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Abstract

We describe all locally semisimple subalgebras and all maximal subalgebras of the
finitary Lie algebras gl(co),sl(c0),s0(o0), and sp(co). For simple finite-dimensional
Lie algebras these classes of subalgebras have been described in the classical works of
A. Malcev and E. Dynkin.
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Introduction

The simple infinite-dimensional finitary Lie algebras have been classified by A. Baranov a
decade ago, see [Ba3], [Ba4], and [BS], and since then the study of these Lie algebras sl(c0),
so(o0), and sp(o0), as well of the finitary Lie algebra gl(cc), has been underway. So far
some notable results on the structure of the subalgebras of gl(oo), sl(oc), so(o0), and sp(co)
concern irreducible, Cartan, and Borel subalgebras, see [LP], [BS|, [NP],[DPS], [DP2], and
[Dal]. The objective of the present paper is to describe the locally semisimple subalgebras of
gl(00), sl(00), so(o0), and sp(co) (up to isomorphism, as well as in terms of their action on

the natural and conatural modules) and the maximal subalgebras of gl(co), sl(c0), so(oc0),
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and sp(co). Our results extend classical results of A. Malcev, [M], and E. Dynkin, [Dy1],
[Dy2], to infinite-dimensional finitary Lie algebras and are related to some earlier results of

A. Baranov, A. Baranov and H. Strade, and F. Leinen and O. Puglisi.

A subalgebra s of gl(c0), sl(00), so(c0), or sp(c0) is locally semisimple if it is a union of
semisimple finite-dimensional subalgebras. The class of locally semisimple subalgebras is the
natural analogue of the class of semisimple subalgebras of simple finite-dimensional Lie al-
gebras. In the absence of Weyl’s semisimplicity results for locally finite infinite-dimensional
Lie algebras, it is a priori not clear whether a locally semisimple subalgebra of gl(oo), sl(c0),
so(00), and sp(oco) is itself a direct sum of simple constituents, cf. Corollary in [LP]. The-
orem 3.1 proves that this is true and, moreover, that each simple constituent of a locally
semisimple subalgebra of gl(co), sl(00), so(c0), and sp(co) is either finite-dimensional or is
itself isomorphic to gl(co), sl(c0), so(o0), or sp(oo). The latter fact has been established

earlier by A. Baranov.

The method of proof of Theorem 3.1 allows to prove also that if g = sl(co) (respectively,
g = so(o0) or sp(00)) and g = li_Ip s, is an exhaustion of g by semisimple finite-dimensional
Lie algebras, then there exist ng and nested simple ideals ¢, of s, for n > ng, such that
liin t, =g, &, = sl(k,) (respectively, €, = so(k,) or sp(k,)), and the inclusion ¢, C €,,; is
simply induced by an inclusion of the natural ¢,-modules V' (¢,) C V(&,41) (cf. Corollary
5.9 in [Ba2])..

We then study the natural representation V' of g = gl(00),sl(00), so(c0), and sp(co) as a

module over any locally semisimple subalgebra s of g and show that

e the socle filtration of V' has depth at most 2;

e the non—trivial simple direct summands of V' are just natural and conatural modules
over infinite-dimensional simple ideals of s, as well as finite-dimensional modules over
finite-dimensional ideals of s; each non-trivial simple constituent of V' as module over

a simple ideal of § occurs with finite multiplicity;



e the module V/V" is trivial.

Similar results hold for the conatural g-module V, for g = gl(oco) and sl(oc0).

We conclude the paper by a description of maximal proper subalgebras of g = gl(o0),
sl(00), so(o0), and sp(oo). The maximal subalgebras of g = gl(co) are [g, g] = sl(co0) and
the stabilizers of subspaces of V or V, as follows: W C V with W+t = W, or W C V,
codimy W = 1 and Wt =0, or W C V,, codimy, W =1 and W+ = 0. The maximal
subalgebras of sl(c0) are intersections of the maximal subalgebras of g = gl(oco) with sl(co) =
g, g]. For g = so(o0) and sp(00) any maximal subalgebra is the stabilizer in g of an isotropic
subspace W C V with W+ = W, or of a non-degenerate subspace W C V with W W+ =
V (where for so(oo), dim W # 2 and dim W+ # 2), or of a non—degenerate subspace W C V

of codimension 1 such that W+ = 0.
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1 General preliminaries

The ground field is C. In this paper V is a fixed countable-dimensional vector space with
basis vy, vs,... and Vi is the restricted dual of V, i.e. the span of the dual set v}, v, ...
(v} (vj) = d;5). The space V ® V, (® stands throughout the paper for tensor product over C)
has an obvious structure of an associative algebra, and by definition gl(V, V,) (or gl(co) for
short) is the Lie algebra associated with this associative algebra. The Lie algebra sl(V, V) (or
sl(c0)) is the commutator algebra [gl(V, V), gl(V, V.)]. Given a symmetric non-degenerate
form V x V' — C, we denote by so(V') (or so(c0)) the Lie subalgebra A?(V) C sl(V,V,) (the

form V x V — C induces an identification of V' with V, which allows to consider A?(V) as a
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subspace of V ® V). Similarly, given an antisymmetric non-degenerate form V' x V' — C, we
denote by sp(V) (or sp(co)) the Lie subalgebra S*(V') C sl(V, V). In what follows g always
stands for one of the Lie algebras gl(V, V,), sl(V, V,), so(V), or sp(V).

The Lie algebras gl(oo), sl(o0), so(o0), and sp(oo) are locally finite (i.e. any finite set
of elements generates a finite-dimensional subalgebra) and can be defined alternatively as
follows. Recall that if ¢ : f — §' is an injective homomorphism of reductive finite—dimensional
Lie algebras, ¢ is a root injection if for some (equivalently, for any) Cartan subalgebra t;
of f, there exists a Cartan subalgebra ty such that ¢(t;) C ty and each t;root space of f is
mapped under ¢ into a ty-root space of f'. It is a known result that the direct limit li_r)n fn
of any system

f1—>f2—>...

of root injections of simple finite-dimensional Lie algebras is isomorphic to sl(c0), so(c0), or

sp(00), see for instance [DP1].

We need to recall also two other types of injections of simple finite-dimensional Lie
algebras. Let f and § be classical simple Lie algebras. We call an injective homomorphism
¢ : | — § a standard injection if the natural representation wy of f' decomposes as an -
module (via ¢) as a direct sum of one copy of a representation which is conjugated by an
automorphism of f to the natural representation ws of f, and of a trivial f~module. Any root
injection of classical Lie algebras is standard, but the converse is not true: an injection so(2k+
1) — so(2k + 2) is standard without being a root injection. An injective homomorphism
of classical Lie algebras ¢ : §f — § is diagonal if wy decomposes as an f-module as a direct
sum of copies of wy, of the dual module wy, and of the 1-dimensional trivial f-module. This

definition is a special case of a more general definition of A. Baranov, [Ba2], [BZh].

An exhaustion lim g,, of g is a system of injections of finite-dimensional Lie algebras

TN RN

such that the direct limit Lie algebra lim g, is isomorphic to g. A standard exhaustion is

an exhaustion g = limg, such that g, — g,41 is a standard injection of classical simple
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Lie algebras for all n. In a standard exhaustion, for large enough n, g, is of type A for

g = sl(o0), g, is of type B or D for g = so(o0), and g, is of type C for g = sp(o0).

A subalgebra s of g is locally semisimple if it admits an exhaustion s = lim s,, by injective

homomorphisms s, — s,,,1 of semisimple finite-dimensional Lie algebras s,,.

For g = gl(co) or sl(oco) the vector spaces V and Vi are by definition the natural and
conatural sl(oo)-modules. They are characterized by the following property: V' (respectively,
V.) is the only simple g—module which, for any standard exhaustion g = liin gn, restricts to
one copy of the natural (respectively, its dual) representation of g,, plus a trivial module. For

g = so(00) or sp(co), V is characterized by the same property (here V =V, as g-modules).

2 Index of a subalgebra

For a simple finite-dimensional Lie algebra § we denote by (-, -); the invariant non-degenerate
symmetric bilinear form on § for which (", a¥); = 2 for any long root a of f. (By convention
the roots of a simply—laced Lie algebra are long.) If ¢ : f — § is a homomorphism of
a simple Lie algebra f into the simple Lie algebra §, then (z,y), = (p(z),¢(y)); is an

invariant symmetric bilinear form on §. Consequently,

<x7y>30 = ]]‘f <xay>f

for some scalar Ig/. E. Dynkin, [Dy2], calls I ffl the index of . The homomorphism ¢ is
determined (up to an automorphism of ') by the pull-back of any nontrivial representation
of f of minimal dimension. Such a representation is unique unless ' is isomorphic to sl(n), to
Dy, or to Eg. In the rest of the paper we fix a non-trivial representation wy of § of minimal
dimension. If f is classical, w; stands as above for the natural module. If U is any finite
dimensional f-module, then the indez I5(U) of U is defined as IfSl(U) where f is mapped into
sl(U) through the module U, see [Dy2]. The following properties are established in [Dy2, §
2].



Proposition 2.1

(i) 1] € Zs.
(i) 1]1) = 11",
(iii) (U, & - ®Uy) = L(U) + -+ L(U).

(v) If [ff/ = 1, then the root spaces of f corresponding to long roots are mapped into root

spaces of f' corresponding to long roots.

In particular, (ii) implies that Ij(wy) = I ff/ Iy (wy). Furthermore, a combination of (ii) and
the information from Table 5 in [Dy2] shows that I;p(U) = I;(U) and I:O(U) = 11;(U) when

U admits a corresponding invariant form, see [Dy2].

We need an extension of Proposition 2.1. Let o : f - &, @--- Pt andn: ¢, &---pt — f

be homomorphisms of Lie algebras, where €, ..., € are simple Lie algebras.
Proposition 2.2 We have
!
E.
1 1= 5 1,
j=1

where f — §' is the homomorphism n o ¢, and the homomorphisms §f — € and &; — § are

determined by ¢ and n in the obvious way.

Proof. Multiplying by Iy(wy) we see that (1) is equivalent to

(2) Ii(wy) = foj Ty, (wy).

In the case when wy is a reducible (¢, @- - -@¥€)-module we use Proposition 2.1(iii) to prove (2)

by induction on the length of wy. Now assume that wy is an irreducible & @ - - - © &-module.



Then wy = U;®- - -®U, for some irreducible ¢;—modules U;. Note that if U; = wy, for every j,

identity (2) follows from Proposition 2.1. Indeed, in this case Iy, (wy) = %‘W[@(Uj)
J

by (iii), and applying (iv) we obtain
Ii(wy) = Z dim(U; ® --- ® Uz)j. U, = Z [Bj(wf/)j- (U;) = ZI&'[ (wr)
FA . dim Uj A [Ej(Uj) i\~ - f e i)

J J

To prove (2) for general irreducible ¢;-modules U; we consider the diagram

-1

sl(wy)

This diagram enables us to first apply (2) to f — sl(Uy) @ - - - @sl(U;) — sl(wy) and then use
;% = 17 1% to get

f
Ii(wy) ZISIUUM) (wp) = > 1P L Ly (wp) ZI I, (wy).

J

This completes the proof. O

Proposition 2.3 Let ¢ : § — § denote an injective homomorphism of classical simple Lie

algebras.

(i) Assume that vk § > 4. If §f is not of type B or D and Iff/ =1, then ¢ is a standard

ingection. Similarly, if | is of type B or D and Iffj =1, then ¢ is a standard injection.

(ii) For any n there exists a constant ¢, depending on n only, such that vk f = n and

Iff/ < ¢, imply that ¢ 1s diagonal. Furthermore, lim,_ ., ¢, = 00.



Proof. (i) Assume first that f' is not of type B or D. Then [ff/ = Ij(wy) = 1. Proposition
2.1(iii) implies that wy considered as an f-module has exactly one non-trivial irreducible
constituent U with [;(U) = 1. We show now that U is isomorphic to wj or to wy. Theorem

2.5 of [Dy2] states that

dim U
(3) L(U) = dim

where (-, -) is the form induced on f* by (-, -);, A is the highest weight of U, and p is the half-

(A A+ 2p),

sum of the positive roots of f. Since both dim U and (A, A+ 2p) are increasing functions of A
(with respect to the order: X > A" if ' — A" is a non—negative combination of fundamental
weights), so is Ij(U). Table 5 in [Dy2] shows that, for rk f > 4, a fundamental representation
U of f with I;(U) = 1 is isomorphic to wj or wi. The monotonicity of I;(U) now shows that
I;(U) = 1 implies U = wj or U = wf. Since for rk f > 4 every f-module conjugate to wy is

isomorphic to ws or wy, ¢ is a standard injection.

If fis of type B or D, an argument similar to the one above shows that Ij(wy) >
2. Consequently, formula ]ff, = Ii(wy)/Iy(wy) = 1 forces Ij(wy) = 2. Going back to the
argument above we see that [j(wy) = 2 implies that the homomorphism ¢ is a standard
embedding.

(ii) Every simple Lie algebra of rank n > 9 contains a root subalgebra isomorphic to sl(n).

Isl(n) (wf’ )
If/ (wf/)

constants d,, with limd,, = oo such that I, (U) > d,, for any sl(n)-module U which has a

Moreover, Isf;(n) = > LIgwm)(wy). Hence, it is enough to show that there exist
simple constituent not isomorphic to wg(,) or W;ﬁ(n)' To prove the existence of the constants
d,, we first observe that Weyl’s dimension formula implies the existence a constant a; > 0,
such that dimU > a;n® Next, a direct computation gives a constant as > 0, such that
(A, A+2p) > agn. Substituting these estimates into (3) implies the existence of the constants

d, with the desired properties. O

Corollary 2.4 Let

f1—>f2—>...



be a system of injective homomorphisms of simple finite—dimensional Lie algebras such that
Iff:“ =1 for all n and lim(rk f,) = oco. Then there exists ng such that, for n > ng, all
homomorphisms f, — f,+1 are standard injections and all §,, are of type A, or all §,, are of

type C', or each f, is of type B or D.

Proof. The statement follows directly from Proposition 2.3(ii). a

3 Locally semisimple subalgebras

Theorem 3.1 A subalgebra s C g is locally semisimple if and only if it is isomorphic to
Dacas®, where each §* is a finite-dimensional simple Lie algebra or is isomorphic to sl(co),

so(o0), orsp(c0), and A is a finite or countable set.

Proof. In one direction the statement is obvious: if § = @, 45%, then by identifying A with
a subset of Z-( and exhausting each s§* as lims; for some classical simple Lie algebras s2,

one exhausts s via the semisimple Lie algebras @], _;s%.

Let now s be locally semisimple, s = lims,. Write s, = @’ s/, where each &/, is a
simple finite-dimensional Lie algebra. Fix a standard exhaustion g = lim g,, of g such that

the diagram

(4) te Sn o Sp+1 s 5
enl \Lenﬁ»l
In o In+1 e g

is commutative. In particular, I3"*' =1 for every n.
For each 1 < j <, let
i sl —s5, and 7 s, — s

be the natural injection and projection respectively. Set 67 = 6, 04/ : s/ — g, and let

@Ik =7k L op,0il 18] — g% . Then ¢%* is a homomorphism of simple Lie algebras. Set
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also

k St
ol = ]:{, TS ]527:*
By Proposition 2.2 we have
lnt1
(5) aj, = Z B gy
k=1

We now assign an oriented graph I' (a Bratteli diagram) to the direct system {s,}. The
vertices of I' are the pairs (n,j) with 1 < j < [,. A vertex (n,j) has level n. An arrow
points from (n, j) to (n + 1,k) if and only if ¢%F is not trivial. A path v in T is a sequence
of vertices (n,j,),(n + 1, 3541),- -, (m, jm) such that, for every i with n < i < m — 1, an
arrow points from (i, ;) to (i + 1,j;11). We label the vertices and arrows of I' as follows:
the vertex (n, ) is labeled by of and the arrow from (n,j) to (n + 1,k) is labeled by 33+,
For the path v above we set (i) := j; for n < i < m and define 3(v) as the product

ﬁf;”’j"“ﬂi’ff dni2 o gimotdm of the labels of all arrows of . Formula (5) generalizes to

(6) o =Y B()ap™,

where the summation is over all paths starting at (n,j) and ending at (m,k) for some

1<k <.

For each vertex (n,j), let ['(n, j) denote the full subgraph of I" whose vertices appear in
paths starting at (n, j). Let a,,(n, j) be the sum of the labels of all vertices of I'(n, j) of level

m, e am(n, ) == 3 0 kyer(ng) af . Then

(7) &m(naj) = Z afn = Z Z ﬁ,’j{t afn-i—l > amH(n,j).

(m,k)€T’(n,j) (m+1,t)el(n,j) \ (m.k)el(n,j)
This implies that the sequence {a,(n,j)} stabilizes, i.e. a,(n,j) = a(n,j) for m large
enough. Furthermore, (7) shows that if a,,(n,j) = ami+1(n,j) = a(n,j), then each vertex of
['(n, 7) of level m points to exactly one vertex of I'(n, j) of level (m+1). In other words, the
graph ['(n, ) is nothing but several disjoint strings from some level on. More precisely, there

exist mo and ¢ such that, for m > my, I'(n, j) has exactly ¢ vertices (m, jm1), .-, (M, Jmt)
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of level m and the arrows pointing from vertices of level m to vertices of level m + 1, after a

possible relabeling of the vertices of level m + 1, are

(M, Jma) — (MmA+1,Jms11)

(majm,t) — <m+1ajm+1,t)'

Jm,isJm—+1,i

Finally, formula (7) implies =1 forevery 1 <i < t.

Let sm(nvj) = EB(m,k)EF(n,j)‘ﬁfn' Clearly @m(ﬁm(n,])) C sm-l—l(naj)v hence 5(”7.7) =
lims,,(n,j) is a well-defined Lie subalgebra of g. The fact that I'(n, ) splits into ¢ dis-

joint strings for m > mg implies that
5(”7 ]) = @Ezlsl(na ])7

where s'(n,j) := lim /™. The equality Blmdmiti — 1 implies via Corollary 2.4 that
m>mg

s'(n, j) is a finite-dimensional simple Lie algebra or is a Lie algebra isomorphic to sl(oo),
so(o0), or sp(0o).

We are now ready to construct a decomposition § = ®,ca8" as required. Notice first
that I'(n, j) NT'(n/, j') is either empty or consists of several disjoint strings from some level
on. Hence s(n,j) and s(n’, j') intersect in subsums of the direct sums s(n, j) = ®_;s'(n, j)
and s(n’,j') = @4_,s" (', j'). Consequently,

(8) s= Y s(nj)

(n,g)€r
Let A(n,j) denote set of paths of I'(n,j) and let ~ be the following equivalence relation
on the set Ug, jyerA(n,j): a € A(n,j) ~a € A(n',j') if a and @’ coincide for large enough
m. Define A := (U(an)el"A(n,j))/ ~ and, for every a € A, set 5% := s'(n,j), where
(M, Jm,i)s (M + 1, Jmt1,), ... is a representative of a. Equation (8) implies that § = ®,ca8”

and this completes the proof. O

We will illustrate the results of this paper in a series of examples built on the same set—up,

cf. Theorem 5.8 in [Bal].
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Example 1. Set V := V & Co with (2, vr) = 1 for every j. Both couples V, V. and V,V, are
non-degenerately paired and both Lie algebras g = [V@V,, V@V, and g = [VaV,, Vo V]
are isomorphic to sl(co). Any partition Z~g = Uae 4l defines a locally semisimple subalgebra
s of both g and g in the following way. Set V' := Span{v;,}jera, (V). := Span{v] }jese, and
s* = gN(V*® (V*),). Define s as Gnecas”. In particular, g itself is a locally semisimple
subalgebra of g.

A corollary of Theorem 3.1 concerns the structure of an arbitrary exhaustion of g by

semisimple Lie algebras, cf. Corollary 5.9 in [Ba2].

Corollary 3.2 Letg = liin s, where each s, is semisimple. There exist ny and simple ideals
t, C s, forn > ng, such that &, C £,.1 and g = liin t,. Furthermore, the system {¥,} admits
a refinement {gs} with
sl(s) if g =sl(c0)
gs = 4§ so(s) if g=so(c0)

(
sp(2s) if g =sp(c0).

Proof. By Theorem 3.1 g = ®,c48%. Since g is simple, A consists of a single element, i.e.

there exists m such that, for n > m, I'(n, j) is a single string

(majm)a (m + 1,jm+1), .

Set ¢, := s/» for n > m. Clearly g = lim#¢,. Note that, as I::“ = 1 for large enough n,
Corollary 2.4 implies that there exists ng > m such that all injections ¢, — ¥,,.; are standard
for n > ng. The fact that a standard exhaustion of g admits a refinement as in the statement

of the corollary is obvious. |

In the special case when g is exhausted by simple Lie algebras g,,, Corollary 3.2 implies
that, for large enough n, all injections g,, — g,.1 are standard. Furthermore, by Corollary

2.4 all g,, are of type A, or all g,, are of type C, or each g, is of type B or D.

Here is an example showing that there exist interesting exhaustions of sl(co) by non-

reductive Lie algebras.

12



Example 2. We build on Example 1. Put V,, := Span{vy,vs,...,v,} C V, V, ==V, ®
Co ¢ V, and (V,), := Span{v:,v},...,v:} C Vi. Set also g, = gnN (V, ® (V,),) and
3, = 9N (V,® (V,),). Then C(6 — vy — -+ — v,) @ (V,,), is the radical of §, and hingn
is an exhaustion of g with non-reductive finite dimensional Lie algebras. Note that the
Levi components g,, of g, are nested and their direct limit li_1>n ¢, is nothing but the proper
subalgebra g of g. On the other hand, a different choice of Levi components of g, yields
an exhaustion of g. Indeed, the Lie algebras &, := g N (f/n_l ® (V,,)«) are also nested and
their direct limit liin £, is the entire Lie algebra g. Moreover, since f/n,l and (V). are non—

degenerately paired, we have €, = sl(n), which means that £, is a Levi component of g,, for

every n.

We conclude this section by another corollary of Theorem 3.1.

Corollary 3.3 Let a be a Lie algebra isomorphic to a finite or countable direct sum of
finite-dimensional simple Lie algebras and of copies of sl(c0), so(o0), and sp(oco). Then
a subalgebra s C a is locally semisimple if and only if s itself is isomorphic to a finite or
countable direct sum of finite—dimensional simple Lie algebras and of copies of sl(00), so(c0),

and sp(00).
Proof. Since a admits an obvious injective homomorphism into sl(co), the statement follows

directly from Theorem 3.1. O

4 V and V, as modules over a locally semisimple sub-

algebra s C g

Fix a locally semisimple subalgebra s C g. In this section we describe the structure of V'

and V, as s—modules. Let s = ®,c45“ where s are the simple constituents of s according
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to Theorem 3.1. Set

AF = {a € A|s” is finite-dimensional },
A = {a € A|s® is infinite-dimensional },
5f = @aeAfﬁa.

We start by describing the structure of V' and V, as modules over st

Proposition 4.1 Let W be an at most countable-dimensional s’ ~module with the property
that, for every x € s/, the image of x, considered as an endomorphism of W, is finite—

dimensional. Then

(i) every simple s/ —submodule of W is finite-dimensional;

(ii)) W has non—zero socle W', hence by (1) W' is a direct sum of simple finite-dimensional

s —modules.

(iii) W/W' is a trivial s*—module.

Proof. The set A/ is finite or countable. If A7 is finite, s/ is a finite-dimensional semisimple
Lie algebra and, by the required property on W, the sf-module W is integrable. Hence
(by a well-known extension of Weyl’s semisimplicity theorem to integrable modules) W is

semisimple and all of its simple constituents are finite—dimensional.

Assume that A/ is countable and put A7 := {1,2,...}. Fix an exhaustion of s/ of the
form s/ = s'@---@s", s" being the simple constituents of s/. If W is trivial there is nothing
to prove. Assume that W is non—trivial. Then W is a non—trivial s"—module for some n. Let
W be a non—trivial isotypic component of the s”-module W i.e. an isotypic component of
W corresponding to a non—trivial simple finite-dimensional s"-module. The condition on
W implies that W is finite-dimensional as otherwise the image in W of any root vector of
s" would be infinite-dimensional. Notice that W is actually an s/—submodule of W since

W™ is s™-stable for all m. Furthermore, as every non-trivial simple s/—submodule W of W
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contains a non-trivial s"-submodule for some n, W is necessarily contained in W)} for some

k. This proves (i) and (ii).

To prove (iii) we observe that the socle W’ of W is the direct sum of a trivial module

and the sum of W as above for all n and all . O

Example 3. This example shows that W is not necessarily semisimple as an s/-module,
i.e. that W' does not necessarily equal W. In the set—up of Example 1 consider a partition
of Z~q into two—element subsets. The corresponding locally semisimple subalgebra s of g is
a direct sum of infinitely many copies of sl(2) and hence s/ = s. One checks immediately

that for W =V, we have W' = V.

As a next step we describe the s*-module structures of V and V, for a € A™f.

Proposition 4.2

(i) For anya € A™ the socle V! of V' as an s*—module is isomorphic to ko, V@l VEON,
where ky, lo € Zso, V* and V. are respectively the natural and conatural representation

of s* (here l, = 0 for s* 2 sl(oco) ) and N® is a trivial s*—module of finite or countable

!/

dimension. Similarly, for g = gl(co) orsl(co), the socle (Vi)

of Vi as an s*“—module is

1somorphic to k VIS, VB NE

* 7

where N is a trivial s“—module of finite or countable

dimension, not necessarily equal to the dimension of N¢.

(i) V/V! and V./(Vi)., are trivial s*—modules.

«

Proof. Fix standard exhaustions of §* and g such that the diagram

Sp_1 Sy St e s
On-1 On On+1 ce g

commutes.. As in the proof of Theorem 3.1 we see that, for large enough n, I sg%" is a constant,

i.e. does not depend on n. Therefore, by Proposition 2.3 each injective homomorphism
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5% — g, is diagonal injection for large n, i.e.
(9) Vign) = kaV(sy) @ 1V (s7)" & Ny,

where V(g,,) and V(s%) are the natural representation of g, and s¢ respectively, the super-

script * stands for dual space, ko + 1o = 1, gg, and N is a trivial s0-module. Furthermore
(10) Vign)" = kaV(sp)" ® LV (s) & Ny

Since Homg (V(s2), V(s 1)*) = Homﬁg(V(sﬁ),Ng“): Homg (V(s9)*, V(so,,)) =

n n

Homgo (V(s2)*, N2) = 0 and dim Homge (V(s2), V(s%,)) = dim Homea (V (s2)*, V(s2,,)*) =
1, the fact that V' = lim V(gn) and V, = I@V(gn)* implies dim Home (VY V) = k,,
dim Home (V*, Vi) = l,. Therefore k,V* & [,V C VI, k, V> @ 1,V C (V). More-
over, it follows immediately from (9) and (10) that both V! and (V). can only have simple
constituents isomorphic to V¢, V* and to the 1-dimensional trivial module. This completes

the proof of (i).
Claim (ii) follows directly from (i) and from (9) and (10). O

Example 4. This example shows that the socle of the natural representation considered
as an s“—module can also be a proper subspace. In the notations of Example 1 we can
choose the subalgebra s of § to be g. Then V' = V is a proper subspace of V. Note also
that the dimensions of the trivial s*-modules N* and N2 are different in this case. Indeed,
dim N* = 1 while dim N¢ = 0.

Put now A := A" U{f} and, for every a € A, let V(a) and V,(a) denote the sum of all

non-trivial simple s*-submodules of V' and V, respectively.

Proposition 4.3 The sums)_ .z V(a) and )’ . ; Vi(a) are direct in V' and V respectively.
Each s* acts trivially on V(B) and Vi(B) for B # a. Furthermore, V/(®,ciV (o)) and
Vi/(@,eiVe(a)) are trivial s—modules.

Proof. We will prove the proposition for V' as the statements for V, are analogous. Let

a, 3 € A™ and let s = lims® and s° = lims” be standard exhaustions. Assume that the
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action of s on V() is non—trivial. Then, for some i, V will have simple s¢ & s7—submodules
of the form V;*® MJ or (V*); ® M for some s-modules M/ of unbounded dimension when
n — oo. This would imply that the multiplicity of V;* or (V.%); in V is infinite, which is a

contradiction. The case when a = f or § = f is dealt with in a similar way.
The fact that V/ @,z V() is a trivial s-module is obvious.. O

In this way we have proved the following theorem.

Theorem 4.4 The socle V' of V' (respectively, (Vi)' of Vi) considered as an s-module is
isomorphic to the direct sum of all non—trivial s*—submodules V(a) (respectively, Vi(«)) of
V' (respectively, V. ), described in Propositions 4.2 and 4.3 plus a possible trivial s—submodule.

The quotients V/V' and V.. /(V.)" are trivial s-modules.

Proof. By Proposition 4.3, for each a € A™/ the modules V() C V and Vi(a) C Vi are
semisimple s—submodules of finite length. Moreover, the modules V(f) C V and V,(f) C Vi
are semisimple s—submodules with finite-dimensional simple constituents. By Proposition
4.3, the quotients V/ @, .1V (o) and V. /@, 5 Vi(«) are trivial s-modules, and the statement

follows. O

Note that to any locally semisimple subalgebra s C g we can assign some ”standard invari-
ants”. These are the isomorphism classes of V(f) and V,(f) as s/~modules, the pairs of num-
bers {ka,lo}acans, and the dimensions {dim N7 dim N/ dim V/V} dim V. /(V.);}scains,
where N7 := Mgy NP, N/ := Ny NP, and V) and (V.); are the respective socles of V
and V, considered as (®gess°)-modules. Clearly, these invariants are preserved when con-
jugating by elements of the group GL(V,V,) of all automorphisms of V' under which V, is
stable (respectively, all automorphisms of V' preserving the non—degenerate form V' xV — C
for g =so(V') or sp(V)). In a similar way, when s is replaced by a maximal toral subalgebra,
it is shown in [DPS] that the analogous invariants are only rather rough invariants of the
GL(V,V,)—conjugacy classes of maximal toral subalgebras. The GL(V,V,)—conjugacy classes

of locally semisimple subalgebras s C g with fixed ”standard invariants” as above remain to
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be studied.

5 Maximal subalgebras

Theorem 5.1

Let m C g be a proper subalgebra.

(i) If g = gl(V, Vi), then m is mazimal if and only if one of the following three mutually

exclusive statements holds:

(ia) m = [g,g] = sl(V, Vi);

(ib) m = StabyW orm = Stab,WW, where W C V (respectively, W C V,) is a subspace
with the properties codimy W = 1, W+ = 0 (respectively, codimy, W=1 wt=

0); in this case m = gl(co);
ic) m = Stab,W = Stab,W+, where W C V is a proper subspace with W+ =W,
g g

(ii) If g = sl(V, Vi), then m is mazximal if and only if one of the following three mutually

exclusive statements holds:
(ila) m =so(V) or m =sp(V) for an appropriate non—degenerate symmetric or skew-
symmetric form on V;

(iib) m = StabyW or m = Stab W, where W C V (respectively, W C V. ) is a subspace
with the properties codimy W = 1, W+ = 0 (respectively, codimy, W= 1, Wt =

0); in this case m = sl(00);

(iic) m = Stab,W = Stab,W*, where W C V is a proper subspace with W++ =W

(ili) If g = so(V) or g = sp(V), then m is maximal if and only if m = StabgW for some

subspace W C 'V satisfying one of the following three mutually exclusive conditions:
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(iiia) W is non—degenerate such that W & W+ =V and dimW # 2, dim W+ # 2
for g = so(V); in this case m = so(W) @ so(W+) when g = so(V), and m =
sp(W) @ sp(W+) when g =sp(V);

(iiib) W is non—degenerate such that W+ = 0 and codimy W = 1; in this case m =

so(W) when g =so(V), and m = sp(W) when g = sp(V);

(ilic) W is isotropic with WL = W.

The space W (respectively, W) is unique in cases (ib) and (iib); the space W is unique in

cases (ic), (iic), (iiib), and (iiic); the pair (W, W) is unique in case (iiia).

Proof. Let g = gl(V,V,) and let m be maximal. If both V' and V, are irreducible m—modules,
then m = [g,g]. This follows from the description of irreducible subalgebras of g given in
Theorem 1.3 in [BS]. Let V' be a reducible m-module. Then m C StabyW for some proper
subspace W C V. Since V is an irreducible g-module, StabgWW is a proper subalgebra of g.
Therefore the maximality of m yields m = Stab,W. If W+ = W, we are in case (ic). If
the inclusion W C W+ is proper, then the inclusion Stab,JW C StabgW*+ is also proper
since W+t @ V. C StabyW=+ and W+ ®@ V, ¢ Stab,IW. Hence we have a contradiction
unless Stab,/W++ = g. In the latter case W must have codimension 1 in V as otherwise
StabgWW again would not be maximal. Moreover, Stab,/W' = W ® V, and, as W and V, are
non-degenerately paired, m = StabgIW = gl(oc0).

Finally, if V, is a reducible m—module and V is an irreducible m-module then m = V@ W

for a subspace W C V, as in (ib). This proves (i) in one direction.

For the other direction, one needs to show that if W (respectively, W) is a subspace as in
(ib) or (ic), StabgW (respectively, StabyIW') is a maximal subalgebra. In case (ic) this follows
from the observation that Stab/V = W @ V, +V ® W+ which shows that g /StabgW =
(V/W) @ (V./W?) is an irreducible StabgW-module.. In case (ib) Stab,/W = W ® V.
(respectively, StabW = V @ W), hence g/StabyW 22 V, (respectively, g/Stab,W = V) is

an irreducible StabgW-module. The proof of (i) is now complete.
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Claim (ii) is proved in the same way.

Let g = so(V) or g = sp(V) and let m be maximal. Then V must be a reducible m—
module by Theorem 1.3 in [BS]. If W is a proper m—submodule of V', then m stabilizes W+
as well. If WAt =V ie. W+ =0, the inclusion StabgW C Stab,W?* is proper whenever W
is a proper subspace of W*. The maximality of m implies then codimy W = 1 and we are in
case (iiic). If W+t is a proper subspace of V, the inclusions m C Stab,WW C Stab /W*+ and
the maximality of m imply that m = StabyW++. Noting that (W++)++ = Wt we may
replace W by W+ and for the rest of the proof assume that m = StabyWW, where W++ = W.

If W is isotropic or W+ is isotropic, then StabyJW = StabyJW* and we are in case (iiic).

If W N W+ is a proper subspace both of W and W+, W N W+ is an isotropic space. The
inclusion m C Staby(WNW+) implies m = Staby(WNW), and again we are in case (iiic) as
(WNWH)EH = WwWnW. Assume WNW+ = 0. Then m C Staby(WaeW=). f WeW+ =V
and dim W # 2 and dim W+ # 2 for g = so(V), then Stab,/W = so(W) & so(W) or
Stab,W = sp(W) @ sp(W+), and we are in case (iiia). The case when g = so(V) and
dim W = 2 or dimW+* = 2 does not occur as then StabyIV is contained properly in the

stabilizer of an isotropic subspace of W or W+ respectively.

If the inclusion W & W+ C V is proper, then Staby(W & W) is a proper subalgebra of
g and the the inclusion StabyW C Staby(W & W) is also proper. Indeed, for g = so(V') we
have A2(W @& W) C Stabg(W @ W) and A*(W & W) ¢ StabgW, and for g = sp(V) we
have S*2(W & W) C Stabg(W & W) and S?(W & W) ¢ Stab,W. Hence the maximality

of m implies V =W & W+, and we have proved (iii) in one direction.

We leave it to the reader to verify that, for every W as in (iiia), (iiib), and (iiic), StabsW

is a maximal subalgebra of g.

To prove the uniqueness of W (respectively, W) or of the pair (W, W) as stated, it is
enough to notice that W (respectively, 1) is the unique proper m-submodule of V' (respec-
tively, V,) in cases (ib) and (iib); that W is the unique proper m—submodule of V' in cases

(ic), (iic), (iiib), and (iiic); and that W are W+ are the only proper m-submodules of V in

20



case (iiia). O

Note that the subalgebra g C g from Example 2 is a maximal simple subalgebra of g

as in (ib). Furthermore, in all cases but (ic), (iic), and (iiic), a maximal subalgebra m is

irreducible in the sense of [LP] and [BS], and in all cases but (ib), (iib), and (iiib) g admits

a standard exhaustion lim g,, such that the Lie algebras m N g, are maximal subalgebras of

g, for all n.
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