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1 Introduction

Flag varieties play a fundamental role both in representation theory and in algebraic
geometry. There are two standard approaches to flag varieties, the group-theoretic one,
where a flag variety is defined as G/P for a classical algebraic group G and a parabolic
subgroup P, and the geometric one, where a flag variety is defined as the set of all chains
of subspaces of fixed dimensions in a finite-dimensional vector space, which in addition
are assumed isotropic in the presence of a bilinear form. The very existence of these two
approaches is in the heart of the interplay between representation theory and geometry.

The main topic of this paper is a purely geometric construction of homogeneous
spaces for the classical ind-groups SL(c0), SO(c0), and Sp(oo). Despite the fact that many
phenomena related to inductive limits of classical groups have been studied (see, for in-
stance, [6, 7, 9, 11, 12]), many natural questions remain unanswered. In particular, the
only approach to homogeneous spaces of classical ind-groups discussed in the literature
is a representation-theoretic one and has been introduced by Wolf and his collaborators
[3,5].

The difficulty in the purely geometric approach is that the consideration of flags,

that is, chains of subspaces enumerated by integers, is no longer sufficient. To illustrate
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the problem, let, more specifically, G denote the ind-group SL(co) over a field of charac-
teristic 0, and let P be a parabolic subgroup of G. By definition, G is the union of a stan-
dard system of nested algebraic groups SL(n) and P is the union of parabolic subgroups.
If V is the natural representation of G, all P-invariant subspaces in V form a chain C of
subspaces of V. In general, the chain € has a rather complicated structure and is not nec-
essarily a flag, that is, it cannot be indexed by integers. We show, however, that C always
contains a canonical subchain F of subspaces of V with the property that every element
of ¥ is either the immediate predecessor F’ of a subspace F” € F or the immediate suc-
cessor F” of a subspace F/ € F, and, in addition, each nonzero vector v € V belongs to a
difference F”\F’. These two properties define the generalized flags. (Maximal generalized
flags already appeared in [2] in a related but somewhat different context.) If, in addition,
the vector space V is equipped with a nondegenerate bilinear (symmetric or antisymmet-
ric) form, we introduce the notion of an isotropic generalized flag.

Informally, we think of two (possibly isotropic) generalized flags being commen-
surable if they only differ in a finite-dimensional subspace of V in which they reduce
to flags of the same type. The precise definition is given in Section 5. The main result of
this paper is the construction of the ind-varieties of commensurable generalized flags
and their identification with homogeneous ind-spaces G/P for classical locally linear
ind-groups G isomorphic to SL(c0), SO(c0), or Sp(co), and corresponding parabolic sub-
groups P.

The paper is concluded by providing two applications, an explicit computation of
the Picard group of any ind-variety of commensurable generalized flags X and a criterion
for projectivity of X. We show that the Picard group of X admits a description very similar
to the classical one; however, X is projective if and only if it is an ind-variety of usual
flags.

The “flag realization” of the ind-varieties G/P given in the present paper opens
the way for a detailed and explicit study of the geometry of G/P, which should play a role

as prominent as the geometric representation theory of the classical algebraic groups.

Conventions. N stands for{1,2,...}and Z, = N U {0}. The ground field is a field k of char-
acteristic 0 which will be assumed algebraically closed only when explicitly indicated
in the text. As usual, k* is the multiplicative group of k. The superscript * denotes dual
vector space. The signs ll_H}l and ILn stand, respectively, for direct and inverse limit over
a direct or inverse system of morphisms parametrized by N or Z,. I'(X, L) denotes the
global sections of a sheaf L on a topological space X. All orders < are assumed linear and
strict (i.e., « < anever holds), and all partial orders < are assumed to have the additional

property that the relation “x is not comparable with y” (i.e., “neither x < y nory < x") is
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an equivalence relation. Such partial orders have the property that they induce a linear

order on the set of equivalence classes of noncomparable elements.

2 Preliminaries

An ind-variety (over k) is a set X with a filtration

XoCX1C--C Xy CXpgp1 C -+ (2.1)

such that X = Unez, Xy, each X, is a Noetherian algebraic variety, and the inclusions
Xn C Xny1 are closed immersions of algebraic varieties. An ind-variety X is automati-
cally a topological space: a subset U C X is open in X if and only if, for each n, U N X,
is an open subvariety of X,,. The sheaf of regular functions on X, or the structure sheaf
Ox of X, is the inverse limit Ox = h£1 Ox,, of the sheaves of regular functions Ox, on X,,.
An ind-variety X = Unez, Xn = li_I>an is proper if and only if all the varieties X,, are
proper and is affine if and only if all the X,, are affine. A morphism from an ind-variety
X to an ind-variety Y is a map ¢ : X — Y such that, for every n > 0, the restriction
¢|x, is a morphism of X,, into Y,, for some m = m(n). An isomorphism of ind-varieties
is a morphism which admits an inverse morphism. An ind-subvariety Z of X is a sub-
set Z C X such that Z N X,, is a subvariety of X;, for each n. Finally, an ind-group is by
definition a group object in the category of ind-varieties. In this paper, we consider only
ind-groups G which are locally linear, that is, ind-varieties G with an ind-variety filtra-
tion Go C Gy C -+ C Gy, € Gny1 C -+, such that all G, are linear algebraic groups and
the inclusions are group morphisms.

Let V be a vector space of countable dimension. Fix an integer 1 > 1. The set
Gr(L;V) of all 1-dimensional subspaces of V has a canonical structure of proper ind-
variety: any filtration0 C Vy C Vi1 C -+ C V = Up>oVigr, dim Vi, = 1+ 1, induces

a filtration
Gr(LVi) € Gr(LVigr) C -+ C Gr(L;V), (2.2)

and the associated ind-variety structure on Gr(l; V) is independent of the choice of filtra-
tion on V. For 1l = 1, P(V) := Gr(1;V) is by definition the projective ind-space associated
toV.

An invertible sheaf on an ind-variety X is a sheaf of Ox-modules locally isomor-
phic to Ox. The set of isomorphism classes of invertible sheaves on X is an abelian group
(the group structure being induced by the operation of tensor product over Ox of invert-

ible sheaves). By definition, the latter is the Picard group Pic X of X. It is an easy exercise
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to show that PicX = %iLnPic Xy for any filtration (2.1). If X = P(V), then PicX = Z. The
preimage of 1 under this isomorphism is the class of the standard sheaf Op(/(1), where,
by definition, Op(v(1) :== %in Op(v,)(1).

An invertible sheaf L on a proper ind-variety X is very ample if, for some filtra-
tion (2.1), its restrictions L,, on X,, are very ample for all n, and all restriction maps
F'(Xn;Ln) — T'(Xn-1,Ln_1) are surjective. A very ample invertible sheaf defines a closed
immersion of X into IP’(Ii_r)n I'(Xn, Ln)*) as for each n the restrictions £,, and £,,_; define a

commutative diagram of closed immersions

Xn-1 —— ]P)(F(anthf])*)
N N (2.3)

Xn = P(M(Xn, &n)").

Conversely, given a closed immersion X — P(V), the inverse image of Op(y)(1) on X is a
very ample invertible sheaf on X. Therefore, a proper ind-variety X is projective, that is,
X admits a closed immersion into a projective ind-space, if and only if it admits a very

ample invertible sheaf.

3 Generalized flags: definition and first properties

Let V be a vector space over k. A chain of subspaces in V is a set € of pairwise distinct
subspaces of V such that for any pair F/,F” € C, either F/ C F” or F” C F’. Every chain
of subspaces C is ordered by proper inclusion. Given €, we denote by €’ (resp., by €¢”)
the subchain of € which consists of all C € C with an immediate successor (resp., an
immediate predecessor). A generalized flag in V is a chain of subspaces F which satisfies
the following conditions:

(i) each F € ¥ has an immediate successor or an immediate predecessor, that is,

F=3F"UTF"

(il) V\{0} = Up/c5 F”\F/, where F” € 3" is the immediate successor of F' € §".
Given a generalized flag F and a subspace F” € F” (resp., F/ € F’), unless the contrary
is stated explicitly, we will denote by F’ (resp., by F”) its immediate predecessor (resp.,
immediate successor). Furthermore, condition (ii) implies that each nonzero vectorv € V

determines a unique pair F], C F./ of subspaces in F with v € F//\F].

Example 3.1. (i) We define a flag in V to be a chain of subspaces F satisfying (ii) and
which is isomorphic as an ordered set to a subset of Z. A flag can be equivalently defined

as a chain of subspaces JF for which there exists a strictly monotonic map of ordered sets
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@ : F — Z and, in addition, NgcgF = 0 and Ugcy = V. There are four different kinds
of flags: a finite flag of length k¥ = {0 = F; € F, € --- C Fx_; C Fx = V}; an infinite
ascending flag ¥ = {0 = F; C F, C F3 C ---}, where U;>1F; = V; an infinite descending
flagdF ={-- C F.3 C F_, C F_; = V}, where Ni<_1F; = 0; and a two-sided infinite flag
F={--CF 1 CFoCF C---},whereNiezF; =0and UiczFi = V.

(ii) A simple example of a generalized flag V, which is not a flag, is a generalized
flag with both an infinite ascending part and an infinite descending part, thatis, 5 ={0 =
FfrCcFh CFC---CF.3CF_, CF_; =V}, whereUi>1Fi =Nj<_1Fj.

(iii) Let V be a countable-dimensional vector space with basis {eq}qcq. Set F'(q) =
span{e, | r < q} and F’(q) := span{e, | r < q}. Then ¥ := Uqeq{F’'(q),F"(q)} is a generalized
flag in V. ¥ is not a flag, and moreover, no F € ¥ has both an immediate predecessor and

an immediate successor.

The following proposition shows that each of the subchains ¥’ and F” recon-

structs .

Proposition 3.2. Let J be a generalized flag in V. Then
(i) for every F’ S 3:/, F = UG”E?”,G /'CF//,G"7£F”G//;
(ii) forevery F”" € F", F' =Ngreg/,6'oF .G /#F/G/. U

Proof. (i) The inclusion F' O Ugregr grcrr,gn4F»G” is obvious. Assume now that
v € F/. Let v € H”"\H’ for some H’ € F’ and its immediate successor H” € F”. Then
H’ C F’ and hence H” C F/, that iS, vV € UG’/G?”,G”CF”,G”%F”GH which proves that

F' CUgresr grerr,grzrrG”. Assertion (ii) is proved in a similar way. [ |

Any chain € of subspaces in V determines the following partition of V:
V =UvevPle, (3.1)

where Ve :={w € V|w € F & v € F;VF € C}. Consider this correspondence as a map =
from the set of chains of subspaces in V into the set of partitions of V. This map is not
injective, for (C’) = n(C) if €’ is obtained from € by adding arbitrary intersections and
unions of elements of ©. As we show in Proposition 3.3, the notion of a generalized flag
provides us with a natural right inverse of 7, that is, with a map y (defined on the im-
age of ) such that woy = id. This explains the special role of generalized flags among
arbitrary chains of subspaces in V. Namely, every generalized flag in V is a natural rep-

resentative of the class of chains of subspaces in V which yield the same partition of V.

Proposition 3.3. Given a chain C of subspaces in V, there exists a unique generalized flag
Fin V for which 7(C) = (F). O
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Proof. To prove the existence, set F, := Uwce vgwW and )/ := NweevewW, and put F :=
UvevijoltFy, UL It is obvious from the definition of F that 7(€) = 7(F). To show that F is
a generalized flag, notice that, for any pair of nonzero vectors u,v € V, exactly one of the
following three possibilities holds:
(i) F, =F/,and hence F]] =F/;
(ii) ¥/, C F,, and hence F] C F/;
(iii) F{, D F,, and hence F/, D F/.
Indeed, if, for every W € C,u € Wif and only ifv € W, then F], = F, and F/] = F]. Assume
now that there exists W € C such thatu € Wbutv ¢ W. Then F] C W C F. Similarly, if
there exists W € C such that u ¢ W butv € W, we have F] C W C F/,. The existence of &
is now established.
The uniqueness follows from the fact that [vie = (NweevewW)\(Uwee vgw W),

while, for a generalized flag F, [v]5 = F//\F/. [ |

We now define the map y by setting y(7(C)) := F, and put fl ;= y o 7. Note that, for
any generalized flag Fin V, F = f1(F") = f1I(F").

In the example below we determine the preimages under fl of the generalized
flags introduced in Example 3.1. The computation is based on the following simple fact:
if € is any chain in f1- (7), then every nonzero subspace C € C is the union of spaces

from F.

Example 3.4. The cases (i), (ii), and (iii) below refer to the corresponding cases in
Example 3.1.

(i) If ¥ is a flag in V, then fl ' (%) consists of F and the chains obtained from ¥ by
adding 0, V, or both, in case 0 and/or V, do not belong to F.

(ii) In this case, fl' () consists of two chains: ¥ itself and the chain obtained by
adding Ui>1F = Nj<_1F to F.

(iii) In this case, there are infinitely many chains C with fl(C) = 7. Set F/(x) :=
spanfe, | r < x} for any x € R, and let € denote the chain {F/(x) | x € R} U{F"(q) | q €
Q}uU{0, V}. It is easy to check that fl(C) = F and that any chain in 17! (%) is a subchain of
€. To characterize explicitly all chains in fl~' (¥), for any subchain C C €, set Re :={x €
R | F'(x) € Cland Qg :={q € Q| F”(q) € C}. Then fI(€) = F if and only if, for any r € Q, we
haver € Qg orr =infix e Rg UQgp | r < x},and r € Rg orr = sup{x € Rz UQp | x < 1}.

A generalized flag ¥ in V is maximalif it is not properly contained in another gen-
eralized flagin V. It is easy to see that the generalized flags introduced in Example 3.1(ii)
and (iii) are maximal. More generally, a generalized flag ¥ is maximal if and only if

dim(F]/F)) = 1 for every nonzero v € V. Indeed, assume dim(F] /F) ) > 1 for some vo.
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Let F C V be a subspace with proper inclusions F|, C F C F{' . Then the generalized flag
F U{F} properly contains F. Conversely, if dim(F.//F,) = 1 for every nonzerov € V, and if G
is a generalized flag which contains &, then F,, C G|, € G/ C F//. Hence F, = G/, F// = G/,
thatis, 5§ =G.

The map fl establishes a bijection between maximal chains of subspaces in V and
maximal generalized flags in V. More precisely, if € is a maximal chain, fI(€) is the unique
maximal generalized flag which is a subchain of €. Conversely, € is the unique maximal
chain containing fl(C). These latter statements are essentially equivalent to [2, Theorem
9]. For example, if F is the maximal flag from Example 3.1(iii), then its corresponding
maximal chain € is described in Example 3.4(iii).

We conclude this section by introducing isotropic generalized flags. Let w : V x
V — k be a nondegenerate symmetric or skew-symmetric bilinear form on V. Denote by
U+ the w-orthogonal complement of a subspace U C V. A generalized flag F in V is w-
isotropic if F+ € J for every F € J, and if, furthermore, the map F — F' is an involution
of F. If F is a w-isotropic flag in V, the involution F + F* induces an involution T on J’
defined as follows. If F/ € F’, then (F”)* is the immediate predecessor of (F/)*, and we set
T(F') := (F”)*. We also introduce the subspaces T’ := Upcg pcprFand 7”7 := Npeg pope F
of V. Clearly, T/ C T”. Since (_ Wy)+ = N(W3) for any family of subspaces {W,} of V,
we have (T/)t = T7.If 7' # T” then T’ € F' and T” € F” is the immediate successor
of 7. As (T7')* = 7", and F + F* is an involution of F, we conclude that (7”)+ = 7’ and
hence 7’ is the unique fixed point of t. If T/ = 7", then T has no fixed point. Moreover,
in this case 7’ = T” may or may not belong to F. If T/ = T” belongs to , it has both an
immediate successor and an immediate predecessor, but as an only exception of our use

of the superscripts ' and ”, 7" is clearly not the immediate successor of J”.

4 Compatible bases

If V is finite-dimensional, any ordered basis determines a maximal flag in V. Conversely,
amaximal flag in V determines a set of compatible bases in V. More generally, if V is any
vector space, F is a generalized flag in V and {e4}«ca is a basis of V, we say that ¥ and
{ex}xca are compatible if there exists a strict partial order < on A (satisfying the condi-
tion stated in the Conventions) such that F, = span{eg | B < «}and F = fI({F,_}xea)-
Then, as it is easy to see, each I’ € F’ equals ', for some « € A,and F] = span{ep | B <
o or 3 is not comparable with «}.

Not every generalized flag admits a compatible basis. Indeed, let V := CJ[[x]] be
the space of formal power series in the indeterminate x and let & denote the flag --- C

Fn C Fhy C --- C Fy C Fp = V, where F,, := x™V. Clearly, § is a maximal flag in V as
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dim(F,,_¢/F.) = 1 for alln > 0. However, as V is uncountable-dimensional, no basis of V
can be compatible with the countable flag &.
The following proposition shows that the uncountability of dim V is crucial in

the above example.

Proposition 4.1. If V is countable-dimensional, every generalized flag ¥ in V admits a

compatible basis. O

Proof. First assume that F is a maximal generalized flag in V. Let {l;}icn be a basis of V.
Define inductively a basis {e;}icy of V as follows. Put e; := 1;. Assuming that e;,..., e,

have been constructed, choose e,, ;1 of the form l,, . 1 +cje; +--- + cne, so that Fén+1 is

!

not among F, ,...,F. . Then, obviously,

span{l;,...,ln} =span{e;,...,en} (4.1)

for every n and the subspaces F, are pairwise distinct. Furthermore, as it is not difficult
to check, for every F/ € ', the set F/\F’ contains exactly one element of the basis {e; }icn,
and hence N is linearly ordered in the following way: i < j if and only if F;  is a proper
subset of Féj . Now it is clear that F, = span{ei}i<n and, since J = fl(3’), F is compatible
with {ei}ien.

For a not necessarily maximal generalized flag , it is enough to consider a basis
compatible with a maximal generalized flag § containing &. Such a basis is automatically
compatible with F. |

Let V be a finite- or countable-dimensional vector space and w be a nondegener-
ate symmetric or skew-symmetric bilinear form on V. Let, furthermore, n take values in
Z. . Define a basis of V of the form {e,,, e"} to be of type C if w(ei, ¢;) = w(e',e)) = 0 and
w(ei,e) = 8;; for a skew-symmetric w. A basis of V of the form {e; = €°, e, e™} (resp.,
{en,e™}) is of type B (resp., of type D) if w(ei,e;) = w(e',el) = 0 and w(e;,e) = &;; for
a symmetric w. For uniformity we will always label a basis of type B, C, or D simply as
{en, e™}, where we assume that in the case of B, ey = ¢° and n runs over Z., when V is
countable-dimensional, or over a finite subset of Z, when V is finite-dimensional, while
in the cases of C and D, n runs over N or over a finite subset of N. A w-isotropic basis of
V is by definition a basis of V admitting an order which makes it a basis of type B, C,
or D. If V is finite-dimensional, then V admits a basis of type B, C, or D if and only if,
respectively, w is symmetric and V is odd-dimensional, w is skew-symmetric and then

V is necessarily even-dimensional, or w is symmetric and V is even-dimensional. If V
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is infinite-dimensional, the following infinite-dimensional analog of the Gram-Schmidt

orthogonalization process holds.

Lemma 4.2. Let V be a countable-dimensional vector space, and w a nondegenerate bi-
linear form on V. If w is skew-symmetric, then V admits a basis of type C. If w is sym-
metric and k is algebraically closed, then V admits bases both of type B and of type D.

U

Proof. Consider first the case when w is symmetric. We start by constructing an ortho-
normal basis {f, ey of V.

Fix a basis {vny Jnen of V. Next we construct inductively finite subsets Jo,J1,]2,...
of N and an orthonormal basis {f;, },cn of V satisfying the following three conditions:

1) {1,2,...,n} C Ju;

(i) J(n) € Jn+1);

(iii) span{filicj, = span{viliej,,.
Forn = 0 we set Jo := @. Assume J,, together with {f;}icj, have been constructed. Let k
be the smallest positive integer not contained in J,,. Set ka = Vi — Zieln w(vy,ei)ei. If
w(f~k,f~k) # 0,we put Jn1 = Jn U{k} and fy := (1/\/w(ﬂ<,ﬂ<))f~;<, where the choice of the
square root is arbitrary. If w(fy, f) = 0, then there exists s & (Jn U {k}) with w(fy,vs) #
0. Put f: = Vg — Ziel“ w(vs, ei)ei. Then the restriction of w on the two-dimensional
space span{f~k, f:} is nondegenerate, and hence there is an orthonormal basis {fy, fs} of
span{ﬂ, f:;}. Since span{f~k, f:} is orthogonal to span{fil}icy, , the set Jo11 == Jn U{k, s} sat-
isfies conditions (i), (ii), and (iii). This completes the inductive construction of an or-
thonormal basis {f}, }ncy of V.

A basis of type B in V is given by ey = €® := f1, e, = (1/V2)(fan + vV—Tf2n11),
and e" = (1/\/2)(1‘2TL —v/—1fan.1) for n € N. A basis of type D in V is given by e, =
(1/V2)(fn_1 +V—=Tfan) and e™ == (1/V/2)(fzn_1 — vV/—1f2,) forn € N.

The case when w is skew-symmetric is simpler. Indeed, it is possible to modify
the construction of an orthonormal basis in the symmetric case so that the restriction of
w on span{fi}icj, = span{viliej, is nondegenerate and some relabeling {e;, ei}ieﬂ

.....

{fi}iey, is a basis of type C in span{vi}icj, for every n. [ |

In the rest of the paper, we assume that the dimension of V is countable. We show

next that every w-isotropic generalized flag admits a compatible w-isotropic basis.

Proposition 4.3. Let F be a w-isotropic generalized flagin V.
(i) Assume that w is skew-symmetric. Then V admits a basis of type C compati-
ble with &. In particular, the vector space J"/J’, is even-dimensional or

infinite-dimensional.
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(ii) Assume that k is algebraically closed and w is symmetric. If the vector space
T /T’ is odd-dimensional or infinite-dimensional, then V admits a ba-
sis of type D compatible with F. If 7" /7" is even-dimensional or infinite-

dimensional, then V admits a basis of type B compatible with J. O

Proof. Let {ly}nen be a basis of V compatible with J. Set U, := span{l; | F{, = F'} for
F' € . Then V' = &greg,g'cr g2 Ug and F” = F & Ug/, for every F/ € F'. It is clear
therefore that the restriction of w on Ug: x U/ is a nondegenerate bilinear form for ev-
ery F/ € 3. Furthermore, if T has a fixed point, the restriction of w on Uy, x U5/ is a non-
degenerate skew-symmetric (resp., symmetric) bilinear form. If w is skew-symmetric,
this implies, in particular, that Us/, and hence T” /77, is even-dimensional or infinite-
dimensional. Then, by Lemma 4.2, Uy, admits a basis of type C, B, or D depending on
whether w is skew-symmetric or symmetric and on the dimension of 7”/J”. Denote such
a basis by {1/, 1'"). If T does not have a fixed point, then T”/T’ = 0, the corresponding ba-
sis is empty, and, hence, of type C or D depending on whether w is skew-symmetric or
symmetric. Let, furthermore, {1} (resp., {l”i}) be the subset of {1, } consisting of all 1,, for
which F{ is properly contained in T’ (resp., F{%. properly contains J”). Finally, relabel
the sets {1{}U{l{} and ('"}U{1”") and denote the respective resulting sets by {gn } and {g"},
so that g™ = 1’* if and only if g,, = .

We are now ready to construct inductively the desired w-isotropic basis {e,,, e™}.
Assume that e;, e* have been constructed fori < n.Put e, 1 := gni1 —> 1 (wlei, gni Yelt
W(gni1,e4)ei). If gn1 € {17}, let k be the smallest integer for which g~ € Uer, ) and
wieni1,9"%) = 1.If gny1 € {l}, wesetk :=n + 1. Set then e™*' 1= g* — 5 | (w(ei, g)et +
w(g*, et)e;). The construction ensures that {e,,e™} is a basis of V of the same type as

{1/, 1'"} which is compatible with F. ]

1

5 Ind-varieties of generalized flags

For a finite-dimensional V, two flags belong to the same connected component of the va-
riety of all flags in V if and only if their types coincide, that is, if the dimensions of the
subspaces in the flags coincide. If V is infinite-dimensional, then the notion of type is in
general not defined, and flags, or generalized flags, can be compared using a notion of
commensurability. Such notions are well known in the special case of subspaces of V,
that is, of flags of the form 0 € W C V, see [10] and [8, Chapter 7]. Below we introduce a
notion of commensurability for generalized flags which in the case of subspaces reduces

to a refinement of Tate's notion of commensurability, see [10].
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In the rest of the paper we fix a basis E = {e,,} of V. In the presence of a bilinear
form w on V, we fix a w-isotropic basis E = {e,, e}, and whenever other bases of V or
generalized flags in V are considered they are automatically assumed to be w-isotropic.
We call a generalized flag 3 weakly compatible with E if F is compatible with a basis L of
V such that E\(E NL) is a finite set. Furthermore, we define two generalized flags ¥ and
G in V to be E-commensurable if both F and § are weakly compatible with E and there
exists an inclusion preserving bijection ¢ : ¥ — § and a finite-dimensional subspace
U C Vsuch that forevery F € &

(i) FC ¢(F)+Uand ¢(F) C F+ U

(ii) dim(FNU) =dim(e(F)Nnu).

It follows immediately from the definition that any two E-commensurable gen-
eralized flags are isomorphic as ordered sets, and that two flags in a finite-dimensional
space are E-commensurable if and only if their types coincide. (In the latter case the con-
dition of weak compatibility with E is empty.) Furthermore, E-commensurability is an
equivalence relation. Indeed, it is obviously reflexive and symmetric. It is also transitive.
To see this, note first that, in the definition of E-commensurability, one can replace (ii) by

(") dim(F/(F N o(F))) = dim(e(F)/(F N @ (F))).
Consider now &, G, and H such that F is E-commensurable with § and § is E-
commensurable with H. Let ¢ : ¥ — Gand V : § — H be the respective bijections and
let U and W be the finite-dimensional subspaces of V corresponding to ¢ and 1, respec-
tively. Then ¥ and ¥ satisfy (i) and (ii’) withpo ¢ : F — Hand U+ W.

Example5.1. (i) Let F = {0 € F € Vland § = {0 € G C V}. If F and G are finite-
dimensional, then F and § are automatically weakly compatible with E. Furthermore,
F and § are E-commensurable if and only if dimF = dim G. If, however, F and G are
infinite-dimensional, then the condition that ¥ and § are weakly compatible with E is
not automatic. For example, if F = span{e;,es3,...} and G = span{e; — ej,e3 — e1,...},
then ¥ is weakly compatible with E but G is not, and consequently, ¥ and § are not E-
commensurable. Finally, if F and G are both of finite codimension in V, and F and §
are weakly E-compatible, then ¥ and G are E-commensurable if and only if codimy F =
codimy G.

(ii)LetF={0=F CcF, CFC---}and§G={0 =Gy C G, € G3 C ---} be
two finite or infinite ascending flags in V compatible with E. If all subspaces F; and G;
are finite-dimensional, then ¥ and § are E-commensurable if and only if dim F; = dim G;
for every i, and F,, = G, for large enough n. If, however, there are infinite-dimensional
spaces among F; and Gji, the above conditions are still necessary for ¥ and G to be E-
commensurable but they are not always sufficient. The exact sufficient conditions can be

derived as a consequence of the proof of Proposition 5.2 below.
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Given a generalized flag § weakly compatible with E, we denote by F¢(F, E) the
set of all generalized flags in V E-commensurable with F. For the rest of the paper we fix
the following notations: E,, ={ei}i<n, Vn =spanky, ES :={ei}i-n,and V§ := spanES. If F
is a w-isotropic generalized flag in V, then F{(F, w, E) stands for the set of all w-isotropic
generalized flags E-commensurable with F. If G is an isotropic generalized flag in V, then
the involution 7 is an order-reversing involution on §’ considered as an ordered set. In
this case, E,, = {ei, e'}i<n, Vn = spanky, ES = {ei,e'}i=n, and V¢ := spanES. Since all
generalized flags in F{(F, w, E) are isomorphic as ordered sets, we will use the same letter

T to denote the involution on §’ for any § € FU(F, w, E).

Proposition 5.2. F(F,E), as well as FL(F, w, E), has a natural structure of an ind-variety.
U

Proof. We present the proof in the case of FL(F, E) only. The reader will supply a similar
proof for F{(F,w,E). For any § € FL(F,E) choose a positive integer ng such that F and
§ are compatible with bases containing EY, _, and V;,, contains a finite-dimensional sub-
space U which (together with the corresponding ¢) makes F and § E-commensurable.

Obviously we can pick ngy so that ny < ng forevery § € F(F,E). Set also

Gn={GNVn|GeG} (5.1)

forn > ng.

The type of the flag J,, vields a sequence of integers 0 = dno < dn1 < -+ <
dns, ; < dns, = n, and F(Fn, E,) is the usual flag variety F¢(dn; Vy) of type dn =
(dn,1y.-.,dn,s,—1) in V,. Notice that s, 1 = Sn Or Sp11 = sn + 1. Furthermore, in both
cases an integer j,, is determined as follows: in the former case, dn41,3 = dn i for0 <i <
jnand dni1i =dni+ 1forjn <i< sn,andin thelatter case dni14 = dn,ifor0 <i<jn
and dny1i =dn i1+ 1forj, <i<sy.

Now we define a map t,, : F(dn; V) = FUdni1;Vai1) for every n > ng. Given
Gn ={0=Gf C G} C --- C G¢, = Vu} € FU(dn; V), Put tn(Sn) = Gny1 ={0 = Gyl ¢

G C - C G =V}, where
Gn if0<i<in,
1 ns .
G = GI' ® ken1 ifjn <i<sn,iand s, i =sn, (5.2)

Gin_] @ken+] lf]n §i§3n+‘| and Sn+‘| :Sn+].

It is clear that i, is a closed immersion of algebraic varieties, and hence mge(dn;vn)
is an ind-variety. Let V¥, : F(dn; Va) — li_r)nfr"ﬂ(dn;vn) denote the canonical embedding

corresponding to the direct system {t,, }.
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To endow F(F, E) with an ind-variety structure, we construct a bijection FL(F, E)
— li_n}lfr"ﬁ(dn;vn). Set

0:FUI,E) — HmF(dn; V),  0(9) :=lim Gy, (5.3)

see (5.1). Checking that 0 is injective is straightforward. To check that 6 is surjective, fix
G = 1£>n§:1 € li_I)nEFlZ(dn;Vn), an integer R, and a flag 9; € FU(ds; Va) with 1|)ﬁ(§:1) -G,
Denote by ¢4 the inclusion preserving bijection ¢« : F5 — Y. For every F € JF, put
@(F) = @a(FNVx) @ (FNVE). Itis clear that § := {¢(F)}res is a generalized flag in V E-
commensurable with F via ¢ and V5. Furthermore, using (5.2), one verifies that 0(§) = g.

Hence 0 is surjective. |

Example5.3. LetF = {0 C F C V}, see Example 5.1(i). If F is a finite-dimensional sub-
space of V of dimension 1, then, regardless of E, F{(F, E) is nothing but the ind-variety
Gr(L; V) introduced in Section 2. If Fis an infinite-dimensional subspace of V of codimen-
sion 1, then as a set F{(F, E) depends on the choice of E. However, the isomorphisms be-
tween Gr(l; V) and Gr(n — ;V,,) extend to an ind-variety isomorphism between F¢(F, E)
and Gr(l; V) which depends on E. The latter isomorphism is a particular case of the fol-
lowing general duality. Let F be an arbitrary generalized flag in V. Assume that E is com-
patible with ¥, and for every F € F set F* := span{fe € E | e & F}. Then F¢ :={F¢ | F € F}is a
generalized flag in V compatible with E and, moreover, F{(F¢, E) is isomorphic to FI(F, E).

We complete this section by defining big cells in F{(F, E) and FL(F,w,E). Let L =
{ln}nen be a basis of V compatible with F and such that E\(E N L) is a finite set, and let
Ur =span{l € L | F{ = F/} for any F' € F'. Denote by ® = {®f/}r/c5 a set of linear maps
of finite rank @/ : F* — Uf/, such that @, # 0 for finitely many subspaces F{ C --- C F},
only. Given @, define

r]:/ 2F/—)FN, rF/(V) ::V+(I)F/<V),
(5.4)
FV—>V, r(V)Z:r}:r/)O”-OrF{Jr](V),
where 1 is the largest integer with v ¢ F,. Put ®(F) := fI{I'(F’)}f/c5/). Then define the big
cell C(F,E;L) of FU(F,E) corresponding to the basis L by setting

C(F,EL) = {®(F) | forall possible ®}. (5.5)

To define the big cell C(F,w, E;L) in F{(F, w, E), we start with a w-isotropic basis
L = {l,,1"} of V compatible with F and such that E\(E N L) is a finite set, and repeat the

above construction of I'(F’) forall F’ € ' with F’ C t(F’). As aresult, we obtain subspaces
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I(F’) for F’ C t(F’) and set ®(F) := fI({I'(F'), ("(F"))* }¢req /e (k). Then we set
C(F,w,EL) :={®(F) | forall possible ®}. (5.6)

Note that the role of ¥ in defining big cells is not special and that big cells €(3,
E;L) or C(G,w, E;L) are well defined for every § € FL(F, E), or, respectively, § € FUF, w, E).

Proposition 5.4. (i) The big cell C(F,E;L) (resp., C(F,w,E;L)) is an affine open ind-
subvariety of F{(F, E) (resp., of F¢(F, w, E)).
(ii) The following equalities hold:

FUF,E) = ULC(F, E; L), (5.7)

FUF,w,E) = UL C(F,w,E;L), (5.8)

where the unions run over all bases (resp., w-isotropic bases) L of V compatible with F
and such that E\(E N L) is a finite set. O

Proof. We discuss the case of FU(F,E) only. The argument for the case of F¢(F, w,E) is
similar. Put L, := {li}i<n and W;, := spanL,,. Let ¥, and F{(d.; Wy ) be as in the proof of
Proposition 5.2. Set C(dn; Whq;Ly) := {®(F)n | VO such that for every F' € F', @, (W,,) C
W,, and @/ (1) = 0 for i > n}. Obviously, €(dn;Wy;Ly,) is a big cell in F(d,,; Wy, ), and
hence is an affine open subset. Therefore, the inclusion t, (C(dn; Wn;Ln)) C C(dni1; Wair;
L.+1) and the equality an C(dn;Whn;Ly) = C(F,E;L) show that C(F, E;L) is an affine open
ind-subvariety of FU(F, E). The fact that the set of cells {C(F,E;L) | L is a basis of V com-
patible with ¥ such that L\(EN L) is a finite set} is a covering of F¢(F, E) is an easy conse-

quence of the definition of E-commensurability. [ |

6 Ind-varieties of generalized flags as homogeneous ind-spaces

Let G(E) be the group of automorphisms g of V such that g(e) = e for all but finitely many
e € E and in addition detg = 1. Recall that E,, = {ei}i<n and V;, = spanE,. The natural

inclusion

G(En) C G(Ent1), g+— kn(9), (6.1)

where kn(g)v, = gand kn(g)(e) = efore € E,,1\Ey, is a closed immersion of algebraic
groups. Furthermore, G(E) = UnecnG(Ey ). In particular G(E) is a locally linear ind-group,
and G(E) = G(L) for any basis L of V such that E\(E N L) is a finite set.
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Similarly, when E is a w-isotropic basis of V,let G (E) :={g € G(E) | w(g(u), g(v))
=w(u,v) for any u,v € V}. There are natural closed immersions G*(E,,) C G"(En41),and
G"(E) = UnenG™(En), where in this case E,, := {ei, €'}i<n.

The ind-group G(E) (resp., G™(E)) is immediately seen to be isomorphic to the
classical ind-group A(co) (resp., B(c0), C(o0), or D(o0) if E is a w-isotropic basis of type
B, C, or D). The ind-groups A(c0), B(c0), C(o0), and D(co) are discussed in detail in [3].
An alternative notation for A(co) is SL(c0), and B(co) = D(o0) and C(co) are also denoted,
respectively, by SO(co0) and Sp(c0).

In the rest of the paper, the letter G will denote one of the groups G(E) or G (E),
and G,, will denote, respectively, G(E, ) or G¥(E,,). The basis E equips G with a subgroup
H, consisting of all diagonal automorphisms of V in G, that is, of the elements g € G such
that g(e) € ke for every e € E. We call H a splitting Cartan subgroup (in the terminology
of [3], H is a Cartan subgroup of G). Following [3], for the purposes of the present paper,
we define a parabolic (resp., a Borel) subgroup of G to be an ind-subgroup P (resp., B) of
G such that its intersection with G, for every n is a parabolic (resp., a Borel) subgroup
of G,, for some, or equivalently any, order on E.

If F is a generalized flag in V compatible with E (and w-isotropic, whenever E is

w-isotropic), we denote by P4 the stabilizer of ¥ in G.

Proposition 6.1. (i) Py is a parabolic subgroup of G containing H;
(ii) the map F — Py establishes a bijection between generalized flags in V com-

patible with E and parabolic subgroups of G containing H. O

Proof. The inclusion H C Pg follows directly from the definition of H and Ps. Further-
more, Py N G, is a parabolic subgroup of G, as it is the stabilizer of ¥, in G,,. Hence Py
is a parabolic subgroup of G. If, conversely, P = U,,P,, is a parabolic subgroup of G con-
taining H, denote by F(n) the flag in V,, whose stabilizer is P,,. Note that F(n) maps into
F(n+1). More precisely, for G = G(E), F(n+1) = 1, (F(n)), see (5.2); and for G = G*(E), the
corresponding map is the w-isotropic analog of t,, which we leave to the reader to recon-
struct. In both cases, we define ¥ as 0~ (li_n>1 F(n)). A direct checking shows that P = Ps.

[ ]

Proposition 6.1 further justifies our consideration of generalized flags, see the
discussion before Proposition 3.3. Indeed, it is clear that if P C G is the stabilizer of a
chain C of subspaces in V, then P depends only on the partition 7t(C), see (3.1), and not
on C itself. Therefore, the generalized flag F emerges as a representative of the class of
all chains C which have P as a stabilizer in G. Moreover, Proposition 4.1 together with

Proposition 6.1 (resp., Propositions 4.3 and 6.1 for w-isotropic flags) imply that the
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stabilizer in G of any generalized flag (resp., isotropic generalized flag) compatible with
E is a parabolic subgroup of G. Finally, maximal generalized flags in V correspond to
Borel subgroups under the above bijection.

Note that for any order on E and for any generalized flag ¥ compatible with E,
G/Py = Un(Gn/Pn), where P, := P+ N G,,. In particular, G/P is an ind-variety. Moreover,
any other order on E, for which E is isomorphic to N as an ordered set, defines an isomor-
phic ind-variety. We are now ready to exhibit the homogeneous ind-space structure on
FUF,E) and FL(F, w, E).

Theorem 6.2. For any E and F as above there is a respective isomorphism of ind-varieties
FUF,E) = G/Py or FU(F,w,E) = G/P5. O

Proof. Given § € FUF,E) (or, resp., § € FUF,w,E)), let U C V be the finite-dimensional
subspace whose existence is ensured by the E-commensurability of ¥ and §. We may as-
sume that U = V,, = span E,, for some n. Since F,, and §,, are flags of the same type in the
finite-dimensional space V,,, there exists g, € Gn, so that g(F,,) = G,,. We extend g, to

an element g € G by setting g(e) = efore € E\E,,. Now
f: FUF,E) — G/Ps (or, resp., f : FUF,w,E) — G/Py), () := gP, (6.2)

is a well-defined map and it is easy to check that it is an isomorphism of ind-varieties.
[ |

7 Picard group and projectivity

The interpretation of FU(F, E) and FL(F, w, E) as homogeneous ind-spaces G/Ps provides
us with a representation-theoretic description of the Picard groups of F¢(F, E) and F{(F,
w, E). Namely, Pic F¢(F, E), as well as Pic FL(F, w, E), is naturally isomorphic to the group
of integral characters of the Lie algebra of the ind-group Py.

Consider FU(JF, E). There is a canonical isomorphism of abelian groups Pic F¢(J,
E) = Hom(Ps,k*). To see this, notice that Pic F¢(F,E) = &nPic Fdn; Vn) = 1i£1PiC Gn/
(P5)n.Itis a classical fact that Pic Gy, /(Py)n = Hom((Ps)n, k) for every n, and an imme-

diate verification shows that the diagram

Pic (Gui1/(Py).,,, ) = Hom ((Py), k")

| |

Pic (Gn/(Py),,) =Hom ((Py),, k")
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is commutative. Hence Pic F¢(F,E) = Hom(Pg,k*), and Hom(Ps,k*) is nothing but the
group of integral characters of the Lie algebra of Py. In the case of FU(F, w, E), the de-
sired isomorphism is established by replacing Hom((P#)n,k*) and Hom((Ps)n41,k*) in
diagram (7.1) with the groups of integral characters of the Lie algebras of Py, and Py, ,,
respectively.

In the rest of this section, we give a purely geometric description of Pic FU(F, E)
and Pic FU(F, w, E). Consider the corresponding covering (5.7) or (5.8). Let L and M be
two bases compatible with F for which E\(E N L) and E\(E N M) are finite sets. Denote by
gr,m the automorphism of V such that g m(Li) = my for F¢(F,E), and gL m(Li) = my,
gL.m(lY) = mt for F¢(F,w,E). It has a well-defined determinant and, moreover, it in-
duces an automorphism of F”/F’. Denote the determinant of this latter automorphism
by detL m(F”/F’). In this way, we obtain an invertible sheaf L, with transition functions
dety m(F”/F') on C(F, E;L)NC(F, E;M) or C(F, w, E;L)NC(F, w, E; M), respectively. Finally,
let y¢ € Pic F(dn; Vi), respectively, v/ € Pic Fl(dn, w; V), denote the class of L.

~

Proposition 7.1. There are canonical isomorphisms of abelian groups Pic F{(JF,E)
(ﬂF/eg'/(ZYF/))/(ZnFlegﬂ'}/F/) and Pic ?ﬂ(?,w, E) = ]—IF’G?’,F’CT(F’),F’#'J”(Z’YF')' [

Proof. Consider the case of FU(F, E) first. Let yr/ ,, be the class of the restriction (L), of
L/ to FU(dn; Vn). Then v, , = Ounless F/NV,, # F'NV,,. Define the group homomorphism
©on : Mereg/ (Zyg) — PicFU(dn; Vi) via @n(IMeres M ye/) == ) prcg MEYE . The sum
2 _rrcqs M YE o makes sense because y¢/ n = 0 for all but finitely many F’ € 3. Clearly
@n = Th © @ny1, Wwhere 1, @ PicFU(dni1; V1) — PicF(dy; Vy) is the restriction map.

Therefore, by the universality property of (hin, there is a homomorphism
©: ﬂF/ef_{/ (Z’YF/) — Pic 9’8(.’}") E) = liénPiC ?B(dn,vn) (72)

Furthermore, @ is surjective as ¢, is surjective for each n.

To compute ker ¢, note that ker ¢ = Nker ¢,,. We have ker ¢, = (Z(TTg/c5/vF/)) X
e Frava=F7nv, (Zyr/) and therefore ker ¢ = Z(ITr/c5/vs/), that is, PicFU(F,E) =
(Mereg (Zye))/(ZTTgregye).

In the case of FL(F, w, E) homomorphisms, ¢ : Treg/ (Zyr:) — Pic Fl(dn, w; Vi)
and @ : Tlpeg/ (Zyr/) — PicFU(F,w,E) are defined in a similar way. Here ker ¢, =
Mereg Froa@) (ZOYE +Ya) ) XTTercgr Frea(rr) Frava =F v, (ZYF/), and consequently ker ¢
=Mrrcg Free®) (LY + V<)), thatis, PicFUF,w, ) =TTrcq oy, prps (Zye). N

We complete this paper by an explicit criterion for the projectivity of F¢(F, E) and
FU(F,w, E). The following proposition is a translation of [3, Proposition 15.1] into the lan-

guage of generalized flags.
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Proposition 7.2. F(F,E) or FL(F, w, E) is projective if and only if F is a flag. O

Proof. Consider the case of F¢(F,E) (the case of FL(F, w,E) is similar). F¢(F, E) is pro-
jective if and only if it admits a very ample invertible sheaf. An immediate verification
shows that an invertible sheaf £, whose class in Pic F{(F, E) is the image of TTr/cq/ mp v/,
is very ample if and only if the map ¢ : ¥’ — Z, F' — mg/ is strictly increasing. In-
deed, FUF,E) = 1£)n FL(dn; Vn), and L is very ample if and only if its restrictions L, onto
FU(dn; Vn) are very ample for all n. Consider the map c,, : ¥, — Z, defined via ¢, ((Fn)s) :=
c((Yn(Fn))s,) for every nonzerov € V,,, where 1\, is defined in the proof of Proposition 5.2
above. (As the reader will check, c,, is well defined, that is, if (J,,);, = (In),,, then
(Wn(Tn))y, = (Wn(Fn))y,.) A direct comparison with the classical Bott-Borel-Weil the-
orem for the group G(E.) (see, e.g., [1]) shows that L,, is very ample if and only if the
map c,, is strictly increasing. Hence L is very ample if and only if ¢ is strictly increasing.
This enables us to conclude that F¢(F, E) is projective if and only if there exists a strictly

increasing map ¥’ — Z, that is, if and only if F is a flag. |

Propositions 7.1 and 7.2 allow us to make some initial remarks concerning the
isomorphism classes of the ind-varieties F¢(F, E) and FL(F, w, E). For example, if F is a
flag of finite length in V, and § is a flag (or generalized flag) in V of length different from
the length of F (finite or infinite), then F¢(F, E) and F¢(G, L) are not isomorphic because
their Picard groups are not isomorphic. Furthermore, if ¥ is a flag in V but § is not, then
FUF,E) and FL(G, L) are not isomorphic because the former ind-variety is projective and
the latter is not. Finally, a recent result of Donin and the second-named author, [4], im-
plies that if ¥ = {0 € F C V} with F both infinite-dimensional and of infinite codimen-
sion in V, then the “ind-grassmannian” F¢(&, E) is not isomorphic to Gr(l; V) for any 1 (cf.

Example 5.3).
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