgroup P ⊂ G, the automorphism group of X is well known.
Moreover, it is a classical result that here the connected component Aut0X of the identity equals the
projectivized group PG, except in some special cases as described in [O].

In this paper, we would like to pose and solve the problem of computing AutX for a class of
homogeneous ind-varieties X. This is the class of ind-varieties of generalized flags introduced by that
name in [DP] but also considered earlier in several works, see for instance [DPW], [NRW]. These
ind-varieties can be defined simply as G/P where G is one of the ind-groups SL(∞) = lim−→SL(n),
SO(∞) = lim−→SO(n), Sp(∞) = lim−→Sp(2n) and P is a splitting parabolic subgroup, i.e., a subgroup for
which the intersections P ∩SL(n), P ∩SO(2n), P ∩SO(2n+1), P ∩Sp(2n) are parabolic subgroups of
SL(n), SO(2n), SO(2n+1), Sp(2n) for all n, respectively. The definition from [DP] can be considered
as a flag realization of the ind-varieties G/P as above, and is recalled in Section 1 below. The main
idea of that approach is that one designates certain chains of subspaces in the natural representation
V of SL(∞) as generalized flags, and then defines an ind-variety of generalized flags as the ind-variety
of generalized flags which differ only “slightly” from a fixed generalized flag W in V . The exact
definition see in Section 1. One then shows that the so obtained ind-variety is isomorphic to G/P for
G = SL(∞) and some splitting parabolic subgroup P ⊂ G.

An ind-grassmannian is an ind-variety of generalized flags for which the fixed generalized flag
consists of a single proper subspace W ⊂ V . For dimW = codim VW = ∞ the ind-grassmannian is
isomorphic to the Sato grassmannian. This has been pointed out for instance in [GS].

In the cases of the groups SO(∞) and Sp(∞) we consider ind-varieties of isotropic generalized
flags, as stated in Section 3.

Our main result is the explicit determination of the group AutX for an arbitrary ind-variety of,
possibly isotropic, generalized flags. A notable feature is that the answer is very different form the
ind-groups PGL(∞), PO(∞), or PSp(∞), and we present it in terms of Mackey groups. Such a
group is defined in terms of a nondegenerate pairing of vector spaces T ×R→ C, and is a subgroup of
the group of all linear operators ϕ : T → T for which the dual operator ϕ∗ determines a well-defined

1



automorphism ϕ : R → R. This definition of Mackey group is inspired by G. Mackey’s dissertation
[M]. If T and R are finite dimensional, then the Mackey group is nothing but GL(T ) ' GL(R). The
group known as Japanese GL(∞) is a Mackey group and plays a crusial role in our work. In the
Appendix we discuss the structure of this group in detail.

The precise statement of our main result, Theorem 1.1, is presented in Section 1. The consideration
of the isotropic case is postponed to Section 7. The proof of Theorem 1.1 is divided into two parts: the
case of an ind-grassmannian and the case of an arbitrary generalized flag. For the Sato grassmannian
(which is the most interesting ind-grassmannian) our result implies that its automorphism group is
isomorphic to the projectivization of the connected component of the identity in the group Japanese
GL(∞). In Section 6 we give a matrix realization of the group of automorphisms of an arbitrary
ind-variety of generalized flags. In the isotropic case such a realization is given in Corollary 7.2.

We would like to point out that AutX depends essentially on the ind-variety X, despite the fact
that all X are homogeneous spaces for the same group SL(∞) (or, respectively, SO(∞), Sp(∞)). This
is in contrast with the finite-dimensional case in which the connected component of the identity in
the automorphism group of a variety SL(n)/P (respectively, SO(2n)/P , SO(2n+ 1)/P or Sp(2n)/P )
depends only on n and not on the choice of P . Further research should be carried out to compare the
isomorphism classes of ind-varieties of generalized flags with the isomorphism classes of automorphism
groups of ind-varieties of generalized flags.

Our possible application of the results of the present paper would be the study of locally reductive
ind-groups G̃ different from G = SL(∞), SO(∞), Sp(∞) for which G/P is a homogeneous G̃-space.

In conclusion of this short introduction, we should mention that some particular cases of the
automorphism groups of ind-varieties of generalized flags have been considered in [P] and [T].
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1. Brief background and statement of the main result

The ground field is C. If R is a vector space, we set GL(R) = {ϕ ∈ HomC(R,R) | ϕ is invertible}
and R∗ = HomC(R,C). We also use the superscript ·∗ to denote the dual of a vector bundle, as well
as the pullback functor for vector bundles along a morphism of varieties. In what follows we consider
infinite matrices, in particular, infinite rows and columns. We call such matrices, rows or columns
finitary if they have at most finitely many nonzero entries. By 〈·〉C we denote the linear span over C.

We fix a countable-dimensional vector space V . A chain of subspaces W = {Wα} is a set of
subspaces Wα ⊆ V , parameterized by some index set with elements α such that for α 6= α′ we have
Wα  Wα′ or Wα′  Wα. The relation of inclusion induces a total order on the set of indices of
a chain. A chain of subspaces W = {Wα} is a generalized flag in V if every index α has either an
immediate predecessor or an immediate successor, and every nonzero vector v of V is contained in
some difference Wα′′ \Wα′ , where α′′ is the immediate successor of α′. For a more detailed discussion
of generalized flags, and for an introduction to ind-varieties of generalized flags, see, e.g., [DP], [IP]
and [PT2].

We say that a generalized flag W is compatible with a basis Ẽ of V (or that W is Ẽ-compatible) if
any space Wα of W is spanned by elements of Ẽ, i.e., Wα = 〈Wα∩Ẽ〉C for any α. We set Eα = Ẽ∩Wα.
Then Eα is a basis of Wα. By (Wα)∗ we denote the span of the system of linear functions Ẽ∗ dual to the
basis Eα. We have (Wα)∗ ⊆W ∗α. We also let V∗ equal the span of the system of linear functions dual
to the basis Ẽ. The group GL(Ẽ, V ) is the subgroup of GL(V ) consisting of all invertible operators
ϕ : V → V each of which acts as the identity on all but finitely elements of Ẽ.
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In what follows, we fix a basis Ẽ and a generalized flag W in V compatible with Ẽ. The set
Fl(W, Ẽ, V ) is the set of all generalized flags W ′ = {W ′α} which are Ẽ-commensurable with W . This
latter requirement spells out as the following three conditions for each element W ′ of Fl(W, Ẽ, V ):

• the index set which parameterizes the generalized flag W ′ is the same as the index set of W ;

• there exists a finite-dimensional subspace Z ( V depending on W ′, such that for any α we have
W ′α + Z = Wα + Z and dim(Wα ∩ Z) = dim(W ′α ∩ Z);

• the generalized flag W ′ is compatible with a basis Ẽ′ of V , depending on W ′, such that Ẽ′ differs
from Ẽ by finitely many vectors.

The set Fl(W, Ẽ, V ) has a natural structure of ind-variety. This is explained in detail in [DP] (and
in [IP] and [PT2]). Briefly, the ind-variety structure on Fl(W, Ẽ, V ) arises as follows. Enumerate the
basis Ẽ by the set Z>0 and put Vi := 〈e1, . . . , ei〉C for i ∈ Z>0. Each intersection W ∩ Vi is a flag in
Vi of certain type di = (d1

i , . . . , d
ki
i ), and this ordering of the basis Ẽ induces embeddings

Fl(di, Vi) ↪−→ Fl(di+1, Vi+1), (1)

called strict standard extensions, such that Fl(W, Ẽ, V ) = lim−→Fl(di, Vi). The embeddings (1) endow

Fl(W, Ẽ, V ) with an ind-variety structure. In Section 3 below we recall the definition of a strict
standard extension.

Next we recall that if T and R are two (in general, infinite-dimensional) vector spaces endowed
with a non-degenerate pairing p : T ×R→ C, then the Mackey group G(T,R) is defined as

G(T,R) = {ϕ ∈ GL(T ) | ϕ∗(R) = R}, (2)

see [M]. Here ϕ∗ : T ∗ → T ∗ is the operator dual (adjoint) to the operator ϕ : T → T , and R is
considered as a subspace of T ∗ via the embedding R ↪→ T ∗ induced by the pairing p. Equivalently,
G(T,R) can be defined as the group

{ψ ∈ GL(R) | ψ∗(T ) = T} (3)

where T is considered as a subspace of R∗ via p. The correspondence

ϕ 7→ (ϕ∗|R)−1

is a canonical isomorphism between the groups (2) and (3). In what follows, when writing ϕ ∈ G(T,R)
we will assume that ϕ ∈ GL(T ), and will denote the operator ϕ∗|R by ϕ. Note that, given a subspace
A of T , one has ϕ(A) = ϕ−1(A⊥), where A⊥ is the annihilator of A in R.

Consider again the ind-variety of generalized flags Fl(W, Ẽ, V ). Define the spaces V W
Ẽ

and V W
∗Ẽ

as

V W
Ẽ

:=
⋂
α

(((Wα)∗)
∗ ⊕ Uα) ,

V W
∗Ẽ :=

⋂
α

((Wα)∗ ⊕ U
∗
α) ,

where α runs over the indices parameterizing the generalized flag W , and the spaces Uα are direct
complements of the spaces Wα, i.e., V = Wα ⊕Uα, with the assumption that Uα ∩ Ẽ is a basis of Uα.
Note that there is a natural non-degenerate pairing

V W
Ẽ
× V W

∗Ẽ → C,
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therefore the group G(V W
Ẽ
, V W
∗Ẽ

) is well-defined. Moreover, GL(Ẽ, V ) is a subgroup of G(V W
Ẽ
, V W
∗Ẽ

).

To see this, the reader will check that for any linear operator κ : V → V , κ ∈ GL(Ẽ, V ), the dual
operator κ∗ : V ∗ → V ∗ has V W

∗Ẽ
as an invariant space, and the double dual operator κ∗∗ : V ∗∗ → V ∗∗

has V W
Ẽ

as an invariant space. Therefore, this allows to consider κ as an element of G(V W
Ẽ
, V W
∗Ẽ

).

Another essential observation is that the spaces V W
Ẽ

and V W
∗Ẽ

depend only on the ind-variety

Fl(W, Ẽ, V ) and not on the choice of point W ∈ Fl(W, Ẽ, V ). This follows from the fact that, for
each α, the spaces ((Wα)∗)

∗ ⊕ Uα and (Wα)∗ ⊕ U∗α do not change when Wα is replaced by a subspace
W ′α ⊂ W which is Ẽ-commensurable with Wα, and Uα is replaced by a direct complement U ′α of W ′α
containing all but finitely many vectors from Ẽ ∩ Uα.

Next, if W ′ is any chain of subspaces in V and ϕ : V W
Ẽ
→ V W

Ẽ
is any linear operator from the

group G(V W
Ẽ
, V W
∗Ẽ

), then

ϕ−1
(
W ′
⊥
)⊥
∩ V = ϕ((W ′⊥)⊥) ∩ V (4)

is a chain of subspaces in V . Here W ′⊥ is the chain in V W
∗Ẽ

consisting of the annihilators in V W
∗Ẽ
⊆ V ∗

of the spaces W ′α, and similarly ϕ−1
(
W ′⊥

)⊥
, W ′⊥⊥ are chains in V W

Ẽ
⊆ V ∗∗.

In what follows, we use the notation W ′⊥ for chains perpendicular to W ′ also in appropriate
subspaces of V ∗ different from V W

∗Ẽ
and indicate the respective subspace as necessary. A similar

convention applies to the notation W ′⊥⊥. Moreover, we call the generalized flag W symmetric if the
chain W⊥ ⊂ V∗ is the image of W under a linear isomorphism V∗ ' V sending Ẽ∗ to Ẽ.

Theorem 1.1.

a) If W is not symmetric, then the group AutFl(W, Ẽ, V ) is isomorphic to P (GL(Ẽ, V ) · StW ),
where StW is the stabilizer of the generalized flag W in the group G(V W

Ẽ
, V W
∗Ẽ

) under the ac-

tion (4). Here the product · is taken inside G(V W
Ẽ
, V W
∗Ẽ

), and P · indicates passage to the quotient
modulo scalar operators.

b) If W is symmetric, then the group AutFl(W, Ẽ, V ) is isomorphic to P (GL(Ẽ, V ) · StW )o Z2.

In Section 6 we present an explicit matrix realization of the group GL(Ẽ, V ) · StW . Let’s also
point out that, since Theorem 1.1 implies that GL(Ẽ, V ) ·StW is a group, we have GL(Ẽ, V ) ·StW =
StW ·GL(Ẽ, V ).

Remark 1.2. In the case of a finite-dimensional flag variety X, every automorphism of X
belonging to the connected component of unity in the automorphism group has a fixed point on
X. This no longer holds in the generality of Theorem 1.1. Indeed, if X is the projective ind-space
Fl(W,E, V ) for dimW = 1, then AutX = PGL(V ) and it is well known that not every invertible
linear automorphism of V has an eigenvector. ©

2. Examples

Before we embark on proving Theorem 1.1, we present five examples in which we compute the
respective group GL(Ẽ, V ) · StW from Theorem 1.1. In all five cases our claims follow from Theorem
6.1 below, which provides a matrix form of the group GL(Ẽ, V ) · StW in the general case.

2.1. The case of an ind-grassmannian. Let’s consider the case where the generalized flag W
has the form 0 ( W ( V , where W is a single proper subspace of V (we slightly abuse notation by
using the same letter W for a flag and a subspace). There are three cases: dimW <∞, or dimW =
codim VW =∞, or codim VW <∞. If dimW <∞, then Gr(W, Ẽ, V ) does not depend on the basis
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Ẽ, and the points of Gr(W, Ẽ, V ) are all subspaces of V of the same dimension as W . In this case we
may write Gr(W, Ẽ, V ) = Gr(dimW,V ). If codim VW < ∞ then Gr(W, Ẽ, V ) depends as a set on
the choice of the basis Ẽ, but up to isomorphism Gr(W, Ẽ, V ) depends only on codim VW . Moreover,
as an ind-variety Gr(W, Ẽ, V ) is isomorphic to Gr(codim VW,V ). If dimW = codim VW = ∞, the
ind-variety Gr(W, Ẽ, V ) does not depend up to isomorphism on the choice of both W and Ẽ. It is
known, see, for instance, [GS], that in this case Gr(W, Ẽ, V ) is isomorphic to the Sato grassmannian
introduced in [S].

If dimW < ∞, then V W
Ẽ

= V , V W
∗Ẽ

= V ∗ and G(V, V ∗) = GL(V ). Since W is not symmetric,

Theorem 1.1 asserts that AutGr(W, Ẽ, V ) ∼= P (GL(Ẽ, V ) · StW ), and we note that in this case

P (GL(Ẽ, V ) · StW ) ∼= PGL(V ). (5)

Indeed, the action of G(V, V ∗) = GL(V ) on Gr(W, Ẽ, V ) via the formula (4) is easily checked to
coincide with the obvious action of GL(V ) on subspaces of V , and the isomorphism (5) is a consequence
of the transitive action of the group GL(Ẽ, V ) on finite-dimensional subspaces of fixed dimension in V .

If codim VW <∞, then V W
Ẽ

= (V∗)
∗, V W

∗Ẽ
= V∗ and P (GL(Ẽ, V ) · StW ) ∼= PGL(V∗), i.e.,

AutGr(W, Ẽ, V ) ∼= PGL(V∗).

In the case where dimW = codim VW =∞, we prove in the Appendix that the group G(V W
Ẽ
, V W
∗Ẽ

)

can be represented as invertible (Z\{0})×(Z\{0})-matrices which together with their inverses satisfy
the condition: in the block structure (

A B

C D

)
(6)

induced by the equality Z \ {0} = Z<0 t Z>0, the matrix A has finitary rows (no restriction on the
columns), the matrix D has finitary columns (no restriction on the rows) and the matrix C is finitary.
The group GL(Ẽ, V ) ·StW consists of matrices M such that M and M−1 have the form (6) and satisfy
the additional condition rkC = rkC ′ where

M−1 =

(
A′ B′

C ′ D′

)
.

Moreover, in this case W is symmetric.

2.2. The case of Fl(W, Ẽ, V ), where W = {Wn}, dimWn = n for n ∈ Z>0,
⋃
nWn = V . In

this case V W
Ẽ

= V , V W
∗Ẽ

= V ∗, and the group GL(Ẽ, V ) · StW can be identified with all invertible

Z>0 × Z>0-matrices with finitely many nonzero entries below the main diagonal, cf. [P].

2.3. The case of Fl(W, Ẽ, V ), where Ẽ = {ei}i∈Z and W = {Wn = 〈ei, i ≤ n〉C, n ∈ Z}. Here

V W
Ẽ

= ((W0)∗)
∗ ⊕ 〈ei, i > 0〉C, V W

∗Ẽ = (W0)∗ ⊕ (〈ei, i > 0〉C)∗ .

In coordinate form, the vectors from V W
Ẽ

are columns (aj)j∈Z with aj = 0 for j � 0, and GL(Ẽ, V ) ·
StW consists of all invertible Z×Z-matrices M which, together with their inverses, have finitely many
nonzero entries below the main diagonal and satisfy the condition rkC = rkC ′, where C and C ′ are
respectively the strictly lower-triangular parts of M and M−1.

2.4. The case of Fl(W, Ẽ, V ), where W = {0 ⊂W1 ⊂W−1 ⊂ V }, dimW1 = 1, codim VW−1 =
1. Here Ẽ can be ordered by any countable ordered set I with a minimal and a maximal element. We
have V W

Ẽ
= V , V W

∗Ẽ
= V∗, and GL(Ẽ, V ) ·StW consists of all invertible I × I-matrices which, together

with their inverses, satisfy the condition that each row and column is finitary.
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2.5. The case of Fl(W, Ẽ, V ) for Ẽ = {ei}i∈Z>0tZ<0 and W = {Wn}, where
Wn = 〈e1, . . . , en〉C if n ∈ Z>0 and Wn = 〈. . . , en−2, en−1, e1, e2, . . .〉C if n ∈ Z<0. Then V W

Ẽ
= V ,

V W
∗Ẽ

= V∗, I = Z>0 tZ<0 with k < l if k ∈ Z>0, l ∈ Z<0, and GL(Ẽ, V ) · StW consists of all invertible
I × I-matrices which, together with their inverses, satisfy the condition: each row and column is
finitary, and there are at most finitely many nonzero entries below the main diagonal.

Note that in the cases 2.3, 2.4, and 2.5 the generalized flag W is symmetric, while in the case 2.2
W is not symmetric.

3. More background

We need to recall some facts about linear embeddings of finite-dimensional grassmannians and
flag varieties. If T is a finite-dimensional space and d = {d1, . . . , di} is a vector of positive integers
satisfying dk < dl < dimT for k < l, then Fl(d, T ) denotes the variety of all flags of subspaces
T1 ( . . . ( Ti ( T , where dimTj = dj . If d consists of one integer d, we write simply Gr(d, T ). If T is
endowed with a non-degenerate symmetric or antisymmetric (symplectic) form, we write respectively
FlO(d, T ) and FlS(d, T ) for the varieties of isotropic flags in T with respect to the fixed form. We
also write GrO(d, T ) and GrS(d, T ). An isotropic flag has always length less or equal dimT

2 but, for
convenience, in this paper by an isotropic flag we will mean a flag of the form

W1 ⊂W2 ⊂ . . . ⊂Wk ⊂W⊥k ⊂ . . . ⊂W⊥k ,

where the spaces W1, . . . , Wk are isotropic and the spaces W⊥k , . . . , W⊥1 are coisotropic. All flag
varieties FlO(d, T ) and FlS(d, T ) are connected, except GrO(d, T ) for dimT = 2d. In what follows,
by FlO(d, T ) or GrO(d, T ) we always denote a connected component.

The Picard group of any grassmannian or ind-grassmannian Z is isomorphic to Z except in the
case of Gr

(
dimT

2 − 1, T
)

for 2 < dimT ∈ 2Z>0, and OZ(1) always denotes the ample generator of

PicZ. In the case of Gr
(

dimT
2 − 1, T

)
for 2 < dimT ∈ 2Z>0 we have PicGr

(
dimT

2 − 1, T
)
' Z×Z.

The automorphism groups of the flag varieties Fl(d, T ), FlO(d, T ), FlS(d, T ) have been known
for long time. The fact that the automorphism group of the projective space Pn is PGL(n+ 1) goes
back to the nineteenth century. Wei-Liang Chow [C] extended this result to grassmannians in 1949.
For a general flag variety X = Fl(d, T ), FlO(d, T ), FlS(d, T ) the connected component of the
identity in the automorphism group AutX is the respective group PGL(T ), SO(T ), or Sp(T ), except
in several cases listed by A.L. Onishchik in [O]. These special cases are GrS(1, T ) ' P(T ), the five
dimensional quadric GrO(1, T ) for dimT = 7, and GrO

(
dimT−1

2 , T
)

for dimT ∈ 2Z>0 + 1.
In all cases, see for instance [A, Section 3.3], the full automorphism group G is always a semidirect

product of its connected component of unity G0 and a finite group of automorphisms of the Dynkin
diagram of the Lie algebra g = LieG0 which keep fixed the simple roots of the Lie algebra of the
isotropy subgroup of a point on the respective flag variety. In the present paper we only consider
classical groups of large enough rank, hence we can summarize the relevant part of this result as
follows:

• for dimT ≥ 3,

AutFl(d, T ) '


PGL(T )o Z2 if d = (d0 = 0, d1, d2, . . . , ds, ds+1

n = dimT ) satisfies

the condition di − di−1 = ds+2−i − ds+1−i for all 1 ≤ s ≤ n+ 1

PGL(T ) in all other cases.

• for dimT ≥ 8, AutFlO(d, T ) ' O(T ), except for GrO(dimT
2 , T ) where AutGrO(dimT

2 , T ) '
SO(T ), and for GrO(dimT−1

2 , T ) where AutGrO(dimT−1
2 , T ) ' SO(T ′) for dimT ′ = dimT + 1.
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• for dimT ≥ 4, AutFlS(d, T ) ' Sp(T ), except for GrS(1, T ) where AutGrS(1, T ) ' PGL(T ).

Based on the above exception concerning GrO
(

dimT−1
2 , T

)
for dimT ∈ 2Z>0 + 1, in what follows

we will automatically assume that this case is excluded from consideration. This leads to no loss of

generality as GrO
(

dimT−1
2 , T

)
is isomorphic to GrO

(
dimT ′

2 , T ′
)

where T ′ is an orthogonal space of

dimension dimT + 1.
A nice class of embeddings of flag varieties Fl(d1, T1) ↪→ Fl(d2, T2) for dimT1 < dimT2 is the class

of standard extensions. Embeddings of ind-grassmannians are discussed in detail in [PT1], and of
arbitrary flag varieties in [PT2]. Here we just recall a definition and a basic fact needed to understand
our arguments in Section 4, 5, 7.

Definition 3.1.

a) An embedding
η : Fl(d1

1, . . . , d
k
1, T ) ↪→ Fl(d1

2, . . . , d
l
2, T

′),

respectively,
η : FlO(d1

1, . . . , d
k
1, T ) ↪→ FlO(d1

2, . . . , d
l
2, T

′),

respectively,
η : FlS(d1

1, . . . , d
k
1, T ) ↪→ FlS(d1

2, . . . , d
l
2, T

′)

is a strict standard extension if there exists a surjection

p : {0, 1, . . . , l, l + 1} → {0, 1, . . . , k, k + 1}

satisfying p(i) ≤ p(j) for i < j, together with an isomorphism

V ′ = V ⊕ Ŵ , (7)

satisfying Ŵ = V ⊥ in the orthogonal and symplectic case, and with a flag 0 ⊂W1 ⊂ . . . ⊂Wk̃ ⊂
Ŵ containing also the spaces W⊥i for 1 ≤ i ≤ k̃, such that η has the form

η
(
0 ⊂ Vp(1) ⊂ . . . ⊂ Vp(l) ⊂ V

)
=
(
0 ⊂ Vp(1) ⊕W1 ⊂ . . . ⊂ Vp(l) ⊕Wl ⊂ V ′

)
. (8)

b) An embedding
η : Fl(d1

1, . . . , d
k
1, T ) ↪−→ Fl(d1

2, . . . , d
l
2, T

′)

is a standard extension if after composing with one of the duality isomorphisms

Fl(d1
1, . . . , d

k
1, T ) ' Fl(dimT − dk1, . . . , dimT − d1

1, T
∗),

F l(d1
2, . . . , d

l
2, T

′) ' Fl(dimT ′ − dl2, . . . , dimT ′ − d1
2, T

′∗)

η becomes a strict standard extension. For varieties of isotropic flags, standard extension and
strict standard extension are synonyms.

The following theorem follows directly from Corollary 4.4 in [PT2].
Theorem 3.2. Let X1 ↪→ X2 and Y1 ↪→ Y2 be embeddings of flag varieties or of isotropic flag

varieties, such that Y1 is the image of X1 under some isomorphism ϕ : X2 → Y2. Then the embedding
Y1 ↪→ Y2 is a standard extension whenever the embedding X1 ↪→ X2 is a standard extension.

We need to recall also the notion of an ind-variety of isotropic generalized flags. There are several
cases. If a symmetric non-degenerate form (·, ·) on V is given, then there are two types of relevant
bases Ẽ we consider:

{ei}i∈Z with (ei, e−i) = 1 for all i, (ei, ek) = 0 for k 6= −i,
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or
{ei}i∈Z\{0} with (ei, e−i) = 1 for all i ∈ Z>0, (ei, ek) = 0 for k 6= −i. (9)

In the case of a symplectic non-degenerate form on V , we consider bases satisfying (9) (here (e−i, ei) =
−1 for i ∈ Z>0). We refer to bases as above as isotropic bases of V . An isotropic generalized flag in
V is by definition a generalized flag W = {Wα} in V such that each space Wα is either isotropic or
coisotropic and Wα belongs to W if and only if W⊥α = {w′ ∈ V | (w′, w) = 0 for all w ∈ Wα} belongs
to W . If W is an E-compatible isotropic generalized flag in V , then by definition, FlO(W, Ẽ, V )
in the case of a symmetric form, or FlS(W, Ẽ, V ) in the case of a symplectic form, consists of all
isotropic generalized flags in V which are Ẽ-commensurable with W . In all cases, FlO(W, Ẽ, V )
or, respectively, FlS(W, Ẽ, V ) is a direct limit of finite-dimensional varieties of isotropic flags under
standard extensions.

4. Proof of Theorem 1.1 for ind-grassmannians

We start by proving Theorem 1.1 under the assumption that the generalized flag W has exactly one
proper subspace, which we also denote by W . In what follows, we write most of the time Gr(W,E, V )
instead of Gr(W, Ẽ, V ), where E = Ẽ∩W . The set E is a basis of W , and the ind-variety Gr(W, Ẽ, V )
depends only on E and not on the entire basis Ẽ. We feel that this notation makes the argument more
transparent. Also, the space W is fixed and we write VE and V∗E instead of V W

Ẽ
and V W

∗Ẽ
, respectively.

Recall that Gr(W,E, V ) is defined as the direct limit of strict standard extensions

Gr(dn, Vn) ↪−→ Gr(dn+1, Vn+1)

for some dn and some subspaces Vn ⊂ V , dimVn > n, lim−→Vn = V . If dn stabilizes at k ∈ Z>0 for
large n, then lim−→Gr(dn, Vn) = Gr(k, V ) is the ind-grassmannian of all k-dimensional subspaces in V .
If dimVn − dn stabilizes at k > 0, then Gr(W,E, V ) is isomorphic to Gr(k, V ) as an ind-variety via
the map

δ : Gr(W,E, V )→ Gr(k, V∗),

W ′ 7−→W ′⊥ ⊂ V∗,

where W ′ denotes a variable point of Gr(W,E, V ) and W ′⊥ := {α ∈ V∗ | α(w′) = 0 ∀ w′ ∈W ′}.
As we already mentioned, the automorphism groups of (finite-dimensional) grassmannians have

been described in the classical paper [C]. This description implies that if

α : Gr(dn, Tn)
∼→ Gr(dn, T

′
n) (10)

is any isomorphism of grassmannians, where dimTn = dimT ′n, then the pullback α∗S′n of the tauto-
logical bundle S′n on Gr(dn, T

′
n) is isomorphic to the tautological bundle Sn on Gr(dn, Tn), or to the

bundle (T̃n/Sn)∗ in case 2dn = n, where T̃n is the trivial bundle on Gr(dn, Tn) with fiber Tn. Moreover,
if α∗S′n ' Sn, then the isomorphism (10) is determined by the linear operator η : (T ′n)∗ → T ∗n which it
induces via pullback: we have α(Tdn) = η∗(Tdn) where Tdn ∈ Gr(dn, Tn) and the operator η∗ is dual
to η. Recall also that any global endomorphism of the bundle Sn or (T̃ /Sn)∗ is scalar.

Set Xn = Gr(dn, Vn). Then Gr(W,E, V ) = lim−→Xn. In the rest of the argument we assume
in addition that dimW = codim VW = ∞ and that dn = n, dimVn = 2n. This is the case of
the Sato grassmannian. The remaining cases where dimW < ∞ or codim VW < ∞ have been
considered in [P], and it has been proved there that AutGr(W,E, V ) ∼= PGL(V ) for dimW <∞, and
AutGr(W,E, V ) ∼= PGL(V∗) for codimW < ∞. This is in agreement with Theorem 1.1, as in these
two cases W is not symmetric and there is an isomorphism

GL(Ẽ, V ) · StW ∼=

{
GL(V ) for dimW <∞
GL(V∗) for codim VW <∞.

(11)
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We leave the proof of (11) as an exercise to the reader.
Our first step will be to prove that the group of automorphisms of the ind-variety Gr(W,E, V )

is a subgroup of P (GL(Ẽ, V ) · StW ) o Z2. Let ϕ̃ : Gr(W,E, V ) → Gr(W,E, V ) be an arbitrary
automorphism. Denote by Yn the image of Xn, that is, ϕ̃(Xn) = Yn. Clearly, Yn is a grassmannian
isomorphic to Xn. Moreover, the embeddings Yn ↪→ Yn+1 can be assumed to be strict standard
extensions by Theorem 3.2.

Next, we have two possibilities: for some n, the isomorphism

ϕ̃n := ϕ̃|Xn : Xn −→ Yn

has the property

ϕ̃∗nSYn
∼=
(
Ṽn/Sn

)∗
, (12)

where Sn is the tautological bundle on Xn and SYn is the tautological bundle on Yn, or the property

ϕ̃∗nSYn
∼= Sn (13)

for all n. Since our chains of embeddings Xn ↪→ Xn+1 and Yn ↪→ Yn+1 are strict standard extensions,
if the isomorphism (12) holds for some n, it must hold for all n. However, if this happens we can
compose our automorphism ϕ̃ with the following automorphism which represents an element of Z2 in
the semidirect product from the statement of the theorem:

δ : Gr(W, Ẽ, V ) 7−→ Gr(W⊥, Ẽ∗, V∗) −→ Gr(W, Ẽ, V ),

where the left arrow sends W to W⊥ ⊂ V∗ and the right arrow is induced by an appropriate linear
isomorphism

V∗ −→ V

which maps W⊥ to W . Option (13) certainly holds for the composition δ ◦ ϕ̃, so without loss of
generality we can assume in the rest of the argument that (13) holds.

The latter assumption implies
ϕ̃∗nS

∗
Yn = S∗n (14)

for all n. We write equality, as such an isomorphism is determined up to a scalar cn, and we assume
that the scalars cn are chosen in a way compatible with the restriction maps

ϕ̃∗nS
∗
Yn
|Xn−1 ϕ̃∗n−1S

∗
Yn−1

S∗n|Xn−1 S∗n−1.

Then, by our above remark that isomorphisms of grassmannians are encoded by linear operators, the
isomorphisms ϕ̃n : Xn

∼→ Yn are recovered by a choice of compatible invertible linear operators

ϕ∗n : (V ′n)∗ = H0(Yn, S
∗
Yn)

∼→ H0(Xn, S
∗
n) = V ∗n .

The operators ϕ∗n are dual to unique operators ϕn = (ϕ∗n)∗ : Vn → V ′n which we will also consider.
Since both chains of embeddings Xn ↪→ Xn+1 and Yn ↪→ Yn+1 are strict standard extensions, we

have lim−→V ′n = V = lim−→Vn, and consequently, lim←−(V ′n)∗ = V ∗ = lim←−V
∗
n . Therefore, the operators ϕ∗n

induce a linear operator
Φ: V ∗ → V ∗,

and more precisely, a commutative diagram
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V ∗

...

V ∗

...

V ∗n (V ′n)∗

V ∗n−1 (V ′n−1)∗

...
...

Φ

ϕ∗n

ϕ∗n−1

(15)

The diagram (15) encodes the automorphism ϕ̃ in the following way. Let W ′ = lim−→(W ′ ∩ Vn) be a
point of Gr(W,E, V ). Then

ϕ̃(W ′) = lim−→ϕn(W ′ ∩ Vn) = lim−→

(
(ϕ∗n)−1

(
(W ′ ∩ Vn)⊥

)⊥)
, (16)

where the orthogonal to W ′ ∩ Vn is taken in V ∗n and the orthogonal to (ϕ∗n)−1
(

(W ′ ∩ Vn)⊥
)

is taken

in V ′n.
Next, it is essential to observe that the subspace V∗E ⊂ V ∗ is nothing but the subspace of global

sections µ of the sheaf lim←−S
∗
n satisfying the condition: the value of µ at any point W ′ ∈ Gr(W,E, V )

is a linear function on W ′ which belongs to the subspace W ′∗ ⊂ W ′∗. Here W ′∗ is defined in terms of
a basis of W ′ which differs from E by finitely many vectors (W ′∗ is the span of the system of linear
functionals dual to such a basis). Note that, for each W ′ ∈ Gr(W,E, V ), the subspace W ′∗ ⊂ W ′∗

is determined solely by the set Gr(W,E, V ), and hence the above subspace of global sections µ, i.e.,
the space V∗E , must be invariant under the operator Φ. Next, the subspace VE is the counterpart of
the space V∗E for the ind-grassmannian Gr(W⊥, Ẽ∗, V∗), where V∗ is defined by the fixed extension
Ẽ of E to a basis of V , and E∗ are the linear functions in Ẽ∗ which do not vanish on W . Since
Gr(W⊥, Ẽ∗, V∗) is isomorphic to Gr(W,E, V ), the space VE is also invariant under the linear map
Φ′ : (V∗)

∗ → (V∗)
∗ induced by the automorphism ϕ̃ of Gr(W,E, V ). Moreover, given ϕ̃, the linear

operator Φ′ is nothing but the dual operator Φ∗ restricted to the subspace (V∗)
∗ of V ∗∗.

We have shown that any automorphism ϕ̃ : Gr(W,E, V ) → Gr(W,E, V ) satisfying (13) induces
a pair of invertible operators ϕ := Φ′|VE : VE → VE and ϕ := Φ|V∗E : V∗E → V∗E which determine
an element of the Mackey group G(VE , V∗E). Moreover, if Aut0Gr(W,E, V ) stands for the group
of automorphisms of the ind-variety Gr(W,E, V ) satisfying (13), then the assignment ϕ̃ 7−→ ϕ, or
equivalently ϕ̃ 7−→ ϕ−1, defines an injective group homomorphism

ε : Aut0Gr(W,E, V ) ↪→ PG(VE , V∗E).

We now check that the action of the image in PG(VE , V∗E) of Aut0Gr(W,E, V ) is given by the
formula

ϕ̃
(
W ′
)

= ϕ−1
(
W ′⊥

)⊥
∩ V,

where W ′⊥ ⊂ V∗E and ϕ−1
(
W ′⊥

)⊥ ⊂ (V∗E)∗ (clearly, V ⊂ (V∗E)∗). To do this, recall that ϕ̃(W ′) is
given by formula (16). Therefore, we need to verify that

lim−→

(
(ϕ∗n)−1

((
W ′ ∩ Vn

)⊥)⊥)
= ϕ−1

((
lim←−
((
W ′ ∩ Vn

)⊥))⊥) ∩ V. (17)
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However, formula (17) follows from the observation that both its left-hand and right-hand sides coin-

cide with the subspace of vectors in V which vanish on (ϕ∗n)−1
(

(W ′ ∩ Vn)⊥
)

whenever they belong

to Vn; we consider here vectors in Vn as linear functions on V ∗n .
In conclusion, the image of Aut0Gr(W,E, V ) in PG(VE , V∗E) is a subgroup of PG(VE , V∗E) which

acts on Gr(W,E, V ) via the formula (17). Next, we note that since GL(Ẽ, V ) acts transitively on
Gr(W,E, V ), for any ϕ̃ ∈ Aut0Gr(W,E, V ) there are κ ∈ GL(Ẽ, V ) and ϕ̃W ∈ Aut0Gr(W,E, V ) such
that ϕ̃W (W ) = W and ϕ̃ = κ ◦ ϕ̃W . Indeed if ϕ̃(W ) = W ′ for W ′ ∈ Gr(W,E, V ), then ϕ̃ = κ−1 ◦κ ◦ ϕ̃
where κ ∈ GL(Ẽ, V ) satisfies κ(W ′) = W . Consequently, ϕ = κ−1ϕW for ϕW ∈ StW , in other words,
the image of ε lies in P (GL(Ẽ, V ) · StW ).

To complete the proof, we need to show that any operator ϕ ∈ GL(Ẽ, V ) ·StW determines a well-
defined automorphism of Gr(W,E, V ). In the Appendix we introduce the degree d(ϕ) of an operator ϕ
and show that the space ϕ ·W ′ = ϕ−1(W ′⊥)⊥∩V is Ẽ-commensurable with W for any ϕ ∈ G(VE , V∗E)
such that d(ϕ) = 0. Denote by G0(VE , V∗E) the group of all operators ϕ ∈ G(VE , V∗E) with d(ϕ) = 0.

We have to convince ourselves that the action of G0(VE , V∗E) on Gr(W,E, V ) is by automorphisms
of ind-varieties, and not merely by bijections of the set Gr(W,E, V ). Let V = W⊕U where Ẽ∩U spans
U . Recall that our fixed nested finite-dimensional spaces V1 ⊂ . . . ⊂ Vn ⊂ Vn+1 ⊂ . . . are spanned
by elements of Ẽ and Gr(W,E, V ) = lim−→Gr(dn, Vn) where dn = dimVn ∩ W . The embeddings
Xn = Gr(dn, Vn) ↪→ Gr(dn+1, Vn+1) = Xn+1 are strict standard extensions

Fdn 7−→ Fdn ⊕Wn|n+1,

where Wn+1 = W ∩Vn+1 = Wn⊕Wn|n+1 for Wn = W ∩Vn, and Wn|n+1 ∩ Ẽ spans Wn|n+1. Therefore

we have a decomposition V∗E = Wn∗ ⊕ V ∗n ⊕ U∗n, where Wn∗ is the Ẽ-compatible direct complement
of V ∗n within W∗+ V ∗n and U∗n is the dual of the Ẽ-compatible direct complement Un of W + Vn in V .
Any invertible linear operator ζ : V∗E → V∗E induces a decomposition

V∗E = ζ(Wn∗)⊕ ζ(V ∗n )⊕ ζ(U∗n),

and hence an operator

ζn : V ∗n := V∗E/(Wn∗ ⊕ U∗n) −→ V∗E/(ζ(Wn∗)⊕ ζ(U∗n)) = ζn(V ∗n ).

Moreover, we have ζ =
(
lim←− ζn

)
|V∗E .

Each linear operator ζn induces an isomorphism of grassmannians

Gr(dn, ζn(V ∗n )∗) −→ Gr(dn, Vn),

and the varieties Gr(dn, ζn(V ∗n )∗) form an ind-variety isomorphic to Gr(W,E, V ). We conclude that, if
lim−→Gr(dn, ζn(V ∗n )∗) = Gr(W,E, V ) then ζ induces an automorphism of the ind-variety Gr(W,E, V ).

Set now ζ := ϕ−1 for ϕ ∈ G0(VE , V∗E). Then ζn = (ϕ∗n)−1 and ζn(V ∗n )∗ = ϕn(Vn). By the above men-
tioned result from the Appendix, we know that ϕ · W ′ ∈ Gr(W,E, V ) whenever ϕ ∈ G0(VE , V∗E)
and W ′ ∈ Gr(W,E, V ). Therefore lim−→Gr(dn, ϕn(Vn)) = Gr(W,E, V ), and we have shown that

PG0(VE , V∗E) ⊂ im ε.
Finally, Theorem A.7 (i) from the Appendix implies that StW ⊂ G0(VE , V∗E), and hence that also

GL(Ẽ, V ) · StW ⊂ G0(VE , V∗E). Consequently, GL(Ẽ, V ) · StW = G0(VE , V∗E) and GL(Ẽ, V ) · StW is
a group. In particular, GL(Ẽ, V )) · StW = StW · GL(Ẽ, V )). The proof is now complete as we have
shown that im ε = P (GL(Ẽ, V ) · StW ). �

Corollary 4.1. If dimW = codim VW =∞, the group AutGr(W,E, V ) is isomorphic to projec-
tivization of the connected component of unity in the group Japanese GL(∞).

Proof. We proved that AutGr(W,E, V ) ∼= PG0(VE , V∗E). As pointed out in the Appendix, the
group G0(VE , V∗E) is isomorphic to the connected component of unity in the group Japanese GL(∞).
�
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5. Proof of Theorem 1.1 in the general case

Step 1. Reduction to the case of an automorphism which preserves all inverse limits of dual tauto-
logical bundles. Consider the ind-variety Fl(W, Ẽ, V ) for our fixed generalized flag W = {Wα} com-
patible with the fixed basis Ẽ of V . Fix an exhaustion of Fl(W, Ẽ, V ) as a direct limit lim−→Fl(dn, Vn)
of strict standard extensions of finite-dimensional flag varieties Fl(dn, Vn). If the generalized flag W is
symmetric, then the exhaustion can be chosen so that each flag variety Fl(dn, Vn) is symmetric, i.e.,
the vector (d0

n = 0, d1
n, d

2
n, . . . , d

s
n, d

s+1
n = dimVn) satisfies the condition

din − di−1
n = ds+2−i

n − ds+1−i
n

for all 1 ≤ s ≤ n+1. If W is not symmetric, then infinitely many vectors dn are not symmetric, so (by
passing to a subsequence of the sequence {n}) we can assume that all vectors dn are not symmetric.

Let ϕ̃ : Fl(W, Ẽ, V ) → Fl(W, Ẽ, V ) be an automorphism. Set Xn := Fl(dn, Vn) and let Yn =
ϕ̃(Xn). The varieties are finite-dimensional flag varieties, and there are fixed isomorphisms ϕ̃n :=
ϕ̃|Xn : Xn

∼→ Yn. Moreover, Theorem 3.2 implies that the embeddings Yn ↪→ Yn+1 are standard
extensions. By replacing Yn or Yn+1 by its dual flag variety we can further assume that the embeddings
Yn ↪→ Yn+1 are strict standard extensions.

Denote by Sjn and SjYn the tautological bundles of rank djn on Xn and Yn, respectively. There are
two possibilities: either

ϕ̃∗nS
j
Yn
' Sjn (18)

for all n, or
ϕ̃∗nS

j
Yn
' (Ṽn/S

s+1−j
n )∗ (19)

for some n = n0 and all j, 1 < j 6 s. Case (19) can occur only if the vector dn0
is symmetric.

Moreover, then (19) will necessarily hold for all n > n0 due to the assumption that all embeddings
Xn ↪→ Xn+1 and Yn ↪→ Yn+1 are strict standard extensions. In that case, we may as well assume that
(19) holds for all n.

Similarly to the case of an ind-grassmannian, if (19) holds for all n we can compose ϕ̃ with an
automorphism

δ : Fl(W, Ẽ, V )
∼−→ Fl(W⊥, Ẽ∗, V∗)

∼−→ Fl(W, Ẽ, V )

which maps W first to W⊥ and then maps W⊥ to a point of Fl(W, Ẽ, V ) under the isomorphism
Fl(W⊥, Ẽ∗, V∗)

∼−→ Fl(W, Ẽ, V ) induced by an appropriate linear isomorphism V∗ → V mapping Ẽ∗

to Ẽ. Then the composition δ ◦ ϕ̃ satisfies the condition (18) for all n. Therefore, in order to prove
Theorem 1.1, it suffices to prove that

Aut0Fl(W, Ẽ, V ) ' P (GL(Ẽ, V ) · StW )

where Aut0Fl(W, Ẽ, V ) denotes the group of automorphisms of Fl(W, Ẽ, V ) satisfying (18) for all n.
Step 2. From automorphisms to linear operators. Since (18) holds, the automorphism

ϕ̃ : Fl(W, Ẽ, V )→ Fl(W, Ẽ, V )

induces automorphisms
ϕ̃α : Gr(Wα, Eα, V )→ Gr(Wα, Eα, V ) (20)

for each subspace Wα in W . In turn, the automorphisms (20) induce linear operators, defined up to
scalar multiples,

Φα : V ∗ → V ∗

as explained in Section 4.
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We now point out that the operators Φα can be chosen to coincide, i.e., to define a single operator

Φ : V ∗ → V ∗

not depending on α. This observation is justified as follows. Denote by S∗α the pullback to Fl(W, Ẽ, V )
of the inverse limit of the tautological bundles S∗n on Gr(Wα, Eα, V ). Let α′ < α be two indices in
the chain W = {Wα}. Then the morphism of inverse limits S∗α → S∗α′ , arising from the respective
morphism of inverse systems, induces a commutative diagram

H0(Fl(W, Ẽ, V ), S∗α) H0(Fl(W, Ẽ, V ), S∗α′)

V ∗ V ∗,id

(21)

the vertical equalities being the identifications V ∗ = lim←−V
∗
n = lim←−H0(Gr(dγn, Vn), S∗n) where

Gr(Wγ , Eγ , V ) = lim−→Gr(dγn, Vn) for γ = α and γ = α′, respectively. Therefore, for a fixed α and

all α′ < α, the spaces of the form H0(S∗α′) are identified with V ∗ in a way compatible with the upper
horizontal arrows of the diagrams (21). Next, the following diagram is commutative

H0(Fl(W, Ẽ, V ), S∗α) H0(Fl(W, Ẽ, V ), S∗α′)

V ∗ V ∗

V ∗ V ∗

H0(Fl(W, Ẽ, V ), ϕ̃∗S∗α) H0(Fl(W, Ẽ, V ), ϕ̃∗S∗α′),

id

Φα Φα′

id

and this implies Φα = Φα′ .

Step 3. Injective homomorphism Aut0Fl(W, Ẽ, V )→ PG
(
V W
Ẽ
, V W
∗Ẽ

)
. Note first that each homo-

morphism
Aut0Fl(W, Ẽ, V ) −→ Aut0Gr(Wα, Ẽ, V )

ϕ̃ 7−→ ϕ̃α

is injective, as ϕ̃α recovers ϕ̃ through the formula

ϕ̃
(
W ′
)
α′

= Φ−1
(
W ′α′

⊥
)⊥
∩ V

for any α′, where Φ = Φα as explained above and by definition W ′α′
⊥ ⊂ V Wα′

∗Eα′
, Φ−1

(
W ′α′

⊥
)⊥
⊂ V Wα′

Eα′
.

Moreover, the automorphism Φ : V ∗ → V ∗ induces pairs of automorphisms

ϕα = Φ′α|VWαEα

: V Wα
Eα
−→ V Wα

Eα
, ϕα : V Wα

∗Eα −→ V Wα
∗Eα , (22)

compatible with all inclusions of the form V
Wα′
Eα′

⊂ V Wα
Eα

, V Wα
∗Eα ⊂ V

Wα′
∗Eα′

for α′ < α, and such that

ϕα ∈ G
(
V Wα
Eα

, V Wα
∗Eα

)
. In addition, it is easy to check that for any pair of indices α < α′

ϕ−1
α (W⊥α )⊥ = ϕ−1

α′ (W⊥α′)
⊥,
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where W⊥α ⊂ V Wα
∗Eα , W⊥α′ ⊂ V

Wα′
∗Eα′

, ϕ−1
α (W⊥α )⊥ ⊂ V Wα

Eα
, ϕ−1

α′ (W⊥α′)
⊥ ⊂ V

Wα′
Eα′

. Therefore the system

of linear operators (22) determines a unique element in G
(
V W
Ẽ
, V W
∗Ẽ

)
for V W

Ẽ
=
⋂
α
V Wα
Eα

and V W
∗Ẽ

=⋂
α
V Wα
∗Eα , and we obtain a homomorphism

ε : Aut0Fl(W, Ẽ, V ) −→ PG
(
V W
Ẽ
, V W
∗Ẽ

)
.

The fact that GL(Ẽ, V ) acts transitively on Fl(W, Ẽ, V ) shows, by the same argument as in Section 4,

that the image of ε lies in the subset P
(
GL(Ẽ, V ) · StW

)
of PG

(
V W
Ẽ
, V W
∗Ẽ

)
.

We have to show that ε is injective, i.e., that the image of ε determines all operators ϕα and ϕα as
above. We will do this by recalling that each operator ϕα : V Wα

Eα
→ V Wα

Eα
admits a matrix as described

in the Appendix. The key point is that if an invertible operator on V Wα
Eα

admits such a matrix, then

this matrix is unique. Now the compatibility of the operators ϕα under all inclusions V
Wα′
Eα′

↪→ V Wα
Eα

for α′ < α imply that the matrices of all operators ϕα coincide. Since each homomorphism

ϕ̃α 7−→ ϕα

is injective according to Section 4, we conclude that ε is injective.
Step 4. The image of ε. As a final step of the proof, we need to show that the image of ε coincides

with the set P (GL(Ẽ, V ) · StW ). For this it suffices to prove that P (GL(Ẽ, V ) · StW ) belongs to the
image of ε, i.e., that GL(Ẽ, V ) · StW acts on the ind-variety Fl(W, Ẽ, V ) via the formula (4).

Pick an operator ϕ ∈ GL(Ẽ, V ) · StW and a flag W ′ ∈ Fl(W, Ẽ, V ). Since W and W ′ are E-
commensurable, one has GL(Ẽ, V ) · StW = GL(Ẽ, V ) · StW ′ . Therefore ϕ = κ−1ϕW ′ for some ϕW ′ ∈
StW ′ and some κ ∈ GL(Ẽ, V ). Consequently, ϕ(W ′) = κ−1(W ′), i.e. ϕ−1(W ′) is Ẽ-commensurable
with W . In conclusion, imε = P (GL(Ẽ, V ) · StW ), and since (GL(Ẽ, V ) · StW ) is a group we have
also imε = P (StW ·GL(Ẽ, V )). The proof is complete.

6. An explicit matrix form of the group GL(Ẽ, V ) · StW

Now we would like to characterize the product GL(Ẽ, V ) · StW in terms of matrices. We start by
describing a matrix form of the group StW .

Choose a linear order on Ẽ such that ej ∈Wα \Wα′ , ek ∈Wα′ for α′ < α implies k < j. It follows

from the Appendix that for each space Wα the stabilizer of Wα in G
(
V Wα
Eα

, V Wα
∗Eα

)
under the action

(4) can be represented by infinite matrices (with rows and columns ordered by the fixed order on Ẽ)
which, together with their inverses, have the form(

A B

0 D

)
(23)

where A has finitary rows, D has finitary columns, and there are no restrictions on the rows and
columns of B. Certainly, the splitting (23) depends on the space Wα.

Next, the fact that the operators ϕα and ϕα form a system compatible with the inclusions V
Wα′
Eα

⊂
V Wα
Eα

, V Wα
∗Eα ⊂ V

Wα′
∗Eα for α′ < α, implies that all operators ϕα, respectively ϕα, are represented by

the same matrix. This means that all matrices (23) are just one matrix which satisfies the above
conditions for all spaces Wα. Consequently, StW consists of matrices M which, together with their
inverses, have the form
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M =



. . .

0 Aα′

. . .

0 0 Aα

0 0 0
. . .


, (24)

the rows and columns of M being ordered by the ordered set which orders the elements of Ẽ as above,
and the diagonal blocks being of size dim(Wα2/Wα1) × dim(Wα2/Wα1) where α is one of the indices
α1 and α2, and α1 is the immediate predecessor of α2. This datum induces a block structure on the
entire matrix M , and all strictly lower-triangular blocks are set to equal zero. Furthermore, since M
and M−1 are subject to the above additional conditions for all splittings arising from spaces Wα of
W , the matrices M and M−1 satisfy the following:

• if there exists a rightmost highest block L (this depends on the order on Ẽ, i.e., ultimately on
the structure of the generalized flag W ), then there are no conditions on the rows and columns
of L, all columns of M which intersect L have at most finitely many nonzero entries outside of
L, all rows of L which intersect L have at most finitely many nonzero entries outside of L, and
all other rows and columns of M have at most finitely many nonzero entries in the region in
which the first index is greater then the first index of any entry of L and the second index is
smaller than the second index of any entry of L;

• if M has no rightmost highest block, then all rows have at most finitely many nonzero entries
in direction to the left (from any point on) and all columns have at most finitely many nonzero
entries in the downward direction (from any point on).

In order to pass to the full group GL(Ẽ, V ) · StW , consider matrices of the form (24) and replace
the zeros in the lower-triangular part by finitely many nonzero entries. Let’s refer to such matrices as
W -aligned. If M is a W -aligned matrix, then every space Wα induces a splitting of M into four blocks(

A B

C D

)
(25)

where C is a finitary matrix. A W -aligned matrix M is eligible if M−1 is also W -aligned, and for any
α the splittings (

A B

C D

)
and

(
A′ B′

C ′ D′

)
of M and M−1 respectively, satisfy the condition

rkC = rkC ′.

We leave it as an exercise to the reader to check that the condition of eligibility is empty (i.e., it is
automatically satisfied) if the ordered set parameterizing the rows and columns of A or D is finite.

Our result in this section states as follows.
Theorem 6.1. The group GL(Ẽ, V ) · StW is isomorphic to the group of all eligible W -aligned

matrices.
Proof. Any matrix in GL(Ẽ, V ) · StW has the form MfM where Mf is an element of GL(Ẽ, V )

and M is a matrix from StW having the form (24). The necessary and sufficient condition for MfM to

lie in GL(Ẽ, V ) ·StW is that the splitting (25) of MfM for any space Wα in W satisfies the condition
of Theorem A.7. For all α these conditions amount precisely to the requirement that the matrix MfM
be eligible. �
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7. The isotropic case

Theorem 7.1. Let X = FlO(W, Ẽ, V ) or FlS(W, Ẽ, V ) for some isotropic generalized flag W
compatible with an isotropic basis Ẽ of V . We assume in addition that W does not have the form
0 ⊂ W1 ⊂ W⊥1 ⊂ V where dimW1 = 1 in the symplectic case, and that dimW⊥1 /W1 6= 2 in the

orthogonal case if the basis Ẽ has the form (9). Then

AutX ' P (O(Ẽ, V ) · StOW )

or
AutX ' P (Sp(Ẽ, V ) · StSpW ),

where StOW and StSpW denote respectively the stabilizer of W in O(V ) and Sp(V ). The action of O(V ) on

FlO(W, Ẽ, V ), or respectively of Sp(V ) on FlS(W, Ẽ, V ), is induced by the linear action of O(V ) or
Sp(V ) on V .

Proof. Step 1. The case of an isotropic ind-grassmannian. The argument starts in the same
way as for ordinary ind-grassmannians. The embeddings Xn ↪→ Xn+1 are assumed to be standard

extensions of isotropic grassmannians, and by Theorem 3.2 the embeddings Yn := ϕ(Xn)
ηn
↪−→ Yn+1 :=

ϕ(Xn+1) are also standard extensions.
Next, in the isotropic case the isomorphisms (14) must hold, so we arrive to diagram (15) or,

equivalently, to a commutative diagram

V = lim−→Vn
...

V = lim−→V ′n
...

Vn V ′n

Vn−1 V ′n−1

...
...

lim−→ϕn

ϕn

ϕn−1

.

The isomorphism V = lim−→V ′n holds since the embeddings Yn ↪→ Yn+1 are standard extensions, and
hence any V ′n is a subspace of VN for some N > n. Furthermore, the restriction of the fixed (symmetric
or antisymmetric) form on V to V ′n is a form defining the corresponding isotropic grassmannian in
V ′n. (Such a form is unique up to a scalar if W satisfies the conditions of the theorem.) Recall (from
Section 4) that the maps ϕn are defined up to compatible scalars cn. The key observation is that
there is a unique choice of these scalars such that the maps ϕn are isomorphisms of orthogonal or,
respectively, symplectic vector spaces. This follows from the fact that the automorphism groups of
our finite-dimensional isotropic grassmannians Xn and Yn are the respective orthogonal or symplectic
groups.

Set
ϕ := lim−→ϕn : V → V.

Then by construction ϕ is an orthogonal or, respectively, symplectic operator, and ϕ determines our
automorphism ϕ̃ which acts on a point W ′ by formula (16). However, in the case considered we have

lim−→

(
ϕn

((
W ′ ∩ Vn

)⊥)⊥)
= lim−→

(
ϕn
(
W ′ ∩ Vn

))
= ϕ(W ′), (26)

16



hence the action of ϕ̃ on X is simply induced by the action of ϕ as a linear automorphism of V . This
implies that there is an injective homomorphism

ε : AutGrO(W, Ẽ, V ) ↪→ PO(V )

or, respectively,
ε : AutGrS(W, Ẽ, V ) ↪→ PSp(V ),

ϕ̃ 7−→ ϕ

and that the action of the image of ε on GrO(W, Ẽ, V ) or GrS(W, Ẽ, V ) is induced by the linear
action of O(V ) or, respectively, Sp(V ) on V .

In the case of a general ind-variety of isotropic generalized flags, an injective homomorphism ε
is constructed exactly as in Step 3 of the proof of Theorem 1.1. Here the images of all homomor-
phisms εα lie in PO(V ) or, respectively, PSp(V ), therefore ε is just the homomorphism into the
intersection of all images of εα. Moreover, the image of ε coincides respectively with P (O(Ẽ, V ) ·
StOW ) or P (Sp(Ẽ, V ) · StSpW ). Indeed, since O(Ẽ, V ) or, respectively, Sp(Ẽ, V ), acts transitively on

FlO(W, Ẽ, V ) or FlS(W, Ẽ, V ), the image of ε must be a subgroup of P (O(Ẽ, V ) · StOW ) or, respec-

tively, P (Sp(Ẽ, V ) · StSpW ). On the other hand, by the same argument as in Section 5, O(Ẽ, V ) · StOW
or, respectively, Sp(Ẽ, V ) ·StSpW acts on the ind-variety FlO(W, Ẽ, V ) or FlS(W, Ẽ, V ) via the formula
(16). Since in our case the equality (26) holds, the proof is complete. �

Corollary 7.2. The group O(Ẽ, V ) · StOW , or Sp(Ẽ, V ) · StSpW , is isomorphic to the group of all
invertible W -aligned matrices M with finitary rows and columns satisfying M = ±M−1, where ·
denotes reflection along the antidiagonal, plus corresponds to the case of O and minus corresponds to
the case of Sp.

Proof. The group O(Ẽ, V ) · StOW or Sp(Ẽ, V ) · StSpW is clearly the intersection of the group

GL(Ẽ, V ) · StW with O(V ) or, respectively, with Sp(V ), and this implies the claim. Note that the
condition M = ±M−1 makes M eligible automatically. �

Appendix: on the structure of the group G(VE, V∗E)

In this Appendix we have collected some basic statements about the Mackey group G(VE , V∗E).
The isomorphism of this group with the group Japanese GL(∞) is stated at the end.

A.1. A lemma from linear algebra.

Lemma A.1. Let A be a countable-dimensional vector space, and µ : A∗ → A, ν : A∗ → A be
linear maps such that α(µ(β)) = β(ν(α)) for all α, β ∈ A∗. Then the dimensions of the images of µ
and ν are finite and equal.

Proof. We will first check that dim imµ <∞. This will imply that dim im ν is also finite because
the conditions on µ and ν are symmetric. Pick a basis {f1, f2, . . .} of A, and let {f∗1 , f∗2 , . . .} be
the dual system in A∗. Assume that imµ is infinite dimensional. Then there exist linear functions
λn ∈ A∗ for n ∈ Z>0, such that dim〈µ(λ1), . . . , µ(λn)〉C = n. It is easy to see that these linear
functions can be chosen so that λn(fi) = 0 for i < n and λn(fn) 6= 0. Let B := 〈λn|n ∈ Z>0〉C. The
formula (a, b) 7→ b(a) for a ∈ A, b ∈ B defines a non-degenerate pairing between A and B. By a
result of G. Mackey [M, Lemma on p. 171], we may assume without loss of generality that λn = f∗n
for all n.

Since dim imµ = ∞, for any n ∈ Z>0 there exists in ∈ Z>0 such that µ(f∗in) is not contained
in An := 〈f1, . . . , fn〉C. In other words, there exist two infinite sequences of integers 1 ≤ i1 < i2 < . . .
and 2 ≤ k1 < k2 < . . . so that µ(f∗in) ∈ Akn \Akn−1 for all n ≥ 1.
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Now we define a sequence c1, c2, . . . of complex numbers inductively as follows. Set c1 to be an
arbitrary nonzero scalar. For n > 1 we let cn to be an arbitrary complex number such that

n∑
j=1

cjf
∗
kj

(µ(f∗in)) = cnf
∗
kn(µ(f∗in)) +

n−1∑
j=1

cjf
∗
kj

(µ(f∗in)) 6= 0.

(Such a number exists because f∗kn(µ(f∗in)) 6= 0.) Finally, we define α ∈ A∗ by the formula

α(fj) =

{
cn if j = kn for some n ≥ 1,

0 otherwise.

Then

f∗in(ν(α)) = α(µ(f∗in)) =
n∑
j=1

cjf
∗
kj

(µ(f∗in)) 6= 0

for any n ∈ Z>0. This means that ν(α) /∈ Ain−1 for all n ≥ 1, i.e., that ν(α) can not be expressed as
a finite linear combination of f1, f2, . . ., and this is a contradiction.

Hence, dim imµ < ∞, and also dim im ν < ∞. It remains to check that dim imµ = dim im ν.
Since dim imµ < ∞, there exist n ∈ Z>0 and linear functions α1, . . . , αn ∈ A∗∗ such that µ(a) =∑n

i=1 αi(a)fi for all a ∈ A∗. We note that in fact αi ∈ A for all i. Indeed,

f∗j (µ(a)) = f∗j

(
n∑
i=1

αi(a)fi

)
= αj(a) = a(ν(f∗j )),

so αj = ν(f∗j ) ∈ A for all j. It follows that there exist m ∈ Z>0 and scalars αij ∈ C so that
αj =

∑m
i=1 αijfi for all 1 ≤ j ≤ n. Clearly, dim imµ = rk (αij)

m,n
i,j=1. Similarly, there exist n′, m′ ∈ Z>0,

vectors βj ∈ A, and scalars βij ∈ C so that ν(b) =
∑n′

j=1 βj(b)fj and βj =
∑m′

i=1 βijfi for all 1 ≤ j ≤ n′.
Then dim im ν = rk (βij)

m′,n′

i,j=1. However, αij = f∗i (αj) = f∗i (ν(f∗j )) = f∗j (µ(f∗i )) = f∗j (βi) = βji for all
i, j. This means that m′ = n, n′ = m, and the matrices (αij)

m,n
i,j=1 and (βij)

n,m
i,j=1 are transpose to each

other. The result follows. �

A.2. A grading on the group G(VE , V∗E). We work in the setup of Section 4. Recall that we
consider a generalized flag having a single proper subspace W ⊂ V with dimW = codim VW = ∞,
and that E = Ẽ∩W is a basis of W . Let U = 〈Ẽ \E〉C. We have VE = (W∗)

∗⊕U , V∗E = W∗⊕U∗ and
there is a natural nondegenerate pairing VE × V∗E → C. The group G(VE , V∗E) consists of invertible
linear operators ϕ : VE → VE such that ϕ = ϕ∗|V∗E : V∗E → V∗E is a well-defined isomorphism.

Choose an ordering of E via Z<0 and an ordering of Ẽ \ E via Z>0. Set

Ek :=

{
E \ {ek, . . . , e−1} for k < 0

E ∪ {e1, . . . , ek} for k > 0

and W k := 〈Ek〉C. The disjoint union
⊔
k∈Z

Gr(W k, Ek, V ), where E = E0, W = W 0, is an ind-variety

which we denote by X.
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Proposition A.2. The formula (4) defines an action of G(VE , V∗E) on X by ind-variety auto-
morphisms.

Proof. We first prove that ϕ ·W ′ ∈ X for any W ′ ∈ X and any ϕ : VE → VE , ϕ ∈ G(VE , V∗E).
Since in the definition of X, W can be replaced by W ′, it suffices to check that ϕ ·W ∈ X. Denote by
πU : VE → U and πW∗ : V∗E →W∗ the canonical projections onto the corresponding direct summands.
Set also µ := πU ◦

(
ϕ|(W∗)∗

)
and ν := πW∗ ◦ (ϕ|U∗).

We claim that dim imµ and dim im ν are finite (and equal). Fix an isomorphism of vector spaces
η : W∗ → U and the dual isomorphism η∗ : U∗ → (W∗)

∗. Consider the linear maps µ′ = µ ◦ η∗ and
ν ′ = η ◦ ν from U∗ to U . Then, for all α, β ∈ U∗, we have

α(µ′(β)) = α(µ(η∗(β))) = α(πU (ϕ(η∗(β)))) = α(ϕ(η∗(β))) = ϕ(α)(η∗(β))

= πW∗(ϕ(α))(η∗(β)) = ν(α)(η∗(β)) = η(ν(α))(β) = β(ν ′(α)).

Hence, dim imµ′ = dim im ν ′ <∞ (and, consequently, dim imµ = dim im ν <∞) by Lemma A.1.
Now, denote by A0 the preimage of zero under the restriction of πU to ϕ((W∗)

∗). Obviously, A0 =
(W∗)

∗ ∩ ϕ((W∗)
∗). According to the proof of Lemma A.1, there exist n ∈ Z>0 and α1, . . . , αn ∈W∗

such that
µ(ω) = πU (ϕ|(W∗)∗(ω)) =

∑n

i=1
ω(αi)ei

for all ω ∈ (W∗)
∗. A vector ω of (W∗)

∗ belongs to A0 if and only if µ(ω) = 0, i.e, if ω(αi) = 0 for
1 ≤ i ≤ n. It follows immediately that A0 ∩W has finite codimension in W and, moreover, given
w ∈ W , one has w ∈ A0 if and only if αi(w) = 0 for all 1 ≤ i ≤ n. Hence, A0 ∩W contains all but
finitely many vectors of E.

Recall that ϕ ·W = ϕ−1(W⊥)⊥ ∩ V . Clearly, W⊥ = U∗, and since ϕ−1(B)⊥ = ϕ(B⊥) for any
subspace B of V∗E , we conclude that

ϕ−1(U∗)⊥ = ϕ((U∗)⊥) = ϕ((W∗)
∗).

Hence ϕ ·W = ϕ((W∗)
∗) ∩ V . Since A0 ⊂ ϕ((W∗)

∗), we have A0 ∩W ⊂ ϕ ·W , so ϕ ·W contains all
but finitely many vectors of E. On the other hand,

ϕ((W∗)
∗) ⊂ (W∗)

∗ ⊕ πU (ϕ((W∗)
∗)) = (W∗)

∗ ⊕ imµ.

This implies ϕ ·W ⊂W ⊕ imµ, and consequently ϕ ·W ∈ X.
Next, a trivial modification of the argument at the end of the proof of Theorem 1.1 for ind-

grassmannians shows that ϕ induces an automorphism of ind-varieties

ϕ̃ : X → X.

Finally, the fact that ϕ̃′ ◦ ϕ′′ = ϕ̃′◦ϕ̃′′ follows from the realization of ϕ̃ as an inverse limit of morphisms

of finite-dimensional grassmannians where the property ϕ̃′n ◦ ϕ′′n = ϕ̃′n ◦ ϕ̃′′n is obvious. �

The ind-variety X is the disjoint union of the ind-grassmannians Gr(W k, Ek, V ) for k ∈ Z. These
closed ind-subvarieties are not stable with respect to this action.

Example A.3.
Let a reverse sequence be a set parameterized by Z<0. The vectors in VE and V∗E can be written

respectively as x =
∑
i>0

ωie−i+
∑
i>0

uiei ∈ VE , y =
∑
i>0

wie
∗
−i+

∑
i>0

νie
∗
i ∈ V∗E where ω = (. . . , ω−2, ω−1)

and w = (. . . , w−2, w−1) are reverse sequences of complex numbers, and u = (u1, u2, . . .), ν =
(ν1, ν2, . . .) are usual sequences of complex numbers. In addition, u and w are finitary, i.e. have
at most finitely many nonzero entries. In what follows, we write simply (ω, u) for vectors in VE , and
(w, ν) for vectors in V∗E .
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Consider the shift (linear) operator Sh : VE → VE

Sh((ω, u)) = ((. . . , ω−3, ω−2), (ω−1, u1, u2 . . .)).

One checks immediately that Sh is an element of the group G(VE , V∗E) with Sh having the form

Sh((w, ν)) = ((. . . , w−2, w−1, ν1), (ν2, ν3, . . .)).

Moreover, Sh · W belongs to Gr(W 1, E1, V ), and in fact Sh · Gr(W,E, V ) = Gr(W 1, E1, V ). In
addition, we note that

dimπU (Sh((W∗)
∗))− dimπU (Sh−1((W∗)

∗)) = dimπW∗(Sh(U∗))− dimπW∗(Sh
−1

(U∗)) = 1.

©
This example motivates the following.

Definition A.4. Let ϕ ∈ G(VE , V∗E). We define the integer

d(ϕ) = d(ϕ) := dimπU (ϕ((W∗)
∗))− dimπU (ϕ−1((W∗)

∗)) = dimπW∗(ϕ(U∗))− dimπW∗(ϕ
−1(U∗))

to be the degree of ϕ. (The latter equality follows immediately from the fact that dim im (πU ◦
ϕ|(W∗)∗) = dim im (πW∗ ◦ ϕ|U∗) checked in the proof of Proposition A.2.)

Proposition A.5. Given ϕ ∈ G(VE , V∗E) and k ∈ Z, one has ϕ ·Gr(W,E, V ) = Gr(W k, Ek, V )
if and only if d(ϕ) = k.

Proof. It suffices to check that the condition ϕ ·W ∈ Gr(W k, Ek, V ) is equivalent to d(ϕ) = k.
Since ϕ ·W belongs to X, the condition ϕ ·W ∈ Gr(W k, Ek, V ) is equivalent to the equality

codim ϕ·W ((ϕ ·W ) ∩W )− codimW ((ϕ ·W ) ∩W ) = k.

We have ϕ ·W = ϕ((W∗)
∗) ∩ V and W ⊂ (W∗)

∗, hence

(ϕ ·W ) ∩W ⊂ (ϕ((W∗)
∗) ∩ V ) ∩ (W∗)

∗ = A0 ∩ V = A0 ∩W

where A0 = (W∗)
∗ ∩ ϕ((W∗)

∗). Moreover, the opposite inclusion is clear, so (ϕ ·W ) ∩W = A0 ∩W .
Therefore, we need to prove that

codim ϕ((W∗)∗)∩V (A0 ∩W )− codimW (A0 ∩W ) = d(ϕ).

As was shown in the proof of Proposition A.2, there exist n ∈ Z>0 and α1, . . . , αn ∈ W∗ such
that πU (ϕ|(W∗)∗(ω)) =

∑n
i=1 ω(αi)ei for all ω ∈ (W∗)

∗, and A0 = {ω ∈ (W∗)
∗ | ω(αi) = 0, 1 ≤ i ≤ n}.

Hence, A0 ∩W = {w ∈W | αi(w) = 0, 1 ≤ i ≤ n} and

codim (W∗)∗A0 = codimW (A0 ∩W ) = dimπU (ϕ((W∗)
∗)). (27)

It remains to check that codim ϕ((W∗)∗)∩V (A0 ∩W ) = dimπU (ϕ−1((W∗)
∗). This is done essentially

by the same argument as above. Indeed, the argument in the proof of Proposition A.2 now shows
that there exist m ∈ Z>0 and α̃i ∈ W∗, 1 ≤ i ≤ m, such that πU (ϕ−1|(W∗)∗(ω)) =

∑m
i=1 ω(α̃i)ei for

ω ∈ (W∗)
∗. This, together with fact that dimπU (ϕ−1((W∗)

∗)) < ∞, implies that, given (ω, u) ∈ VE ,
the condition ϕ−1((ω, u)) ∈ (W∗)

∗ is equivalent to a finite system of linear equations on finitely many
of the coordinates of (ω, u). Thus,

codim ϕ((W∗)∗)∩V (A0 ∩W ) = codim ϕ((W∗)∗)A0 = codim ϕ((W∗)∗)(ϕ((W∗)
∗) ∩ (W∗)

∗)

= codim (W∗)∗((W∗)
∗ ∩ ϕ−1((W∗)

∗)) = dimπU (ϕ−1((W∗)
∗)).

The proof is now complete. �
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Corollary A.6. The definition of d(ϕ) does not depend on the choice of W in the following sense:
in the definition of d(ϕ) one can replace W by any subspace W ′ ⊂ V which is Ẽ-commensurable with
W , and U — by any direct complement U ′ of W ′ in V such that codim U ′〈U ′ ∩ Ẽ〉C <∞.

Proof. The claim follows directly from Proposition A.5 as the ind-varieties Gr(W k, Ek, V ) remain
unchanged under a replacement W  W ′, U  U ′. �

Now we are ready to describe the structure of the G(VE , V∗E)-action on X in more detail. In
particular, we prove that the degree defines a grading on the group G(VE , V∗E). In the next theorem
we set X(k) = Gr(W k, Ek, V ) for k ∈ Z. Then X(0) = Gr(W,E, V ) and X =

⊔
k∈Z

X(k).

Theorem A.7. Given d ∈ Z, set Gd(VE , V∗E) := {ϕ ∈ G(VE , V∗E) | d(ϕ) = d}. Then

i) ϕ ·X(k) = X(k + d(ϕ)) for all ϕ ∈ G(VE , V∗E), k ∈ Z;

ii) d(ϕ ◦ ϕ′) = d(ϕ) + d(ϕ′) for all ϕ, ϕ′ ∈ G(VE , V∗E);

iii) G0(VE , V∗E) is a normal subgroup of G(VE , V∗E) whose cosets are Gd(VE , V∗E), d ∈ Z.

Proof. i) We have d(ϕ−1) = −d(ϕ) by the definition of degree. This implies that if ϕ·X(0) = X(d)
then ϕ−1 ·X(0) = X(−d). In particular, since Sh ·X(n) = X(n+ 1) and consequently Shk ·X(n) =
X(n+ k), we obtain Sh−k ·X(n) = X(n− k) for all k, n ∈ Z.

We claim that if ϕ · X(0) = X(0) then ϕ · X(k) = X(k) for all k ∈ Z. Indeed, assume that
ϕ ·X(0) = X(0) and pick an integer k. We have (Sh−k ◦ϕ) ·X(0) = Sh−k · (ϕ ·X(0)) = Sh−k ·X(0) =
X(−k). By our observation in the first paragraph, we conclude that (Sh−k ◦ ϕ)−1 ·X(0) = X(k), i.e,

(ϕ−1 · Sh−k) ·X(0) = ϕ−1 · (Shk ·X(0)) = ϕ−1 ·X(k) = X(k).

This clearly implies ϕ ·X(k) = X(k).
Now, assume that ϕ·X(0) = X(d), i.e., that d(ϕ) = d. Then (Sh−d◦ϕ)·X(0) = Sh−d·X(d) = X(0).

Thus, by the previous paragraph, for all k ∈ Z we have (Sh−d ◦ ϕ) ·X(k) = X(k), i.e.,

ϕ ·X(k) = Shd ·X(k) = X(k + d).

ii) Follows immediately from (i).
iii) Follows immediately from (ii). �

A.3. Matrix realization. Consider the spaces VE = (W∗)
∗ ⊕ U , V∗E = W∗ ⊕ U∗, and assume

that the isomorphism η : W∗ → U maps e∗−i to ei for i ∈ Z>0. Then the pairing VE × V∗E → C is
identified with the pairing

(U∗ ⊕ U)× (U∗ ⊕ U)→ C : ((γ, y), (κ, z)) 7→ 〈(γ, y), (κ, z)〉 = γ(z) + κ(y), y, z ∈ U, γ, κ ∈ U∗.

This allows us to denote the group G(VE , V∗E) = G(U∗ ⊕ U,U∗ ⊕ U) simply by GU .
We now present an explicit matrix realization of the group GU . We have a fixed basis {e1, e2, . . .}

of U , and we identify U∗⊕U with the space {(γ, y)} where γ = (. . . , γ−2, γ−1) are reverse sequences
and y = (y1, y2, . . .) are finitary usual sequences. We consider matrices whose rows and columns are
parameterized by the ordered set Z \ {0} = Z<0 t Z>0. Such a matrix M naturally splits into four
blocks

M =

(
A B

C D

)
.

Let J be the subset of such matrices satisfying the following conditions:

• each row of A and each column of D is finitary;

• C is a finitary matrix.
(28)
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Matrices from J act on U∗ ⊕ U via left multiplication: one considers vectors of U∗ ⊕ U as columns

(γ, y)T =

(
γT

yT

)
,

and we have (γ, y)T 7−→ ψ(γ, y)T for ψ ∈ J .
Given a matrix ψ ∈ J , we let ψ denote the reflection of ψ with respect to its antidiagonal. Clearly,

ψ = ψ. One checks immediately that ψ belongs to J , and that ψ1ψ2 = ψ2 ψ1. Furthermore, if
γ := (γ−1, γ−2, γ−3, . . .) for a reverse sequence γ = (. . . , γ−3, γ−2, γ−1) and y := (. . . , y3, y2, y1)
for a finitary sequence y = (y1, y2, y3, . . .), then we have ψ(γ, y)T = (γ, y)T ψ for all (γ, y) ∈ U∗⊕U ,
where (γ, y)T = (y, γ).

Let G̃U be the group of automorphisms of VE with matrices ψ such that ψ, ψ−1 ∈ J .
Theorem A.8. The group GU coincides with G̃U .
Proof. First, we prove that GU is contained in G̃U . Pick an operator ϕ ∈ GU . Since πU ◦ (ϕ|U ) is

a well-defined operator on the countable-dimensional space U , it is represented by a (unique) matrix
D = (di,j)i,j∈Z>0 with finitary columns.

Next, Lemma A.1 implies that dim im (πU ◦ (ϕ|U∗)) < ∞. Moreover, according to the proof of
Lemma A.1 there exist n ∈ Z≥0 and vectors c1, . . . , cn ∈ U such that πU (ϕ|U∗(γ)) =

∑n
i=1 γ(ci)ei

for all γ ∈ U∗. This means that πU ◦ (ϕ|U∗) can be represented as a finitary matrix C = (ci,−j)i,j∈Z>0 ,
where ci =

∑
j≥1 ci,−jej .

Let πU∗ be the projection operator U∗ ⊕ U → U∗. The operator πU∗ ◦ (ϕ|U ) is an operator from
the space U of finitary sequences to the space U∗ of arbitrary reverse sequences, and is therefore given
by a matrix B = (b−i,j)i,j∈Z>0 .

Finally, given γ ∈ U∗, we have πU∗(ϕ|U∗(γ))(ei) = ϕ(γ)(ei) = γ(ϕ(ei)) = γ(πU (ϕ(ei))). There exist
linear functions βj ∈ U∗, j ∈ Z>0, such that πU (ϕ(y)) = (β1(y), β2(y), . . .). Since πU (ϕ(ei)) belongs

to U , there exists k(i) ∈ Z>0 such that βj(ei) = 0 for j > k(i), i.e., πU (ϕ(ei)) =
∑k(i)

j=1 βj(ei)ej .
Thus, πU∗ ◦ (ϕ|U∗) can be represented as a matrix with finitary rows A = (a−i,−j)i,j∈Z>0 , where
a−i,−j = βj(ei).

It follows that ϕ ∈ GU can be represented by invertible matrices from L. This conclusion applies
also to the inverse operator ϕ−1 by the same argument.

In order to verify the inclusion G̃U ⊂ GU , let now ψ be a matrix from L such that ψ−1 ∈ L. Then
the linear operator on U∗ ⊕ U with matrix ψ is the restriction to U∗ ⊕ U of the operator dual to the
operator defined by ψ. Indeed,

〈ψ(γ, y)T , (γ′, y′)T 〉 = ψ(y, γ)T (γ′, y′)T = (γ, y)T ψ(γ′, y′)T

= (γ, y)Tψ(γ′, y′)T = 〈(γ, y)T , ψ(γ′, y′)T 〉,
(29)

where the three middle terms are products of two or respectively three matrices. Moreover, the

invertibility of ψ follows from the equality ψ
−1

= ψ−1 which is a consequence of the relation ψ1ψ2 =
ψ2ψ1. This shows that ψ determines an operator from GU . �

Remark A.9. Finally, the reader will notice that if in the definition of J we replace the ordered
set Z \ {0} = Z<0 tZ>0 by any ordered set which is the disjoint union O1 tO2 of two linearly ordered
countable sets with the condition r < s for r ∈ O1, s ∈ O2, and define a group by imposing the
conditions (28), we will obtain a group isomorphic to GU . Of course, in such a setting the matrix of
the operator ϕ = ϕ∗|U∗⊕U , for a given ϕ ∈ GU with matrix ψ, will not be ψ as defined above, and its
form will depend on the choice of O1 and O2. Moreover, there will also be analogues of the operator
Sh, and we leave it to the reader to define one. ©

The above remark is used in the proof of Theorem 1.1 presented in Section 5.
Finally, using the matrix form of the group GU given by Theorem A.8, it is straightforward to

check that GU is nothing but the group of continuous automorphisms of U∗ ⊕U as a Tate space, see,
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for instance, [K]. In other words, GU is the well-known group Japanese GL(∞), and G0(U,U∗) is
simply the connected component of the identity in G(U,U∗) = GU .
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