
ON ISOMORPHISMS OF IND-VARIETIES OF GENERALIZED FLAGS

LUCAS FRESSE AND IVAN PENKOV

To the memory of Yuri Manin, an extraordinary human, mathematician, and mentor

Abstract. Ind-varieties of generalized flags have been studied for two decades. How-
ever, a precise statement of when two such ind-varieties, one or both being possibly
ind-varieties of isotropic generalized flags, are isomorphic, has been missing in the liter-
ature. Using some recent results on the structure of ind-varieties of generalized flags, we
establish a criterion for the existence of an isomorphism as above. Our result claims that,
with only two exceptions, isomorphisms of ind-varieties of generalized flags are induced
by isomorphisms of respective generalized flags. The exceptional isomorphisms correlate
with a well-known result of A. Onishchik from 1963.

1. Introduction

If X and Y are two finite-dimensional flag varieties, possibly one or both being varieties
of isotropic flags, the problem of whether X and Y are isomorphic is easily solvable. One
can approach it in different ways, one of which is to look at the automorphism groups
of X and Y . This yields an elegant proof of the following theorem, for whose statement
we need to introduce some notation. If X = Fl(a1, . . . , ai, V ) is the variety of flags
with dimension sequence (a1, . . . , ai, ai+1 = dimV ) in a finite-dimensional vector space
V with dimV ≥ 2, we say that X is of general type. If X = FlO(a1, . . . , ai, V ) is a
connected variety of isotropic flags with dimension sequence (a1, . . . , ai, ai+1 = dimV ) in
an orthogonal space V with dimV ≥ 5, we say that X is of orthogonal type. If X =
FlS(a1, . . . , ai, V ) is a (automatically connected) variety of isotropic flags with dimension
sequence (a1, . . . , ai, ai+1 = dimV ) in a symplectic space V with dimV ≥ 6, we say that
X is of symplectic type.

Theorem 1.1. Let X and Y be two flag varieties of the same type as above. Then
X and Y are isomorphic if and only if their dimension sequences coincide, or both X
and Y are of general type and their respective dimension sequences (a1, . . . , ai, ai+1) and
(b1, . . . , bj, bj+1) satisfy i = j, ai+1 = bi+1, and ak = ai+1 − bk for k ∈ {1, . . . , i}.

If X and Y are of different types, then the only possible isomorphisms are as follows:

• Fl(1,C2n) ∼= FlS(1,C2n);
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• FlO(n− 1,C2n−1) ∼= FlO(n,C2n).

This theorem can be considered a corollary of Onishchik’s result [5] claiming that the
connected component of unity of the automorphism group of a flag variety X, or a variety
of isotropic flags, is the centerless adjoint group corresponding to the variety, except when
X is isomorphic to FlS(1,C2n) or FlO(n − 1,C2n−1). Indeed, since the algebraic groups
SL(n) for n ≥ 2, SO(m) for m ≥ 4, Sp(r) for even r ≥ 4, are pairwise non-isomorphic,
Onishchik’s result reduces the problem to comparing two flag varieties X and Y of the
same type for the same vector space V . The proof of Theorem 1.1 gets then easily
completed by comparing the grassmannians, or isotropic grassmannians, to which X and
Y project.

In the present paper we prove an exact analogue of Theorem 1.1 for ind-varieties of,
possibly isotropic, generalized flags. These ind-varieties are homogeneous ind-spaces for
the groups GL(∞), SO(∞), Sp(∞), and have been studied quite extensively in the last
twenty years [1–3, 6–8]. Nevertheless, a precise statement of when two such ind-varieties
are isomorphic has been missing in the literature.

First, let us note that Theorem 1.1 does not imply directly any statement of isomor-
phism or non-isomorphism of ind-varieties of generalized flags, since two non-isomorphic
ind-varieties may admit exhaustions with pairwise isomorphic finite-dimensional varieties,
and conversely, an ind-variety may admit two exhaustions by pairwise non-isomorphic
finite-dimensional varieties. Next, we recall that the automorphism groups of ind-varieties
of, possibly isotropic, generalized flags have been computed in [3]. However, since the
question of when two such groups are isomorphic as abstract groups has not yet been
addressed (and may be quite hard), we are unable to produce an argument as direct as in
the outline of proof of Theorem 1.1 given above. Instead, we rely on some basic informa-
tion about automorphism groups of ind-varieties of generalized flags and on a technique
developed in the papers [7, 8]. This technique turns out to be very useful also in the
problem of isomorphisms.

The precise statement of our main result is Theorem 2.5 below. In Section 3 we have
collected preliminaries on finite-dimensional flag varieties. Sections 4 and 5 are devoted
to the proof of Theorem 2.5.

Acknowledgement. We thank Valdemar Tsanov for providing with the reference [4]
and explaining its relevance.

2. Statement of result

2.1. Short review of ind-varieties of generalized flags. The base field is the field of
complex numbers C. Let V be a countable-dimensional vector space, possibly equipped
with an orthogonal (i.e., non-degenerate, symmetric) or symplectic (i.e., non-degenerate,
antisymmetric) bilinear form ω. By E we denote a basis of V . In the presence of a form
ω, we make the following definition.
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Definition 2.1. Assume that V is equipped with an orthogonal or symplectic form ω.
A basis E is said to be isotropic if it is equipped with an involution iE : E → E with at
most one fixed point, such that ω(e, e′) 6= 0 if and only if e′ = iE(e). Then:

• If ω is orthogonal and iE has one fixed point, then the basis E is said to be of
type B.
• If ω is orthogonal and iE has no fixed point, then E is said to be of type D.
• If ω is symplectic, then iE cannot have a fixed point, and the basis E is said to be

of type C.

In [1], the homogeneous spaces of the form G/P have been described, where G is one
of the classical ind-groups SL(∞) (or GL(∞)), SO(∞), Sp(∞), and P ⊂ G is a splitting
parabolic subgroup. The term “splitting” means that P contains the Cartan subgroup
of transformations inside G which are diagonal in some basis E (isotropic in the case of
SO(∞) and Sp(∞)) of the underlying space V .

The description is by means of the notion of generalized flag.

Definition 2.2. (a) A generalized flag of V is a collection F of subspaces of V which is
totally ordered by inclusion and such that

• every F ∈ F has an immediate predecessor F ′ or an immediate successor F ′′ in
F ;
• every vector v ∈ V \ {0} belongs to F ′′ \ F ′ for a unique pair of consecutive

subspaces (F ′, F ′′) of F .

(b) In the case where V is equipped with an orthogonal of symplectic form ω, we say
that F is isotropic if there is an involution iF : F → F such that iF(F ) = F⊥ for all
F ∈ F , where F⊥ stands for the orthogonal subspace to F with respect to ω.

(c) If E is a basis of V , then F is said to be compatible with E if each subspace F ∈ F
has a basis formed by elements of E. We say that F is weakly compatible with E if
it is compatible with some basis E ′ which differs from E by finitely many vectors, i.e.,
#E \ (E ∩ E ′) = #E ′ \ (E ∩ E ′) < +∞.

In [1], an equivalence relation called E-commensurability is introduced on generalized
flags. Then, given a generalized flag F compatible with a basis E, one defines Fl(F , E, V )
as the set of all generalized flags in V which are E-commensurable with F . If F and E
are isotropic, one defines instead Flω(F , E, V ) as the set of all isotropic generalized flags
in V which are E-commensurable with F . It is known that Fl(F , E, V ) and Flω(F , E, V )
have natural structures of ind-varieties. We will recall these structures later on. In what
follows, whenever we write Fl(F , E, V ) or Flω(F , E, V ), we assume that the generalized
flag F is compatible with the basis E.

We will adopt the following notation:

• If ω is an orthogonal form on V , then E is of type B or D, and we set in both
cases FlO(F , E, V ) := Flω(F , E, V ), with the following exception. If F contains
a subspace F such that F⊥ = F or a subspace F ′ such that dimF ′⊥/F ′ = 2 (in
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both cases E has to be of type D), then Flω(F , E, V ) consists of two isomorphic
connected components, and we define FlO(F , E, V ) as either one. In addition, if
there is F ′ ∈ F with dimF ′⊥/F ′ = 2, we assume that F contains also one of the
two maximal isotropic subspaces F containing F ′.
• If ω is a symplectic form on V , then E is of type C and we set FlS(F , E, V ) =

Flω(F , E, V ).

Ind-grassmannians correspond to quotients G/P with P maximal:

• If F = {{0} ⊂ F ⊂ V } then we set Gr(F,E, V ) = Fl(F , E, V ).
• In the case where V is equipped with an orthogonal or symplectic form ω, a

minimal isotropic generalized flag has the form F = {{0} ⊂ F ⊂ F⊥ ⊂ V }
(where F and F⊥ may coincide), and we set GrO(F,E, V ) = FlO(F , E, V ) or
GrS(F,E, V ) = FlS(F , E, V ) depending on whether ω is orthogonal or symplectic.
• In accordance with our convention above, when using the notation GrO(F,E, V ),

we exclude the case when dimF⊥/F = 2. Instead, we consider FlO(F , E, V )
where F = {{0} ⊂ F ⊂ F̃ ⊂ F⊥ ⊂ V }, F̃ being one of the two maximal isotropic
spaces containing F .

Remark 2.3. If V is an orthogonal space, then V admits isotropic bases E1 and E2

of respective types B and D. Accordingly, maximal isotropic subspaces F of V are of
two types: either dimF⊥/F = 1 or F⊥ = F . As we will see below, the corresponding
ind-grassmannians GrO(F1, E1, V ) for dimF⊥1 /F1 = 1 and GrO(F2, E2, V ) for F⊥2 = F2

are isomorphic as ind-varieties. This property is an infinite-dimensional analogue of the
isomorphism stated in the second bullet point of Theorem 1.1.

2.2. Main result.

Definition 2.4. (a) Let F and G be generalized flags of countable dimensional spaces V
and W , respectively. Without further assumption, we say that F and G are isomorphic
if there exists a linear isomorphism φ : V → W such that G = {φ(F ) : F ∈ F}.

(b) In the case where V and W are equipped with symplectic forms (resp., orthogonal
forms) ω and ω′, we assume that F and G are isotropic generalized flags and say that
they are isomorphic if the isomorphism φ preserves the forms: ω′(φ(x), φ(y)) = ω(x, y)
for all (x, y) ∈ V × V .

If F = {Fθ : θ ∈ Θ} is a generalized flag in a countable-dimensional vector space V ,
compatible with a basis E of V , then we define its orthogonal as the chain F⊥ = {F⊥θ :
θ ∈ Θ} where F⊥θ is the annihilator of Fθ in the space 〈E∗〉, and E∗ denotes the system
of linear functionals on V dual to the basis E. If V is equipped with an orthogonal or a
symplectic form ω and the basis E is isotropic, then we use this form to identify V and
〈E∗〉. Moreover, the above definition of an isotropic generalized flag F is equivalent to
the requirement F = F⊥.
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Theorem 2.5. Let X and Y be ind-varieties of, possibly isotropic, generalized flags as
above. In other words, X = Fl(F , E, V ), or X = FlO(F , E, V ), or X = FlS(F , E, V ),
and similarly Y = Fl(G, E ′,W ), or Y = FlO(G, E ′,W ), or Y = FlS(G, E ′,W ). Then the
ind-varieties X and Y are isomorphic whenever F and G, or F and G⊥, are isomorphic,
possibly as isotropic flags.

The only additional isomorphisms X ∼= Y are the following:

• X = Gr(F,E, V ), Y = GrS(G,E ′,W ), where dimF = dimG = 1;
• X = GrO(F,E, V ), Y = GrO(G,E ′,W ), where dimF⊥/F = 1 and G⊥ = G.

Remark 2.6. Note that two ind-varieties FlO(F1, E1, V ) and FlO(F2, E2, V ), where E1

is an isotropic basis of type B and E2 is an isotropic basis of type D, may be isomorphic
also beyond the special case of Remark 2.3. This is a consequence of the observation that
a given isotropic generalized flag F may be compatible with two different isotropic bases
E1 and E2 of respective types B and D, as illustrated by the following example.

Example 2.7. Consider an isotropic flag F in an orthogonal space V , with the property
that WF :=

∑
F∈F
F⊂F⊥

F has infinite codimension in its orthogonal. Then there exist two

isotropic bases E1 and E2 of respective types B and D with which F is compatible and
E1 ∩WF = E2 ∩WF . Consequently, FlO(F , E1, V ) = FlO(F , E2, V ).

3. A review on embeddings of flag varieties

Throughout this section, V, V ′,W,W ′ are finite-dimensional vector spaces.

3.1. Short review of Picard groups for flag varieties. For an integer 0 < p < dimV ,
we denote by Gr(p;V ) the grassmannian of p-dimensional subspaces in V . It can be
realized as a projective variety via the Plücker embedding π : Gr(p;V ) ↪→ P(

∧p V ).
Moreover, the Picard group Pic(Gr(p;V )) of Gr(p;V ) is isomorphic to (Z,+), and its
generators are OGr(p;V )(1) := π∗OP(

∧p V )(1) and OGr(p;V )(−1) := π∗OP(
∧p V )(−1). Here

OP(
∧p V )(−1) stands for the tautological bundle of P(

∧p V ) and OP(
∧p V )(1) stands for its

dual.
For a sequence of integers 0 < p1 < . . . < pk < dimV , we denote by Fl(p1, . . . , pk;V )

the variety of (partial) flags

Fl(p1, . . . , pk;V ) = {(V1, . . . , Vk) ∈ Gr(p1;V )× · · · ×Gr(pk;V ) : V1 ⊂ . . . ⊂ Vk}.
We have

Pic(Fl(p1, . . . , pk;V )) ∼= Zk.
More precisely, if we denote by Li the pull-back

Li = pr∗iOGr(pi;V )(1)

along the projection
pri : Fl(p1, . . . , pk;V )→ Gr(pi;V )
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(for i = 1, . . . , k), then [L1], . . . , [Lk] is a set of generators of the Picard group, which we
will refer to as the set of preferred generators.

If V is a vector space endowed with an orthogonal or symplectic form ω, we assume
that the sequence (p1, . . . , pk) satisfies

pi + pk−i+1 = dimV for all i = 1, . . . , k.

Orthogonal case: Here we assume that the form ω is orthogonal. If dimV
2
, dimV

2
− 1 /∈

{p1, . . . , pk} (which is automatic when dimV is odd), we define FlO(p1, . . . , pk;V ) ⊂
Fl(p1, . . . , pk;V ) as the subvariety of isotropic flags, i.e., flags (F1 ⊂ . . . ⊂ Fk) such that
F⊥i = Fk−i+1 for all i. If dimV

2
∈ {p1, . . . , pk} or dimV

2
− 1 ∈ {p1, . . . , pk}, the subvariety of

Fl(p1, . . . , pk;V ) of isotropic flags consists of two irreducible components, and we define
FlO(p1, . . . , pk;V ) as either of these two components.

Moreover, as it is well known every isotropic subspace of dimension dimV
2
−1 is contained

in exactly two Lagrangian subspaces, so we lose no generality in considering only sequences
(p1, . . . , pk) which satisfy the condition

dimV

2
− 1 ∈ {p1, . . . , pk} ⇒ dimV

2
∈ {p1, . . . , pk}.

We denote GrO(p;V ) := FlO(p, dimV−p;V ) if p /∈ {dimV
2
, dimV

2
−1} and GrO(dimV

2
;V ) :=

FlO(dimV
2

;V ), assuming that dimV is even in the latter case. We do not define an orthog-

onal grassmannian for p = dimV
2
−1 as we consider instead FlO(dimV

2
−1, dimV

2
, dimV

2
+1;V ).

Let ` = bk
2
c. If dimV

2
− 1 /∈ {p1, . . . , pk}, then the pull-backs Li := pro∗iOGrO(pi;V )(1)

by the projections proi : FlO(p1, . . . , pk;V ) → GrO(pi;V ), for i ∈ {1, . . . , `}, is a set of
generators of the Picard group Pic FlO(p1, . . . , pk;V ), which we call preferred generators.
If dimV

2
− 1 ∈ {p1, . . . , pk}, that is dimV

2
− 1 = p`−1, then the preferred generators Li

of Pic FlO(p1, . . . , pk;V ) are as above except for i = ` − 1, and the (` − 1)-th preferred

generator is by definition (
∧dimV

2
−1 S`−1)

∗ where S`−1 is the tautological bundle of rank
dimV

2
− 1 on FlO(p1, . . . , pk;V ).

Symplectic case: If the form ω is symplectic, we denote by FlS(p1, . . . , pk;V ) ⊂
Fl(p1, . . . , pk;V ) the subvariety of isotropic flags. Moreover, we set GrS(p;V ) := FlS(p, dimV−
p;V ) if dimV 6= 2p, and GrS(dimV

2
;V ) := FlS(dimV

2
;V ).

Let ` = bk
2
c. Then Pic FlS(p1, . . . , pk;V ) ∼= Z`, and the pull-backs Li := prs∗iOGrS(pi;V )(1)

by the projections prsi : FlS(p1, . . . , pk;V ) → GrS(pi;V ) for i ∈ {1, . . . , `} yield a set of
generators [L1], . . . , [L`] of Pic FlS(p1, . . . , pk;V ), which again we refer to as preferred gen-
erators.

We close this subsection with the following well-known fact.
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Lemma 3.1. LetM be a line bundle on Fl(p1, . . . , pk;V ), FlO(p1, . . . , pk;V ), or FlS(p1, . . . , pk;V ),
and assume that the equality

[M] = n1[L1] + . . .+ nk[Lk] with n1, . . . , nk ∈ Z
holds in the Picard group, where [L1], . . . , [L`] is the respective set of preferred generators.
Then the following conditions are equivalent:

(i) M is very ample;
(ii) M is ample;

(iii) ni > 0 for all i ∈ {1, . . . , k}.

3.2. Embeddings of flag varieties. In this section, we denote by X one of the flag
varieties

Fl(p1, . . . , pK ;V ), FlS(p1, . . . , pK ;V ), FlO(p1, . . . , pK ;V ),

and by Y a respective flag variety

Fl(q1, . . . , qL;W ), FlS(q1, . . . , qL;W ), FlO(q1, . . . , qL;W )

of the same type as X. Consider an embedding (i.e. closed immersion) of flag varieties

ϕ : X ↪→ Y,

together with the group homomorphism on Picard groups

ϕ∗ : PicY → PicX

which it induces. Let [L1], . . . , [Lk] and [M1], . . . , [M`] be the respective sets of preferred
generators of PicX and PicY (in the sense of the previous subsection), where k = K and
` = L, or k = bK+1

2
c and ` = bL+1

2
c, depending on whether a flag variety of general type

or a variety of isotropic flags is considered.

Lemma 3.2. For all j ∈ {1, . . . , `}, we have ϕ∗([Mj]) ∈ Z≥0[L1] + . . .+ Z≥0[Lk].

Proof. Since ϕ is an embedding, ifM is an ample line bundle on Y then ϕ∗M should be
an ample line bundle on X. In view of Lemma 3.1, we must have

ϕ∗(Z>0[M1] + . . .+ Z>0[M`]) ⊂ Z>0[L1] + . . .+ Z>0[Lk].

The claim of the lemma follows. �

We now recall from [8] the notion of linear embedding, standard extension, and factor-
ization through direct product.

Definition 3.3. Let ϕ : X ↪→ Y be an embedding of flag varieties as above.
(a) We say that ϕ is linear if

ϕ∗[Mj] = 0 or ϕ∗[Mj] ∈ {[L1], . . . , [Lk]}
for all j ∈ {1, . . . , `}.

(b.1) We say that ϕ is a strict standard extension if there are
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• a linear monomorphism α : V ↪→ W and a decomposition W = Imα⊕K;
• a nondecreasing sequence of subspaces K0 = {0} ⊂ K1 ⊂ K2 ⊂ . . . ⊂ K` = K;
• a surjective, nondecreasing map κ : {0, 1, . . . , `} → {0, 1, . . . , k} such that, for all
i ∈ {1, . . . , `}, Ki−1 = Ki ⇒ κ(i− 1) < κ(i);
• in the case where V and W are equipped with nondegenerate symmetric or anti-

symmetric forms ω and φ, respectively, then the monomorphism α is compatible
with the forms in the sense that φ(α(v1), α(v2)) = ω(v1, v2) and the decomposition
W = Imα⊕K is orthogonal;

so that ϕ can be expressed as

ϕ : (F0 = {0}, F1, . . . , Fk) 7→ (α(Fκ(1))⊕K1, . . . , α(Fκ(`))⊕K`).

(b.2) When X = Fl(p1, . . . , pk;V ) and Y = Fl(q1, . . . , q`;W ), we say that ϕ is a modified
standard extension if ϕ equals the composition δ ◦ ϕ̃ of a strict standard extension ϕ̃ :
X ↪→ Y ∨ := Fl(dimW − q`, . . . , dimW − q1;W ∗) with the isomorphism

δ : Y ∨ → Y, (Z1, . . . , Z`) 7→ (Z⊥` , . . . , Z
⊥
1 ).

(b.3) We say that ϕ is a standard extension if ϕ is a strict or a modified standard
extension.

(c) We say that ϕ factors through a direct product if there are s ≥ 2, a decomposition
{p1, . . . , pk} = R1 t . . . t Rs into nonempty subsets, and exponents t1, . . . , ts ≥ 1 such
that ϕ factors as the composition

X
ψR
↪→

s∏
i=1

Fl′(Ri;V )ti
ψ
↪→ Y

where ψR is the canonical embedding and ψ is an embedding, and the notation Fl′ means
Fl or Flω depending on whether X is consists of general or isotropic flags.

(d.1) Assume that W is endowed with an orthogonal or, respectively, symplectic form
so that V is an isotropic subspace of W . Then, there are natural embeddings

X = Fl(p1, . . . , pk;V ) ↪→ FlO(p1, . . . , pk;W ) and X∨ ↪→ FlO(p1, . . . , pk;W ),

respectively,

X = Fl(p1, . . . , pk;V ) ↪→ FlS(p1, . . . , pk;W ) and X∨ ↪→ FlS(p1, . . . , pk;W ),

which we call isotropic extensions.
(d.2) A combination of standard and isotropic extensions is an embedding of the form

FlO(p1, . . . , pk;V )
t
↪→ Fl(p1, . . . , pk;V )

ζ
↪→ Fl(q1, . . . , q`;V

′)
χ
↪→ FlO(q1, . . . , q`;W )

ξ
↪→ FlO(r1, . . . , rm;W ′),
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respectively,

FlS(p1, . . . , pk;V )
t
↪→ Fl(p1, . . . , pk;V )

ζ
↪→ Fl(q1, . . . , q`;V

′)
χ
↪→ FlS(q1, . . . , q`;W )

ξ
↪→ FlS(r1, . . . , rm;W ′),

where t is the tautological embedding, ζ, ξ are standard extensions, and χ is an isotropic
extension.

Remark 3.4. Given a standard extension ϕ : X → Y , the splitting W = Imα ⊕ K
is in general not unique if X and Y are of general type, and is unique if X and Y are
both of orthogonal or symplectic type, since in the latter cases this splitting is assumed
orthogonal.

The following proposition is based on [8, Proposition 2.3].

Proposition 3.5. Let ϕ : X = Fl(p1, . . . , pk;V ) ↪→ Y = Fl(q1, . . . , q`;W ) be an embedding
of flag varieties.

The following conditions are equivalent.

(i) The embedding ϕ is linear.
(ii) There are

• a partition {1, . . . , `} = I0 t I1 t . . . t Ik, with Ii 6= ∅ for i 6= 0,
• a sequence of linear embeddings ϕ[i] = (ϕi,j)j∈Ii : Gr(pi;V ) ↪→

∏
j∈Ii Gr(qj;W ),

for 0 ≤ i ≤ k, and if I0 6= ∅ a constant map X0 := {pt} ↪→
∏

j∈I0 Gr(qj;W )
such that the following diagram commutes

X = Fl(p1, . . . , pk;V ) �
� ϕ //

� _

µ
��

Y = Fl(q1, . . . , q`;W )
� _

π
��

X0 ×
∏k

i=1 Gr(pi;V ) �
�

∏
ϕ[i]

//
∏`

j=1 Gr(qj;W ),

where the vertical arrows are the natural embeddings.

A similar result holds in the symplectic and orthogonal cases.

Proof. (i)⇒(ii) is shown in [8, Proposition 2.3]. (ii)⇒(i): for every j ∈ {1, . . . , `}, assum-
ing that j ∈ Ii with i 6= 0, we have

[(π ◦ ϕ)∗pr∗jOGr(qj ;W )(1)] = [µ∗pr∗iϕ[i]∗pr∗jOGr(qj ;W )(1)]

∈ {0, [µ∗pr∗iOGr(pi;V )(1)]} = {0, [Li]}
by the assumption that ϕ[i] is linear. If j ∈ I0, then

[(π ◦ ϕ)∗pr∗jOGr(qj ;W )(1)] = [µ∗pr∗0ϕ[0]∗pr∗jOGr(qj ;W )(1)] = 0.

The conclusion follows. �

A key result is now the following:
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Theorem 3.6 ( [7, Theorem 1], [8, Theorem 4.2]). (a) Let ϕ : X ↪→ Y be an embedding of
flag varieties of the same type. Assume that ϕ is linear, does not factor through a direct
product, and all the maps ϕ[i] of Proposition 3.5 are standard extensions. Then ϕ is a
standard extension.

(b) Assume that X and Y are grassmannians of the same type. In addition, in the
orthogonal case suppose that X and Y are of the form GrO(p;V ) with p /∈ {dimV

2
−

1, dimV
2
}.

(i) If X and Y are of general type, then ϕ : X ↪→ Y is a standard extension if and
only if is linear and does not factor through a projective space.

(ii) If X and Y are of orthogonal or symplectic type, then ϕ : X ↪→ Y is a standard
extension or a combination of standard and isotropic extensions if and only if ϕ is
linear and does not factor through a projective space and, in the orthogonal case,
also not through a quadric.

3.3. Additional lemmas.

Lemma 3.7. (a) The composition of two standard extensions is a standard extension.
(b) The composition of two standard extensions ϕ1 and ϕ2 is strict if and only if ϕ1

and ϕ2 are both strict or are both modified.

Proof. Straightforward. �

Lemma 3.8. Let

X = Fl(n1, . . . , nk;V ) �
� χ //

� w

ϕ

**

Fl(q1, . . . , qm;U) = Z

Y = Fl(p1, . . . , p`;W )
' �

ψ
44

be a commutative diagram of strict standard extensions. Assume that

• ϕ corresponds to α : V ↪→ W , a decomposition W = Imα ⊕K, a nondecreasing
sequence of subspaces K0 = {0} ⊂ K1 ⊂ . . . ⊂ K` = K, and a surjective map
κ : {0, . . . , `} → {0, . . . , k}, in the sense of Definition 3.3 (b.1);
• ψ corresponds similarly to β : W ↪→ U , U = Im β ⊕ L, L0 ⊂ . . . ⊂ Lm = L,
λ : {0, . . . ,m} → {0, . . . , `};
• χ corresponds similarly to γ : V ↪→ U , U = Im γ ⊕M , M0 ⊂ . . . ⊂ Mm = M ,
µ : {0, . . . ,m} → {0, . . . , k}.

Then we have µ = κ ◦ λ, Mi = Li ⊕ β(Ki) for all i ∈ {1, . . . ,m}, and up to modifying β
we can assume that γ = β ◦ α.

Similar statements hold in the symplectic and orthogonal cases, and the equality γ =
β ◦ α always holds in this case.

Proof. Since χ = ψ ◦ ϕ, for all F = (F1, . . . , Fk) ∈ X, all i ∈ {1, . . . ,m}, we have

(1) γ(Fµ(i))⊕Mi = βα(Fκλ(i))⊕ β(Kλ(i))⊕ Li.
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It follows from the equality
⋂
F∈X Fµ(i) = {0} that

Mi = β(Kλ(i))⊕ Li for all i = 1, . . . ,m.

Then, since the dimensions of F1, . . . , Fk are pairwise distinct, formula (1) implies for
dimension reasons

µ(i) = κ ◦ λ(i) for all i = 1, . . . ,m.

Take i0 ∈ {1, . . . ,m} minimal such that µ(i0) 6= 0. Then
⋃
F∈X Fµ(i0) = V and we must

have
Im γ ⊕Mi0 = Im β ◦ α⊕Mi0 .

Up to replacing β by some β̃ such that β̃(x)−β(x) ∈Mi0 for all x ∈ Imα (which will not
affect the map ψ), we can assume that

Im γ = Im β ◦ α.
Then by projecting (1) to Im γ = Im β ◦ α, with respect to the decomposition U =
Im γ ⊕M , we get

γ(Fµ(i)) = β ◦ α(Fµ(i)) for all i = 1, . . . ,m, all F ∈ X.
Up to multiplying β by a scalar, we can assume that the equality γ = β ◦ α holds. �

4. Construction of isomorphisms

In this and the next section we prove Theorem 2.5. Here we show that all pairs of
ind-varieties that are claimed to be isomorphic in Theorem 2.5 are indeed isomorphic.

We start with the following known fact.

Lemma 4.1. (a) Let F be a generalized flag in V compatible with two bases E and E ′.
Then the ind-varieties Fl(F , E, V ) and Fl(F , E ′, V ) are isomorphic.

(b) Moreover, in the case where V is endowed with an orthogonal (respectively, a
symplectic) form ω, F is isotropic, and E and E ′ are isotropic, then the ind-varieties
FlO(F , E, V ) and FlO(F , E ′, V ) (respectively, FlS(F , E, V ) and FlS(F , E ′, V )) are iso-
morphic.

Proof. It suffices to construct a linear automorphism α : V → V such that

α(E) = E ′, ∀F ∈ F , α(F ) = F,

and α preserves the form ω in the situation (b) of the lemma. Then α clearly induces an
isomorphism G 7→ α(G) between the two considered ind-varieties.

(a) For F ∈ F , we denote EF := {e ∈ E : e ∈ F} and ÊF := EF \
⋃

F ′∈F
F ′⊂F

EF ′ . We

define similarly E ′F and Ê ′F . Since the generalized flag F is E- and E ′-compatible, we
have

F = 〈EF 〉 = 〈ÊF 〉 ⊕
∑
F ′∈F
F ′⊂F

F ′ for all F ∈ F .
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This yields decompositions E =
⊔
F∈F ÊF , E ′ =

⊔
F∈F Ê

′
F and, moreover, |ÊF | = |Ê ′F | =

dimF/(
∑

F ′∈F
F ′⊂F

F ′) for all F ∈ F . Next, for every F ∈ F , we can choose a bijection

αF : ÊF → Ê ′F . This defines a bijection
⊔
F∈F αF : E → E ′, whose corresponding

automorphism α : V → V stabilizes each subspace of F .
(b) We adapt the construction made in (a) in the following way. The generalized flag
F is equipped with the involution F 7→ F⊥, and the bases E and E ′ are equipped with
involutions iE : E → E and iE′ : E ′ → E ′ satisfying the conditions of Definition 2.1. For
every F ∈ F such that F ⊂ F⊥ we have

〈EF 〉 = F ⊂ F⊥ = 〈EF⊥〉 ⊂ V = F⊥ ⊕ 〈iE(EF )〉

and for all F ∈ F we have either iE(ÊF ) ∩ ÊF = ∅ or iE(ÊF ) = ÊF ; the latter equality
holds for at most one F , namely the one, if it exists, such that F⊥ ( F are consecutive
subspaces in F . The same applies to E ′. Then we have decompositions

E =
⊔

F∈F
F⊂F⊥

iE(ÊF ) ∪ ÊF , E ′ =
⊔

F∈F
F⊂F⊥

iE′(Ê
′
F ) ∪ Ê ′F .

Now for all F ∈ F we can find a bijection αF : iE(ÊF ) ∪ ÊF → iE′(Ê
′
F ) ∪ Ê ′F such

that αF (iE(e)) = iE′(αF (e)) for all e. Whence we have a bijection α : E → E ′ and,
up to replacing the elements in E ′ by suitable scalar multiples, we can assume that the
corresponding automorphism α : V → V preserves ω. In addition, α(F ) = F for all
F ∈ F , and this concludes the proof of the lemma. �

Next we show that Fl(F , E, V ) and Fl(G, E ′,W ) are isomorphic whenever

(A) F and G are isomorphic in the sense of Definition 2.4 (a), or
(B) F is isomorphic to the dual generalized flag G⊥.

Assume first that F and G are isomorphic, hence there is an isomorphism φ : V → W
such that φ(F) = G. Then E ′′ := φ(E) is a basis of W , moreover G is compatible with
E ′′, and the map φ induces an isomorphism of ind-varieties

Fl(F , E, V )
∼→ Fl(G, E ′′,W ), F ′ 7→ φ(F ′).

Thanks to Lemma 4.1, we have an isomorphism Fl(G, E ′′,W ) ∼= Fl(G, E ′,W ). Altogether,
we get an isomorphism Fl(F , E, V ) ∼= Fl(G, E ′,W ) as desired.

The case (B) is a consequence of (A), Lemma 4.1, and the fact that the map G ′ 7→ G ′⊥
clearly defines an isomorphism of ind-varieties Fl(G, E ′,W )

∼→ Fl(G⊥, E ′∗, 〈E ′∗〉) where
E ′∗ is the dual family of the basis E ′.

Similar reasoning shows that FlO(F , E, V ) and FlO(G, E ′,W ) (resp., FlS(F , E, V ) and
FlS(G, E ′,W )) are isomorphic ind-varieties whenever F and G are isomorphic in the sense
of Definition 2.4 (b). Note that in this case we have F⊥ = F and G⊥ = G.
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We now turn our attention to the additional isomorphisms from Theorem 2.5. First,
since in a symplectic space every line is isotropic, the isomorphism betweenX = Gr(F,E, V ),
Y = GrS(G,E ′,W ), where dimF = dimG = 1, is obvious.

Finally, the isomorphism between X = GrO(F,E, V ), Y = GrO(G,E ′,W ), where
F⊥ = F and dimG⊥/G = 1, is also easy to verify. The key observation is that the
well-known isomorphism GrO(n − 1,C2n−1) ∼= GrO(n,C2n) is compatible with standard
extensions. More precisely, thanks to Lemma 4.1, we can assume without loss of generality
that W is a subspace of codimension one in V . Let

E = {e1, ê1, e2, ê2, . . . , en, ên, . . .}

be a basis of type D in V , with involution iE : ei 7→ êi. Let F := 〈ei : i ≥ 1〉 so that
F = F⊥. Consider also

E ′ = {e1 + ê1, e2, ê2, . . . , en, ên, . . .}

which is a basis of type B in the subspace W ⊂ V , with involution iE′ : ei 7→ êi for all
i ≥ 2 and iE′(e1 + ê1) = e1 + ê1. Let G := 〈ei : i ≥ 2〉, thus dimG⊥/G = 1.

Set Vn := 〈e1, ê1, . . . , en, ên〉 and Wn := 〈e1 + ê1, e2, ê2, . . . , en, ên〉. We have exhaustions

· · · ↪→ GrO(n, Vn)
αn
↪→ GrO(n+ 1, Vn+1) ↪→ · · · , X = lim

→
GrO(m,Vm)

and

· · · ↪→ GrO(n− 1,Wn)
βn
↪→ GrO(n,Wn+1) ↪→ · · · , Y = lim

→
GrO(m− 1,Wm),

where αn : L 7→ L⊕ 〈en+1〉 and βn : M 7→M ⊕ 〈en+1〉.
For every n, there is an isomorphism

φn : GrO(n− 1,Wn)→ GrO(n, Vn), M 7→ (the unique Lagrangian subspace

M̂ ∈ GrO(n, Vn) containing M).

Moreover, the diagram

GrO(n, Vn)
αn
↪→ GrO(n+ 1, Vn+1)

↑ φn ↑ φn+1

GrO(n− 1,Wn)
βn
↪→ GrO(n,Wn+1)

is commutative. Indeed αn ◦ φn(M) is a Lagrangian subspace in GrO(n + 1, Vn+1) con-
taining M and en+1, thus containing M ⊕ 〈en+1〉 = βn(M), and therefore coinciding with
φn+1 ◦ βn(M). Hence X and Y are isomorphic.
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5. Non-existence of other isomorphisms

In this section we complete the proof of Theorem 2.5. This is done by proving the
following two statements.

Theorem 5.1. Assume that X, Y is a pair of ind-varieties of generalized flags of the
same type (general, orthogonal, or symplectic), different from the pair

GrO(F,E, V ), GrO(G,E ′,W ) with dimF⊥/F = 0, dimG⊥/G = 1, or vice versa.

Consider two arbitrary (possibly isotropic) generalized flags F ∈ X and G ∈ Y . Then X
is isomorphic to Y if and only if F is isomorphic to G or to G⊥.

Theorem 5.2. Assume X, Y are two ind-varieties of generalized flags of different types.
Then X is isomorphic to Y if only if X, Y (or Y , X) is the pair

(2) Gr(F,E, V ), GrS(G,E ′,W ) with dimF = dimG = 1 or dimV/F = dimG = 1.

The direct implications in Theorems 5.1–5.2 are shown in Section 4. It remains to prove
the reverse implications.

We start with some auxiliary results. By Pn we denote the n-dimensional projective
space and by P∞ we denote the infinite-dimensional projective ind-space: P∞ = lim

→
Pn.

The following proposition extends Theorem 2 from [7].

Proposition 5.3. Let X, Y be two ind-grassmannians, so X = Gr(F,E, V ), X =
GrO(F,E, V ), or X = GrS(F,E, V ), and Y = Gr(G,E ′,W ), Y = GrO(G,E ′,W ), or
Y = GrS(G,E ′,W ). If Y = GrO(G,E ′,W ), we assume that dimG⊥/G /∈ {0, 1}. Then
X is isomorphic to Y if and only if one of the following condition holds.

(A) X = Gr(F,E, V ) and Y = GrS(G,E ′,W ) with dimF = dimG = 1 or dimV/F =
dimG = 1 (or vice versa).

(B) X and Y are of the same type with dimF = dimG, or X = Gr(F,E, V ) and
Y = Gr(G,E ′,W ) with dimV/F = dimG <∞ (or vice versa).

Proof. The case whereX is different from GrO(F,E, V ) with dimF⊥/F ∈ {0, 1} is treated
in [7, Theorem 2]. Hence it remains to show that X 6∼= Y whenever X = GrO(F,E, V )
with dimF⊥/F ∈ {0, 1}.

We will do this by the same method used in [7]. Indeed, using results in [4, Section 4],
it is not difficult to check that through any point x ∈ X, there is a family P3 consisting
of maximal 3-dimensional linearly embedded projective subspaces of X, and a family P∞
of maximal linearly embedded infinite-dimensional projective ind-spaces. Moreover, the
intersection of any space in P3 with a space in P∞ is isomorphic to P2 or equals the point
x.

We claim that this type of configuration of maximal linearly embedded projective spaces
passing through a point does not appear on any ind-grassmannian Y . Indeed, it is well
known that Y admits a linear embedding into an ind-grassmannian of general type (this
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embedding being the identity of Y itself is of general type). Using an appropriate such
embedding, it is easy to check that the complete list of ind-grassmannians Y having a
family of maximal linearly embedded projective spaces P3 and a family of maximal linearly
embedded projective spaces P∞ passing through a fixed point y ∈ Y is

• Gr(F,E, V ) where dimF = 3 or dimV/F = 3,
• GrO(F,E, V ) where dimF = 3,
• GrO(F,E, V ) where dimF⊥/F ∈ {6, 7},
• GrS(F,E, V ) where dimF = 3,
• GrS(F,E, V ) where dimF⊥/F = 2.

However, in all these cases, the intersection of a maximal linearly embedded space P3 and a
maximal linearly embedded ind-space P∞ passing through the same point y is isomorphic
to P1 or is the point y itself. This proves our claim. �

Lemma 5.4. Let X = Fl(F , E, V ), X = FlO(F , E, V ), or X = FlS(F , E, V ), and
let π : X → Y be an AutX-equivariant smooth surjective morphism, where Y is an-
other ind-variety of generalized flags. Then Y is isomorphic respectively to Fl(F ′, E, V ),
FlO(F ′, E, V ), or FlS(F ′, E, V ), where F ′ is a generalized subflag of F .

Proof. Consider an exhaustion of X by standard extensions

· · · ↪→ Xn ↪→ Xn+1 ↪→ · · · , X = lim
→
Xm

and a corresponding exhaustion of Y

(3) · · · ↪→ Yn := π(Xn) ↪→ Yn+1 := π(Xn+1) ↪→ · · · , Y = lim
→
Ym.

Since X is a homogeneous space for the finitary ind-group lim
→

Aut0Xn, where Aut0 stands

for connected component of unity (see also [3] for a description of AutX), any au-
tomorphism in Aut0Xn extends to an automorphism of X. Therefore each projection
πn : Xn → Yn is Aut0Xn-equivariant. Through the theory of finite-dimensional flag va-
rieties, this implies that Yn is isomorphic to a shorter flag variety X ′n of same type as
Xn so that πn corresponds to the natural projection Xn → X ′n. The standard extensions
Xn ↪→ Xn+1 then induce an exhaustion by standard extensions

· · · ↪→ X ′n ↪→ X ′n+1 ↪→ · · · , X ′ := lim
→
X ′m

which commutes with the exhaustion (3) via the isomorphisms Yn ∼= X ′n. Therefore, Y
is isomorphic to the ind-variety of generalized flags lim

→
X ′n of the form indicated in the

statement. �

We can now prove Theorems 5.1 and 5.2.

Proof of Theorem 5.2. First we suppose that X = Fl(F , E, V ) and Y = FlS(G, E ′,W )
are isomorphic ind-varieties. By Lemma 5.4, for every nonzero proper subspace F ∈
F there is an isotropic subspace G ∈ G such that Gr(F,E, V ) ∼= GrS(G,E ′,W ), and



16 LUCAS FRESSE AND IVAN PENKOV

for every nontrivial isotropic subspace G′ ∈ G there is a subspace F ′ ∈ F such that
GrS(G′, E ′,W ) ∼= Gr(F ′, E, V ). Since an isomorphism Gr(F,E, V ) ∼= GrS(G,E ′,W ) can
exist only if dimG = 1 and dimF = 1 or dimV/F = 1 (see Proposition 5.3), we infer
that G must be of the form G = {{0} ⊂ G ⊂ G⊥ ⊂ W} with dimG = 1, while F could
be only of the form F = {{0} ⊂ F ⊂ V } with dimF = 1 or dimV/F = 1, or of the form
F = {{0} ⊂ F1 ⊂ F2 ⊂ V } with dimF1 = dimV/F2 = 1. However, the latter is not an
option since we would then have PicX = Z2 6∼= Z = PicY . The conclusion of the theorem
follows.

Next we suppose that X = Fl(F , E, V ), or X = FlS(F , E, V ), and Y = FlO(G, E ′,W )
are isomorphic. Arguing as in the first case, it suffices to note that an isotropic ind-
grassmannian GrO(G,E ′,W ) is never isomorphic to an ind-grassmannian Gr(F,E, V ) or
GrS(F,E, V ). Thus the claim follows again from Proposition 5.3. �

Proof of Theorem 5.1. Assume that two ind-varieties X and Y as in the statement of
Theorem 5.1 are isomorphic. Without loss of generality we may suppose that X =
Fl(F , E, V ), or X = FlO(F , E, V ), or X = FlS(F , E, V ), and Y = Fl(G, E ′, V ), or
Y = FlO(G, E ′, V ), or Y = FlS(G, E ′, V ), respectively. Fix an isomorphism ϕ : X → Y
with ϕ(F) = G. In the case of ind-varieties of orthogonal generalized flags, we first assume
that F and G do not contain isotropic subspaces F with dimF⊥/F ≤ 2. According to
our convention from Section 2, this is equivalent to assuming that both F and G do not
contain maximal isotropic subspaces.

The existence of the isomorphism ϕ implies the existence of a commutative diagram

(4) X1
� � ψ1 //
� _

ϕ1

��

X2
� � ψ2 //
� _

ϕ2

��

X3
� � ψ3 //
� _

ϕ3

��

· · ·

Y1
� � ψ

′
1 //

. �

ξ1
==

Y2
� � ψ

′
2 //

. �

ξ2
==

Y3
� � ψ

′
3 //

. �

ξ3

>>

· · ·

where all the maps are embeddings and the rows are exhaustions of X and Y , respectively,
by standard extensions.

We claim that ϕi and ξi are standard extensions for all i ≥ 1. First we check that
ϕi and ξi are linear. To do this, we analyse the maps induced on Picard groups. Since
ξ∗i ◦ϕ∗i+1 = ψ′∗i and ψ′∗i is surjective, it follows that ξ∗i is surjective. Letting [M ] be one of
the preferred generators of PicYi, there is a ∈ PicXi+1 with ξ∗i a = [M ]. Due to Lemma
3.2 we can choose a = [L], where [L] is one of the preferred generators of PicXi+1. Then
ϕ∗i [M ] = ψ∗i [L] should be equal to 0 or be a preferred generator of PicXi because ψi is
linear. This shows that ϕi is linear, and a similar argument works for ξi. Next, since
ψi = ξi ◦ ϕi and ψi is a standard extension, we deduce from Theorem 3.6 that ϕi and ξi
do not factor through a direct product or a maximal quadric (in the orthogonal case).
Now Theorem 3.6 implies that ϕi and ξi are standard extensions as long as all maps
induced on grassmannians by ϕi and ξi, see Proposition 3.5, are standard extensions.
However, if some of these maps induced on grassmannians were not a standard extension,
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then by Theorem 3.6 (b) it would be necessarily a combination of isotropic and standard
extensions. Now the commutativity of diagram (4), together with [7, Lemma 3.9], implies
that some map induced on grassmannians by ϕi or ξi would be a combination of isotropic
and standard extensions. By [7, Remark 3.10], this contradicts the assumption that ψi
are standard extensions. This establishes the claim that ϕi and ξi are standard extensions
for all i ≥ 1.

In the isotropic case, ϕi and ξi are strict standard extensions. Let us show that also
for X and Y of general type we can reduce the problem to the case where ϕi and ξi are
strict standard extensions. Indeed, note that there is also the diagram

(5) Y1
� � ψ′1 //

∼ δ1
��

Y2
� � ψ′2 //

∼ δ2
��

Y3
� � ψ

′
3 //

∼ δ3
��

· · ·

Y1
∨ ψ′1

∨
// Y2
∨ � � ψ

′
2
∨
// Y3
∨ � � ψ

′
3
∨
// · · ·

where Yi
∨ and δi are as Definition 3.3 (b.2); the bottom line of the diagram forms an

exhaustion of Fl(G⊥, E ′∗, 〈E ′∗〉) (see the notation in Section 2.2). Up to composing the two
diagrams (4) and (5), thus considering Fl(G⊥, E ′∗, 〈E ′∗〉) = lim

→
Yn
∨ instead of Fl(G, E ′, V ),

we can assume that ϕ1 is a strict standard extension. Then it follows from Lemma 3.7 (b)
that every map ϕi, ξi is a strict standard extension.

Let now V =
⋃
n≥1 Vn be an exhaustion of the vector space V so that Xn and Yn are

varieties of flags in Vn. By Definition 3.3 (b.1), the strict standard extensions in (4) are
induced by a diagram of injective linear maps

(6) V1
ι1 //

α1

��

V2
ι2 //

α2

��

V3
ι3 //

α3

��

· · ·

V1
ι′1 //

β1
>>

V2
ι′2 //

β2
>>

V3
ι′3 //

β3

>>

· · ·
where the ιn : Vn → Vn+1 are the inclusion maps, and the maps αn are induced by the
morphisms ϕn and make the diagram commutative if one disregards the diagonal arrows.
Moreover, by Lemma 3.8, the maps βn can be chosen so that the entire diagram (6) is
commutative. The maps ι′n are then simply the compositions ι′n = αn+1 ◦ βn. In the
orthogonal and symplectic cases the maps βn are unique and ι′n = ιn (see Remark 3.4).

Therefore, this diagram induces a linear isomorphism α : V → V ′ where V ′ is the direct
limit of the lower row of the diagram, such that the generalized flags α(F) in V ′ and G
in V coincide as points of Y . In the orthogonal and symplectic cases, we have simply
α(F) = G, and hence F and G are isomorphic.

If X and Y are of general type, we need an additional argument. Note that in this case
we have Y = Fl(α(F), α(E), V ′). Since the generalized flags F and α(F) are isomorphic
via the linear operator α, it remains to show that the generalized flags α(F) and G are
isomorphic. This follows from the easy observation that if a generalized flag H in V and
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a generalized flag H′ in V ′ represent the same point in Y , then H and H′ are isomorphic.
Indeed, one builds inductively an isomorphism of direct systems

V1
ι1 //

η1
��

V2
ι2 //

η2
��

V3
ι3 //

η3
��

· · ·

V1
ι′1 // V2

ι′2 // V3
ι′3 // · · ·

such that ηi(H∩Vi) = H′∩Vi. Then the direct limit map lim
→
ηn provides an isomorphism

between H and H′. This allows us to conclude that F and G are isomorphic generalized
flags.

To finish the proof of the theorem, it remains to consider the orthogonal case where

X = FlO(F , E, V ) and Y = FlO(G, E ′, V ),

and where one of the generalized flags F or G contains a maximal isotropic subspace.
There is no loss of generality in assuming that X 6= GrO(F,E, V ) and Y 6= GrO(G,E ′, V ).

Consider first the case where F = {{0} ⊂ F ⊂ F̃ ⊂ F⊥ ⊂ V } with dim F̃ /F = 1 and
F̃⊥ = F̃ . Then PicX ∼= Z2 and hence G = {{0} ⊂ G ⊂ G̃ ⊆ G̃⊥ ⊂ G⊥ ⊂ V } with
dim G̃⊥/G̃ ∈ {0, 1}. If G is not isomorphic to F , then dim G̃/G ≥ 2 or dim G̃⊥/G̃ = 1. In
both cases Y admits a proper smooth surjection to GrO(G,E ′, V ), while the only orthog-
onal ind-grassmannian to which X admits a proper smooth surjection is GrO(F̃ , E, V )
with F̃⊥ = F̃ . Since GrO(G,E ′, V ) is not isomorphic to GrO(F̃ , E, V ) by Proposition
5.3, this case is settled.

Now we consider the case of arbitrary orthogonal generalized flags F and G containing
respective maximal isotropic subspaces. Define projections as follows:

• πX : X → X̂ where X̂ := FlO(F̂ , E, V ) is the ind-variety of generalized flags

associated to F̂ := F \ {F, F⊥ : F ∈ F , dimF⊥/F ≤ 2},
• πY : Y → Ŷ where Ŷ := FlO(Ĝ, E ′, V ) is the ind-variety of generalized flags

associated to Ĝ := G \ {G,G⊥ : G ∈ G, dimG⊥/G ≤ 2},
We can assume without loss of generality that X̂ and Ŷ are both proper ind-varieties of
generalized flags (not points) because otherwise we land in the case already considered.
(The case of X = FlO(F , E, V ) for F = {{0} ⊂ F ⊂ F̃ ⊂ F⊥ ⊂ V } where dim F̃ /F = 1
and F̃⊥ = F̃ , and Y = GrO(G, E ′, V ) for G = {{0} ⊂ G ⊂ G⊥ ⊂ V } with dim G̃⊥/G̃ = 1
is ruled out by the existence of the isomorphism ϕ because PicX ∼= Z2 and PicY ∼= Z.)

By Lemma 5.4 the isomorphism ϕ induces an isomorphism ϕ̂ : X̂ → Ŷ with ϕ̂(F̂) = Ĝ.
Now the first part of the proof allows us to conclude that there exists an automorphism

ϕ̂V : V → V , preserving ω and such that Ĝ = ϕ̂V (F̂).

We claim that ϕ̂V (F) = G, implying that the isotropic generalized flags F and G are
isomorphic. Indeed, the maximal isotropic space F̃ ∈ F is the union of all subspaces
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F ′′ ( F̃ with the property that F ′′ belongs to some point F ′′ ∈ X and has codimension 2
or more in F̃ . A similar statement applies to the maximal isotropic space G̃ ∈ G = ϕ(F).
Therefore, G̃ equals the union of the spaces ϕ̂V (F ′′) and hence coincides with ϕ̂V (F̃ ). The
same argument applies to spaces F ∈ F of codimension 1 in F̃ and G ∈ G of codimension
1 in G̃, if they exist, i.e., ϕ̂V (F ) = G. Therefore, ϕ̂V (F) = G. �

Remark 5.5. Note that the appearance of the space V ′ in the proof of Theorem 5.1
correlates well with the results in [3] on automorphism groups of ind-varieties of gen-
eralized flags. It is essential that V ′ does not have to coincide with V . Indeed, let
X = Gr(F,E, V ) = Y for dimV/F = 1. Then AutX = PGL(〈E∗〉) by [3]. Consider the
automorphism ϕ : X → X defined with respect to the basis E∗ by the infinite Z>0 ×Z>0

matrix with entries equal to 1 in the entire first row and the diagonal, and equal to 0
elsewhere. Then one can compute that V ′ = 〈e1 −

∑
i≥2 ei, e2, e3, . . .〉 where the vectors

in V are interpreted as linear functions on 〈E∗〉.
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