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ABSTRACT. We prove a general existence result for infinite-dimensional admissible
(g, €)-modules, where g is a reductive finite-dimensional complex Lie algebra and ¢
is a reductive in g algebraic subalgebra.
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In this note, we draw a corollary of our earlier work [4]. In the subsequent works
[5], [6], [7], [8] we have built foundations of an algebraic theory of generalized Harish-
Chandra modules.

The base field is C. Let g be a finite-dimensional (complex) reductive Lie algebra
and let £ € g be a reductive in g algebraic subalgebra. A (g, €)-module M is a g-
module M on which £ acts locally finitely, i.e. dim (U(¢) - m) < oo for any m € M.
Under the assumption that M is a simple g-module, the requirement that M be a
(g, £)-module is equivalent to the requirement that as a ¢-module M decomposes into
a direct sum of simple finite-dimensional ¢-modules. An admissible (g,€)-module M
is a (g, £)-module which, after restriction to £, is isomorphic to a direct sum of simple
finite-dimensional €-modules with finite multiplicities.

Both of these notions go back to the 1960’s. By a generalized Harish-Chandra
module, we understand a g-module M for which there exists a reductive subalgebra £
of g such that M is an admissible (g, £)-module. The case of Harish-Chandra modules
corresponds to the case where ¢ is a symmetric subalgebra of g. Under this latter
assumption, there is an extensive literature on (g, £)-modules, and here we just direct
the reader to [9] and [2] and references therein.

The question of interest in the present note is the following:

What is a necessary and sufficient condition on an algebraic, reductive in g subal-
gebra £ for the existence of a simple infinite-dimensional admissible (g, £)-module?

We know of no published answer to this question. However, we have observed
that the answer is actually implicit in our work. To make it explicit, we prove the
following.
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Theorem. For an algebraic reductive in g subalgebra €, there exists a simple infinite-
dimensional admissible (g, )-module if and only if € is not an ideal of g.

Proof. 1f € is an ideal of g, then any simple (g, £)-module M is isomorphic to an outer
tensor product M X M’, where M is a simple finite-dimensional ¢&-module and M’
is a simple module over a direct complement g’ of € in g. Indeed, fix a simple finite-
dimensional €-submodule M, of M (which exists because of the locally finite action
of € on M). Then the isotypic component of M, in M is a g-submodule since ¢ is an
ideal in g. Therefore,
M = ME ® HOID@(M@, M)

Setting M’ := Homg (M, M), we see that the simplicity of M as a g-module implies
the simplicity of M’ as a g’-module. Consequently, if M is admissible then M is finite
dimensional.

Assume now that £ is not an ideal in g. Without loss of generality we can assume
that g is semisimple and that € does not contain an ideal of g. We have g = £ @ £+
where * indicates orthogonal space with respect to the Killing form (-,-) on g. We
fix a Cartan subalgebra t of £ and an element h € t which is regular in £ and has real
eigenvalues in g. By g“ we denote the eigenspaces of h in g. Then

pi=Cy(h) @ (P o)
a>0
is a minimal t-compatible parabolic subalgebra of g. Here Cy(h) is the centralizer of h
in g. The notions of t-compatible and minimal t-compatible parabolic subalgebra are
discussed in [4]. In what follows, we set m := Cy(h) and n:= @, g and note that
in the semidirect sum p = m @ n, m is the reductive part of p and n is the nilradical
of p. Furthermore, ¢+ = (nN¢H) & (m N &) @ (n N e) where n = @, _, 9% The
assumption that £ does not contain an ideal of g implies that h does not commute
with £+, and hence
nNEt £0.
In particular,
r:=dim(nN&") > 0.

Fix a Borel subalgebra b of g such that b C p and b N ¢ is a Borel subalgebra of
t. Recall from [4] the construction of the fundamental series (g, £)-module F*(p, F)
where F is a finite-dimensional simple p-module which, as an m-module, has highest
weight v with respect to the Borel subalgebra b, = b Nm of m. Note that rkm=rkg,
and assume that v € h* for a fixed Cartan subalgebra b of g lying in m and containing
t. Let w € t* be the restriction of v to t. By u we denote the t-weight w + 2p1, where
pr is the half-sum of the t-weights of n N € with multiplicities, that is, the half-sum
of the multiset of t-weights of n N &*.

In what follows, we assume that p is an integral weight of £, dominant with respect
to the Borel subalgebra b N € of . We need one further assumption on pu.

Following [4], we call o generic if the following two conditions are satisfied:
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(1) (Rep+2p — py, B) > 0 for every t-weight 5 of nN ¢,
(2) (Rep + 2p — ps, ps) > 0 for every submultiset of the multiset S of t-weights
of n,

where p is the half-sum of the t-roots of £ and p, is the half-sum of the multiset of
t-weights of n.

Theorem 2 of [4] implies that, under the additional assumption of genericity of
g (which is ultimately a condition on v), the (g, €)-module F*(p, E) is a nonzero
admissible (g, £)-module with a unique simple submodule F*(p, E). Here s = dim(€n
n). Moreover, Proposition 6 in [4] claims that there is an isomorphism of vector
spaces

Homy (M, F*(p, E)) ~ Homy(H" (n, M), E),

for any simple admissible (g, £)-module M. We know that F*(p, F) is a simple ad-
missible (g, £)-module, so it only remains to show the existence of a weight v which
satisfies all above assumptions and such that dimF*(p, E) = oc.

We consider two possibilities. Either there exists a v as above such that the central
character of the (g,€)-module F*(p, E) is not integral, or the central character of
F3(p, E) is necessarily integral (as a consequence of all our assumptions on v). In the
former case, we are done as then necessarily dimF*(p, E) = oo. In the latter case we
will further assume that v is integral b-dominant for g. Lemma 2.3 in [6] shows that
this additional assumption is compatible with all previous assumptions on v. Then,
by Theorem 2c) in [4], the simple finite-dimensional W with b-highest weight v is the
only (up to isomorphism) simple finite-dimensional module whose central character
coincides with that of F*(p, E).

Therefore it suffices to show that

Homy (W, F*(p, E)) = Homy(H" (n, W), E) = 0.

For this, recall that Kostant’s Theorem [1] asserts that there is an isomorphism of
m-modules

H'(n,W) ~ P E(w(v + p) — ).

Here p is the half-sum of roots of b, E(v) is a simple m-module with highest weight
v, and the sum is taken over all elements w of the Weyl group of g of length r for
which the weights w(v + p) — p are by-dominant. Since r > 0, we infer that

Homy, (H"(n, W), E) =0,
and the theorem is proved. O]

In conclusion, we would like to make two brief comments on how the modules,
whose existence is claimed in the above theorem, fit into the panorama of well-
studied (and not so well-studied) g-modules. Our first remark is that F*(p, E) does
not have to be a (g, ¥)-module for any reductive in g subalgebra £ which contains €
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properly. Indeed, let g = sl(n) for n > 4 and let € be a principal s[(2)-subalgebra. By
the same argument as in our expository paper [3], using the work of Willenbring and
the second author [11], one can show that the g-module F'(p, E) (here s = 1) is not
a (g, ¢)-module for any ¥ as above. In particular, F''(p, E) is not a Harish-Chandra
module for the pair (g,s0(n)) if n = 2k + 1, or the pair (g,sp(n)) if n = 2k.

Our second comment is that € does not have to be a symmetric subalgebra of
g for the module F*(p,E) to be a Harish-Chandra module. For instance, let g
be simple and £ be an ideal in a symmetric subalgebra € of g. Then F*(p, E) is
an admissible (g, €)-module which is also a (g, #)-module, hence a Harish-Chandra
module. The property of a Harish-Chandra module to be admissible over an ideal of
the relevant symmetric subalgebra has been studied in the literature. This applies
in particular to the work of Orsted and Wolf [10], where certain ideals of symmetric
subalgebras are singled out and discrete series modules --admissible over these ideals-
- are investigated. Our approach in [4] provides an alternative construction which
applies to any ideal of a symmetric subalgebra but, even in the case of Orsted and
Wolf, the range of Harish-Chandra modules arising through this construction requires
further study.
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