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Abstract. Let g be a reductive Lie algebra over an algebraically closed field of
characteristic zero, and k be a subalgebra reductive in g. We prove that g admits
an irreducible (g, k)-module M which has finite k-multiplicities and which is not a
(g, k′)-module for any proper inclusion of reductive subalgebras k ⊂ k′ ⊂ g, if and
only if k contains its centralizer in g. The main point of the proof is a geometric
construction of (g, k)-modules which is analogous to cohomological induction. For
g = gl (n) we show that, whenever k contains its centralizer, there is an irreducible
(g, k)-module M of finite type over k such that k coincides with the subalgebra of
all g ∈ g which act locally finitely on M . Finally, for a root subalgebra k ⊂ gl (n),
we describe all possibilities for the subalgebra l ⊃ k of all elements acting locally
finitely on some M .

Math. Subject Classification 2000: Primary 17B10 , Secondary 22E46 .

1. Introduction

Let g be a reductive Lie algebra over an algebraically closed field of characteristic
zero and k ⊂ g be a subalgebra reductive in g. In his program talk [G], I. Gelfand has
introduced the notion of a (g, k)-module with finite k-multiplicities. The present paper
focuses on a new notion relevant to Gelfand’s program: we call k primal if g admits
an irreducible (g, k)-module with finite k-multiplicities which is not a (g, k′)-module
for any proper inclusion of reductive subalgebras k ⊂ k′ ⊂ g. Our central result is
that k is primal if and only if k contains its centralizer in g, or equivalently, if and only
if k is a direct sum of a semisimple subalgebra k′ in g and a Cartan subalgebra of the
centralizer C(k′) in g. This provides a complete description of all primal subalgebras,
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2 ON THE EXISTENCE OF (G, K)-MODULES OF FINITE TYPE

as the semisimple subalgebras of a reductive Lie algebra have been classified by E.
Dynkin, [D].

Here is a brief account of our motivation. It is common wisdom that classifying all
irreducible representations of a reductive Lie algebra g is not a well-posed problem.
In contrast with that, classifying irreducible representations with natural finiteness
properties has remained a core problem in representation theory since the work of
E. Cartan and H. Weyl. A landmark success has been the celebrated classification
of irreducible Harish-Chandra modules (see [V], Ch. 6 and [KV], Ch. 11). The
case of (G2, sl(3))-modules has been considered by P. Kekäläinen in [Ke], and by G.
Savin in [S]. In 1998 O. Mathieu (following up on work of S. Fernando and others)
obtained a very important different classification: of irreducible weight modules with
finite-dimensional weight spaces, [M].

In [PS] it was noticed that both classifications, of irreducible Harish-Chandra mod-
ules and of irreducible weight modules, are particular cases of the problem of classify-
ing irreducible g-modules which have finite type over their Fernando-Kac subalgebra.
The Fernando-Kac subalgebra g [M ] associated to an irreducible g-module M is by
definition the set of all elements in g which act locally finitely on M . The fact
that g [M ] is a Lie subalgebra of g was discovered independently by S. Fernando,
[F], and V. Kac, [K]. Furthermore, M is of finite type over a given subalgebra
l ⊂ g [M ] if the multiplicity of an arbitrary fixed irreducible l-module in any (vary-
ing) finite-dimensional l-submodule of M is bounded. The subalgebra l is called a
Fernando-Kac subalgebra of finite type if g admits an irreducible g-module M with
g [M ] = l which is of finite type over l. The problem of classifying all, not necessarily
reductive, Fernando-Kac subalgebras of finite type is of fundamental importance for
the structure theory of g-modules. In this article we classify the reductive parts of
Fernando-Kac subalgebras of finite type, as a subalgebra is primal if and only if it is
a reductive part of a Fernando-Kac subalgebra of finite type.

A short outline of the paper is as follows. In Section 3 we establish some necessary,
(but in general not sufficient) conditions for a subalgebra l ⊂ g to be a Fernando-Kac
subalgebra of finite type. We show in particular that a Fernando-Kac subalgebra of
finite type l is algebraic and admits a natural decomposition l = lred⊃+ nl, where lred is
a reductive in g subalgebra which contains its centralizer, and nl is a nilpotent ideal
in l. We also characterize completely all solvable Fernando-Kac subalgebras of finite
type in g. In Section 4 we fix an arbitrary algebraic subalgebra k, reductive in g, and
construct irreducible (g, k)-modules M of finite type over k. The construction of M is
a D-module version of cohomological induction: M equals the global sections of a Dµ-
module supported on the preimage in G/B of K · P ⊂ G/P for a suitable parabolic
subgroup P ⊂ G. Here G is a connected algebraic group with Lie algebra g and K is a
connected subgroup with Lie algebra k. We show then, that if k contains its centralizer
in g, g [M ]red = k for some M . Therefore, k is primal if and only if it contains its
centralizer. Furthermore, as a corollary we obtain that any semisimple subalgebra of
g is the derived subalgebra of a primal subalgebra, and that any subalgebra which is
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not a proper subalgebra of a maximal root subalgebra is a Fernando-Kac subalgebra
of finite type. In Section 5 we consider in more detail the case g = gl (n). We prove
that here any primal subalgebra k is itself a reductive Fernando-Kac subalgebra of
finite type, and also give an explicit description of all Fernando-Kac subalgebras of
finite type which contain a Cartan subalgebra.

In conclusion, for an arbitrary reductive Lie algebra g, we give a complete descrip-
tion of all primal subalgebras k ⊂ g, and for each primal subalgebra k we construct
certain “series” of irreducible (g, k)-modules of finite type over k. A direct comparison
with known results in the case of a symmetric pair (g, k), shows that the (g, k)-modules
obtained by our construction are only a part of all irreducible (g, k)-modules. Conse-
quently the problem of classifying all irreducible (g, k)-modules of finite type over an
arbitrary primal subalgebra k ⊂ g is still open.

Acknowledgement. We thank the referee for pointing out an inaccuracy in the
original version of the paper and for making further constructive comments.

2. General preliminaries

The ground field F is algebraically closed of characteristic zero. If X is a topological
space and F is a sheaf of abelian groups on X, then Γ (F) denotes the global sections
of F on X. If f : X → Y is a continuous map of topological spaces, f−1 denotes
the topological inverse image functor from sheaves on Y to sheaves on X. If X is
an algebraic variety, OX stands for the structure sheaf of X, and if f : X → Y is a
morphism of algebraic varieties, f ∗ (respectively f∗) denotes the inverse image (resp.
direct image) functor of O-modules. A multiset is defined as a map from a set Y
into Z+∪∞, where Z+ := {0, 1, 2, 3, ...}, or, more informally, as a set whose elements
have finite or infinite multiplicities.

Throughout this paper g is a fixed reductive Lie algebra, and G stands for a
connected algebraic group with Lie algebra g. Denote by C (l) (respectively N (l))
the centralizer (respectively normalizer) of a subalgebra l ⊂ g. Furthermore, U (l)
stands for the universal enveloping algebra of l, Z (l) stands for the center of l, rl

stands for the solvable radical of l, and nl stands for the maximal ideal in l which
acts nilpotently on g. The sign ⊂+ denotes the semi-direct sum of Lie algebras, and
lss is a Levi component of l. If l is reductive, then lss simply equals the derived
subalgebra [l, l]. For a Borel subalgebra b ⊂ g which contains a Cartan subalgebra h,
ρb denotes as usual the half-sum of the roots of b. In what follows a root subalgebra
l ⊂ g means a subalgebra containing a Cartan subalgebra of g.

By definition a g-module M is a (g, l)-module if l ⊂ g [M ]. M is a strict (g, l)-
module if l = g [M ]. We also need the following definition from [PS]: M is an isotropic
(g, l)-module if for each 0 6= m ∈ M the set of elements g ∈ g acting finitely on m
coincides with l. An irreducible strict (g, l)-module is automatically isotropic.

The following statement is a reformulation of Lemma 1 in [PS].
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Lemma 2.1. Let h be a Cartan subalgebra in g, l ⊃ h be a solvable subalgebra
and M be an isotropic strict (g, l)-module of finite type over h. Then there exists a
parabolic subalgebra q ⊂ g with g = l + q, q ∩ l = h, and such that the semisimple
part of q is a direct sum of simple Lie algebras of types A and C.

3. Necessary conditions for l to be of a Fernando-Kac subalgebra of
finite type

Theorem 3.1. Let l ⊂ g be a Fernando-Kac subalgebra of finite type.

(1) N (l) = l; hence l is an algebraic subalgebra of g.
(2) There is a decomposition l = nl⊂+ lred, unique up to an inner automorphism

of l, where lred is a (maximal) subalgebra of l reductive in g.
(3) Any irreducible (g, l)-module M of finite type over l has finite type over lred

and lred acts semi-simply on M .
(4) C (lred) = Z (lred), and Z (lred) is a Cartan subalgebra of C (lss).
(5) l ∩ C (lss) is a solvable Fernando-Kac subalgebra of finite type of C (lss).

Proof. Let M be an irreducible strict (g, l)-module and M0 ⊂ M be an irreducible
finite-dimensional l-submodule. To prove 1, assume that N (l) 6= l. Then one can
choose x ∈ N (l) \l such that [x, lss] = 0 for a fixed Levi decomposition l = lss⊃+ rl.
Since x /∈ l, x acts freely on any non-zero vector in M . Set

Mn := M0 + x ·M0 + x2 ·M0 + ... + xn ·M0

A simple calculation, using [x, lss] = 0 and [x, rl] ⊂ rl, shows that Mn is l-invariant
and Mn/Mn−1 is isomorphic to M0 as an l-module. Therefore the multiplicity of M0

in M is infinite. Contradiction. To show the algebraicity of l, consider the normalizer
J of l in G. The Lie subalgebra of g corresponding to J is N(l). Hence, N(l) = l is
an algebraic subalgebra of g.

Claim 2 follows from 1 via some well known statements. For instance, Corollary
1 in [B], §5 implies that a self-normalizing subalgebra l is splittable, i.e. for y ∈ l
the semisimple and nilpotent parts of y are contained in l. Proposition 7 in [B] , §5
claims that any splittable subalgebra has a decomposition as required in 2.

To prove 3 note first that M is a quotient of the induced module U (g)⊗U(l) M0. As
the adjoint action of lred on U (g) is semisimple, lred acts semisimply on U (g)⊗U(l)M0,
and therefore also on M . Now note that there exists ν ∈ n∗l such that

x ·m = ν (x) m

for any m ∈ M0 and x ∈ nl. Since the adjoint action of nl on U (g) is locally nilpotent,
we obtain that, for any x ∈ nl, x−ν (x) acts locally nilpotently on U (g)⊗U(l)M0, and
hence on M . Therefore nl acts via the character ν on any irreducible l-subquotient of
M , and consequently two irreducible l-subquotients of M are isomorphic if and only
if they are isomorphic as lred-modules. This implies that M has also finite type over
lred, and 3 is proved.
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4. By 2 any irreducible strict (g, l)-module M has an lred-module decomposition

M = ⊕iM
′
i

for finite-dimensional isotypic components M ′
i . Clearly each M ′

i is C (lred)-invariant,
and, as it is finite-dimensional, C (lred) ⊂ g [M ] = l. Note that C (lred)∩ l is solvable.
Consequently, since C (lred) = C (lss) ∩ C (Z (lred)) ⊂ l, the centralizer of Z (lred) in
C (lss) is solvable. On the other hand, as C (lss) is reductive and Z (lred) is reductive in
C (lss), the centralizer of Z (lred) in C (lss) is reductive. Therefore Z (lred) coincides
with its centralizer in C (lss). This implies that C (lred) = C (lss) ∩ C (Z (lred)) =
Z (lred), and that Z (lred) is a Cartan subalgebra of C (lss).

To show 5 decompose M as

M = ⊕i (Mi ⊗ Vi) ,

where Mi are pairwise non-isomorphic irreducible lss-modules, and Vi are C (lss)-
modules. Then each Vi is a strict isotropic (C (lss) , l ∩ C (lss))-module of finite type
over l∩C (lss) . Furthermore l∩C (lss) is solvable, and 5 follows from Lemma 2.1. �

The conditions in Theorem 3.1 are not sufficient for l to be a Fernando-Kac sub-
algebra of finite type: see the Example in subsection 5.3. In general, the problem
of a complete characterization of a Fernando-Kac subalgebra of finite type is open.
However, for a solvable l we have the answer.

Proposition 3.2. A solvable subalgebra l ⊂ g is a Fernando-Kac subalgebra of
finite type if and only if l = h⊃+ nl, where h is a Cartan subalgebra of g and nl is the
nilradical of a parabolic subalgebra of g whose simple components are all of types A
and C.

Proof. Here lss = 0, C (lss) = g, and Theorem 3.1 4 implies that h := lred is a Cartan
subalgebra of g. The claim of the Corollary follows now immediately from [PS], Sect.
3 where a criterion for l to be a Fernando-Kac subalgebra of finite type is established
under the assumption that l ⊃ h. �

Note that Theorem 3.1 3 and Proposition 3.2, applied to a solvable l, yield that
any strict irreducible (g, l)-module of finite type over l is a weight module with finite-
dimensional weight spaces. Such modules are classified by O. Mathieu in [M]. More
precisely, any irreducible weight module M with finite-dimensional weight spaces
is the unique irreducible quotient of an induced module U (g) ⊗U(p) Mnp , where p
is a parabolic subalgebra and Mnp is the p-submodule of np-invariants in M . The
Fernando-Kac subalgebra g [M ] of M equals (g [M ] ∩ pred)⊃+ np, and it is solvable if
and only if g [M ]∩ pred is a Cartan subalgebra of g (in general g [M ]∩ pred is the sum
of a Cartan subalgebra and an ideal in pss).
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4. A construction of irreducible (g, k)-modules of finite type

4.1. A geometric set up. Let k ⊂ g be an algebraic subalgebra, reductive in g
and such that kss is proper in gss. Denote by K the connected subgroup of G with
Lie algebra k, and let Kss be the connected subgroup corresponding to kss. By HK

we denote a fixed Cartan subgroup of K, with Lie algebra hk. Fix an element h ∈ hk

such that C(Fh) ⊂ C(hk ∩ kss) and for which the operator adh : g → g has rational
eigenvalues. The element h defines the parabolic subalgebra

(4.1) p := ⊕γ≥0g
γ
h,

where gγ
h is the γ-eigenspace of adh : g → g. Clearly bk := p∩ k is a Borel subalgebra

of k containing hk. Notice also that pred := g0
h is a maximal reductive in g subalgebra

of p. Let P be the subgroup of G corresponding to p, and Pss ⊂ P be the connected
subgroup corresponding to a fixed Levi component pss of p. Furthermore, let B ⊂ P
be a Borel subgroup of G such that BK = B ∩K has Lie algebra bk. Set X := G/B,
Y := G/P and let π : X → Y be the natural projection. Denote by S the K-orbit of
the closed point in Y corresponding to P , and put V := π−1 (S).

Lemma 4.1. V ∼= S × T , where T := P/B.

Proof. V is a relative flag variety over S with fiber T = P/B ∼= Pss/(Pss ∩ B).
Moreover, V = Kss ×Kss∩P T . To be able to conclude that the bundle V → S is
trivial it suffices to check that the action of Kss ∩ P on T is trivial. The solvable
radical of P lies in B, hence the action of Kss ∩P on T factors through the action of
Kss ∩Pss on T . The fact that Kss ∩Pss acts trivially on T follows from the inclusion

(4.2) Kss ∩ Pss ⊂ Z(Pss),

where Z(G′) stands for the center of an algebraic group G′. In the rest of the proof,
we establish (4.2).

We show first that pss ∩ kss = 0. By the definition of p,

hk ∩ kss ⊂ pred ⊂ C(hk ∩ kss).

Therefore

(4.3) hk ∩ kss ⊂ Z(pred)

and

(4.4) pss ∩ kss ⊂ C(hk ∩ kss) ∩ kss.

Furthermore, pss ∩ hk ∩ kss = 0 as

(4.5) pred = pss ⊕ Z(pred).

The observation that C(hk ∩ kss)∩ kss equals the centralizer in kss of hk ∩ kss, together
with (4.4) yields

pss ∩ kss ⊂ C(hk ∩ kss) ∩ kss = hk ∩ kss ⊂ Z(pred).
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This implies pss ∩ (pss ∩ kss) = 0, or equivalently pss ∩ kss = 0.
On the group level, (4.5) implies Pss ∩ Z(Pred) ⊂ Z(Pss). Similarly, (4.3) yields

HK ∩Kss ⊂ Z(Pred). Hence Pss ∩HK ∩Kss ⊆ Z(Pss). By (4.4),

(4.6) Pss ∩Kss ⊂ C(HK ∩Kss) ∩Kss,

where C(G′) now stands for the centralizer in G of a closed subgroup G′ ⊂ G. Since
C(HK ∩ Kss) ∩ Kss is the centralizer of HK ∩ Kss in Kss, the fact that a Cartan
subgroup of Kss is self-centralizing yields via (4.6)

Pss ∩Kss ⊂ C(HK ∩Kss) ∩Kss = HK ∩Kss ⊂ Z(Pred).

Therefore
Pss ∩ (Pss ∩Kss) ⊂ Pss ∩ Z(Pred) = Z(Pss),

or equivalently Pss ∩Kss ⊂ Z(Pss). This completes the proof. �

4.2. D-module preliminaries. For any µ ∈ h∗ let Dµ denote the twisted sheaf of
differential operators on X defined in [BB]. A Dµ-module is by convention a sheaf F
of Dµ-modules on X which is quasicoherent as a sheaf of OX-modules. The support
of F is the closure of the subvariety of all closed points for which the sheaf-theoretic
fiber of F is non-zero. A weight µ ∈ h∗ defines the character θµ of the center of U (g)
via the Harish-Chandra map (see [B], §6).

When the ground field F is not C, by a dominant weight we mean an element
µ ∈ h∗ whose value on all B-positive co-roots is a nonnegative rational number. For
F = C it suffices that the value has nonnegative real part. The Beilinson-Bernstein
localization theorem claims that, for a regular dominant µ, the functor of global
sections

Γ: Dµ-mod → U (g) / (ker θµ) -mod

is an equivalence between the category ofDµ-modules and the category of U (g) / (ker θµ)-
modules, where (ker θµ) stands for the two-sided ideal in U (g) generated by the kernel
of the central character θµ. The inverse equivalence (usually referred to as localiza-
tion) is given by the functor

R 7→ Dµ ⊗Γ(Dµ) R,

where the U (g) / (ker θµ)-module R is endowed with a Γ(Dµ)-module structure via
the natural isomorphism U (g) / (ker θµ) → Γ(Dµ), see [BB].

Let i : W → X define a non-singular locally closed subvariety of X; we denote by
Dµ

W the sheaf of right i∗Dµ-module endomorphisms of the inverse image sheaf i∗Dµ

which are left OW -module differential operators. Furthermore, the inverse image
functor i∗ of O-modules yields a functor

iF : Dµ-mod → Dµ
W -mod.

If W is a closed subvariety we will also consider the direct image functor

iF : Dµ
W -mod → Dµ-mod,

F 7→ Dµ
←W ⊗Dµ

W
F ,
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whereDµ
←W := iF (Dµ ⊗OX

Ω∗X)⊗OW
ΩW and Ω stands for volume forms. Kashiwara’s

theorem claims that iF is an equivalence between the category of Dµ
W -modules and

the category of Dµ-modules supported in W . It will also be important for us that
the sheaf i−1iFF has a natural OW -module filtration with successive quotients

(4.7) Λmax
(
NW |X

)
⊗OW

Si
(
NW |X

)
⊗OW

F ,

where i ∈ Z+, NW |X denotes the normal bundle of W in X, Si stands for i-th
symmetric power and Λmax stands for maximal exterior power.

In [PS] the following lemma is proven.

Lemma 4.2. If Q is the support of a Dµ-module F , then g [Γ (F)] ⊂ Stabg Q, where
Stabg Q is the Lie algebra of the subgroup of G which stabilizes Q.

4.3. The construction. Let L be an irreducible (p, hk)-module of finite type
over hk with trivial action of np + (Z(pred) ∩ kss) and with pred-central character θν

pred

for some Pss ∩ B-dominant weight ν ∈ h∗. Consider T = P/B as a (non-singular)
closed subvariety of X = G/B. Set L := Dη

T ⊗Γ(Dη
T ) L, where η = ν + ρb∩pred

− ρb.

Let, furthermore, OS (ζ) be the invertible Kss-sheaf of local sections on S of the line
bundle K ×K∩P

(
Fw(ζ)

)
, where w is the longest element in the Weyl group of kss,

ζ is a kss-integral weight in h∗ and Fξ stands for the one-dimensional h-module of
weight ξ. Then F := OS (ζ) � L is a Dµ

V -module for µ = ζ + η, and M = iFF is a
Dµ-module. Finally, set M = Γ (M).

Theorem 4.3. Assume that ζ is dominant and µ is regular and dominant. Then

(1) M is an infinite-dimensional irreducible g-module;
(2) g [M ] = kss⊃+ mL, where mL is the maximal kss-invariant subspace in p [L];

moreover g [M ] is the unique maximal subalgebra in p [L] + k which contains
k;

(3) M is a (g, k)-module of finite type over k.

Proof. Dη
T is a sheaf of twisted differential operators on the flag variety T . By the

Beilinson-Bernstein theorem applied to T , L is an irreducible Dη
T -module. Further-

more, F is an irreducible Dµ
V -module. Since V is a non-singular closed subvariety,

M is an irreducible Dµ-module by Kashiwara’s theorem. Finally, by the Beilinson-
Bernstein theorem applied to X, M = Γ (M) is an irreducible g-module. 1 is proven.

To prove 2 consider the subalgebra Stabg Q, where Q is the support of the Dµ-
module M. Note that Q ⊂ V and that V = π−1(π(Q)). Hence, Stabg Q is a
subalgebra of st := Stabg V . One can check easily that

(4.8) st = kss⊃+ m,

where m is the maximal kss-invariant subspace in p. Thus st is a maximal subalgebra
in k + p containing k. By Lemma 4.2, g [M ] ⊂ Stabg Q ⊂ st and therefore g [M ] =
st [M ].
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Recall now that by (4.7) i−1M = i−1iFF (considered as an st-sheaf) has a natural
st-sheaf filtration with successive quotients

Λmax
(
NV |X

)
⊗OV

Si
(
NV |X

)
⊗OV

F .

In particular, M0 := Λmax
(
NV |X

)
⊗OV

F is a subsheaf of i−1M. As NV |X ∼= NS|Y �

OZ , Λmax
(
NV |X

) ∼= OS (τ) �OZ , where τ = −w
(∑

α∈∆(np) α
)
− 2ρb∩kss . Therefore

M0
∼= OS (τ + ζ) � L and

M0 := Γ (M0) ∼= Γ (π∗M0) ∼= Γ (OS (τ + ζ))⊗ L.

Both weights τ and ζ are dominant. Hence τ + ζ is kss-dominant, M0 6= 0, and by
the irreducibility of M ,

(4.9) g [M ] = st [M ] = st [M0] .

To calculate st [M0] we use that Γ (M0) ∼= Γ (π∗M0). Observe that π∗M0 is the
sheaf of sections of the induced vector bundle Kss ×Kss∩P

(
Fw(ζ+τ) ⊗ L

)
. The latter

is a Kss-sheaf, hence kss ⊂ st [M0]. By (4.8) and (4.9), g [M ] = kss⊃+ mL, where
mL = g [M ] ∩ m. To calculate mL, let’s write down the action of m on Γ (π∗M0).
An element of Γ (π∗M0) is a function φ : Kss → Fw(ζ+τ) ⊗L satisfying the condition
φ(ab) = b−1φ(a) for all a ∈ Kss, b ∈ Kss ∩ P . For x ∈ m and a ∈ Kss we have

(4.10) (Lxφ) (a) = Ad−1
a (x) (φ (a)) ,

where Lxφ stands for the action of x on φ. This formula immediately implies that

mL ⊂
{
x ∈ m | AdKss (x) ⊂ m

[
Fw(ζ+τ) ⊗ L

]
= m [L]

}
.

To see that mL is equal to the right hand side, let U be a unipotent subgroup of Kss

complementary to Kss ∩P . U acts simply transitively on an open dense subset of S.
Consider a U -invariant function f : Kss → L. For any a ∈ U we have f(a) = f(1).
Let x be in m[L] and assume x is Ad U -invariant. Then by (4.10), x acts locally
finitely on f , and, by the irreducibility of M , x acts locally finitely on M . Finally,
any y obtained from x by the action of Kss also acts locally finitely on M . Hence

(4.11) mL =
{
x ∈ m | AdKss (x) ⊂ m

[
Fw(ζ+τ) ⊗ L

]
= m [L]

}
.

In other words, mL is the maximal kss-invariant subspace in m[L], or equivalently in
p[L]. Consequently kss⊃+ mL is the maximal subalgebra in k + p [L] containing k, and
2 is proven.

It remains to prove 3. Let j : S → Y be the natural embedding. Observe that the
isomorphism NV |X ∼= NS|Y �OZ yields an isomorphism of k-sheaves

j−1jFOS (ζ) � L ∼= i−1iF(OS (ζ) � L) ∼= i−1M.

Therefore we have an isomorphism of k-modules

Γ (M) ∼= Γ (π∗M) ∼= Γ (jFOS (ζ))⊗ L,
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where the action of kss on L is trivial and the action of Z (k) is induced by the
embedding Z (k) ⊂ pred. By (4.7) j−1jFOS (ζ) has a filtration by k-sheaves with
successive quotients

Si
(
NS|Y

)
⊗OS

OS (ζ + τ) .

Consequently, M has a k-module filtration whose associated graded k-module is a
submodule of

Γ
(
S·

(
NS|Y

)
⊗OS

OS (ζ + τ)
)
⊗ L.

The sheaf S·
(
NS|Y

)
⊗OS

OS (ζ + τ) is locally free on S, and has a filtration with
invertible successive quotients OS (κ), where κ runs over the multiset Θ of weights in
h∗k

Θ = {ζ + τ +
∑
nα∈N

nαα | nα ∈ Z+}.

Here we take the summation over all weights α of the hk-module np/ (np ∩ k). Thus the
multiplicity of the irreducible k-module with the highest weight κ in M is majorized
by the multiplicity of κ in Θ + ΘL, where ΘL is the multiset of hk-weights of L. Our
goal is to show that the multiset Θ + ΘL has finite multiplicities. For any multiset
C ⊂ h∗k and t ∈ F , put Ct := {κ ∈ C | κ (h) = t}. Then ΘL = Θt0

L for some t0 ∈ F ,
and (Θ + ΘL)t = Θt−t0 +ΘL. As L has finite type over hk, ΘL has finite multiplicities.
Furthermore, Θt−t0 is a finite multiset as α (h) are all positive. Therefore (Θ + ΘL)t

has finite multiplicities, and thus Θ + ΘL also has finite multiplicities. Theorem 4.3
is proven. �

The construction in Theorem 4.3 does not provide all irreducible (g, k)-modules
of finite type over k. Consider for instance the case when k is symmetric, i.e. k
is stable under an involution of g. Here irreducible (g, k)-modules of finite type
over k are nothing but irreducible Harish-Chandra modules. The Beilinson-Bernstein
classification of irreducible Harish-Chandra modules implies that the supports of their
corresponding localizations (the latter are Dµ-modules on X = G/B) run over the
closures of all K-orbits in X. In particular, there are infinite-dimensional irreducible
Harish-Chandra modules whose localizations are supported on the closure X of the
open orbit of K in G/B. These latter modules do not appear among the modules
constructed in Theorem 4.3, as all Dµ-modules M considered above are supported
on a closed proper subvariety of X.

4.4. Description of primal subalgebras.

Theorem 4.4. Let k be a reductive in g subalgebra with C (k) = Z (k). Then k is
primal, i.e. there exists a Fernando-Kac subalgebra of finite type l ⊂ g such that
lred = k. In addition, l can be chosen so that nl is the nilradical of a Borel subalgebra
of C(kss).

Proof. The assumption C (k) = Z (k) implies that Z (k) is a Cartan subalgebra of
C (kss). Let h′ be a semisimple element in hk ∩ kss such that C (Fh′) = C (hk ∩ kss)



ON THE EXISTENCE OF (g, k)-MODULES OF FINITE TYPE 11

and adh′ : g → g has rational eigenvalues γ′i. Let furthermore h′′ ∈ hk ∩ Z (k) be a
regular element in C (kss) for which adh′′ : g → g has rational eigenvalues γ′′j , and
such that

(4.12) |γ′′j | < min
γ′

i 6=0
|γ′i|

for all j. Denote by p the parabolic subalgebra of g defined by the element h := h′+h′′

and let L be a 1-dimensional p-module. Theorem 4.3 applies to the triple (k, p, L) (as
k is automatically algebraic) and hence yields an irreducible (g, k)-module M of finite
type over k. Put l := g [M ]. Then l = kss⊃+ m, where as in the proof of Theorem 4.3
m is the maximal kss-invariant subspace in p. Let κ be the p ∩ kss-lowest weight of
an irreducible kss-submodule in m. We have κ (h′) = γ′i ≤ 0 for some i. On the other
hand, as m ⊂ p, κ (h′ + h′′) ≥ 0. Condition (4.12) gives κ (h′) = 0, i.e. m = C (kss)∩p.
As h′′ is regular in C (kss), m is a Borel subalgebra in C (kss), hence m is solvable and
m = Z (kss) + [m, m]. Therefore lred = k, nl = [m, m] and [nl, kss] = 0. �

Corollary 4.5. A reductive in g subalgebra k is primal if and only if C (k) = Z (k).

Proof. The statement follows directly from Theorems 4.4 and 3.1 4. �

Corollary 4.5, together with the remark that k is primal if and only if k = lred

for a Fernando-Kac subalgebra of finite type, reduces the problem of classifying all
Fernando-Kac subalgebras of finite type to the problem of describing all nilpotent
subalgebras n such that k⊃+ n is a Fernando-Kac subalgebra of finite type, k being a
fixed primal subalgebra of g. The latter problem is open. In the next section we solve
this problem in the case when g = gl(n) and k is a root subalgebra, and show also
that every primal subalgebra of gl(n) is a Fernando-Kac subalgebra of finite type.

For simple Lie algebras not of type A, it is not true that any primal subalgebra is
itself a Fernando-Kac subalgebra of finite type. Indeed, Proposition 3.2 implies that
a Cartan subalgebra of a simple Lie algebra g (which is always primal) is a Fernando-
Kac subalgebra of finite type if and only if g is of type A or C. (This was proved first
by S. Fernando in [F].) An important particular case of the above open problem is the
problem of characterizing all primal subalgebras which are Fernando-Kac subalgebras
of finite type.

We conclude this section with an application to the classical theory of subalgebras
of a semisimple Lie algebra. In the fundamental paper [D], an important role is
played by subalgebras s ⊂ g which are not contained in a proper root subalgebra. We
propose the term stem subalgebra. By Theorem 7.3 and 7.4 of [D], a stem subalgebra
is necessarily semisimple with zero centralizer. Here are some well known examples
of stem subalgebras.

(1) A principal sl(2)-subalgebra is a stem subalgebra.
(2) If g = sl(n), a proper subalgebra s ∈ g is a stem subalgebra if and only if the

defining representation of g is irreducible over s.
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(3) In general, any semisimple maximal subalgebra is either a stem subalgebra
or a root subalgebra. For instance, if n ≥ 3 is odd, o(n) ⊕ o(n) is a stem
subalgebra of o(2n). (This is moreover a symmetric pair.) Another well
known example of a stem subalgebra is G2 ⊕ F4 in E8.

(4) If g is an exceptional simple Lie algebra over C, Table 39 of [D] gives a
complete catalog of the stem subalgebras of g.

Theorem 4.4 combined with Theorems 7.3 and 7.4 in [D] imply

Corollary 4.6. If g = gss, any stem subalgebra is a Fernando-Kac subalgebra of
finite type.

Finally, we have

Corollary 4.7. If g = gss, every maximal proper subalgebra l ⊂ g is a Fernando-Kac
subalgebra of finite type.

Proof. By a theorem of F. Karpelevic, [Kar], l is a parabolic subalgebra or a semisim-
ple subalgebra. If l is parabolic the statement is obvious as any module induced from
a finite-dimensional l-module has finite l-multiplicities. Let l be semisimple. Then
C(l) = 0, and thus l is primal by Corollary 4.5. But as l is maximal, any irreducible
infinite-dimensional (g, l)-module of finite type is strict, i.e. l is a Fernando-Kac
subalgebra of finite type. �

5. The case g = gl (n)

5.1. Description of reductive Fernando-Kac subalgebras of finite type.

Theorem 5.1. A reductive in g = gl (n) subalgebra k is a Fernando-Kac subalgebra
of finite type if and only if it is primal, or equivalently, if and only if C (k) = Z (k).

Proof. By Theorem 3.1 it suffices to prove that if C (k) = Z (k), then k is a Fernando-
Kac subalgebra of finite type. We will modify the argument in the proof of Theorem
4.4 under the assumption that g = gl (n).

Let h = h′ + h′′, p and m be as in the proof of Theorem 4.4. In particular
m = C(kss) ∩ p. We claim that h′′ can be chosen so that, in addition, there is a
decomposition p = a′⊂+ a and an isomorphism p : C(kss) → a. Here is how this claim
implies the Theorem. Note that C(kss) is a direct sum of an abelian ideal and simple
ideals of type A. Choose now L to be a strict irreducible (C(kss), Z(k))-module of
finite type over Z(k). Define a p-module structure on L by putting a′·L = 0 and letting
a act on L via the isomorphism p. One can see immediately that L is an irreducible
(p, hk)-module of finite type over hk with p[L] = a′ + h. Apply the construction in
Theorem 4.3 to the triple (k, p, L) to obtain a (g, k)-module M of finite type over k.
As m ⊂ C(kss), we have mL = Z(k) and consequently g[M ] = k.

It remains to prove our claim about the choice of h′′. We will consider the parabolic
subalgebra p′ defined via (4.1) by the fixed element h′ and then we will choose h′′ so
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that p is a certain subalgebra of p′. Let E be the defining (n-dimensional) g-module.
There is an isomorphism of kss ⊕ C (kss)-modules

(5.1) E ∼= ⊕i (Ei ⊗ Vi) ,

where the Ei’s are pairwise non-isomorphic irreducible kss-modules and the Vi’s are
irreducible C (kss)-modules. We have

(5.2) C (kss) ∼= ⊕i End (Vi) .

One can check that

(5.3) p′red = C (hkss)
∼= ⊕λ∈h∗kss

End
(
Eλ

)
,

where Eλ denotes the hkss-weight space of weight λ. Furthermore, by (5.1),

(5.4) Eλ ∼= ⊕i

(
Eλ

i ⊗ Vi

)
.

Put Eλ
ij := Hom

(
Eλ

i , Eλ
j

)
⊗ Hom (Vi, Vj) and Eλ := ⊕i,jEλ

ij. Then combining (5.3)

and (5.4) one obtains that p′red
∼= ⊕λEλ. Note that Eλ

+ := ⊕i≤jEλ
ij is a parabolic

subalgebra of Eλ.
We now choose h′′ ∈ Z (k) so that the parabolic subalgebra p associated to h′+ h′′

by (4.1) is precisely (⊕λEλ
+)⊃+ np′ . Note that pred = ⊕i,λEλ

i,i. For each p ∩ kss-singular
weight λ of k in E there is a unique index iλ such that the p ∩ kss-highest weight of
Eiλ equals λ. Let a := ⊕λEλ

iλiλ
and a′ be the ideal complementary to a. Since Eλ

iλ

is one-dimensional and Eλ
iλiλ

∼= End(Viλ), equation (5.2) enables us to conclude that
C (kss) is isomorphic to a. �

Corollary 5.2. A reductive in g = gl(n) subalgebra k is a Fernando-Kac subalgebra
of finite type if and only if the defining g-module is multiplicity free as a k-module.

5.2. A combinatorial set-up. Let h be a Cartan subalgebra of g = gl(n)
and let l ⊃ h be a root subalgebra of g. The subalgebra l is defined by its sub-
set of roots ∆ (l) ⊂ ∆, where ∆ ⊂ h∗ is the root system of g. Recall that ∆ =
{εi − εj | 1 ≤ i 6= j ≤ n} for an orthonormal basis ε1, . . . , εn of h∗. Set k := lred and
n := nl. Then l = k⊃+ n. Fix an arbitrary Borel subalgebra b ⊂ g containing h, and
let Sk(g) ⊂ ∆ be the set of weights of all k∩b-singular vectors in g. For any α ∈ Sk(g)
denote by g (α) the irreducible k-submodule in g with highest weight α. Obviously
any α, β ∈ ∆ satisfy the condition

(5.5) α + β ∈ ∆ for α, β ∈ Sk(g) ⇒ α + β ∈ Sk(g).

More generally, let for any k-submodule f of g, Sk(f) denote the set of all weights of
k ∩ b-singular vectors in f. As k and n are subalgebras, Sk(n) and Sk(k) satisfy the
analog of condition (5.5).

The following lemma is an easy consequence of the description of root subalgebras
in gl(n) and we leave its proof to the reader.
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Lemma 5.3. There exist pairwise non-intersecting subsets I, J, K ⊂ {1, . . . , n} such
that |I| = |J | and

Sk(g) = {εi − εj | i ∈ I ∪K, j ∈ J ∪K}.

Let Ck(f) denote the set of all linear combinations of vectors from Sk(f) with coef-
ficients in Z+.

Lemma 5.4. Let g = gl(n). If Ck(g/n) ∩ Ck(n) 6= {0}, one of the following relations
holds

(1) α1 + α2 = β1 + β2,
(2) α1 + α2 = β

for some α1, α2 ∈ Sk(g/l), β1, β2, β ∈ Sk(n), where (α1, α2) = (β1, β2) = 0 in the case
of 1.

Proof. If Ck(g/n) ∩ Ck(n) 6= {0}, there is a non-trivial relation

(5.6) α1 + ... + αk = β1 + ... + βl

for αi ∈ Sk(g/n) and βi ∈ Sk(n). Among all such relations we fix one with minimal k
and minimal l for the fixed k. Consider first the case when α1 + αp ∈ Sk(g) for some
p ≤ k. We claim that then α1 +αp ∈ Sk(n). For, if α1 +αp ∈ Sk(g/n), one can reduce
k in (5.6) by the substitution β = α1 + αp, which contradicts our assumption. Thus
β := α1+αp ∈ Sk(n), and to show that α1+αp = β is a relation of type 2 we need only
verify that α1, αp 6∈ Sk(k). But the assumption α1 ∈ Sk(k) (and similarly αp ∈ Sk(k)) is
obviously contradictory, as then −α1 ∈ ∆(k) and αp = α1 +αp−α1 = β−α1 ∈ ∆(n).
Therefore α1, αp ∈ Sk(g/l), β ∈ Sk(n) and α1 + αp = β.

In the remainder of the proof we assume that α1 + αp 6∈ Sk(g) for all p ≤ k. If
α1 = εi − εj, then εi and −εj appear in α1 + . . . + αk with positive coefficients.
Therefore, there exist a and b such that βa = εi − εr and βb = εs − εj, s 6= r by
minimality. By Lemma 5.3 γ := εs− εr ∈ Sk(g). We claim that γ ∈ Sk(g/n). Indeed,
assume to the contrary that γ ∈ Sk(n). Then one can modify (5.6) by removing α1

and replacing βa + βb by γ. Since (5.6) is minimal, the new relation must be trivial.
Thus α1 = β1 + . . . + βl. Since β1 + . . . + βl ∈ ∆, β := β1 + . . . + βl ∈ Sk(n),
and hence α = β ∈ Sk(n). Contradiction. Therefore indeed γ ∈ Sk(g/n), and we
have a relation α1 + γ = βa + βb, where α1, γ ∈ S(g/n), βa, βb ∈ Sk(n). Obviously,
(α1, γ) = (βa, βb) = 0. To complete the proof we need to show that α1, γ ∈ Sk(g/l).
But the assumption α1 ∈ Sk(k) (and similarly γ ∈ Sk(k)) is contradictory as it implies
βb − α1 ∈ ∆(n). Hence γ = βa + (βb − α1) ∈ ∆(n). �

Corollary 5.5. Ck(g/n) ∩ Ck(n) = {0} if and only if Ck(g/l) ∩ Ck(n) = {0}.

Proof. As Ck(g/l) ⊂ Ck(g/n), Ck(g/n) ∩ Ck(n) = {0} implies Ck(g/l) ∩ Ck(n) = {0}. To
prove the converse assume that Ck(g/l)∩Ck(n) = {0} but Ck(g/n)∩Ck(n) 6= {0}. Then
by Lemma 5.4 one has a relation 1 or 2 with α1, α2 ∈ Sk(g/l). Hence Ck(g/l)∩Ck(n) 6=
{0}. Contradiction. �
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Lemma 5.6. Let s = gl(m), q ⊂ s be a maximal parabolic subalgebra, and k := qred .
Let Vκ be the irreducible s-module with highest weight κ and Vµ(k) be the irreducible
k-module with highest weight µ. If λ is a dominant k-integral weight and β is the
highest root of s, then, for large enough q ∈ Z+, the multiplicity of Vλ+qβ(k) in Vλ+pβ

is one for any p ∈ Z+, p ≥ q.

Proof. Set µ := λ + pβ, ν := λ + qβ for fixed p ≥ q ∈ Z+. Note that µ and
ν are k-dominant and hence Vν(k) is finite-dimensional. If Mµ denotes the Verma
module over s and Mµ(k) denotes the Verma module over k, then Mµ is isomorphic
to Mµ(k) ⊗ S(q/k)∗ as a k-module. Thus Mµ admits a filtration by k-submodules
such that the associated graded k-module is a direct sum of Verma modules over k,
each appearing with finite multiplicity. As the multiplicity of the weight (q − p)β in
S(q/k)∗ is one, the multiplicity of Mν(k) in Mµ is one. Therefore the multiplicity of
Vν(k) in Mµ is also one.

Now let N 6= Vµ be an irreducible subquotient of Mµ. We will show that, for q
large, the multiplicity of Vν(k) in N is zero. It is known (see for example Theorem
7.6.23 [Dix]) that N is a subquotient of Mwα(µ+ρ)−ρ for some positive root α such
that (µ, α) ∈ Z+. Therefore it suffices to prove that the multiplicity of Mν(k) in
Mwα(µ+ρ)−ρ is zero. This is equivalent to showing that wα(µ + ρ) − ρ − ν is not a
weight of S(q/k), i.e. that wα(µ + ρ)− ρ− ν does not belong to the convex hull C of
∆(q/k).

Choose q so that (ν, α) > 0 for any positive α satisfying (α, β) = 1, and assume
p ≥ q. First consider the case when (α, β) = 0. Here wα(µ + ρ) − ρ − ν = wα(ν +
ρ)− ρ− ν + (p− q)β. But wα(ν + ρ)− ρ− ν = aα for some negative a, which implies
that wα(µ + ρ) − ρ − ν = (p − q)β + aα does not belong to C. Next consider the
case when (α, β) = 1. Here wα(µ + ρ)− ρ− ν = wα(ν + ρ)− ρ− ν + (p− q)wα(β) =
−(b + 1 + p − q)α + (p − q)β, where b = (ν, α) is positive by our choice of q. One
can see that −(b + 1 + p − q)α + (p − q)β is not in C. Finally, the case α = β is
obvious. �

Corollary 5.7. Let s = s1 ⊕ · · · ⊕ sj where each si is isomorphic to gl(mi), qi

be a maximal parabolic subalgebra of si and βi be the highest root of si. Let q =
q1⊕. . .⊕ql⊕sl+1⊕. . .⊕sj for l ≤ j, k be the reductive part of q, and β = β1+. . .+βl.
If λ is a dominant k-integral weight, then there is a positive integer q such that the
multiplicity of Vλ+qβ(k) in Vλ+pβ is one for any p ≥ q.

Proof. The statement follows easily from Lemma 5.6 as an irreducible highest weight
module over a direct sum of reductive Lie algebras is isomorphic to the tensor product
of irreducible modules over the components. �

5.3. Description of Fernando-Kac root subalgebras of finite type.

Theorem 5.8. A root subalgebra l = (k⊃+ n) ⊂ g = gl(n) is a Fernando-Kac subal-
gebra of finite type if and only if Ck(g/l) ∩ Ck(n) = {0}.
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Proof. First, we will show that if Ck(g/l) ∩ Ck(n) 6= {0}, then l is not a Fernando-
Kac subalgebra of finite type. If Ck(g/l) ∩ Ck(n) 6= 0, Lemma 5.4 provides us with a
relation of type 1 or 2. Assume that the relation is of type 2, i.e. α1 + α2 = β for
some α1, α2 ∈ Sk(g/l), β ∈ Sk(n). Let s be the subalgebra generated by k and g±β,
and q be the subalgebra generated by k and gβ. Then the triple (s, q, β) satisfies the
hypothesis of Corollary 5.7 with l = 1. Moreover, g(β) commutes with gαi .

Let M be an irreducible strict (g, l)-module. There exists a b ∩ k-singular vector
v ∈ M such that g(β)v = 0. Let λ denote the weight of v. For any positive integer
t, set vt = (gα1)t(gα2)tv for 0 6= gαi ∈ gαi . As gαi acts freely on M , we have vt 6= 0.
Furthermore vt is b ∩ k-singular and g(β)vt = 0. Hence vt generates an s-submodule
M(vt) ⊂ M of highest weight λ + tβ. By Corollary 5.7, for a fixed large r ∈ Z+, the
multiplicity of Vλ+rβ in M(vt) is not zero for any t ≥ r. Therefore the multiplicity of
Vλ+rβ in M is infinite. Contradiction.

In the case of a relation of type 1, α1 + α2 = β1 + β2, let s ⊂ g be the subalgebra
generated by k, g±β1 and g±β2 , and q ⊂ s be the subalgebra generated by k, gβ1 and gβ2 .
The reader can check that the triple (s, q, β) satisfies the conditions of Corollary 5.7
with l = 2, and moreover that g(β1) ⊕ g(β2) commutes with gαi . Therefore, an
argument similar to that in the case of a relation of type 2, leads to a contradiction.

It remains to prove that l is a Fernando-Kac subalgebra of finite type whenever
Ck(g/l) ∩ Ck(n) = {0}. Using Theorem 4.3 we will construct an irreducible strict
(g, l)-module M of finite type over l.

Note first that Ck(g) consist of k-dominant roots, and therefore Ck(g) ∩ −Ck(g) =
Ck(C(kss)) and Sk(g) ∩ −Sk(g) = Sk(C(kss)). Furthermore, as n is nilpotent, Ck(n) ∩
−Ck(n) = {0}. Let C0 = Ck(g/n)∩−Ck(g/n), and ∆0 = Sk(g/n)∩−Sk(g/n). The above
implies immediately that ∆0 ⊂ Sk(C(kss)) and ∆0 generates C0. By Corollary 5.5,
Ck(g/n) ∩ Ck(n) = {0}. Therefore one can find h ∈ h such that all eigenvalues of
adh : g → g are rational and

(5.7)
α(h) > 0 for α ∈ Sk(n),
α(h) = 0 for α ∈ ∆0,
α(h) < 0 for α ∈ Sk(g/(n + C(kss))).

One can easily verify that, in additon, h can be chosen so that

(5.8) α(h) < 0 for all α ∈ ∆(b ∩ kss).

Let p be defined by (4.1). Then ∆(pred) = ∆0, and n ⊂ np.
Let L be an irreducible (p, h)-module of finite type over h with trivial action of

np and such that pred[L] = h. Such L exists as pss is a sum of ideals of type A. Let
M be as in Section 4.3. Then by Theorem 4.3, M is an irreducible (g, k)-module
of finite type over k. Let g [M ] = k⊃+ n′. We claim that n′ = n. Indeed g (α) ⊂ n′

if and only if g (α) ⊂ p [L]. In particular, α(h) ≥ 0. If α (h) > 0, then by (5.7)
and (5.8) g (α) ⊂ n ⊂ np ⊂ p [L]. If α (h) = 0, then α ∈ ∆0. As pred (L) = h, we have
g (α) 6⊂ p [L]. Thus n = n′. Theorem 5.8 is proven. �
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Corollary 5.9. A root subalgebra l = (k⊃+ n) ⊂ gl(n) with n ⊂ C(kss) is a Fernando-
Kac subalgebra of finite type if and only if n is the nilradical of a parabolic subalgebra
in C(kss).

Proof. For the necessity see Theorem 3.1 5. For the sufficiency we use Theorem 5.8.
By hypothesis n is the nilradical of a parabolic subalgebra in C(kss). We will show
that Ck(g/l) ∩ Ck(n) = {0}. Suppose not. Then there exist roots α1, ..., αk ∈ Ck(n/l)
and roots β1, ..., βl ∈ Ck(n) such that (5.6) holds. Restrict both sides of (5.6) to hkss

and write γ̃ for the restriction of a weight γ to hkss . Because n ⊂ C(kss), β̃i = 0 for
all i and hence α̃1 + ...+ α̃l = 0. But the α̃j’s are dominant weights for kss. Therefore
α̃j = 0 for all j, and each αj ∈ Ck(C(kss)) = ∆(C(kss)). Equation (5.6) becomes a
nontrivial relation among roots in ∆(n) and ∆(C(kss)) \∆(n). Contradiction. �

Example. Let g = gl(4), h be the diagonal subalgebra, and l ⊃ h be a root
subalgebra of g. The rank of lss can be 0, 1 or 2. In the first case l is solvable,
and, by Proposition 3.2, l is of finite type if and only if nl is the nilradical of a
parabolic subalgebra. In the third case lred equals the fixed points of an involution
θ : g → g and l is always a Fernando subalgebra of finite type: the corresponding
strict (g, l)-modules are Harish-Chandra modules.

In the case when lss ∼= sl(2) we can fix the roots of lss to be ±(ε1 − ε2). To
determine l we need to specify the roots of nl . Up to automorphisms of g that
stabilize lss there are eight choices for nl (including the possibility nl = 0). A direct
checking based on Theorem 5.8 and Corollary 5.9 shows that there is a single choice
of nl for which l is not a Fernando-Kac subalgebra of finite type. We may normalize
this l so that the roots in nl are ε1 − ε3 and ε2 − ε3. Furthermore, the so defined
l = lred⊃+ nl satisfies conditions 1–5 in Theorem 3.1. This shows in particular that the
conditions in Theorem 3.1 are not sufficient for a subalgebra l to be a Fernando-Kac
subalgebra of finite type.
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