
ON HOMOGENEOUS SPACES FOR DIAGONAL IND-GROUPS

LUCAS FRESSE AND IVAN PENKOV

Abstract. We study the homogeneous ind-spaces GL(s)/P where GL(s) is a strict diag-
onal ind-group defined by a supernatural number s and P is a parabolic ind-subgroup of
GL(s). We construct an explicit exhaustion of GL(s)/P by finite-dimensional partial flag
varieties. As an application, we characterize all locally projective GL(∞)-homogeneous
spaces, and some direct products of such spaces, which are GL(s)-homogeneous for a
fixed s. The very possibility for a GL(∞)-homogeneous space to be GL(s)-homogeneous
for a strict diagonal ind-group GL(s) arises from the fact that the automorphism group
of a GL(∞)-homogeneous space is much larger than GL(∞).
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1. Introduction

The ind-group GL(∞) = lim
→

GL(n) =
⋃

n≥1 GL(n) is a most natural direct limit alge-

braic group, and its locally projective homogeneous spaces are quite well studied by now,
see for instance [3], [4], [7], [10]. A larger class of direct limit algebraic groups are the
so called diagonal ind-groups. A rather obvious such group, non-isomorphic to GL(∞),
is the ind-group GL(2∞) = lim

→
GL(2n) where GL(2n−1) is embedded into GL(2n) via the
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map

x 7→

(
x 0
0 x

)

.

A general definition of a diagonal Lie algebra has been given by A. Baranov and A.
Zhilinskii in [1], and this definition carries over in a straightforward way to classical Lie
groups, producing the class of diagonal Lie groups.

Locally projective homogeneous ind-spaces of diagonal ind-groups have been studied
much less extensively than those of GL(∞), see [4] and [2]. In this paper, we undertake
such a study for a class of diagonal ind-groups which we call strict diagonal ind-groups of
type A. These ind-groups are characterized by supernatural numbers s, and are denoted
GL(s). We consider reasonably general parabolic subgroups P ⊂ GL(s) and describe the
homogeneous ind-spaces GL(s)/P as direct limits of embeddings

Gn−1/Pn−1 → Gn/Pn

of usual ind-varieties. Our main theorem is an explicit formula for the so arising embed-
dings, and this formula is an analogue of the formula for standard extensions introduced
in [10] (and used in a particular case in [3]).

This result shows that it is realistic to aim at a future detailed understanding (possibly
a classification) of locally projective homogeneous ind-spaces of strict (and of general) di-
agonal ind-groups. These homogeneous ind-varieties should exhibit interesting properties
and each of them should yield a different Borel–Weil–Bott type theory.

In the current paper we restrict ourselves to the following application of the above ex-
plicit formula: we determine which locally projective homogeneous ind-spaces of GL(∞),
i.e., ind-varieties of generalized flags [3], are also GL(s)-homogeneous for a given infinite
supernatural number s. Furthermore, we also characterize explicitly direct products of
ind-varieties of generalized flags which are GL(s)-homogeneous.

The very possibility of an ind-variety of generalized flags being a homogeneous space
for GL(s), where s is an infinite supernatural number, is an interesting phenomenon, and
can be seen as one possible motivation for our studies of GL(s)-homogeneous ind-spaces.
Indeed, recall the following fact for a finite-dimensional algebraic group. If G is a center-
less simple algebraic group of classical type and rank at least four and P is a parabolic
subgroup, a well-known result of A. Onishchik [9] implies that the connected component
of unity of the automorphism group of the homogeneous space G/P coincides with G,
except in two special cases when G/P is a projective space and G is a symplectic group,
and when G/P is a maximal orthogonal isotropic grassmannian and G is an orthogonal
group of type B. Consequently, unless G/P is a projective space or a maximal isotropic
grassmannian, G/P cannot be a homogeneous G′-space for a centerless algebraic group
G′ 6∼= G.

The explanation of why the situation is very different if one replaces G by the ind-
group GL(∞), is that, as shown in [7], the automorphism group of an ind-variety of
generalized flags is much larger than GL(∞). In this way, our results provide embeddings
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of GL(s) into such automorphism groups, with the property that the action of GL(s) on
the respective ind-variety of generalized flags is transitive. As a corollary we obtain that
a “generic” ind-variety of generalized flags is GL(s)-homogeneous also for any ind-group
GL(s). This statement should provide a basis for comparison of Borel–Weil–Bott type
theories for different locally reductive ind-groups on the same homogeneous ind-variety. In
other words, a potential application of our result could be a realization of representations
of different ind-groups by means of the same invertible sheaf. Finally a future detailed
understanding of the homogeneous ind-varieties of the diagonal ind-groups could lead to
an interesting description of their automorphism groups, generalizing the work on the
automorphism groups of ind-varieties of generalized flags [7].

The paper is organized as follows. Sections 2, 3, 4 are devoted to preliminaries. We
start by introducing the ind-groups GL(s) where s is a supernatural number. We then
discuss Cartan, Borel, and parabolic ind-subgroups of GL(s). In Section 3 we review the
notions of linear embedding of flag varieties and standard extension of flag varieties, and
in Section 4 we recall the necessary results on ind-varieties of generalized flags.

In Section 5 we prove our explicit formula for embeddings of partial flag varieties
GL(n)/Q ↪→ GL(dn)/P induced by pure diagonal embeddings GL(n) ↪→ GL(dn). In
Section 6 we use this formula to describe all GL(s)-homogeneous ind-varieties of gen-
eralized flags. Finally, in Section 7 we characterize direct products of ind-varieties of
generalized flags, which are GL(s)-homogeneous.

Acknowledgement. The work of I. P. was supported in part by DFG Grant PE 980/8-1.

2. The ind-group GL(s)

2.1. Direct systems associated to a supernatural number. Throughout this paper
we consider a fixed supernatural number s, in other words

s =
∏

p∈P

pαp

where P is a (possibly infinite) set of prime numbers and αp is either a positive integer
or ∞. Moreover, we suppose that s is infinite, hence at least one of the exponents αp is
infinite or the set P is infinite. By D(s) we denote the set of finite divisors of s.

Let A be a direct system of sets with injective maps. We say that A is associated to
the supernatural number s if the sets in A

A(s), s ∈ D(s)

are parametrized by the finite divisors of s, and the injective maps

δs,s′ : A(s) ↪→ A(s′)
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correspond to pairs of divisors s, s′ ∈ D(s) such that s|s′. Then, if L(A) = lim
→

A(s), the

resulting map

δs : A(s) ↪→ L(A)

is injective for every s ∈ D(s).

Definition 2.1. We call exhaustion of s any sequence {sn}n≥1 of integers such that

• sn ∈ D(s) for all n,
• sn divides sn+1 for all n,
• any s ∈ D(s) is a multiple of sn for some n. �

Lemma 2.2. Let {sn}n≥1 be an exhaustion of s. Then L(A) coincides with the limit of the
inductive system formed by the sets A(sn) and the maps δn = δsn,sn+1 : A(sn) ↪→ A(sn+1).

Proof. Straightforward. �

According to the lemma, the limit L(A) can be described in terms of an exhaustion

L(A) =
⋃

n

A(sn).

• In the case where A(s) are vector spaces and the maps δs,s′ are linear, then L(A)
is the direct limit in the category of vector spaces.

• In the case where A(s) are algebraic varieties and the maps δs,s′ are closed embed-
dings, the limit L(A) is an ind-variety as defined in [11] and [8].

• In the case where A(s) are algebraic groups and the maps δs,s′ are group homo-
morphisms, the limit is both an ind-variety and a group. It is in particular an
ind-group1.

2.2. Definition of the groups GL(s) and SL(s). Whenever s, s′ are two positive inte-
gers such that s divides s′, we have a diagonal embedding

δs,s′ : GL(s) → GL(s′), x 7→ diag(x, . . . , x
︸ ︷︷ ︸
s′

s
blocks

).

We refer to the embeddings δs,s′ as strict diagonal embeddings. A more general definition
of diagonal embeddings is given, at the Lie algebra level, in [1].

The groups GL(s) (for s ∈ D(s)) and the maps δs,s′ (for all pairs of integers s, s′ ∈ D(s)
such that s divides s′) form a direct system. By definition, the ind-group GL(s) is the
limit of this direct system.

1An ind-group is an ind-variety with a group structure such that the multiplication (x, y) 7→ xy and
the inversion x 7→ x−1 are morphisms of ind-varieties.
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The group GL(s) can be viewed as the group of infinite Z>0 × Z>0-matrices consisting
of one diagonal block of size equal to any (finite) divisor s of s, repeated infinitely many
times along the diagonal:

GL(s) =











x 0 ∙ ∙ ∙

0 x
. . .

...
. . . . . .




 : x ∈ GL(s), s ∈ D(s)





.(2.1)

Similarly, we define SL(s) as the limit of the direct system formed by the groups SL(s)
and the same maps δs,s′ . In fact, SL(s) is the derived group of GL(s). By gl(s) and sl(s),
we denote the Lie algebras of GL(s) and SL(s), respectively. Thus sl(s) = [gl(s), gl(s)].

Remark 2.3. Lemma 2.2 shows that the group GL(s) can be obtained through any
exhaustion

GL(s) =
⋃

n

GL(sn)

where {sn}n≥1 is an exhaustion of s (see Definition 2.1). However, the ind-group GL(s)
has various other exhaustions. If we set

K(n) := GL(sn) × ∙ ∙ ∙ × GL(sn)
︸ ︷︷ ︸

sn+1
sn

factors

and

ψn : K(n) → K(n + 1), (x1, . . . , xdn) 7→ (diag(x1, . . . , xdn), . . . , diag(x1, . . . , xdn)
︸ ︷︷ ︸

sn+2
sn+1

terms

),

then the direct system {K(n)
ψn→ K(n + 1)} intertwines in a natural way with the direct

system {GL(sn)
δsn,sn+1−→ GL(sn+1)} considered above. This yields an equality

GL(s) = lim
→

GL(sn) = lim
→

K(n).

�

We say that two exhaustions G =
⋃

n Gn =
⋃

n G′
n of a given ind-group are equivalent

if there are n0 ≥ 1 and a commutative diagram

Gn0

∼
��

// ∙ ∙ ∙ // Gn

∼
��

// Gn+1

∼
��

// ∙ ∙ ∙

G′
n0

// ∙ ∙ ∙ // G′
n

// G′
n+1

// ∙ ∙ ∙

such that the vertical arrows are isomorphisms of algebraic groups and the horizontal
arrows are the embeddings of the exhaustions.
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Lemma 2.4. (a) Any exhaustion of SL(s) by almost simple, simply connected algebraic
groups is equivalent to {SL(sn), δsn,sn+1}n≥1 for an exhaustion {sn}n≥1 of s.

(b) Any exhaustion of GL(s) by classical groups (i.e. by groups of the form GL(n),
SL(n), SO(n), or Sp(n)) is equivalent to {GL(sn), δsn,sn+1}n≥1 for an exhaustion {sn}n≥1

of s.

Proof. (a) It suffices to prove the claim at the level of Lie algebras. Let sl(s) =
⋃

n gn be
an exhaustion by simple Lie algebras, hence of classical type for n large enough. There is
a subsequence {gkn}n≥1 and an exhaustion {sn}n≥1 of s such that we have a commutative
diagram of embeddings

sl(sn)
δsn,sn+1//

ηn

��

sl(sn+1)

ηn+1

��

// ∙ ∙ ∙

gkn

ξn
99ssssssssss
// gkn+1

;;vvvvvvvvvv
// ∙ ∙ ∙

By [1, Lemma 2.7], the embeddings ηn and ξn are diagonal, in the sense that there is an
isomorphism of sl(sn)-modules

Wn
∼= V ⊕t

n ⊕ V ∗
n
⊕r ⊕ C⊕s

and an isomorphism of gkn-modules

Vn+1
∼= W⊕t′

n ⊕ W ∗
n
⊕r′ ⊕ C⊕s′

for some triples of nonnegative integers (t, r, s) and (t′, r′, s′), where Vn and Wn denote
the natural representations of sl(sn) and gkn , and C is a trivial representation. Also since
δsn,sn+1 is strict diagonal, we have an isomorphism of sl(sn)-modules

(2.2) Vn+1
∼= Vn ⊕ . . . ⊕ Vn︸ ︷︷ ︸

sn+1
sn

copies

.

Arguing by contradiction, assume that gkn is not of type A. Then [1, Proposition
2.3] implies that t = r. Moreover, t′ + r′ > 0 since otherwise Vn+1 would be a trivial
representation of sl(sn). Altogether this implies that V ∗

n is isomorphic to a direct summand
of Vn+1 considered as an sl(sn)-module, which is impossible in view of (2.2). We conclude
that gkn is of type A for all n.

Moreover, from (2.2), we obtain s = s′ = 1 and either r = r′ = 0 or t = t′ = 0. Up to
replacing gkn = sl(Wn) by sl(W ∗

n), we can assume that r = r′ = 0, and so gkn
∼= sl(s′kn

)
for some integer such that sn|s′kn

, s′kn
|sn+1, and the embedding gkn ↪→ gkn+1 is induced by

δs′kn
,s′kn+1

.
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If k := kn + 1 < kn+1, we get a commutative diagram

sl(s′kn
)

∼

��

δs′
kn

,s′
kn+1 // sl(s′kn+1

)

∼

��
gkn

// gk // gkn+1

where the horizontal arrows are embeddings. Relying as above on [1, Proposition 2.3],
we get that gk is necessarily of type A, and up to replacing gk = sl(W ) by sl(W ∗), we
can assume that gk ∼= sl(s′k) for some s′k with s′kn

|s′k, s′k|s
′
kn+1

, and that the embeddings
gkn ↪→ gk ↪→ gkn+1 are induced by δs′kn

,s′k
and δs′k,s′kn+1

.

By iterating the reasoning, we obtain an exhaustion {s′n}n≥1 of s such that the exhaus-
tions sl(s) =

⋃
n gn and sl(s) =

⋃
n sl(s

′
n) are equivalent. This shows (a).

(b) From (a) it follows that for every n, the derived group (Gn, Gn) is isomorphic to
SL(sn) and, after identifying (Gn, Gn) with SL(sn) and (Gn+1, Gn+1) with SL(sn+1), the
map (Gn, Gn) ↪→ (Gn+1, Gn+1) becomes the restriction of δsn,sn+1 . This implies that Gn

is either isomorphic to SL(sn) or to GL(sn). For n ≥ 1 large enough, Gn has to contain
the center Z(GL(s)), which is isomorphic to C∗. Since the connected component of the
center of SL(sn) is trivial, this forces Gn

∼= GL(sn). Moreover, since Gn = Z(Gn)(Gn, Gn)
and the embedding Gn ↪→ Gn+1 maps Z(Gn) = Z(GL(s)) into Z(Gn+1), we deduce that
this embedding Gn ↪→ Gn+1 coincides with δsn,sn+1 : GL(sn) ↪→ GL(sn+1) after suitably
identifying Gn with GL(sn) and Gn+1 with GL(sn+1). �

The following statement is a corollary of the classification of general diagonal Lie alge-
bras [1]. We give a proof for the sake of completeness.

Proposition 2.5. (a) If s and s′ are two different infinite supernatural numbers, then the
ind-groups GL(s) and GL(s′) (resp. SL(s) and SL(s′)) are not isomorphic.

(b) If s is an infinite supernatural number, then GL(s) is not isomorphic to GL(∞),
and SL(s) is not isomorphic to SL(∞).

Proof. (a) Since SL(∙) is the derived group of GL(∙), it suffices to establish the claim
concerning SL(s) and SL(s′). Assume there is an isomorphism of ind-groups ϕ : SL(s′) →
SL(s). Then any exhaustion {s′n} of s′ yields an exhaustion SL(s) =

⋃
n ϕ(SL(s′n)) of the

group SL(s), and Lemma 2.4 implies s = s′, a contradiction.
(b) By definition, SL(∞) has an exhaustion by the groups SL(n) (n ≥ 1) via the

standard embeddings SL(n) → SL(n + 1), x 7→

(
x 0
0 1

)

. Clearly this exhaustion is not

equivalent to {SL(sn), δsn,sn+1}n≥1 for any exhaustion {sn}n≥1 of s. Therefore, the ind-
groups SL(s) and SL(∞) are not isomorphic by Lemma 2.4 (a). The same argument shows
that GL(s) and GL(∞) are not isomorphic. �
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2.3. Parabolic and Borel subgroups. An ind-subgroup H ⊂ GL(s) is said to be a
(locally splitting) Cartan subgroup if there is an exhaustion GL(s) =

⋃
n Gn by classical

groups such that Gn ∩H is a Cartan subgroup of Gn for all n. For instance, the subgroup
of invertible periodic diagonal matrices in the realization (2.1) is a Cartan subgroup of
GL(s).

If P is an ind-subgroup of GL(s), then the quotient GL(s)/P is an ind-variety obtained
as the direct limit of the quotients GL(s)/P(s) for s ∈ D(s).

For the purposes of this paper, we say that an ind-subgroup P ⊂ GL(s) is a parabolic
subgroup if there exists an exhaustion GL(s) =

⋃
n Gn by classical groups such that Gn∩P

is a parabolic subgroup of Gn for all n (cf. [2]). This implies in particular that the ind-
variety GL(s)/P is locally projective as it has an exhaustion

GL(s)/P =
⋃

n

Gn/(Gn ∩ P)

by projective varieties. If, in addition, the unipotent radical of Gn ∩ P is contained in
the unipotent radical of Gn+1 ∩ P for every n, then we say that P is a strong parabolic
subgroup.

An ind-subgroup B ⊂ GL(s) is said to be a Borel subgroup if it is locally solvable and
parabolic. This means equivalently that there is an exhaustion GL(s) =

⋃
n Gn as above

for which Gn ∩ B is a Borel subgroup of Gn for all n. Note that a Borel subgroup is
necessarily a strong parabolic subgroup.

Lemma 2.6. A subgroup G′ of GL(s) is a Cartan (respectively, parabolic or Borel) sub-
group of G if and only if there is an exhaustion {sn}n≥1 of s such that for every n the
intersection G′∩GL(sn) is a Cartan (respectively, parabolic or Borel) subgroup of GL(sn).

Proof. This follows from Lemma 2.4. �

The following example shows that for a given parabolic subgroup P ⊂ GL(s), the
property that the group Gn ∩ P is a parabolic subgroup of Gn may no longer hold for a
refinement of the exhaustion used to define P.

Example 2.7. Let s = 2∞, sn = 22n−2, and s′n = 2n−1. Then both {sn}n≥1 and {s′n}n≥1

are exhaustions of s, and {s′n}n≥1 is a refinement of {sn}n≥1. Let Hn ⊂ GL(sn) be the
subgroup of diagonal matrices. We define a Borel subgroup Bn ⊂ GL(sn) that contains
Hn, by induction in the following way: B1 := GL(1), and

Bn+1 :=







Bn ∗ ∗ ∗
0 Bn ∗ ∗
0 0 Bn 0
0 0 ∗ Bn







for n ≥ 2, where all the blocks are square matrices of size sn. Then Bn+1 ∩ GL(sn) = Bn

for all n, which implies that B =
⋃

n≥1 Bn is a well-defined Borel subgroup of GL(s)



ON HOMOGENEOUS SPACES FOR DIAGONAL IND-GROUPS 9

arising from the exhaustion {sn}n≥1 of s. However, for all n,

B ∩ GL(s′2n) =

(
Bn 0
0 Bn

)

is not a Borel subgroup (nor a parabolic subgroup) of GL(s′2n). �

3. On embeddings of flag varieties

In this section we review some preliminaries on finite-dimensional (partial) flag varieties.
In particular, we recall the notions of linear embedding and standard extension introduced
in [10].

3.1. Grassmannians and (partial) flag varieties. Let V be a finite-dimensional vec-
tor space. For an integer 0 ≤ p ≤ dim V , we denote by Gr(p; V ) the grassmannian of
p-dimensional subspaces in V . This grassmannian can be realized as a projective variety by
the Plücker embedding Gr(p; V ) ↪→ P(

∧p V ). Moreover, the Picard group Pic(Gr(p; V ))
is isomorphic to Z with generator OGr(p;V )(1), the pull-back of the line bundle O(1) on
P(
∧p V ).
For a sequence of integers 0 < p1 < . . . < pk−1 < pk < dim V , we denote by

Fl(p1, . . . , pk; V ) the variety of (partial) flags

Fl(p1, . . . , pk; V ) = {(V1, . . . , Vk) ∈ Gr(p1; V ) × ∙ ∙ ∙ × Gr(pk; V ) : V1 ⊂ . . . ⊂ Vk}.

We have

Pic(Fl(p1, . . . , pk; V )) ∼= Zk.

If we let Li be the pull-back

Li = proj∗iOGr(pi;V )(1)

along the projection

proji : Fl(p1, . . . , pk; V ) → Gr(pi; V )

(for i = 1, . . . , k), then [L1], . . . , [Lk] is a set of generators of the Picard group, to which
we refer as preferred generators of Pic Fl(p1, . . . , pk; V ).

By embedding of flag varieties we mean a closed immersion

ϕ : X = Fl(p1, . . . , pk; V ) ↪→ Y = Fl(q1, . . . , q`; W ).

If F = {F1, . . . , Fk} ∈ X is a variable point, we set

Ci(ϕ) =
⋂

F∈X

ϕ(F)i.

Then C1(ϕ) ⊂ . . . ⊂ C`(ϕ) is a chain of subspaces of W with possible repetitions. We
define the support of ϕ to be the set of indices i ∈ {1, . . . , `} such that dim Ci(ϕ) < qi.
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3.2. Linear embedding. Let

Q := Gr(q1; W1) × ∙ ∙ ∙ × Gr(q`; W`)

where W1, . . . ,W` is a sequence of vector spaces and 0 < qj < dim Wj for all j. Consider
an embedding

ψ : X = Fl(p1, . . . , pk; V ) → Q.

We use the notation of the previous section for X. The Picard group of Q is isomorphic
to Z`, with generators associated to the line bundles Mj = proj∗jOGr(qj ;Wj)(1).

Definition 3.1. We say that the embedding ψ is linear if we have

[ψ∗Mj ] = 0 or [ψ∗Mj ] ∈ {[L1], . . . , [Lk]}

for all j ∈ {1, . . . , `}. �

Let
ϕ : X = Fl(p1, . . . , pk; V ) ↪→ Y = Fl(q1, . . . , q`; W )

be an embedding of flag varieties. The following definition is equivalent to [10, Definition
2.1].

Definition 3.2. The embedding ϕ is said to be linear if the composed embedding ψ = π◦ϕ
is linear, where π :=

∏`
j=1 projj : Y →

∏`
j=1 Gr(qj ; W ). �

3.3. Standard extension.

Definition 3.3 ([10]). (a) The embedding ϕ : Fl(p1, . . . , pk; V ) ↪→ Fl(q1, . . . , q`; W ) is
said to be a strict standard extension if there are

• a decomposition of vector spaces W = V ′ ⊕ Z with a linear isomorphism ε : V
∼
→

V ′,
• a chain of subspaces Z1 ⊂ . . . ⊂ Z` of Z (with possible repetitions),
• a nondecreasing map κ : {1, . . . , `} → {0, 1, . . . , k, k + 1},

such that

(3.1) ϕ
(
{V1, . . . , Vk}

)
= {ε(Vκ(1)) + Z1, . . . , ε(Vκ(`−1)) + Z`−1, ε(Vκ(`)) + Z`}

where V0 := 0 and Vk+1 := V .
(b) More generally, we say that ϕ is a standard extension if ϕ itself is a strict stan-

dard extension or its composition with the duality map Fl(q1, . . . , q`; W ) → Fl(dim W −
q1, . . . , dim W − q`; W

∗) is a strict standard extension. �

Remark 3.4. Since the map ϕ of (3.1) is an embedding of flag varieties, the following
conditions must hold: 1, . . . , k have preimages by κ, and the map j ∈ {1, . . . , `} 7→
(κ(j), Zj) is injective and does not contain (0, 0) nor (k + 1, Z) in its image. �

Note that, if ϕ is a strict standard extension, then Ci(ϕ) = Zi for all i ∈ {1, . . . , `},
and the support of ϕ is the interval κ−1([1, k]).

Also, a composition of standard extensions is a standard extension.
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Example 3.5. Let W = V ⊕ Z, where dim Z = d. For 1 ≤ k0 ≤ k + 1, we consider the
embeddings

ϕ : Fl(p1, . . . , pk; V ) ↪→ Fl(q1, . . . , qk; W )

{V1, . . . , Vk} 7→ {V1, . . . , Vk0−1, Vk0 + Z, . . . , Vk + Z}

and

ϕ̄ : Fl(p1, . . . , pk; V ) ↪→ Fl(q̄1, . . . , q̄k+1; W )

{V1, . . . , Vk} 7→ {V1, . . . , Vk0−1, Vk0−1 + Z, Vk0 + Z, . . . , Vk + Z}

where

qi =

{
pi if 1 ≤ i < k0,
pi + d if k0 ≤ i ≤ k

and q̄i =

{
pi if 1 ≤ i < k0,
pi−1 + d if k0 ≤ i ≤ k + 1.

Here, we still use the convention that V0 := 0 and Vk+1 := V , and we set accordingly
p0 := 0 and pk+1 := dim V . Then ϕ and ϕ̄ are strict standard extensions, associated with
the respective chains of subspaces

0 ⊂ . . . ⊂ 0︸ ︷︷ ︸
k0 − 1 times

⊂ Z ⊂ . . . ⊂ Z︸ ︷︷ ︸
k + 1 − k0 times

and 0 ⊂ . . . ⊂ 0︸ ︷︷ ︸
k0 − 1 times

⊂ Z ⊂ . . . ⊂ Z︸ ︷︷ ︸
k + 2 − k0 times

and respective maps κ and κ̄, where κ(i) = i for all i, κ̄(i) = i for i ≤ k0 − 1, κ̄(i) = i− 1
for i ≥ k0. �

Remark 3.6. Every strict standard extension is the composition of, possibly several,
maps ϕ and ϕ̄ as in Example 3.5. �

4. A review of generalized flags

4.1. Generalized flags. Let V be an infinite-dimensional vector space of countable di-
mension and let E = {e1, e2, . . .} be a basis of V . By 〈S〉 we denote the linear span of
a subset S ⊂ V . Following [3], we call generalized flag a collection F of subspaces of V
that satisfies the following conditions:

• F is totally ordered by inclusion;
• every subspace F ∈ F has an immediate predecessor or an immediate successor

in F ;
• V \{0} =

⋃
(F ′,F ′′)(F

′′ \F ′), where the union is over pairs of consecutive subspaces
in F .

Moreover, a generalized flag F is said to be E-compatible if every subspace F ∈ F is
spanned by elements of E. An E-compatible generalized flag F can be encoded by a (not
order preserving) surjective map σ : Z>0 → A onto a totally ordered set (A,≤) such that
F = {F ′

a, F
′′
a }a∈A where F ′

a = 〈ek : σ(k) < a〉 and F ′′
a = 〈ek : σ(j) ≤ a〉. More generally, a

generalized flag F is said to be weakly E-compatible if it is E ′-compatible for some basis
E ′ of V differing from E in finitely many vectors.
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Let
GL(E) = {g ∈ GL(V ) : g(ek) = ek for all but finitely many k}.

Then GL(E) is an ind-group, isomorphic to the finitary classical ind-group GL(∞). The
group GL(E) acts on the set of all weakly E-compatible generalized flags. Furthermore,
it is established in [3] that weakly E-compatible generalized flags F of V are in one-to-one
correspondence with splitting parabolic subgroups P ⊂ GL(E). More precisely, the map

F 7→ P = StabGL(E)(F)

is a bijection between these two sets.
We define a natural representation of GL(s) as a direct limit of natural representations

of GL(s) for s ∈ D(s), where by the natural representation of GL(s) we mean the standard
representation on column vectors of length s. Two natural representations of GL(s) do
not have to be isomorphic since a direct limit of natural representations can depend on
the respective embeddings; see [5].

Assume now that V is a natural representation for GL(s), H ⊂ GL(s) is a Cartan
subgroup such that there is a basis E of V consisting of eigenvectors of H. The group
GL(s) acts in a natural way on the generalized flags in V , and a generalized flag is
E-compatible if and only if it is H-stable. However, generalized flags are less suited
for describing parabolic subgroups of GL(s) than for describing parabolic subgroups of
GL(∞) ∼= GL(E), since the stabilizer of a generalized flag in GL(s) is not always a
parabolic subgroup. Moreover, there are parabolic subgroups of GL(s) which cannot be
realized as stabilizers of generalized flags in a prescribed natural representation. These
observations are illustrated by the following two examples.

Example 4.1. For every n ≥ 0, we define inductively a subset In ⊂ {1, . . . , 2n+1} by
setting

I0 := {1} ⊂ {1, 2}, In := In−1 ∪ {2n + i : i ∈ {1, . . . , 2n} \ In−1} for n ≥ 1.

Note that {In}n≥0 is a nested sequence of sets, and let I :=
⋃

n≥0 In. For V = 〈e1, e2, . . .〉
as above, put

W := 〈ei : i ∈ I〉.
Thus F := {0 ⊂ W ⊂ V } is a generalized flag.

By Lemma 2.4 (b), any exhaustion of GL(2∞) by classical groups is equivalent to
{GL(sn), δsn,sn+1}n≥1 for an exhaustion {sn = 2kn}n≥1 of s. Every element g ∈ GL(2kn)
stabilizing F should be such that the blockwise diagonal matrix

(
g 0
0 g

)

stabilizes 〈ei : i ∈ Ikn〉 = 〈ei : i ∈ Ikn−1〉 ⊕ 〈e2kn−1+i : i ∈ {1, . . . , 2kn} \ Ikn−1〉, hence g
should stabilize both subspaces 〈ei : i ∈ Ikn−1〉 and 〈ei : i ∈ {1, . . . , 2kn} \ Ikn−1〉. This
implies that the stabilizer of W in GL(2kn) is not a parabolic subgroup, for all n ≥ 1.
Therefore, StabGL(2∞)(F) is not a parabolic subgroup of GL(2∞). �
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Example 4.2. (a) Let V =
⋃

nC
2n

be seen as a natural representation of GL(2∞) where

the embedding C2n ∼= C2n
× {0}2n

⊂ C2n+1
is considered. For n ≥ 1, let Pn ⊂ GL(2n) be

the stabilizer of Ln := {0}2n−1 × C, the line spanned by the 2n-th vector of the standard
basis of C2n

. Then Pn+1 ∩ GL(2n) = Pn for all n ≥ 1, hence P :=
⋃

n≥1 Pn is a parabolic
subgroup of GL(2∞). However, P acts transitively on the nonzero vectors of V , so that
there is no nonzero proper subspace of V which is stable by P. Therefore, P cannot be
realized as the stabilizer of a generalized flag in V .

(b) If in part (a) we replace the embeddings defining the structure of natural represen-

tation on V by C2n ∼= {0}2n
×C2n

⊂ C2n+1
, then Ln = L1 for all n ≥ 1 and the parabolic

subgroup P of (a) becomes the stabilizer of the generalized flag {0 ⊂ L1 ⊂ V }. �

4.2. Ind-varieties of generalized flags.

Definition 4.3. (a) Two generalized flags F and G are said to be E-commensurable [3]
if F and G are weakly E-compatible and there is an isomorphism of totally ordered sets
φ : F → G and there is a finite-dimensional subspace U ⊂ V such that, for all F ∈ F ,
F + U = φ(F ) + U and dim F ∩ U = dim φ(F ) ∩ U .

(b) Given an E-compatible generalized flag F , we define Fl(F , E) as the set of all
generalized flags which are E-commensurable with F . �

Let F be an E-compatible generalized flag. We now recall the ind-variety structure on
Fl(F , E) [3]. To do this, we write E = {ek}k≥1 and, for n ≥ 1, set Vn := 〈e1, . . . , en〉.
The collection of subspaces {F ∩ Vn : F ∈ F} determines a flag F

(n)
1 ⊂ . . . ⊂ F

(n)
pn−1 in

F
(n)
pn := Vn; furthermore we set d

(n)
i := dim F

(n)
i and

Xn := Fl(d
(n)
1 , . . . , d

(n)
pn−1; Vn).

We define an embedding ηn : Xn → Xn+1 in the following way. Let i0 ∈ {1, . . . , pn+1} be

minimal such that en+1 ∈ F
(n+1)
i0

. We have either pn+1 = pn or pn+1 = pn + 1. In the
former case we set

ηn : {M1, . . . ,Mpn−1} 7→ {M1, . . . ,Mi0−1,Mi0 ⊕ 〈en+1〉, . . . ,Mpn−1 ⊕ 〈en+1〉}.

In the latter case, we define

ηn : {M1, . . . ,Mpn−1} 7→ {M1, . . . ,Mi0−1,Mi0−1 ⊕ 〈en+1〉, . . . ,Mpn−1 ⊕ 〈en+1〉}.

Proposition 4.4 ([3]). (a) The maps {ηn}n≥1 are strict standard extensions and they
yield an exhaustion Fl(F , E) =

⋃
n≥1 Xn. This endows Fl(F , E) with a structure of

locally projective ind-variety.
(b) If P = StabGL(E)(F), then there is a natural isomorphism of ind-varieties GL(E)/P

∼
→

Fl(F , E).

Note also that, up to isomorphism, the ind-variety Fl(F , E) only depends on the type of
F , i.e., on the isomorphism type of the totally ordered set (F ,⊂) and on the dimensions
dim F ′′/F ′ of the quotients of consecutive subspaces in F .
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5. Embedding of flag varieties arising from diagonal embedding of
groups

In this section we study embeddings of flag varieties induced by strictly diagonal em-
beddings of general linear groups.

Let us fix the following data:

• positive integers m < n such that m divides n, and d := n
m

;
• GL(m) seen as a subgroup of GL(n) through the diagonal embedding

x 7→ diag(x, . . . , x);

• a decomposition of the natural representation V := Cn of GL(n) as

V = W (1) ⊕ . . . ⊕ W (d)

where W (i) := {0}(i−1)m×Cm×{0}(d−i)m; let χi : W := Cm → W (i) be the natural
isomorphism. For a subspace M ⊂ W , we write M (i) := χi(M).

5.1. Restriction of parabolic subgroup. Let {e1, . . . , en} be a basis of V such that
{e1, . . . , em} is a basis of W (1) ∼= W and emi+j = χi+1(ej) for all i = 1, . . . , d − 1 and all
j = 1, . . . ,m. By H = H(n) ⊂ GL(n) we denote the maximal torus for which e1, . . . , en

are eigenvectors. Then H ′ := H ∩ GL(m) is a maximal torus of GL(m).
A parabolic subgroup P = P (n) ⊂ GL(n) that contains H is the stabilizer of a flag

Fα = {〈ei : α(i) ≤ j〉}p−1
j=1

for some surjective map α : {1, . . . , n} → {1, . . . , p}. The following statement determines
under what condition the intersection P ∩ GL(m) is a parabolic subgroup.

Lemma 5.1. Consider the map

β : {1, . . . ,m} → {1, . . . , p}d, r 7→ (α(r), α(m + r), . . . , α((d − 1)m + r)),

and denote by I the image of β. Let ≤ denote the partial order on {1, . . . , p}d such that
(x1, . . . , xd) ≤ (y1, . . . , yd) if xi ≤ yi for all i.

(a) The intersection Q := P ∩ GL(m) is a parabolic subgroup of GL(m) if and only if
≤ restricts to a total order on I. Moreover, letting b1, . . . , bq be the elements of I written
in increasing order, we have

Q = StabGL(m)(Fβ)

where
Fβ = {〈ei : β(i) ≤ bj〉}

q−1
j=1.

In particular, if dj = #β−1({b1, . . . , bj}) then GL(m)/Q can be identified with the flag
variety Fl(d1, . . . , dq−1; W ).

(b) If Q is a parabolic subgroup, the inclusion UQ ⊂ UP of unipotent radicals holds if
and only if any two distinct elements (x1, . . . , xd), (y1, . . . , yd) of I satisfy xi 6= yi for all
i ∈ {1, . . . , d}.
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Proof. (a) We have a decomposition

gl(n) = gl(V ) = h⊕
⊕

1≤i 6=j≤n

gi,j

where h = Lie H and gi,j = C(ei ⊗ e∗j). With this notation,

(5.1) p := Lie P = h⊕
⊕

α(i)≤α(j)

gi,j ⊃ nil(p) =
⊕

α(i)<α(j)

gi,j ,

where nil(p) is the nilpotent radical of p.
There is a similar decomposition

gl(m) = gl(W ) = h′ ⊕
⊕

1≤i 6=j≤m

g′i,j .

Set q := Lie Q where Q = P ∩ GL(m) as before. Since we already know that h′ ⊂ q, the
subalgebra q is parabolic if and only if

(5.2) 1 ≤ i 6= j ≤ m =⇒ (g′i,j ⊂ q or g′j,i ⊂ q).

In view of (5.1) and the diagonal embedding gl(m) ⊂ gl(n), whenever 1 ≤ i 6= j ≤ m we
have the equivalence

g′i,j ⊂ q ⇐⇒ gi+km,j+km ⊂ p ∀k = 0, . . . , d − 1

⇐⇒ α(i + km) ≤ α(j + km) ∀k = 0, . . . , d − 1

⇐⇒ β(i) ≤ β(j).

Hence, from (5.2) we obtain that q is a parabolic subalgebra of gl(m) if and only if

1 ≤ i 6= j ≤ m =⇒ (β(i) ≤ β(j) or β(j) ≤ β(i)).

The condition means that ≤ is a total order set on I. We also have the equality

q = h⊕
⊕

β(i)≤β(j)

g′i,j = {X ∈ gl(W ) : X(〈ei : β(i) ≤ bj〉) ⊂ 〈ei : β(i) ≤ bj〉 ∀j}

= Lie(StabGL(m)(Fβ))

which implies that Q = StabGL(m)(Fβ).
(b) Assume that Q is a parabolic subgroup of GL(m). The inclusion UQ ⊂ UP holds if

and only if the similar inclusion holds for the nilradicals of the Lie algebras. Through the
diagonal embedding of gl(m) into gl(n), the nilradical of q can be described as

nil(q) =
⊕

1≤i 6=j≤m
β(i)<β(j)

(g′i,j ⊕ g
′
i+m,j+m ⊕ . . . ⊕ g′i+(d−1)m,j+(d−1)m).

Therefore, the desired inclusion nil(q) ⊂ nil(p) holds if and only if, for all i, j ∈ {1, . . . ,m},

β(i) < β(j) ⇐⇒ α(i + km) < α(j + km) ∀k ∈ {0, . . . , d − 1}.
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This condition is equivalent to the one stated in (b) (knowing that the partial order ≤
restricts to a total order on I, due to (a)). �

5.2. Diagonal embedding of flag varieties. Assuming that the condition of Lemma
5.1 (a) is fulfilled, we now describe the embedding of partial flag varieties

(5.3) φ : GL(m)/Q = Fl(d1, . . . , dq−1; W ) → GL(n)/P

obtained in this case. We rely on a combinatorial object, introduced in the next definition.

Definition 5.2. (a) We call E-graph an unoriented graph with the following features:

• The vertices consist of two sets {l1, . . . , lq} (“left vertices”) and {r1, . . . , rp} (“right
vertices”), displayed from top to bottom in two columns, and two vertices are
joined by an edge only if they belong to different sets.

• The edges are partitioned into d subsets Ec corresponding to a given colour c ∈
{1, . . . , d}.

• Every vertex is incident with at least one edge, and every vertex is incident with
at most one edge of a given colour. The vertex lq is incident with exactly d edges
(one per colour).

• Two edges of the same colour never cross, that is, if (li, rj) and (lk, r`), with i < k,
are joined with two edges of the same colour, then j < `.

In an E-graph, we call “bounding edges” the edges passing through lq, and we call “ordi-
nary edges” all other edges.

(b) With the notation of Lemma 5.1, we define the E-graph G(α, β) such that

• we put an edge of colour k between li and rj whenever bi = (x1, . . . , xd) satisfies
xk = j and i is maximal for this property.

(The conditions given in Lemma 5.1 (a) justify that G(α, β) is a well-defined E-graph.) �

In the following statement we describe explicitly the embedding φ of (5.3) and its
properties in terms of the E-graph G(α, β). Recall that for a subspace M ⊂ W , we write
M (i) = χi(M), where χi : W ∼= Cm → W (i) is the natural isomorphism.

Proposition 5.3. (a) The map φ : Y = GL(m)/Q = Fl(d1, . . . , dq−1; W ) → X =
GL(n)/P is given by

φ : {F1, . . . , Fq−1} 7→ {V1, . . . , Vp−1}

where for all j ∈ {1, . . . , p − 1} we have

(5.4) Vj = Vj−1 + F
(1)
i1

⊕ . . . ⊕ F
(d)
id

,

where V0 = F0 := 0, Fq := W , and

ik :=

{
i if the vertex rj is incident with an edge (li, rj) of colour k in G(α, β),
0 if there is no edge of colours k passing through rj.
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We have also

Vj = F
(1)

i′1
⊕ . . . ⊕ F

(d)

i′d
,

where i′k is the index of the left end point of the last edge of colour k arriving at or above
rj in G(α, β), with i′k = 0 if there is no such edge.

(b) Let ([L1], . . . , [Lp−1]) and ([M1], . . . , [Mq−1]) denote the sequences of preferred gen-
erators of Pic X and Pic Y , respectively (see Section 3.1). The map φ∗ : Pic X → Pic Y
is given by

φ∗[Lj] =
d∑

k=1

[Mi′k
],

where we set by convention [M0] = [Mq] = 0.
(c) The map φ is linear if and only if, whenever rj , rj′ with j < j ′ are incident with

edges of the same colour c in the graph G(α, β), every ordinary edge arriving at rj′′ for
j ≤ j′′ < j ′ is also of colour c.

(d) The map φ is a standard extension if and only if all ordinary edges of G(α, β) are
of the same colour. Moreover, in this case, φ is a strict standard extension.

Proof. (a) As in Section 5.1, we write P = Stab(Fα) where α : {1, . . . , n} → {1, . . . , p}
is surjective. Then we have Q = Stab(Fβ) where β : {1, . . . ,m} → I ⊂ {1, . . . , p}d

is described in Lemma 5.1. Let φ̂ : GL(m)/Q → GL(n)/P be the map given by for-

mula (5.4). Thus we have to show that φ̂ = φ. Since the maps φ and φ̂ are GL(m)-

equivariant, it suffices to show that φ̂(Fβ) = Fα. We write Fα = {Fα,1, . . . , Fα,p−1} and
Fβ = {Fβ,1, . . . , Fβ,q−1}. For j ∈ {1, . . . , p}, we have

(5.5) Fα,j = 〈ei : α(i) ≤ j〉 = Fα,j−1 + 〈ei : α(i) = j〉

where Fα,0 := 0. Every i ∈ {1, . . . , n} can be written i = (k − 1)m + r ∈ {1, . . . , n} with
k ∈ {1, . . . , d} and r ∈ {1, . . . ,m}, so that ei = χk(er).

Assume that α(i) = j. Then there is bi′ = (x1, . . . , xd) ∈ I with i′ ∈ {1, . . . , q} maximal
such that xk = j. Moreover there is s ∈ {r, . . . ,m} such that x` = α((`− 1)m + s) for all
` ∈ {1, . . . , d}. This implies that the graph G(α, β) contains an edge of colour k joining
bi′ and j, and we have

ei = χk(er) ∈ χk(Fβ,i′) = F
(k)
β,i′

where Fβ,q := W . Conversely, assume that there is an edge of colour k joining bi′ and

j. The subspace F
(k)
β,i′ is spanned by vectors of the form χk(er) with r ∈ {1, . . . ,m} such

that β(r) = (α((`− 1)m + r)d
`=1 ≤ bi′ . The latter inequality implies α((k − 1)m + r) ≤ j.

Hence χk(er) = e(k−1)m+r ∈ Fα,j .
Combining these observations with (5.5), we deduce that

Fα,j = Fα,j−1 + F
(1)
β,i1

⊕ . . . ⊕ F
(d)
β,id
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where i1, . . . , id are as defined in the statement of the proposition. Therefore, the claimed
equality φ̂(Fβ) = Fα holds.

The second formula stated in (a) is an immediate consequence of (5.4). The proof of
(a) is complete.

Part (b) is a corollary of the second formula in (a), whereas parts (c) and (d) of
the proposition easily follow from parts (a) and (b). The proof of the proposition is
complete. �

Remark 5.4. Proposition 5.3 shows how the E-graph G(α, β) describes the embedding
φ : Y → X. Moreover, the chain of constant spaces (Cj(φ)) is expressed in the following
way. We enumerate the colours k1, . . . , kd so that i1 ≤ . . . ≤ id where rij is the right end
point of the bounding edge of colour kj. Then

Cj(φ) = F (k1)
q ⊕ . . . ⊕ F (kj)

q for j = 1, . . . , d.

�

Example 5.5. (a) Let us consider for instance the graph
l1 •

l2 •

l3 •

r1•

r2•

r3•

r4•

PPPPPPPPPPPP

.

It encodes an embedding

φ : X = Fl(d1, d2;C
n) → Y = Fl(d1, d1 + d2, d2 + n;C2n = Cn ⊕ Cn)

{V1, V2} 7→ {V1, V1 ⊕ V2, V2 ⊕ C3}.

If we denote by ([L1], [L2]) and ([M1], [M2], [M3]) the sets of preferred generators of the
Picard groups of X and Y respectively, then the induced map φ∗ : Pic Y → Pic X is given
by

[M1] 7→ [L1], [M2] 7→ [L1] + [L2], [M3] 7→ [L2].

Thus φ is not linear in this case.
(b) Here we consider the graph

l1 •

l2 •...
li •..

.
lq •

r1•

r2•...
ri•

...

ri+1•

rq+1•

PPPPPPPPPPPP

��
��

�� .
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There are two colours which means that the embedding is from a flag variety of a space
V to the flag variety of a doubled space W = V ⊕ V :

Fl(d1, . . . , dq−1; V ) ↪→ Fl(d′
1, . . . , d

′
q; W = V ⊕ V ).

The embedding has the following explicit form

(5.6) {F1, . . . , Fq−1} 7→ {F1, . . . , Fi−1, Fi−1 ⊕ V , . . . , Fq−1 ⊕ V }.

Note that dim Fi−1 ⊕ V / dim Fi−1 = dim V . The dimensions of the other quotients are
unchanged.

(c) Now consider
l1 •

l2 •...
li •...
lq •

r1•

r2•...
ri•...
rq•��

��
�� .

In this case we get an embedding

Fl(d1, . . . , dq; V ) ↪→ Fl(d′
1, . . . , d

′
q; W = V ⊕ V )

given by

(5.7) {F1, . . . , Fq−1} 7→ {F1, . . . , Fi−1, Fi ⊕ V , . . . , Fq−1 ⊕ V }.

The only quotient whose dimension changes is Fi ⊕V /Fi−1 which has dimension dim V +
dim Fi/Fi−1.

By Proposition 5.3 (d), the embeddings of parts (a) and (b) of this example are the only
possible standard extensions that can come from a diagonal embedding GL(n) ↪→ GL(2n).

(d) In the case of a diagonal embedding of the form GL(n) ↪→ GL(dn), if the embedding
of flag varieties is a standard extension, then it can be described as a composition of
embeddings of the previous form, involving a subspace V still of dimension n. �

Remark 5.6. The fact that UQ ⊂ UP is equivalent to the following property of the graph
G(α, β): every left vertex is incident with exactly d edges (one per colour). �

Proposition 5.3 has the following corollary.

Corollary 5.7. For an embedding φ : Y = GL(n)/Q → X = GL(m)/P as in Proposition
5.3 and for every j ∈ {1, . . . , q − 1}, we have Im φ∗ 6⊂ 〈[Mi] : i ∈ {1, . . . , q − 1} \ {j}〉.

5.3. Application to ind-varieties.

Definition 5.8. Let {sn}n≥1 be an exhaustion of s. We call s-graph a graph with infinitely
many columns of vertices Bn, with 1 ≤ |Bn| ≤ sn for all n ≥ 1, such that the subgraph
consisting of Bn, Bn+1 and the corresponding edges is an E-graph. �
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A parabolic subgroup P of GL(s) gives rise to an s-graph. According to the above propo-
sition, this graph encodes the embeddings of flag varieties in an exhaustion of GL(s)/P.
Conversely, any s-graph arises from a parabolic subgroup P of GL(s).

6. Ind-varieties of generalized flags as homogeneous spaces of GL(s)

Our purpose in this section is to characterize ind-varieties of generalized flags (intro-
duced in Section 4.2) which can be realized as homogeneous spaces GL(s)/P for the given
supernatural number s.

6.1. The case of finitely many finite-dimensional subspaces. We start with a spe-
cial situation which is easier to deal with: let X = Fl(F , E) where F = {F ′

a, F
′′
a }a∈A is an

E-compatible generalized flag, for an arbitrary totally ordered set (A,≤), but with the
assumption that

(6.1) dim F ′′
a /F ′

a = +∞ for all but finitely many a ∈ A.

Theorem 6.1. If condition (6.1) holds, then for every supernatural number s, there is an
isomorphism of ind-varieties Fl(F , E) ∼= GL(s)/P for an appropriate parabolic subgroup
P ⊂ GL(s).

Proof. In the situation of the theorem, the ind-variety X = Fl(F , E) has an exhaustion

X1 ↪→ X2 ↪→ ∙ ∙ ∙ ↪→ Xn

φn
↪→ Xn+1 ↪→ ∙ ∙ ∙

such that Xn is a finite-dimensional variety of flags in the space Csn for some exhaustion
{sn}n≥1 of s with s1 sufficiently large, and φn : Xn → Xn+1 is one of the two maps from
Example 5.5 (b) and (c). Using the maps φn, one constructs nested parabolic subgroups
Pn ⊂ GL(sn) such that Xn

∼= GL(sn)/Pn and Pn = GL(sn) ∩ Pn+1 for all n. The union
P =

⋃
n≥1 Pn is then a parabolic subgroup of GL(s) which satisfies the conditions of the

theorem. �

6.2. The general case. To treat the general case, we need to start with a definition.

Definition 6.2. Let F = {F ′
a, F

′′
a }a∈A be an E-compatible generalized flag and let A′ =

{a ∈ A : dim F ′′
a / dim F ′

a < +∞}. We say that the ind-variety Fl(F , E) is s-admissible if
either A′ is finite or A′ is infinite and there are a exhaustion {sn}n≥1 for s and a numbering
A′ = {kn}n≥1 (not necessarily compatible with the total order on A′) such that, for all
n ≥ 0:

dim F ′′
kn

/F ′
kn

sn
∈ {1, . . . , sn+1

sn
− 1} and sn| dim F ′′

a /F ′
a for all a ∈ A′ \ {k1, . . . , kn}.

�

Theorem 6.3. The following conditions are equivalent:

(i) The ind-variety Fl(F , E) is s-admissible.



ON HOMOGENEOUS SPACES FOR DIAGONAL IND-GROUPS 21

(ii) There is a parabolic subgroup P ⊂ GL(s) and an isomorphism of ind-varieties
Fl(F , E) ∼= GL(s)/P.

Proof. (i)⇒(ii): The ind-variety Fl(F , E) admits an exhaustion Fl(F , E) =
⋃

n Xn with
embeddings of the form

φn : Xn = Fl(p1, . . . , pkn ; Vn) → Xn+1 = Fl(q1, . . . , q`n ; Vn ⊕ Cn),(6.2)

{F1, . . . , Fkn} 7→ {Fτ(1) ⊕ Cn
1 , . . . , Fτ(`n) ⊕ Cn

`n
}

(with F0 := 0, Fkn+1 := Vn) for a nondecreasing surjective map τ : {1, . . . , `n} →
{0, 1, . . . , kn, kn + 1} and a sequence Cn

1 ⊂ . . . ⊂ Cn
`n

(with possible repetitions) of sub-
spaces of Cn.

Assume that there is another exhaustion Fl(F , E) =
⋃

n Yn for which the embeddings
are as described in Proposition 5.3, where Yn = Fl(r1, . . . , rmn ; Wn) and dim Wn = sn

for an exhaustion {sn} of s. Then the two exhaustions interlace, and there is no loss of
generality in assuming that the interlacing holds for the sequences (Xn) and (Yn), and
not only for subsequences:

Xn
� � φn //

� _

ξn

��

Xn+1� _

ξn+1

��
Yn

� � ψn //
- 


χn

<<yyyyyyyyy
Yn+1.

Claim. The embedding ξn is a standard extension.
First we show that ξn is linear. Arguing by contradiction, assume that there is a

generator [Mi] among the sequence [M1], . . . , [Mq−1] of preferred generators of Pic Xn

such that ξ∗n[Mi] is neither 0 nor a preferred generator of Pic Yn. Since φ∗
n = χ∗

n ◦ ξ∗n+1,
we have the inclusion Im φ∗

n ⊂ Im χ∗
n, and due to Corollary 5.7 we get that there is a

generator [L] ∈ Pic Yn+1 such that

χ∗
n[L] =

q−1∑

j=1

λj [Mj ] with λi 6= 0.

Since the map χn is an embedding, we have λj ≥ 0 for all j and in particular λi ≥ 1.
The same argument applied to ξn implies that ξ∗n[Mj ] should be a linear combination of
the preferred generators of Pic Yn with nonnegative integer coefficients. This implies that
ψ∗

n[L] = ξ∗nχ∗
n[L] is neither 0 nor a preferred generator of Pic Yn, contradicting the linearity

of the standard extension ψn.
Recall that in [10] the notion of an embedding factoring through a direct product is

introduced. Note that ξn cannot factor through a direct product: otherwise, ψn would
also factor through a direct product, which is impossible since this is a standard extension.
Consequently, ξn is a standard extension, and the claim is established.
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Now we can assume that ξ1 is a strict standard extension. Since the maps φn are strict
standard extensions, by using the formula for ψn in Proposition 5.3 we derive that ξn is
a strict standard extension for all n ≥ 1.

Due to (6.2) and Proposition 5.3, one has Wn = Vn ⊕ Zn and the map ξn has the form

ξn : {F1, . . . , Fkn} 7→ {Fσ(1) ⊕ Zn
1 , . . . , Fσ(pn) ⊕ Zn

pn
}.

Since this applies likewise to ξn+1, and taking into account the form of φn in (6.2), we see
that the map ψn has the form

{F1, . . . , Fkn , F ′
1, . . . , F

′
pn
} 7→ {F1, . . . , Fkn , Rn

1 , . . . , Rn
`n

, Γn
1 , . . . , Γ

n
δn
}

for an arbitrary map ζn : {F ′
1, . . . , F

′
pn
} 7→ {Rn

1 , . . . , Rn
`n
} as described in Proposition 5.3,

and where Γn
i are constant subspaces which are copies of Wn in Wn+1 =

⊕dn

i=1 W
(i)
n . This

implies dim Vn = d′
nsn for some d′

n ∈ {1, . . . , dn = sn+1

sn
}.

Since {Vn ⊕ Zn
1 , . . . , Vn ⊕ Zn

pn
} = {Γn−1

1 , . . . , Γn−1
δn−1

}, we must have pn = δn−1 and the
dimension of Zn

i is a multiple of sn−1. Therefore dim Rn
i is also a multiple of sn−1 for all

i. Condition (ii) is established.

(ii)⇒(i): Let d′
n =

dim Fkn

sn
∈ {1, . . . , dn} and set Vn = Fkn . The conditions imply that

we can choose a decomposition Wn = Vn ⊕ W
(1)
n−1 ⊕ . . . ⊕ W

(dn−d′n)
n−1 where the W

(i)
n−1’s are

copies of Wn−1 such that the strict standard extension Fln(F , E) → Fln+1(F , E) is given
by

φn : {F1, . . . , Fkn} 7→ {Fk1 + Cn
1 , . . . , Fkn+1 + Cn

kn+1
}

with Cn
i = W

(1)
n−1⊕. . .⊕W

(mi)
n−1 = C ′n

i ⊕C ′′n
i for some nondecreasing sequence m1, . . . ,mkn+1 .

Letting ξn : Fln(F , E) → Fl(tn; Wn) be given by

ξn : {F1, . . . , Fkn} 7→ {Fk1 + C ′n
1 , . . . , Fkn+1 + C ′n

kn+1
},

and ψn : Fl(tn; Wn) → Fl(tn+1; Wn+1)

ψn : {F1, . . . , Fkn} 7→ {F1 + C ′′n+1
1 , . . . , F`n+1 + C ′′n+1

`n+1
}

(for suitable types tn), we get exhaustions of Fl(F , E) and a homogeneous space for GL(s),
which interlace. Hence if F satisfies the condition above, then we can realize Fl(F , E) as
a homogeneous space for GL(s). �

Remark 6.4. It is shown in [2, Corollary 5.40] that GL(s)/B is never projective when
B is a Borel subgroup. On the other hand, according to [3, Proposition 7.2], an ind-
variety of generalized flags is projective if and only if the total order on the flag can be
induced by a subset of (Z,≤), and Theorem 6.3 shows that in many situations GL(s)/P
is projective. �
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7. The case of direct products of ind-varieties of generalized flags

In this section, we point out that many direct products of ind-varieties of generalized
flags can be homogeneous spaces for the group GL(s).

7.1. Direct products of ind-varieties. Let Xi =
⋃

n≥1 Xi,n (i ∈ I) be a collection of
ind-varieties indexed by Z>0 or a finite subset of it. For each i ∈ I we pick an element
xi ∈ Xi,1 and we set Xi,0 = {xi}. The direct product in the category of pointed ind-
varieties is then given by ∏

i∈I

Xi :=
⋃

n≥1

∏

i∈I

Xi,φi(n)

for a collection of increasing maps φi : Z>0 → Z≥0 such that for every n ∈ Z>0 we have
φi(n) = 0 for all but finitely many i ∈ I (the definition does not depend essentially on
the choice of the maps φi).

Remark 7.1. (a) As a set, the direct product can be identified with the set of sequences
(yi)i∈I where yi ∈ Xi for all i ∈ I and yi = xi for all but finitely many i ∈ I.

(b) For a finite set of indices I, as a set,
∏

i∈I Xi coincides with the usual cartesian
product, and its structure of ind-variety is given by the exhaustion

∏
i∈I Xi :=

⋃
n≥1 Xi,n.

Fixing an index i0 ∈ I, there are a canonical projection

proji0 :
∏

i∈I

Xi → Xi0 , (yi) 7→ yi0

and an embedding

embi0 : Xi0 →
∏

i∈I

Xi, x 7→ (yi) with yi =

{
xi if i 6= i0,
x if i = i0,

which are morphisms of ind-varieties.
If the product is endowed with an action of a group G, then each ind-variety Xi inherits

an action of G defined through the maps proji and embi. Conversely, if every ind-variety
Xi is endowed with an action of a group G, then we obtain an action of G on the product
defined diagonally provided that the following condition is fulfilled:

(7.1) every g ∈ G fixes xi for all but finitely many i ∈ I.

(This condition is automatically satisfied in the case where I is finite.) Moreover, in both
directions, when G = G is an ind-group, we have that the obtained action is algebraic
provided that the initial one is. The following lemma is an immediate consequence of this
discussion.

Lemma 7.2. Assume that the direct product
∏

i∈I Xi is a homogeneous space for an
ind-group G. Then, every ind-variety Xi is also a homogeneous space for G.

Note also that a direct product
∏

i∈I Xi is locally projective if and only if it is the case
of Xi for all i ∈ I.
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7.2. The case of ind-varieties of generalized flags. We start with an example.

Example 7.3. Let s = 2∞. We consider the space V of countable dimension, endowed
with its fixed basis E = {ek}k∈Z>0 , and we set Vn := 〈e1, . . . , en〉. We have the exhaustion
GL(s) =

⋃
n≥1 GL(V2n) defined through the diagonal embedding GL(V2n) ↪→ GL(V2n+1),

x 7→
(

x 0
0 x

)

. Consider the sequence of parabolic subgroups

Pn := StabGL(V2n )(V1, V2n−1), n ≥ 2.

In this way, Pn ∩ GL(V2n−1) = Pn−1 for all n ≥ 3. Moreover, every quotient GL(V2n)/Pn

is a flag variety formed by flags (F1 ⊂ F2 ⊂ V2n) of length 2, and we have an embedding
of flag varieties

GL(V2n−1)/Pn−1 → GL(V2n)/Pn, (F1, F2) 7→ (F1, V2n−1 + F2)

where as before the map

V2n−1 = 〈e1, . . . , e2n−1〉 → V2n−1 = 〈e2n−1+1, . . . , e2n−1+2n−1〉, v 7→ v,

is the isomorphism from Section 5. For every n, this embedding factors through a direct
product of grassmannians

GL(V2n−1)/Pn−1 → Gr(1; V2n−1) × Gr(2n−1 − 1; V2n−1) → GL(V2n)/Pn,

which allows us to chech that the ind-variety GL(s)/P, where P =
⋃

n Pn, is isomorphic
as an ind-variety to a direct product of two ind-grassmannians.

The following theorem shows that many homogeneous spaces for GL(s) can be isomor-
phic to direct products of ind-varieties of generalized flags.

Theorem 7.4. Let X = GL(s)/P be a homogeneous space, defined by a parabolic sub-
group P. Assume that we have an exhaustion X =

⋃
n≥1 GL(sn)/Psn determined by an

exhaustion {sn}n≥1 of s, where each embedding GL(sn)/Psn ↪→ GL(sn+1)/Psn+1 is linear.
Then, X is isomorphic as an ind-variety to a direct product of ind-varieties of generalized
flags

∏
i∈I Fl(F i, Ei) where I is either Z>0 or a finite subset of it.

Proof. Fix n ≥ 1. Let dn = sn+1

sn
and fix a decomposition

(7.2) Vn = W (1)
n ⊕ . . . ⊕ W (dn)

n

of the space Vn = Csn+1 as in Section 5. Thus we are in the setting of Proposition 5.3,
and the embedding

φn : GL(sn)/Psn ↪→ GL(sn+1)/Psn+1

can be encoded by an E-graph with dn colours in the sense of Proposition 5.3 (a). The
formula therein, combined with the characterization of φn given in Proposition 5.3 (c),
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yields a commutative diagram

GL(sn)/Psn

φn //

∏
i ψ(i)

��

GL(sn+1)/Psn+1

∏dn

i=1 Fl(`(i); W
(i)
n )

ξn

55kkkkkkkkkkkkkk

where ψ(i) is the embedding corresponding to the subgraph of G(α, β) formed by removing
all the ordinary edges which are not of colour i (ψ(i) is a strict standard extension due to

Proposition 5.3 (c)–(d)), `(i) is an appropriate dimension vector, and the embedding ξn is
induced by the decomposition (7.2). The theorem follows from this construction. �

The above proof yields the following sharpening of Theorem 7.4.

Corollary 7.5. In the framework of Theorem 7.4, let G be the s-graph corresponding to
P in the sense of Section 5.3. Let G =

⋃
i∈I Gi be a decomposition into subgraphs so that

all ordinary edges of Gi are of the same colour. Then, the ind-variety X is isomorphic to
a direct product of ind-varieties of generalized flags

∏
i∈I Xi where Xi has an exhaustion

with embeddings encoded by Gi.

Outlook

We see the results of this paper as a small first step in the study of locally projective
homogeneous ind-spaces of locally reductive ind-groups. One inevitable question for a
future such study is, given two non-isomorphic locally reductive ind-groups G and G′,
when are two homogeneous spaces G/P and G′/Q isomorphic as ind-varieties ? A further
natural direction of research could be a comparison of Bott–Borel–Weil type results on
G/P and G′/Q. We finish the paper by pointing out that the reader can verify that
Theorem 6.1 remains valid if one replaces GL(s) by any pure diagonal ind-group in the
terminology of [1].
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