
LEVI COMPONENTS OF PARABOLIC SUBALGEBRAS OF
FINITARY LIE ALGEBRAS

ELIZABETH DAN-COHEN AND IVAN PENKOV

Abstract. We characterize locally semisimple subalgebras l of sl∞, so∞, and

sp∞ which are Levi components of parabolic subalgebras. Given l, we charac-
terize the parabolic subalgebras p such that l is a Levi component of p. When

the set of such self-normalizing parabolic subalgebras p is finite, we prove an

estimate on its cardinality. We consider various examples which highlight the
differences from the case of parabolic subalgebras of finite-dimensional simple

Lie algebras.

1. Introduction

The foundations of the theory of finitary Lie algebras have been laid in [B, B2,
BS, PS]. This has made possible the development of a more detailed structure
theory for the finitary Lie algebras [NP, DPSn, DiP, D, DP, DPW, DiP2].
In particular, the notions of Levi components and parabolic subalgebras were de-
veloped for finitary Lie algebras in [DP]. Nevertheless, the problem of an explicit
description of all Levi component of parabolic subalgebras was not addressed there.
This is the purpose of the present paper. More precisely, we identify the subalgebras
which occur as the Levi component of a simple finitary Lie algebra, and we char-
acterize all parabolic subalgebras of which a given subalgebra is a Levi component.
In addition, we provide criteria for the number of self-normalizing parabolic subal-
gebra with a prescribed Levi component to be finite; note that the finite numbers
which occur can be quite unlike those in the finite-dimensional case.

Along the way we present examples to highlight the many differences between
the finitary and finite-dimensional situations. One phenomenon seen here for the
first time is a maximal locally reductive subalgebra of a parabolic subalgebra which
is not a locally reductive part of the parabolic subalgebra.

2. Preliminaries

2.1. Background on locally finite Lie algebras. Let V and V∗ be countable-
dimensional vector spaces over the complex numbers, together with a nondegenerate
pairing 〈·, ·〉 : V × V∗ → C. A subspace F ⊂ V is said to be closed (in the Mackey
topology) if F = F⊥⊥. By a result of Mackey [M], the vector spaces V and V∗
admit dual bases: that is, there are bases {vi | i ∈ I} and {vi | i ∈ I} of V and
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V∗, respectively, such that 〈vi, vj〉 = δij . We denote by gl(V, V∗) the Lie algebra
associated to the associative algebra V ⊗ V∗ with multiplication

V ⊗ V∗ × V ⊗ V∗ → V ⊗ V∗
(v ⊗ w, v′ ⊗ w′) 7→ 〈v′, w〉v ⊗ w′.

The vectors vi ⊗ vj form a basis for gl(V, V∗), with commutation relations [vi ⊗
vj , vk ⊗ vl] = δjkvi ⊗ vl − δilvk ⊗ vj . Thus gl(V, V∗) ∼= gl∞, where gl∞ is the direct
limit of the system

gln → gln+1 A 7→
(
A 0
0 0

)
.

The Lie algebras sl∞, so∞, and sp∞ are similarly defined; that is, they are di-
rect limits of systems of finite-dimensional simple Lie algebras where the natural
representation of each successive Lie algebra considered as a representation of the
previous Lie algebra decomposes as a direct sum of the natural representation plus
a trivial representation. We denote by sl(V, V∗) the commutator subalgebra of
gl(V, V∗), so sl(V, V∗) ∼= sl∞.

Suppose V = V∗. When the pairing V ×V → C is symmetric, then we denote by
so(V ) the Lie algebra Λ2V ∼= so∞. When the pairing V ×V → C is antisymmetric,
then we denote by sp(V ) the Lie algebra Sym2 V ∼= sp∞. A subspace F ⊂ V is
called isotropic if 〈F, F 〉 = 0 and coisotropic if F⊥ ⊂ F .

We fix notation for maps

Λ : gl(V, V )→ so(V )
v ⊗ w 7→ v ⊗ w − w ⊗ v

and

S : gl(V, V )→ sp(V )
v ⊗ w 7→ v ⊗ w + w ⊗ v,

and note that they give homomorphisms of Lie algebras when restricted to gl(X,Y )
for any isotropic subspaces X, Y ⊂ V such that the restriction 〈·, ·〉|X×Y is nonde-
generate.

We call s a standard special linear subalgebra of gl(V, V∗) or sl(V, V∗) if

s = sl(X,Y )

for some subspaces X ⊂ V and Y ⊂ V∗ such that the restriction 〈·, ·〉|X×Y is
nondegenerate. We call s a standard special linear subalgebra of so(V ) (resp., of
sp(V )) if

s = Λ(sl(X,Y ))

(resp., if s = S(sl(X,Y ))) for some isotropic subspaces X, Y ⊂ V such that the
restriction 〈·, ·〉|X×Y is nondegenerate.

A Lie algebra g is said to be finitary if there exists a faithful countable-dimensional
representation g ↪→ End W where W has a basis in which the matrix of each en-
domorphism in the image of g has only finitely many nonzero entries. Suppose g
is a finitary Lie algebra, and let {wi | i ∈ I} be a basis of a representation W of
g as in the definition of finitary. For each i, define wi ∈ W ∗ by wi(wj) := δij ; let
W∗ := Span{wi | i ∈ I}, so that W∗ is a countable-dimensional subspace of the full
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algebraic dual space W ∗. Then the map g ↪→ End W factors through gl(W,W∗),
yielding an injective homomorphism g ↪→ gl(W,W∗).

A Lie algebra g is locally finite if every finite subset of g is contained in a
finite-dimensional subalgebra. A countable-dimensional locally finite Lie algebra
g is therefore the direct limit of a system of injective homomorphisms of finite-
dimensional Lie algebras gn ↪→ gn+1 for n ∈ Z>0. Observe that any finitary Lie
algebra, being isomorphic to a subalgebra of gl∞, is itself locally finite.

A locally finite Lie algebra g is locally solvable (respectively, locally nilpotent)
if every finite-dimensional subalgebra of g is solvable (resp., nilpotent). A locally
finite Lie algebra g is locally simple (resp., locally semisimple) if there exists a
system of finite-dimensional simple (resp., semisimple) subalgebras gi of which g is
the direct limit. A locally finite Lie algebra g is locally reductive if it is the direct
limit of some system of finite-dimensional reductive subalgebras gn ↪→ gm where
gm is a semisimple gn-module for all n < m.

A subalgebra g of a locally finite Lie algebra is called parabolic if it contains a
maximal locally solvable subalgebra of g.

Let q be a subalgebra of a locally reductive Lie algebra g, and let r denote the
locally solvable radical of q. The linear nilradical nq of q is the set of Jordan
nilpotent elements of r (see [DPSn] for the details of Jordan decomposition in a
locally reductive Lie algebra). One may check that nq is a locally nilpotent ideal of
q; see [DP] where the proof is given in the finitary case, and it generalizes.

A subalgebra l ⊂ q is a Levi component of q if [q, q] = (r ∩ [q, q]) D l. A locally
reductive subalgebra qred of q is a locally reductive part of q if q = nq D qred.

A subalgebra q ⊂ g is splittable if the nilpotent and semisimple parts of each
element of q are also in q. The fact that every splittable subalgebra of gl∞ has
a locally reductive part was shown in [DP]. If q ⊂ gl∞ is splittable, then any
subalgebra of q containing nq + [q, q] is said to be defined by trace conditions on
q [DP]. (Note that any vector space containing nq + [q, q] and contained in q is a
subalgebra of g.)

Let X be a vector space, and let C be a set of subspaces of X on which inclusion
gives a total order. Suppose F ′ ( F ′′ are subspaces of X in C. We call F ′ the
immediate predecessor of F ′′ in C if for all C ∈ C either C ⊂ F ′ or F ′′ ⊂ C. When
F ′ is the immediate predecessor of F ′′ in C, we also say that F ′′ is the immediate
successor of F ′ in C, and that F ′ ⊂ F ′′ are an immediate predecessor-successor pair
in C.
Definition 2.1. [DiP] A set F of subspaces of X for which inclusion gives a total
order is called a generalized flag if the following two conditions hold:

(1) For all F ∈ F, there is an immediate predecessor-successor pair F ′ ⊂ F ′′ in
F such that F ∈ {F ′, F ′′};

(2) For all nonzero v ∈ X, there is an immediate predecessor-successor pair
F ′ ⊂ F ′′ in F such that v ∈ F ′′ \ F ′.

For any generalized flag F, we denote by A the set of immediate predecessor-
successor pairs of F. Then by definition we have F = {F ′α, F ′′α}α∈A, where F ′α is the
immediate predecessor of F ′′α in the inclusion order, and the two subspaces are the
pair α ∈ A. Similarly, we denote by B the set of immediate predecessor-successor
pairs of any generalized flag denoted by G, so that G = {G′β , G′′β}β∈B .

For any generalized flag F in V , the stabilizer of F in gl(V, V∗) is denoted by StF

and is given by the formula StF =
∑
α∈A F

′′
α ⊗ (F ′α)⊥ [DiP].
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2.2. Background on parabolic subalgebras of finitary Lie algebras. Recall
that there is a nondegenerate pairing 〈·, ·〉 : V ×V∗ → C. We say that a generalized
flag F in V is semiclosed if (F ′)⊥⊥ ∈ {F ′, F ′′} for each immediate predecessor-
successor pair F ′ ⊂ F ′′ in F.

Proposition 2.2. Let C be a set of subspaces of V totally ordered by inclusion.
Then the following exist:

(1) a generalized flag in V with the same gl(V, V∗)-stabilizer as C [DiP];
(2) a unique semiclosed generalized flag in V with the same gl(V, V∗)-stabilizer

as C, if each nonclosed subspace in C is the immediate successor in C of a
closed subspace.

Proof. We recall the construction from [DiP] that produces a generalized flag with
the same stabilizer as a given set C of subspaces totally ordered by inclusion. For a
fixed nonzero vector x in V , consider the subspace F ′(x) which is the union of the
subspaces in C not containing x; it is properly contained in F ′′(x), the intersection
of the subspaces in C containing x. The set of subspaces of the form F ′(x) or F ′′(x)
as x runs over the nonzero vectors in V is a generalized flag with the same stabilizer
as C.

Assume that each nonclosed subspace in C has an immediate predecessor in C,
and the latter is closed. Then the set D := C ∪ {X⊥⊥ | X ∈ C} is totally ordered
by inclusion. To prove this, it suffices to show that X1 ( X2 implies X⊥⊥1 ⊂ X2

for all X1, X2 ∈ C. If X2 is closed, then this is clear. If X2 is not closed, then
by assumption X2 has an immediate predecesssor X3 ∈ C, and X3 is closed; then
X1 ⊂ X3 ⊂ X2, so X⊥⊥1 ⊂ X3 ⊂ X2.

For each nonzero vector x ∈ V , we define

F1(x) :=
⋃

Y ∈D, x/∈Y

Y F2(x) := F1(x)⊥⊥ F3(x) :=
⋂

Y ∈D, x∈Y
Y.

Applying the general construction from [DiP] to D yields the generalized flag
{F1(x), F3(x) | 0 6= x ∈ V }. We claim that the refinement

F := {F1(x), F2(x), F3(x) | 0 6= x ∈ V }

is a semiclosed generalized flag with the same stabilizer as C.
To see that F is a generalized flag, it suffices to show that F2(x) ⊂ F3(x) for

all nonzero x ∈ V . If F3(x) is closed, then this is clear. If F3(x) is not closed,
then F3(x) ∈ C (otherwise it would be the intersection of the closed subspaces
containing it, since each nonclosed subspace in C is assumed to have an immediate
predecessor in C which is closed); hence F3(x) is the immediate successor in C of a
closed subspace, and the latter is then F1(x) = F2(x).

Now each immediate predecessor-successor pair in F has the form F1(x) ⊂ F2(x)
or F2(x) ⊂ F3(x) for some nonzero x ∈ V . In either case the condition defining
a semiclosed generalized flag is satisfied. By construction C and F have the same
stabilizer. Finally, the uniqueness of F follows from [DP, Proposition 3.8] �

We say that semiclosed generalized flags F in V and G in V∗ form a taut couple
if F⊥ is stable under StG for all F ∈ F and G⊥ is stable under StF for all G ∈ G. If
V = V∗, then a semiclosed generalized flag F in V is called self-taut if F⊥ is stable
under StF for all F ∈ F. In the interest of clarity, we should emphasize that StF

means the gl(V, V )-stabilizer of F in the case V = V∗.
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We now summarize Theorem 5.6 in [DP]. For any taut couple F, G, the subal-
gebra StF ∩ StG is a self-normalizing parabolic subalgebra of gl(V, V∗). Moreover,
the self-normalizing parabolic subalgebras of gl(V, V∗) are in bijection with the
taut couples in V and V∗ [DP, Corollary 5.7]. If p is any parabolic subalgebra of
gl(V, V∗), then the normalizer of p is a self-normalizing parabolic subalgebra, which
we denote p+; furthermore, p is defined by trace conditions on p+. We call the
(unique) taut couple F, G such that p+ = StF∩StG the taut couple associated to p.
The smallest parabolic subalgebra with the associated taut couple F, G is denoted
by p−, and it is the set of elements of StF ∩ StG such that each component in each
infinite-dimensional block of a locally reductive part is traceless.

The situation for sl(V, V∗), so(V ), and sp(V ) is quite similar to the above, in that
every parabolic subalgeba is defined by trace conditions on its normalizer, which
is a self-normalizing parabolic subalgebra. Theorem 5.6 in [DP] also characterizes
the parabolic subalgebras of sl(V, V∗), as follows. The self-normalizing parabolic
subalgebras of sl(V, V∗) are also in bijection with the taut couples in V and V∗, where
the joint stabilizer StF∩StG∩ sl(V, V∗) is the self-normalizing parabolic subalgebra
of sl(V, V∗) corresponding to the taut couple F, G. The parabolic subalgebras of
so(V ) and sp(V ) are described in Theorem 6.6 in [DP]. In the case of sp(V ), taking
the stabilizer gives yet again a bijection between the self-taut generalized flags in V
and the self-normalizing parabolic subalgebras of sp(V ). In the case of so(V ), the
analogous map surjects onto the self-normalizing parabolic subalgebras of so(V ),
but by contrast it is not injective. The fibers of size different from 1 are all of size
3 [DPW]. Note that the claim in [DP, Theorem 6.6] regarding the uniqueness in
the so∞ case is erroneous; the correct statement is [DPW, Theorem 2.8].

2.3. Locally reductive parts of parabolic subalgebras of sl∞ and gl∞. We
denote by C the ordered subset

C := {α ∈ A | (F ′α)⊥⊥ = F ′α}
for any semiclosed generalized flag F in V with V 6= V∗. For any taut couple F, G
there is a natural bijection between C and the set {β ∈ B | (G′β)⊥⊥ = G′β}, under
which F ′γ = (G′′γ)⊥ for all γ ∈ C [DP, Proposition 3.4]. This enables us to consider
C as a subset of B, as well; note that the inclusion of C into B is order reversing.

In the case V = V∗ we denote by C the analogous subset

C := {α ∈ A | (F ′α)⊥⊥ = F ′α, F ′′α ⊂ (F ′′α )⊥}.
In this case, there is a natural order-reversing bijection between C and the set
{α ∈ A | (F ′α)⊥⊥ = F ′α ⊃ (F ′α)⊥} [DP, Proposition 6.1]. For γ ∈ C, we denote
by G′γ ⊂ G′′γ the corresponding pair where G′γ is closed and coisotropic, and thus
obtain the analogous statements F ′γ = (G′′γ)⊥ and G′γ = (F ′′γ )⊥ for all γ ∈ C.

The next theorem is slightly more general than Proposition 3.6 (ii) in [DP].
Note that subspaces Xγ and Yγ satisfying the hypotheses necessarily exist [DP,
Prop. 3.6 (ii)].

Theorem 2.3. Let p be a parabolic subalgebra of sl(V, V∗) or gl(V, V∗), with the
associated taut couple F, G. Let Xγ ⊂ V and Yγ ⊂ V∗ be any subspaces with

F ′′γ = F ′γ ⊕Xγ and G′′γ = G′γ ⊕ Yγ
for all γ ∈ C, such that 〈Xγ , Yη〉 = 0 for γ 6= η. Then p ∩

⊕
γ∈C gl(Xγ , Yγ) is a

locally reductive part of p.
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Proof. The proof of Proposition 3.6 (ii) in [DP] shows that
⊕

γ∈C gl(Xγ , Yγ) is a
locally reductive part of StF ∩ StG. Note that there are additional hypotheses in
[DP] which were not used in the proof. Intersecting a locally reductive part of
StF ∩ StG with p imposes the same trace conditions defining p, yielding a locally
reductive part of p. �

3. Parabolic subalgebras of sl∞ and gl∞ with given Levi component

In this section we prove the two main theorems of this paper. Theorem 3.4
identifies the subalgebras of sl(V, V∗) and gl(V, V∗) which can be realized as the
Levi component of a parabolic subalgebra. Theorem 3.5 characterizes all parabolic
subalgebras of which a given subalgebra l is a Levi component.

Every parabolic subalgebra of sl(V, V∗) or gl(V, V∗) has a Levi component of the
form

⊕
i∈I slni for some ni ∈ Z≥2 ∪ {∞}, by Theorem 2.3. We therefore consider

whether every such subalgebra of sl(V, V∗) or gl(V, V∗) is a Levi component of some
parabolic subalgebra. An obstruction presents itself immediately, in consequence
of the following lemma.

Lemma 3.1. Let p be a parabolic subalgebra of gl(V, V∗), and l a Levi component
of p. Then l is a direct sum of standard special linear subalgebras.

Furthermore, the order of the generalized flag F in V associated to p induces an
order on the simple direct summands of l.

Proof. The Levi component l of p is a maximal locally semisimple subalgebra of p
by [DP, Theorem 4.3]. Since l is a locally semisimple subalgebra of g, it is a direct
sum of simple subalgebras [DiP2]. Let s denote one of the simple direct summands
of l, and take l0 to be the direct sum of all the other simple direct summands of l,
so l = s⊕ l0. We will show that s is a standard special linear subalgebra.

When s is finite dimensional, there exist nontrivial simple s-submodules X1, X2,
. . . , Xk of V and Y1, Y2, . . . , Yk of V∗ such that 〈Xi, Yj〉 = 0 for i 6= j and

s ⊂ sl(X1, Y1)⊕ sl(X2, Y2)⊕ · · · ⊕ sl(Xk, Yk).

When s is infinite dimensional, the same statement follows from [DiP2], where the
authors characterize arbitrary subalgebras of gl(V, V∗) isomorphic to sl∞, so∞, and
sp∞.

We will show that sl(X1, Y1)⊕ sl(X2, Y2)⊕ · · · ⊕ sl(Xk, Yk) ⊂ p. As the labeling
is arbitrary, it is enough to show that sl(X1, Y1) ⊂ p. Moreover, it suffices to show
that F is stable under sl(X1, Y1), where F, G is the taut couple associated to p.
Indeed, it then follows by symmetry that G is also stable under sl(X1, Y1), and
hence sl(X1, Y1) ⊂ [StF ∩ StG,StF ∩ StG] ⊂ p.

Fix a nonzero vector xi ∈ Xi for i = 1, . . . , k. By the definition of a generalized
flag xi ∈ F ′′αi

\ F ′αi
for some αi ∈ A. Consider that Xi = s · xi ⊂ StF · xi ⊂ F ′′αi

.
If there were a nonzero vector in the intersection Xi ∩ F ′αi

, then one would have
similarly that Xi ⊂ F ′′βi

for some βi < αi, contradicting the fact that xi /∈ F ′αi
.

Thus we conclude Xi ∩ F ′αi
= 0, and we have shown F ′αi

⊕Xi ⊂ F ′′αi
.

Observe that s · F ′α1
⊂ StF · F ′α1

⊂ F ′α1
. Let πi denote the ith projection for

the decomposition sl(X1, Y1)⊕ sl(X2, Y2)⊕ · · · ⊕ sl(Xk, Yk). One has πi(s) · F ′α1
⊂

(Xi ⊗ Yi) · V ⊂ Xi for each i, and hence π1(s) · F ′α1
= 0. Since (Y1)⊥ is the largest

trivial π1(s)-submodule of V , we see that F ′α1
⊂ (Y1)⊥. As a result

sl(X1, Y1) ⊂ X1 ⊗ Y1 ⊂ F ′′α1
⊗ (F ′α1

)⊥ ⊂ StF.
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Therefore sl(X1, Y1) ⊕ sl(X2, Y2) ⊕ · · · ⊕ sl(Xk, Yk) ⊕ l0 is a locally semisimple
subalgebra containing l and contained in p. By the maximality of l, we obtain
s = sl(X1, Y1) ⊕ sl(X2, Y2) ⊕ · · · ⊕ sl(Xk, Yk) and in particular k = 1, so s is a
standard special linear subalgebra.

This shows that l =
⊕

i∈I sl(Xi, Yi) for some subspaces Xi ⊂ V and Yi ⊂ V∗. Fix
i ∈ I. As shown above, there exists αi ∈ A such that F ′αi

⊕Xi ⊂ F ′′αi
and 〈F ′αi

, Yi〉 =
0. Similarly, there exists βi ∈ B such that G′βi

⊕Yi ⊂ G′′βi
and 〈Xi, G

′
βi
〉 = 0. Since

F, G form a taut couple, it follows that F ′αi
= (G′′βi

)⊥ and G′βi
= (F ′′αi

)⊥, and hence
αi ∈ D. Thus the rule i 7→ αi gives a well-defined map κ : I → D. We claim
that κ is an injective map. To see this, suppose κ(j) = κ(k) for some j, k ∈ I.
Then l ⊂ sl(Xj +Xk, Yj + Yk)⊕

⊕
i6=j,k si ⊂ p, so the maximality of l implies that

j = k. Since D is an ordered set, there is an induced order on I, the set of direct
summands of l. �

Theorem 3.4 below shows that there are no further obstructions to finding a
parabolic subalgebra such that a given subalgebra is a Levi component. We first
prove a lemma and a proposition.

Lemma 3.2. Fix subspaces X ⊂ V and Y ⊂ V∗ such that the restriction 〈·, ·〉|X×Y
is nondegenerate. Let T ⊂ V , and define U := ((T +X)⊥ ⊕ Y )⊥. Then

U = ((U ⊕X)⊥ ⊕ Y )⊥.

Proof. To see that U ⊂ ((U ⊕ X)⊥ ⊕ Y )⊥ = (U ⊕ X)⊥⊥ ∩ Y ⊥, consider that
U = ((T+X)⊥⊕Y )⊥ = (T+X)⊥⊥∩Y ⊥ ⊂ Y ⊥, while the inclusion U ⊂ (U+X)⊥⊥

is automatic. For the reverse containment, we observe that

〈((T +X)⊥ ⊕ Y )⊥ ⊕X, (T +X)⊥〉 = 〈(T +X)⊥⊥ ∩ Y ⊥ ⊕X, (T +X)⊥〉

⊂ 〈(T +X)⊥⊥, (T +X)⊥〉 = 0.

This shows that (T +X)⊥ ⊂ (((T +X)⊥ ⊕ Y )⊥ ⊕X)⊥. Hence

((((T +X)⊥ ⊕ Y )⊥ ⊕X)⊥ ⊕ Y )⊥ ⊂ ((T +X)⊥ ⊕ Y )⊥,

i.e. ((U ⊕X)⊥ ⊕ Y )⊥ ⊂ U . �

For any semiclosed generalized flag F we set

D := {γ ∈ C | dimF ′′γ /F
′
γ > 1}.

Note that D = {γ ∈ C | dimG′′γ/G
′
γ > 1}, as the pairing V × V∗ → C induces a

nondegenerate pairing of F ′′γ /F
′
γ and G′′γ/G

′
γ for all γ ∈ C.

Proposition 3.3. Let p be a parabolic subalgebra of sl(V, V∗) or gl(V, V∗), with
the associated taut couple F, G. Let Xγ ⊂ V and Yγ ⊂ V∗ be any subspaces with

F ′′γ = F ′γ ⊕Xγ and G′′γ = G′γ ⊕ Yγ
for all γ ∈ D, such that 〈Xγ , Yη〉 = 0 for γ 6= η. Then

⊕
γ∈D sl(Xγ , Yγ) is a Levi

component of p.

Proof. Let Xγ and Yγ for γ ∈ D be as in the statement, and let X̃γ and Ỹγ for
γ ∈ C be as in Theorem 2.3, so that StF ∩ StG = np D

⊕
γ∈C gl(X̃γ , Ỹγ). Clearly

the subalgebra np D
⊕

γ∈D gl(X̃γ , Ỹγ) is defined by trace conditions on StF∩StG. A
subalgebra has the same set of Levi components as any subalgebra defined by trace
conditions on it, by [DP, Proposition 4.9]. Since p is also defined by trace conditions
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on StF∩StG, all three have the same set of Levi components, and it suffices to show
that

⊕
γ∈D sl(Xγ , Yγ) is a Levi component of np D

⊕
γ∈D gl(X̃γ , Ỹγ).

Clearly
⊕

γ∈D sl(Xγ , Yγ) is a Levi component of np D
⊕

γ∈D gl(Xγ , Yγ). We
claim that

np D
⊕
γ∈D

gl(X̃γ , Ỹγ) = np D
⊕
γ∈D

gl(Xγ , Yγ).

To see this, consider that for each γ ∈ C,

X̃γ ⊗ Ỹγ ⊂ F ′′γ ⊗G′′γ = (F ′γ ⊕Xγ)⊗ (G′γ ⊕ Yγ)

= (F ′γ ⊗G′′γ + F ′′γ ⊗G′γ)⊕Xγ ⊗ Yγ .

Since F ′γ ⊗G′′γ + F ′′γ ⊗G′γ ⊂ np, we have shown that gl(X̃γ , Ỹγ) ⊂ np D gl(Xγ , Yγ).
One has symmetrically that gl(Xγ , Yγ) ⊂ np D gl(X̃γ , Ỹγ) for each γ ∈ C. �

Let g denote either sl(V, V∗) or gl(V, V∗).

Theorem 3.4. Let l be a subalgebra of g. There exists a parabolic subalgebra p of
g such that l is a Levi component of p if and only if l is a direct sum of standard
special linear subalgebras of g.

Moreover, given a subalgebra l for which such parabolic subalgebras exist, one
exists that induces an arbitrary order on the simple direct summands of l (see
Lemma 3.1).

Proof. In this and subsequent proofs, we assume (without loss of generality) that
g = gl(V, V∗). The only if direction was proved in Lemma 3.1.

Conversely, fix commuting standard special linear subalgebras si ⊂ gl(V, V∗) for
i ∈ I, as well as an order on I. We will construct a parabolic subalgebra p such that
l :=

⊕
i∈I si is a Levi component of p, and p induces the given order on I. Each

standard special linear subalgebra si determines subspaces Xi ⊂ V and Yi ⊂ V∗
such that si = sl(Xi, Yi). As these direct summands commute, it must be that
〈Xi, Yj〉 = 0 for i 6= j.

For each i, we define
Ui := ((

⊕
k≤i

Xk)⊥ ⊕ Yi)⊥.

One may check in an elementary fashion that Ui ⊕ Xi ⊂ Uj for all i < j. Since
Uj is closed for all j ∈ I, we have moreover that Ui ⊕ Xi ⊂ (Ui ⊕ Xi)⊥⊥ ⊂ Uj
for all i < j. Furthermore, for each i ∈ I, an application of Lemma 3.2 using
T =

⊕
k<iXk shows that Ui = ((Ui ⊕Xi)⊥ ⊕ Yi)⊥.

We claim that there is a unique semiclosed generalized flag F0 in V with the
same stabilizer as the set {Ui, Ui ⊕Xi | i ∈ I}. This follows from Proposition 2.2
(2). Similarly, there is a unique semiclosed generalized flag in V∗ with the same
stabilizer as the set

{(Ui ⊕Xi)⊥, (Ui ⊕Xi)⊥ ⊕ Yi | i ∈ I}.

One may check that F0, G0 form a taut couple using the identity Ui = ((Ui ⊕
Xi)⊥⊕Yi)⊥. Indeed, F0, G0 is the minimal taut couple with immediate predecessor-
successor pairs Ui ⊂ Ui ⊕Xi in F and (Ui ⊕Xi)⊥ ⊂ (Ui ⊕Xi)⊥ ⊕ Yi in G for all
i ∈ I.

Let F, G be maximal among the taut couples having immediate predecessor-
successor pairs Ui ⊂ Ui ⊕ Xi in F and (Ui ⊕ Xi)⊥ ⊂ (Ui ⊕ Xi)⊥ ⊕ Yi in G for
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all i ∈ I. Then there is a natural bijection between I and D. By [DP, Theorem
5.6], StF ∩ StG is a parabolic subalgebra of gl(V, V∗). Moreover, it follows from
Proposition 3.3 that l is a Levi component of StF ∩ StG. By construction, the
induced order on the simple direct summands of l is the given order on I. �

Finally, we characterize the parabolic subalgebras of which a given subalgebra is
a Levi component.

Theorem 3.5. Let p be a parabolic subalgebra of g, with the associated taut couple
F, G. Then l is a Levi component of p if and only if there exist subspaces Xγ ⊂ V
and Yγ ⊂ V∗ with

(3.1) F ′′γ = F ′γ ⊕Xγ and G′′γ = G′γ ⊕ Yγ
for all γ ∈ D, such that l =

⊕
γ∈D sl(Xγ , Yγ).

Proof. One direction is Proposition 3.3. Conversely, assume l is an arbitrary Levi
component of p. By Theorem 3.4, we have l =

⊕
i∈I si for some standard special

linear subalgebras si ⊂ gl(V, V∗). Hence there exist subspaces Xi ⊂ V and Yi ⊂
V∗ such that si = sl(Xi, Yi); again, 〈Xi, Yj〉 = 0 for i 6= j. As shown in the
proof of Lemma 3.1, there exists an injective map κ : I → D, with the properties
F ′κ(i) ⊕Xi ⊂ F ′′κ(i) and 〈F ′κ(i), Yi〉 = 0.

Let X̃γ and Ỹγ for γ ∈ D be as in the statement of Proposition 3.3. Then since
the span of the linear nilradical of p and any Levi component equals np + [p, p]
[DP], we have

np D
⊕
γ∈D

sl(X̃γ , Ỹγ) = np D
⊕
i∈I

sl(Xi, Yi).

Let d ∈ D be arbitrary. Fix v ∈ X̃d. Then

F ′d +
(
np D

⊕
γ∈D

sl(X̃γ , Ỹγ)
)
· v = F ′d + X̃d = F ′′d ,

since np · v ⊂ F ′d. So

F ′′d = F ′d +
(
np D

⊕
i∈I

sl(Xi, Yi)
)
· v = F ′d +

⊕
i∈I
〈v, Yi〉Xi

=

{
F ′d ⊕Xi if d = κ(i) for some i ∈ I
F ′d if κ(i) 6= d for all i ∈ I,

since κ(i) < d implies Xi ⊂ F ′d, while κ(i) > d implies 〈v, Yi〉 = 0. As F ′d ( F ′′d , we
conclude that d = κ(i) for some i ∈ I. Hence κ is a bijection from I to D. Since
we have shown that F ′′d = F ′d ⊕Xκ−1(d) for all d ∈ D, we are done. �

Here is an example notably different from the finite-dimensional case. Let V and
V∗ be vector spaces with bases {v} ∪ {vi | i ∈ Z>0} and {v∗i | i ∈ Z>0}, pairing
according to the rules 〈vi, v∗j 〉 = δij and

〈v, v∗j 〉 = 1 for all j.

We will find all self-normalizing parabolic subalgebras of gl(V, V∗) with Levi com-
ponent sl(X1, Y1)⊕ sl(X2, Y2), where

X1 := Span{v2i−1 | i ∈ Z>0} Y1 := Span{v∗2i−1 | i ∈ Z>0}
X2 := Span{v2i | i ∈ Z>0} Y2 := Span{v∗2i | i ∈ Z>0}.
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By the above theorem, this is equivalent to finding all taut couples F, G so that
the given subspaces provide vector space complements for the pairs in D.

Since Y1 ⊕ Y2 = V∗, the semiclosed generalized flag G in V∗ must be either
0 ⊂ Y1 ⊂ V∗ or 0 ⊂ Y2 ⊂ V∗. Then F must be a refinement of the generalized flag
{G⊥ | G ∈ G}; that is, F is a refinement of 0 ⊂ X2 ⊂ V or 0 ⊂ X1 ⊂ V . In either
case, it is necessary to insert X1 ⊕X2 into F in order to have the given subspaces
X1 and X2 be vector space complements for the pairs in D. Thus the following is
a complete list of the taut couples as desired:

0 ⊂ X2 ⊂ X1 ⊕X2 ⊂ V
V∗ ⊃ Y1 ⊃ 0

and

0 ⊂ X1 ⊂ X1 ⊕X2 ⊂ V
V∗ ⊃ Y2 ⊃ 0.

Note that the subspace X1 ⊕X2 appearing in both of the above taut couples has
codimension 1 in V ; nevertheless (X1 ⊕X2)⊥⊥ = V .

Let l :=
⊕

i∈I si for some commuting standard special linear subalgebras of g.
By definition si = sl(Xi, Yi) for some subspaces Xi ⊂ V and Yi ⊂ V∗. The maximal
trivial l-submodule of V is (

⊕
i∈I Yi)

⊥, and l · V =
⊕

i∈I Xi. Therefore the socle
of V as an l-module (that is, the direct sum of all simple l-submodules of V ) is⊕

i∈I
Xi ⊕ (

⊕
i∈I

Yi)⊥,

and each nontrivial simple module in the socle of V has multiplicity 1. This shows
that each subspace Xi for i ∈ I is determined by l, and one can recover similarly
the subspaces Yi as the nontrivial simple submodules of V∗. This enables us to
strengthen the above theorem as follows. Again, let p be a parabolic subalgebra
of g, with the associated taut couple F, G. The map which takes the subspaces
Xγ , Yγ to the subalgebra

⊕
γ∈D sl(Xγ , Yγ) is a bijection from the sets of subspaces

Xγ ⊂ V and Yγ ⊂ V∗ for γ ∈ D such that (3.1) holds and 〈Xγ , Yη〉 = 0 for γ 6= η
to the Levi components of p.

Yet another restatement of Theorem 3.5 is in order. Let p be a parabolic subal-
gebra of g, with the associated taut couple F, G. Then l ⊂ p is a Levi component
of p if and only if the following conditions hold:

• The l-modules F ′′γ /F
′
γ and G′′γ/G

′
γ are simple for all γ ∈ D;

• l ∼=
⊕

i slni
for some ni ∈ Z≥2 ∪ {∞};

• There is a unique nontrivial simple s-submodule of V for each simple direct
summand s of l;

• For each finite-dimensional simple direct summand s of l, the nontrivial
simple s-submodule of V is isomorphic to the natural or conatural s-module.

The last condition is automatic for the infinite-dimensional simple direct summands
of l, as shown in [DiP2].

4. Some corollaries

We continue to take g to be sl(V, V∗) or gl(V, V∗). Of the corollaries we present
to Theorem 3.5, the first two in particular are useful when computing explicitly all
parabolic subalgebras with a given Levi component.
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Corollary 4.1. Fix a subalgebra l =
⊕

i∈I sl(Xi, Yi), where Xi ⊂ V and Yi ⊂ V∗.
Assume that dimXi ≥ 2 for all i ∈ I, and that I is an ordered set. Let Ui ⊂ V be
subspaces such that Ui ⊕Xi ⊂ Uj for all i < j and

Ui = ((Ui ⊕Xi)⊥ ⊕ Yi)⊥

for each i ∈ I.
Let F be a semiclosed generalized flag maximal among the semiclosed generalized

flags in V in which Ui ⊂ Ui ⊕ Xi is an immediate predecessor-successor pair for
all i ∈ I. Then there is a unique semiclosed generalized flag G in V∗ such that F,
G form a taut couple and l is a Levi component of the self-normalizing parabolic
subalgebra StF ∩ StG.

Proof. Let F be maximal among the semiclosed generalized flags in V with immedi-
ate predecessor-successor pairs Ui ⊂ Ui ⊕Xi for all i ∈ I. Let G be any semiclosed
generalized flag such that F, G form a taut couple, and l is a Levi component of
StF ∩ StG. By Theorem 3.5, for each i ∈ I there is an immediate predecessor-
successor pair (Ui ⊕Xi)⊥ ⊂ (Ui ⊕Xi)⊥ ⊕ Yi in G. By [DP, Proposition 3.3] each
closed subspace in G is the union of some set of subspaces of the form F⊥ for F ∈ F,
and each closed subspace in F is the union of some set of subspaces of the form G⊥

for G ∈ G. Therefore G if it exists must have the same stabilizer as the set

{F⊥ | F ∈ F} ∪ {(Ui ⊕Xi)⊥ ⊕ Yi | i ∈ I}.
We show that the above set is totally ordered by inclusion, and (Ui ⊕ Xi)⊥ is

the immediate predecessor of (Ui ⊕ Xi)⊥ ⊕ Yi for each i ∈ I. Indeed, consider
that for each i there are no subspaces of the form F⊥ for F ∈ F properly between
(Ui ⊕ Xi)⊥ and (Ui)⊥, since Ui ⊂ Ui ⊕ Xi is an immediate predecessor-successor
pair in F. Furthermore, one has (Ui ⊕ Xi)⊥ ⊂ (Ui ⊕ Xi)⊥ ⊕ Yi ⊂ (Ui)⊥ because
of the identity Ui = ((Ui ⊕Xi)⊥ ⊕ Yi)⊥. Proposition 2.2 (2) gives the existence of
a unique semiclosed generalized flag G with the same stabilizer as the above set.
Then F, G form a taut couple by construction, and Theorem 3.5 implies that l is a
Levi component of the self-normalizing parabolic subalgebra StF ∩ StG. �

The above corollary enables us to determine a self-normalizing parabolic subal-
gebra with a prescribed Levi component using only subspaces of V . The corollary
below shows that any self-normalizing parabolic subalgebra of g can be so described.

Corollary 4.2. Let p be a parabolic subalgebra of g, with the associated taut
couple F, G. Suppose the subalgebra

⊕
i∈I sl(Xi, Yi) is a Levi component of p,

where Xi ⊂ V and Yi ⊂ V∗. Assume dimXi ≥ 2 for all i ∈ I.
Then there exist subspaces Ui ⊂ V for i ∈ I with

Ui = ((Ui ⊕Xi)⊥ ⊕ Yi)⊥

such that F is maximal among the semiclosed generalized flags having immediate
predecessor-successor pairs Ui ⊂ Ui ⊕Xi for all i ∈ I.

Proof. Fix i ∈ I. By Theorem 3.5, there exists some γ ∈ D such that F ′′γ = F ′γ⊕Xi

and G′′γ = G′γ ⊕ Yi. Then take Ui := F ′γ . Because F ′γ = (G′′γ)⊥, and G′γ = (F ′′γ )⊥,
we see that ((Ui⊕Xi)⊥⊕Yi)⊥ = ((F ′′γ )⊥⊕Yi)⊥ = (G′γ⊕Yi)⊥ = (G′′γ)⊥ = F ′γ = Ui.

The maximality of F as stated follows from Theorem 3.5, since all other im-
mediate predecessor-successor pairs of F (i.e. for α /∈ D) have dimF ′′α/F

′
α = 1 or

(F ′α)⊥⊥ = F ′′α , and in either case admit no further refinement. �
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The subspaces Ui of the above two corollaries already made an appearance in the
proof of Theorem 3.4. There we constructed a parabolic subalgebra StF∩StG as in
Corollary 4.1 by choosing Ui := ((

⊕
k≤iXk)⊥ ⊕ Yi)⊥ for all i ∈ I. If p is any such

parabolic subalgebra of which, using the notation of Corollary 4.1, the subalgebra⊕
i∈I sl(Xi, Yi) is a Levi component, then one may check that under the induced

order on I
((
⊕
k≤i

Xk)⊥ ⊕ Yi)⊥ ⊂ Ui ⊂ (
⊕
k≥i

Yk)⊥

for each i ∈ I. We claim that it is also possible in general to construct such
parabolic subalgebras by taking Ui := (

⊕
k≥i Yk)⊥ for all i ∈ I. Indeed, in this

case one may verify the property Ui = ((Ui⊕Xi)⊥⊕Yi)⊥ using Lemma 3.2 (taking
T = (

⊕
k>i Yk)⊥, with X = Xi and Y = Yi). That is, the largest possible subspaces

Ui also satisfy the hypotheses of Corollary 4.1.
Let l be a subalgebra of g. The next corollary shows that the parabolic sub-

algebras of which l is a Levi component can be distinguished using only a single
semiclosed generalized flag in V .

Corollary 4.3. Let p1 and p2 be parabolic subalgebras of g, with the associated
taut couples F1, G1 and F2, G2, respectively. Suppose p1 and p2 have a Levi
component in common. Then F1 = F2 implies G1 = G2.

Proof. By Theorem 3.5, the common Levi component of p1 and p2 is of the form⊕
γ∈D sl(Xγ , Yγ) for some subspacesXγ ⊂ V and Yγ ⊂ V∗. As seen in Corollary 4.2,

the generalized flag F1 = F2 is maximal among the semiclosed generalized flags in
V having F ′γ ⊂ F ′γ ⊕ Xγ as immediate predecessor-successor pairs for all γ ∈ D.
Evidently F ′γ ⊕Xγ ⊂ F ′η for all γ < η because F is a generalized flag; the property
F ′γ = ((F ′γ ⊕ Xγ)⊥ ⊕ Yγ)⊥ was shown in the proof of Corollary 4.2. Thus the
uniqueness claim of Corollary 4.1 yields G1 = G2. �

Consider the special case that a parabolic subalgebra p of g has 0 as a maximal
locally semisimple subalgebra. Then p is a Borel subalgebra (that is, a maximal
locally solvable subalgebra) of g. Corollary 4.3 implies in this case that the associ-
ated taut couple of p is determined by F, the part of the taut couple in V . Since
maximal locally solvable subalgebras are minimal parabolic subalgebras, trace con-
ditions are not relevant in this case. Hence a Borel subalgebra of g is determined
by a single (maximal) semiclosed generalized flag in V , as was proved in [DiP].

5. Counting parabolic subalgebras with given Levi component

In this section we address the question of how many parabolic subalgebras of g
have a given locally semisimple subalgebra l as a Levi component. If l is a Levi
component of a parabolic subalgebra p of a finitary Lie algebra, then l is also a Levi
component of p+. Recall that p+ is a self-normalizing parabolic subalgebra, and p
is defined by trace conditions on p+. Therefore we will usually consider first the
self-normalizing parabolic subalgebras of g of which l is a Levi component.

Fix for i ∈ I commuting standard special linear subalgebras si ⊂ g. When
|I| = n < ∞, Theorem 3.4 implies that there are at least n! self-normalizing
parabolic subalgebras of g having

⊕
i si as a Levi component; similarly there are

uncountably many such parabolic subalgebras when I is a countable set. With
Theorem 5.1 we find criteria for this number to be finite, and we also give an upper
bound for this number when it is finite.
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Theorem 5.1. Fix l = sl(X1, Y1)⊕· · ·⊕sl(Xn, Yn) ⊂ g for some subspaces Xi ⊂ V
and Yi ⊂ V∗ with dimXi ≥ 2 for all i. The number of self-normalizing parabolic
subalgebras of gl(V, V∗) with l as a Levi component is finite if and only if

dim(
⊕
i/∈J

Yi)⊥/(
⊕
j∈J

Xj)⊥⊥ ≤ 1

for all subsets J ⊂ {1, 2, . . . , n}. When finite, this number is at most 3 · 2n−2 · n!
for n ≥ 2, and at most 2 for n = 1; it is uncountable when infinite.

Proof. Suppose first that there exists a subset J ⊂ {1, 2, . . . , n} for which

dim(
⊕
i/∈J

Yi)⊥/(
⊕
j∈J

Xj)⊥⊥ > 1.

Without loss of generality, suppose J = {1, 2, . . . , k}. We define

Uj =

{
(X1 ⊕X2 ⊕ · · · ⊕Xj)⊥⊥ ∩ Y ⊥j if 1 ≤ j ≤ k
(Yj ⊕ Yj+1 ⊕ . . .⊕ Yn)⊥ if k < j ≤ n.

One may check that U1 ⊂ U2 ⊂ · · · ⊂ Un. As described in the paragraph after
Corollary 4.2, one has Uj = ((Uj ⊕Xj)⊥ ⊕ Yj)⊥ for j = 1, . . . n.

Let F0 be the semiclosed generalized flag

0 ⊂ · · · ⊂ Ui ⊂ Ui ⊕Xi ⊂ (Ui ⊕Xi)⊥⊥ ⊂ Ui+1 ⊂ · · · ⊂ V.

By Corollary 4.1, any semiclosed generalized flag F maximal among the refinements
of F0 retaining the immediacy of the pairs Ui ⊂ Ui ⊕Xi for i = 1, . . . n determines
a self-normalizing parabolic subalgebra of which l is a Levi component.

Consider the following portion of F0:

Uk ⊂ Uk ⊕Xk ⊂ (Uk ⊕Xk)⊥⊥ ⊂ Uk+1.

Since X1 ⊕X2 ⊕ · · · ⊕Xk−1 ⊂ Uk ⊂ (X1 ⊕X2 ⊕ · · · ⊕Xk)⊥⊥, we see that

(Uk ⊕Xk)⊥⊥ = (X1 ⊕X2 ⊕ · · · ⊕Xk)⊥⊥.

We have assumed that (X1 ⊕ X2 ⊕ · · · ⊕ Xk)⊥⊥ has codimension at least 2 in
(Yk+1 ⊕ Yk+2 ⊕ · · · ⊕ Yn)⊥ = Uk+1. Therefore there are uncountably many closed
subspaces between them, and any such closed subspace can appear in a refinement
F, G as described above. Since different taut couples yield different self-normalizing
parabolic subalgebras [DP, Proposition 3.8], we conclude that there are uncount-
ably many self-normalizing parabolic subalgebras with l as a Levi component.

Now suppose that
dim(

⊕
i/∈J

Yi)⊥/(
⊕
j∈J

Xj)⊥⊥ ≤ 1

for all subsets J ⊂ {1, 2, . . . , n}. We show first that there are at most 2n · n! self-
normalizing parabolic subalgebra of gl(V, V∗) of which l is a Levi component. Fix
such a parabolic subalgebra p, and denote the associate taut couple by F, G. By
Corollary 4.2, there exist subspaces Ui for i = 1, . . . n totally ordered by inclusion
with the properties listed there. Without loss of generality, let us assume that
U1 ⊂ U2 ⊂ · · · ⊂ Un. This reindexing produces the factor of n!.

Then F is related to the semiclosed generalized flag

0 ⊂ U1 ⊂ · · · ⊂ Ui ⊂ Ui ⊕Xi ⊂ (Ui ⊕Xi)⊥⊥ ⊂ Ui+1 ⊂ · · · ⊂ (Un ⊕Xn)⊥⊥ ⊂ V,
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by maximally refining those pairs of the form (Ui⊕Xi)⊥⊥ ⊂ Ui+1 for i = 0, 1, . . . n,
where we use the notation U0 = X0 = 0 and Un+1 = V .

For i = 0, . . . , n, we have

(X1 ⊕ · · · ⊕Xi)⊥⊥ ⊂ (Ui ⊕Xi)⊥⊥ ⊂ Ui+1 ⊂ (Yi+1 ⊕ · · · ⊕ Yn)⊥.

By hypothesis dim(Yi+1⊕· · ·⊕Yn)⊥/(X1⊕· · ·⊕Xi)⊥⊥ ≤ 1 for each i, hence there
are at most two possibilities for each Ui. Thus there at most 2n possible choices
of U1, . . . , Un. Furthermore, since the pairs (Ui ⊕ Xi)⊥⊥ ⊂ Ui+1 for each i have
codimension at most 1, no further refinement of them is possible. Hence F equals
the semiclosed generalized flag given above, and by Corollary 4.1 p is determined by
the choice of U1, . . . , Un. This shows that the number of self-normalizing parabolic
subalgebras with l as a Levi component is at most 2n ·n!. This completes the proof
of the if and only if statement, as well as the estimate that the number is question
is uncountable when infinite and at most 2n · n! when finite.

Now assume that n ≥ 2, and that the number of self-normalizing parabolic
subalgebras with l as a Levi component is finite. To prove the stated upper bound
of 3 · 2n−2 · n!, we show that there are at most three possible combinations of U1

and U2.
Assume therefore that

(X1)⊥⊥ ∩ (Y1)⊥ ( (Y1 ⊕ Y2 ⊕ · · · ⊕ Yn)⊥ ⊂ (X1 ⊕X2)⊥⊥ ∩ (Y2)⊥.

(If this assumption does not hold, it is clear that there are at most three possibilities
for U1 and U2.) It suffices to show that

(X1 ⊕X2)⊥⊥ ∩ (Y2)⊥ = (Y2 ⊕ · · · ⊕ Yn)⊥.

We have already shown that dim(Y1 ⊕ Y2 ⊕ · · · ⊕ Yn)⊥ ≤ 1. The condition

(X1)⊥⊥ ∩ (Y1)⊥ ( (Y1 ⊕ Y2 ⊕ · · · ⊕ Yn)⊥

therefore implies that (X1)⊥⊥ ∩ (Y1)⊥ = 0 and dim(Y1 ⊕ Y2 ⊕ · · · ⊕ Yn)⊥ = 1.
We have also assumed that (Y1 ⊕ Y2 ⊕ · · · ⊕ Yn)⊥ ⊂ (X1 ⊕ X2)⊥⊥ ∩ (Y2)⊥, so

indeed
(X1)⊥⊥ + (Y1 ⊕ Y2 ⊕ · · · ⊕ Yn)⊥ ⊂ (X1 ⊕X2)⊥⊥ ∩ (Y2)⊥.

Since (X1)⊥⊥ ∩ (Y1 ⊕ Y2 ⊕ · · · ⊕ Yn)⊥ ⊂ (X1)⊥⊥ ∩ (Y1)⊥ = 0, we have the direct
sum

(X1)⊥⊥ ⊕ (Y1 ⊕ Y2 ⊕ · · · ⊕ Yn)⊥ ⊂ (X1 ⊕X2)⊥⊥ ∩ (Y2)⊥ ⊂ (Y2 ⊕ · · · ⊕ Yn)⊥.

We have already proved that the codimension of (X1)⊥⊥ in (Y2 ⊕ · · · ⊕ Yn)⊥ is at
most 1; hence

(X1)⊥⊥ ⊕ (Y1 ⊕ Y2 ⊕ · · · ⊕ Yn)⊥ = (X1 ⊕X2)⊥⊥ ∩ (Y2)⊥ = (Y2 ⊕ · · · ⊕ Yn)⊥,

and we are done. �

Let us consider the finite numbers obtained as the number of self-normalizing
parabolic subalgebras with a given subalgebra as a Levi component, subject to the
restriction that the given subalgebra has n simple direct summands. In the case
n ≥ 2, Theorem 5.1 says that the number of self-normalizing parabolic subalgebras
with Levi component s1⊕· · ·⊕sn is at most 3·2n−2·n! if it is finite. (One can imagine
that this upper bound is typically not sharp.) Considerations completely analogous
to the finite-dimensional case show that the maximum of this set of finite numbers
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is at least (n+ 1)!. Nevertheless, the very last example in this section shows that,
unlike in the finite-dimensional case, (n+ 1)! is not an upper bound when n = 5.

As an illustration of Theorem 5.1, one might ask how many parabolic subalgebras
of gl(V, V∗) have Levi component sl(X1, Y1)⊕ sl(X2, Y2), where

X1 := Span{v1 + v2i−1 | i ≥ 2} Y1 := Span{v∗2i−1 | i ≥ 2}
X2 := Span{v1 + v2i | i ≥ 2} Y2 := Span{v∗2 + v∗2i | i ≥ 2},

and V and V∗ are vector spaces with dual bases {vi | i ∈ Z>0} and {v∗i | i ∈ Z>0}.
To answer the question, we compute the four quotient spaces in the hypotheses of
Theorem 5.1:

• (Y1 ⊕ Y2)⊥ = Cv1,
• (Y1)⊥/(X2)⊥⊥ = Cv1 ⊕ Span{v2i | i ≥ 1}/Cv1 ⊕ Span{v2i | i ≥ 2},
• (Y2)⊥/(X1)⊥⊥ = Span{v2i−1 | i ≥ 1}/ Span{v2i−1 | i ≥ 1},
• V/(X1 ⊕X2)⊥⊥ = V/ Span{vi | i 6= 2}.

Since all the above have dimension no greater than 1, Theorem 5.1 implies that
only a finite number of self-normalizing parabolic subalgebras of gl(V, V∗) have
sl(X1, Y1)⊕ sl(X2, Y2) as a Levi component. Indeed, one may check that there are
precisely three such self-normalizing parabolic subalgebras. Explicitly, they are the
stabilizers of the following three taut couples. The order 1 < 2 gives the taut couple

0 ⊂ Cv1 ⊂ Cv1 ⊕X1 ⊂ Cv1 ⊕X1 ⊕X2 ⊂ V

V∗ ⊃ (v1)⊥ ⊃ Y2 ⊕ Cv∗2 ⊃ Cv∗2 ⊃ 0,

while the other order gives the two taut couples

0 ⊂ Cv1 ⊂ Cv1 ⊕X2 ⊂ Cv1 ⊕X2 ⊕X1 ⊂ V

V∗ ⊃ (v1)⊥ ⊃ Cv∗2 ⊕ Y1 ⊃ Cv∗2 ⊃ 0

and

0 ⊂ Cv1 ⊂ Cv1 ⊕X2 ⊂ Cv1 ⊕X2 ⊕ Cv2 ⊂ V

V∗ ⊃ (v1)⊥ ⊃ Y1 ⊕ Cv∗2 ⊃ Y1 ⊃ 0.

Corollary 5.2 addresses the special case n = 1 of Theorem 5.1.

Corollary 5.2. Fix subspaces X ⊂ V and Y ⊂ V∗ such that 〈·, ·〉|X×Y is nonde-
generate. The number of self-normalizing parabolic subalgebras of g with sl(X,Y )
as a Levi component is finite if and only if

dimX⊥ ≤ 1 and dimY ⊥ ≤ 1.

When it is finite, this number is 1 if 〈Y ⊥, X⊥〉 = 0 and 2 if 〈Y ⊥, X⊥〉 6= 0.

Proof. Theorem 5.1 implies that the number of such parabolic subalgebras is finite
if and only if dimY ⊥/0 ≤ 1 and dimV/X⊥⊥ ≤ 1. Since dimV/X⊥⊥ = dimX⊥,
the if and only if statement is clear.

Now suppose dimX⊥ ≤ 1 and dimY ⊥ ≤ 1. No further refinement of the semi-
closed generalized flag 0 ⊂ U ⊂ U ⊕ X ⊂ V is possible for any subspace U ⊂ V
such that U = ((U ⊕X)⊥ ⊕ Y )⊥. Therefore by Corollaries 4.1 and 4.2, the para-
bolic subalgebras in question are in bijection with the subspaces U ⊂ V such that
U = ((U ⊕X)⊥ ⊕ Y )⊥.
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Let U ⊂ V be such that U = ((U ⊕X)⊥ ⊕ Y )⊥. It follows that X⊥⊥ ∩ Y ⊥ ⊂
U ⊂ Y ⊥. If 〈Y ⊥, X⊥〉 = 0, then X⊥⊥ ∩ Y ⊥ = Y ⊥, so U = Y ⊥, i.e. there is exactly
one such parabolic subalgebra. If 〈Y ⊥, X⊥〉 6= 0, then X⊥⊥ ∩Y ⊥ = 0 and Y ⊥ 6= 0,
so U = 0 and U = Y ⊥ are the two possibilities. �

The following example gives an illustration of Corollary 5.2. We will find all
parabolic subalgebras of gl(V, V∗) with the simple subalgebra sl(X,Y ) as a Levi
component, where

X := Span{v1 + vi | i ≥ 2} Y := Span{v∗i | i ≥ 2},

and {vi | i ∈ Z>0} and {v∗i | i ∈ Z>0} are dual bases of the vector spaces V and V∗.
We compute X⊥ = 0 and Y ⊥ = Cv1. By Corollary 5.2 there is exactly 1 self-

normalizing parabolic subalgebra of gl(V, V∗) having sl(X,Y ) as a Levi component.
It is the stabilizer of the taut couple

0 ⊂ Cv1 ⊂ V
V∗ ⊃ Y ⊃ 0,

which by a computation is nothing but

p+ =
(
(v∗1)⊥ ⊗ v∗1

)
D
(
(Cv1 ⊗ v∗1)⊕ ((v∗1)⊥ ⊗ Y )

)
.

Thus every parabolic subalgebra p of gl(V, V∗) with sl(X,Y ) as a Levi component
is defined by trace conditions on the one infinite-dimensional block of a locally
reductive part of p+. There are precisely two such parabolic subalgebras, namely
p+ and p− =

(
(v∗1)⊥ ⊗ v∗1

)
D
(
(Cv1 ⊗ v∗1)⊕ sl((v∗1)⊥, Y )

)
.

Similarly, there are precisely two parabolic subalgebras of sl(V, V∗) with Levi
component sl(X,Y ). They are the traceless parts of the two parabolic subalgebras
in the previous paragraph.

It is not hard to see now that it is impossible to extend sl(X,Y ) to a locally
reductive part of p+. Any locally reductive part of p+ must be isomorphic to the
locally reductive part (Cv1⊗ v∗1)⊕ ((v∗1)⊥⊗Y ), hence it must have two commuting
blocks. However, the centralizer of sl(X,Y ) in gl(V, V∗) is trivial. Relatedly, one
may check that gl(X,Y ) is a maximal locally reductive subalgebra of p+ which is
not a locally reductive part of p+.

We conclude this section with an example to demonstrate that (n+ 1)! is not an
upper bound for the finite numbers which occur as the number of self-normalizing
parabolic subalgebras with prescribed Levi component when n = 5. We claim that
there are precisely 8 ·5! self-normalizing parabolic subalgebras of gl(V, V∗) with Levi
component sl(X1, Y1)⊕ · · · ⊕ sl(X5, Y5), where

Xk := Span{vi | i = kmod 5} Yk := Span{v∗i | i = kmod 5},

in the following notation. We take V and V∗ to be the vector spaces with bases
{z}∪{w1, w2, . . . , w15}∪{vi | i ∈ Z>0} and {z̃}∪{w̃1, w̃2, . . . , w̃15}∪{v∗i | i ∈ Z>0}.
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Let 〈·, ·〉 : V × V∗ → C be the nondegenerate pairing defined by setting

〈vi, v∗j 〉 = δij

〈z, z̃〉 = 0

〈wk, w̃l〉 = 1

〈vi, z̃〉 = 〈z, v∗i 〉 = 0

〈z, w̃k〉 = 〈wk, z̃〉 =

{
0 if 1 ≤ k ≤ 10
1 if 11 ≤ k ≤ 15

〈vi, w̃k〉 = 〈wk, v∗i 〉 =

{
1 if i is congruent mod 40 to an element of Sk
0 otherwise

for all i, j ∈ Z>0 and k, l ∈ {1, . . . , 15}, where the sets Sk are the following:

S1 = {1, 2} S5 = {9, 12} S9 = {15, 18} S13 = {29, 30, 31, 32}
S2 = {3, 6} S6 = {13, 14} S10 = {19, 20} S14 = {33, 34, 35, 36}
S3 = {7, 8} S7 = {5, 16} S11 = {21, 22, 23, 24} S15 = {37, 38, 29, 0}.
S4 = {4, 11} S8 = {10, 17} S12 = {25, 26, 27, 28}

It suffices to prove that there are 8 such parabolic subalgebras inducing the
usual order 1 < 2 < 3 < 4 < 5, due to symmetry. By Corollaries 4.1 and 4.2, these
parabolic subalgebras are in correspondence with sets of subspaces U1, . . . , U5 ⊂ V
such that Ui = ((Ui ⊕ Xi)⊥ ⊕ Yi)⊥ and Ui ⊕ Xi ⊂ Ui+1. Indeed, the parabolic
subalgebra associated to U1, . . . , U5 is the stabilizer of the taut couple

0 ⊂ U1 ⊂ U1 ⊕X1 ⊂ (U1 ⊕X1)⊥⊥ ⊂ U2 ⊂ U2 ⊕X2 ⊂ · · ·

· · · ⊂ (U4 ⊕X4)⊥⊥ ⊂ U5 ⊂ U5 ⊕X5 ⊂ (U5 ⊕X5)⊥⊥ ⊂ V

V∗ ⊃ (Y1 ⊕ T1)⊥⊥ ⊃ Y1 ⊕ T1 ⊃ T1 ⊃ (Y2 ⊕ T2)⊥⊥ ⊃ · · ·

· · · ⊃ Y4 ⊕ T4 ⊃ T4 ⊃ (Y5 ⊕ T5)⊥⊥ ⊃ Y5 ⊕ T5 ⊃ T5 ⊃ 0,

where Ti := (Ui ⊕Xi)⊥.
By the proof of Theorem 5.1, there are at most 2 possibilities for each Ui. Thus

each Ui must be either
((⊕

j≤iXj

)⊥ ⊕ Yi)⊥ or
(⊕

j≥i Yj
)⊥. This enables us to

list all the possibilities:

U1 = 0 or Span{z}
U2 = X1 ⊕ Span{z}
U3 = X1 ⊕X2 ⊕ Span{z} or X1 ⊕X2 ⊕ Span{z, w1}
U4 = X1 ⊕X2 ⊕X3 ⊕ Span{z, w1, w2, w3}
U5 = X1 ⊕X2 ⊕X3 ⊕X4 ⊕ Span{z, w1, w2, w3, w4, w5, w6} or

X1 ⊕X2 ⊕X3 ⊕X4 ⊕ Span{z, w1, w2, w3, w4, w5, w6, w11}.

Observe that for every combination of choices, the necessary inclusions remain, i.e.
Ui ⊕ Xi ⊂ Ui+1. The listed subspaces all satisfy Ui = ((Ui ⊕ Xi)⊥ ⊕ Yi)⊥, as
noted immediately after Corollary 4.2. Hence there are exactly 8 self-normalizing
parabolic subalgebras as desired, arising from the two possibilities each for U1, U3,
and U5.
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6. Levi components of parabolic subalgebras of so∞ and sp∞

Assume g is so(V ) or sp(V ). We omit the proofs, as they are similar to those
given above.

Theorem 6.1. Let l be a subalgebra of g. There exists a parabolic subalgebra p of
g such that l is a Levi component of p if and only if l is the direct sum of standard
special linear subalgebras of g and a subalgebra

k =

{
so(W ) if g = so(V )
sp(W ) if g = sp(V )

for some subspace W ⊂ V to which the restriction of the bilinear form on V is
nondegenerate.

Moreover, given a subalgebra l for which such parabolic subalgebras exist, one
exists that induces an arbitrary order on the standard special linear direct summands
of l.

Theorem 6.2. Let p be a parabolic subalgebra of so(V ), with an associated self-taut
generalized flag F. Let F denote the union of all isotropic subspaces F ′′α for α ∈ A,
and let G denote the intersection of all coisotropic subspaces F ′α for α ∈ A.

Then l is a Levi component of p if and only if there exist isotropic subspaces
Xγ ⊂ V and Yγ ⊂ V for each γ ∈ D with

F ′′γ = F ′γ ⊕Xγ and G′′γ = G′γ ⊕ Yγ ,

as well as a subspace W with W = 0 if dimG/F ≤ 2 and otherwise

G = F ⊕W

such that
l = so(W )⊕

⊕
γ∈D

Λ(sl(Xγ , Yγ)).

Theorem 6.3. Let p be a parabolic subalgebra of sp(V ), with the associated self-
taut generalized flag F. Let F denote the union of all isotropic subspaces F ′′α for
α ∈ A, and let G denote the intersection of all coisotropic subspaces F ′α for α ∈ A.

Then l is a Levi component of p if and only if there exist isotropic subspaces
Xγ ⊂ V and Yγ ⊂ V for each γ ∈ D with

F ′′γ = F ′γ ⊕Xγ and G′′γ = G′γ ⊕ Yγ ,

as well as a subspace W with
G = F ⊕W

such that
l = sp(W )⊕

⊕
γ∈D

S(sl(Xγ , Yγ)).

The parabolic subalgebra in the following example has Levi components iso-
morphic to g. Let V be the vector space with basis {vi | i ∈ Z6=0}, and let
〈·, ·〉 : V × V → C be the nondegenerate pairing extending

〈vi, vj〉 =

{
0 if i 6= −j
1 if i = −j > 0
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symmetrically (or antisymmetrically). Take

W := Span{v1 + vi | i 6= ±1},
and note that the restriction 〈·, ·〉|W×W is nondegenerate. We will show that there
is a unique parabolic subalgebra of g with so(W ) (resp. sp(W )) as a Levi compo-
nent. In order to apply Theorem 6.2 (resp., Theorem 6.3), we consider self-taut
generalized flags F such that W provides a vector space complement for the single
immediate predecessor-successor pair in D.

That is, any self-taut generalized flag F in V such that StF∩g has the prescribed
Levi component must have an immediate predecessor-sucessor pair of the form
U ⊂ U⊕W . Since W is neither isotropic nor coisotropic, U must be isotropic, with
U = (U ⊕W )⊥. This implies W⊥⊥ ∩W⊥ ⊂ U . We compute W⊥⊥ ∩W⊥ = Cv1.
As dimV/W = 2, we conclude that U = Cv1, so F is the self-taut generalized flag

0 ⊂ Cv1 ⊂ Cv1 ⊕W ⊂ V.
This yields a single self-normalizing parabolic subalgebra p := StF ∩ g as desired.
There are no nontrivial trace conditions on p, as there are no gl∞ blocks in a locally
reductive part; hence p is the unique parabolic subalgebra of g with the prescribed
Levi component.

Note that so(W ) (or sp(W )) is a maximal locally reductive subalgebra of p. On
the other hand, any reductive part of p is isomorphic to g⊕ C. As in the example
at the end of Section 5, we have found a maximal locally reductive subalgebra of p
which is not a locally reductive part of p.

Now that we have considered the three special cases of sl∞, so∞, and sp∞, the
analogous statements hold for locally reductive finitary Lie algebras g. Then [g, g]
is locally simple, hence [g, g] =

⊕
i∈I si for some simple finitary Lie algebras si. Let

l be a Levi component of a parabolic subalgebra p of g. Then p ∩ si is a parabolic
subalgebra of si for each i ∈ I. It must be the case that l =

⊕
i∈I l ∩ si, and

moreover l∩ si is a Levi component of p∩ si. Up to isomorphism the only infinite-
dimensional simple finitary Lie algebras are sl∞, so∞, and sp∞ [BS]. Thus the
results of this paper are enough to classify Levi components of parabolic subalgebras
in this generality.
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