EXAMPLES OF AUTOMORPHISM GROUPS OF IND-VARIETIES OF GENERALIZED FLAGS

IVAN PENKOV

To the memory of Vasil Tsanov

Abstract. We compute the automorphism groups of finite and cofinite ind-grassmannians, as well as of the ind-variety of maximal flags indexed by $\mathbb{Z}_{>0}$. We pay special attention to differences with the case of ordinary flag varieties.

MSC: 14L30, 14M15, 14M17.

Keywords: ind-grassmannian, automorphism group, flag ind-variety.

1. Introduction

The flag varieties of the classical Lie groups are central objects of study both in geometry and representation theory. In a sense, they are a hub for many directions of research in both fields. Several different infinite-dimensional analogues of the ordinary flag varieties have been studied in the literature, one such analogue being the ind-varieties of generalized flags introduced in [1] and further investigated in [2], [3], [4], [5]; see also the survey [6]. The latter ind-varieties are direct limits of classical flag varieties and are homogeneous ind-spaces for the simple ind-groups $SL(\infty)$, $SO(\infty)$, $Sp(\infty)$. Without doubt, some of these ind-varieties, in particular the ind-grassmannians, have been known long before the paper [1].

A natural question of obvious importance is the question of finding the automorphism groups of the ind-varieties of generalized flags. The purpose of the present note is to initiate a discussion in this direction and to point out some differences with the case of ordinary flag varieties: see Section 4. The topic is very close to Vasil's interests and expertise, and for sure I would have discussed it with him if he were still alive.

Acknowledgments. This work has been supported in part by DFG grant PE 980/7-1.

2 Ivan Penkov

2. Automorphisms of finite and cofinite ind-grassmannians

The base field is \mathbb{C} . Let V be a fixed countable-dimensional complex vector space. We fix a basis $E = \{e_1, \ldots, e_n, \ldots\}$ of V and set $V_n := \operatorname{span}_{\mathbb{C}}\{e_1, \ldots, e_n\}$. Then $V = \cup_n V_n$. Fix $k \in \mathbb{Z}_{>0}$. By definition, $\operatorname{Gr}(k, V)$ is the set of all k-dimensional subspaces in V and has an obvious ind-variety structure:

$$Gr(k, V) = \lim_{\longrightarrow} Gr(k, V_n).$$

The projective ind-space $\mathbb{P}(V)$ equals $\operatorname{Gr}(1,V)$. Note that the basis E plays no role in this construction. We think of the ind-varieties $\operatorname{Gr}(k,E)$ for $k\in\mathbb{Z}_{>0}$ as the "finite ind-grassmannians."

The basis E plays a role when defining the "cofinite" ind-grassmannians. Fix a subspace $W \subset V$ of finite codimension in V and such that $E \cap W$ is a basis of W. Let $\mathrm{Gr}(W,E,V)$ be the set of all subspaces $W' \subset V$ which have the same codimension in V as W and in addition contain almost all elements of E. Then $\mathrm{Gr}(W,E,V)$ has the following ind-variety structure:

$$\operatorname{Gr}(W, E, V) = \lim_{\longrightarrow} \operatorname{Gr}(\operatorname{codim}_V W, \bar{V}_n)$$

where $\{\bar{V}_n\}$ is any set of finite-dimensional spaces with the properties that $\bar{V}_n \supset \operatorname{span}\{E\backslash\{E\cap W\}\}$, $\dim \bar{V}_n = n > \operatorname{codim}_V W$, $E\cap \bar{V}_n$ is a basis of \bar{V}_n , and $\cup \bar{V}_n = V$. The map identifying the direct limit of $\operatorname{Gr}(\operatorname{codim}_V W, \bar{V}_n)$ with $\operatorname{Gr}(W, E, V)$ is

$$W'' \mapsto W'' \oplus \operatorname{span}\{E \setminus (E \cap \bar{V}_n)\}$$

for $W'' \in \operatorname{Gr}(\operatorname{codim}_V W, \bar{V}_n)$.

It is clear that the ind-varieties ${\rm Gr}(W,E,V)$ and ${\rm Gr}(k,V)$ are isomorphic: the isomorphism is given by

$$Gr(W, E, V) \ni W' \to Ann W' \subset V_* := span\{E^*\},$$
 (1)

where $E^* = \{e_1^*, e_2^*, \dots\}$ is the system of linear functionals dual to the basis E: i.e. $e_i^*(e_j) = \delta_{ij}$. The map (1) is an obvious analogue of finite-dimensional duality. Therefore the automorphism groups $\operatorname{Aut}\operatorname{Gr}(k,V)$ and $\operatorname{Aut}\operatorname{Gr}(W,E,V)$ for $\operatorname{codim}_W V = k$ are isomorphic; by an automorphism we mean of course an automorphism of ind-varieties.

The following result should in principle be known. We present a proof which shows a connection with the work [2].

Proposition 1 Aut Gr(k, V) = PGL(V) where GL(V) denotes the group of all invertible linear operators on V and $PGL(V) := GL(V)/\mathbb{C}_{mult}Id$ (where $\mathbb{C}_{mult}Id$ is the multiplicative group of \mathbb{C}).

Proof: An automorphism $\phi:\operatorname{Gr}(k,V)\to\operatorname{Gr}(k,V)$ induces embeddings $\phi_n:\operatorname{Gr}(k,V_n)\hookrightarrow\operatorname{Gr}(k,V_{N(n)})$ for appropriate $N(n)\geq n$. These embeddings are linear in the sense that

 $\phi_n^*(\mathcal{O}_{\mathrm{Gr}(k,V_{N(n)})}(1))$ is isomorphic to $\mathcal{O}_{\mathrm{Gr}(k,V_n)}(1)$, where by $\mathcal{O}.(1)$ we denote the positive generator of the respective Picard group. According to Theorem 1 in [2], ϕ_n is one of the following:

- (i) an embedding induced by the choice of an n-dimensional subspace $W_n \subset V_{N(n)}$ for some $N(n) \geq n$,
- (ii) an embedding factoring through a linearly embedded projective space $\mathbb{P}^{M(n)} \subset \operatorname{Gr}(k, V_{N(n)})$ for some M(n) < N(n).

If k > 2, option (ii) may hold only for finitely many n as the contrary implies that the image of ϕ_n is contained in a projective ind-subspace

$$\mathbb{P} := \lim_{\longrightarrow} \mathbb{P}^{M(n)} \subset \operatorname{Gr}(k, V).$$

Then, since $\mathbb P$ is not isomorphic to $\operatorname{Gr}(k,V)$ by Theorem 2 in [2], the image of ϕ_n would necessarily be a proper ind-subvariety of $\operatorname{Gr}(k,V)$, which is a contradiction. For k=1, options (i) and (ii) are the same, and therefore without loss of generality we can now assume that for our fixed k option (i) holds for all n. The embeddings $\phi_n:\operatorname{Gr}(k,V_n)\hookrightarrow\operatorname{Gr}(k,V_{N(n)})$ determine injective linear operators $\tilde\phi_n:V_n\to V_{N(n)}$. Moreover, the operators $\tilde\phi_n$ are defined up to multiplicative constants which can be chosen so that $\tilde\phi_n|_{V_{n-1}}=\tilde\phi_{n-1}$ for any n. Therefore, we obtain a well-defined linear operator

$$\tilde{\phi}: V = \lim_{\longrightarrow} V_n \to V = \lim_{\longrightarrow} V_{N(n)}$$

which induces our automorphism ϕ . Since ϕ is invertible, $\tilde{\phi}$ is also invertible, and since $\tilde{\phi}$ depends on a multiplicative constant, we conclude that ϕ determines a unique element $\bar{\phi} \in PGL(V)$.

In this way we have constructed an injective homomorphism

Aut
$$Gr(k, V) \to PGL(V), \ \phi \mapsto \bar{\phi}.$$

The inverse homomorphism

$$PGL(V) \to \operatorname{Aut} \operatorname{Gr}(k, V)$$

4 Ivan Penkov

is obvious because of the natural action of PGL(V) on Gr(k, V). The statement follows.

3. Ind-variety of maximal ascending flags

We now consider a particular ind-variety of maximal generalized flags, in fact the simplest case of maximal generalized flags. Let V and E be as above. Define $Fl(F_E, E, V)$ as the set of all infinite chains F_E' of subspaces of V

$$0 \subset (F_E')^1 \subset \cdots \subset (F_E')^k \subset \cdots$$

where $\dim(F_E')^k = k$ and $(F_E')^n = F_E^n := \operatorname{span}\{e_1, \dots, e_n\}$ for large enough n. This set has an obvious structure of ind-variety as

$$Fl(F_E, E, V) = \lim_{\longrightarrow} Fl(F_E^n)$$

where $Fl(F_E^n)$ stands for the variety of maximal flags in the finite-dimensional vector space F_E^n .

Denote by GL(E,V) the subgroup of GL(V) of automorphisms of V which keep all but finitely many elements of E fixed. The elements of GL(E,V) are the E-finitary automorphisms of V.

Proposition 2

Aut
$$Fl(F_E, E, V) = P(GL(E, V) \cdot B_E)$$

where $B_E \subset GL(V)$ is the stabilizer of the chain F_E in GL(V) and $GL(E,V) \cdot B_E$ is the subgroup of GL(V) generated by GL(E,V) and B_E .

We start with a lemma.

Lemma 3 Fix $k \geq 2$. Let ψ_{k-1} , $\psi_k : V \to V$ be invertible linear operators such that $\psi_{k-1}(W_{k-1}) \subset \psi_k(W_k)$ for any pair of subspaces $W_{k-1} \subset W_k$ of V with $\dim W_{k-1} = k-1$, $\dim W_k = k$. Then $\psi_{k-1} = c\psi_k$ for some $0 \neq c \in \mathbb{C}$.

Proof: Assume the contrary. Let v be a vector in V such that the space $Z:=\operatorname{span}_{\mathbb{C}}\{\psi_{k-1}(v),\psi_k(v)\}$ has dimension 2. Extend v to a basis $v=v_1,v_2,\ldots$ of V. Then, setting $W_k=\operatorname{span}_{\mathbb{C}}\{v_1,\ldots,v_k\}$ and $W_{k-1}=\operatorname{span}_{\mathbb{C}}\{v_1,\ldots,v_{k-1}\}$, we see that the condition $\psi_{k-1}(W_{k-1})\subset\psi_k(W_k)$ implies $Z\subset\psi_k(W_k)$. Similarly, setting $W_k'=\operatorname{span}_{\mathbb{C}}\{v_1,v_{k+1},v_{k+2}\ldots,v_{2k-1}\}$ and $W_{k-1}'=\operatorname{span}_{\mathbb{C}}\{v_1,v_{k+1},v_{k+2}\ldots,v_{2k-1}\}$ we have $Z\subset\psi_k(W_k')$. However clearly

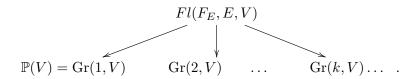
$$\dim(W_k \cap W_k') = 1,$$

hence the dimension of the intersection $\psi_k(W_k) \cap \psi_k(W_k')$ must also be 1 due to the invertibility of ψ_k . Contradiction.

Proof of Proposition 2: We first embed $A := \operatorname{Aut} Fl(F_E, E, V)$ into the group PGL(V). For this we consider the obvious embedding

$$A \hookrightarrow \prod_{i=1}^{\infty} \operatorname{Aut} \operatorname{Gr}(i, V)$$

arising from the diagram of surjective morphisms of ind-varieties



By Proposition 1, the groups $\operatorname{Aut}\operatorname{Gr}(k,V)$ are isomorphic to PGL(V) for all $k\in\mathbb{Z}_{>0}$. Moreover, it is clear that the homomorphism $A\to\Pi_kPGL(V)$ is injective as the ind-varieties $\operatorname{Gr}(k,V)$ are pairwise nonisomorphic for $k\geq 1$ [2] (this argument is false in the finite-dimensional case). It is also clear that this homomorphism factors through the diagonal of $\Pi_kPGL(V)$ since Lemma 1 shows that an automorphism from A induces necessarily the same element in PGL(V) via any projection $Fl(F_E, E, V)\to\operatorname{Gr}(k, V)$.

It remains to determine which elements of the group PGL(V) arise as images of elements of A. It is clear that this image contains both PGL(E,V) and PB_E as each of these groups acts faithfully on $Fl(F_E,E,V)$. Indeed, the fact that PGL(E,V) acts on $Fl(F_E,E,V)$ is clear. To see that PB_E acts on $Fl(F_E,E,V)$ one notices that for any $F_E' \in Fl(F_E,E,V)$ and any $\gamma \in PB_E$, the flag $\gamma(F_E')$ differs from F_E only in finitely many positions, hence is a point on $Fl(F_E,E,V)$. On the other hand, it is clear that the image $\bar{\phi} \in PGL(V)$ of $\phi \in A$ is contained in $P(GL(E,V) \cdot B_E)$. Indeed, the composition $\psi \circ \bar{\phi}$ with a suitable element of PGL(E,V) will fix the point F_E on $Fl(F_E,E,V)$. This means that $\psi \circ \bar{\phi} \in PB_E$. Therefore the image of A in PGL(V) is contained in $P(GL(E,V) \cdot B_E)$, and we are done.

4. Discussion

First, Proposition 1 can be generalized to ind-varieties of the form Fl(F, E, V) where F is a finite chain consisting only of finite-dimensional subspaces of V, or

6 Ivan Penkov

only of subspaces of finite codimension of V. The precise definition of the indvarieties Fl(F,E,V) is given in [1]. In these cases, the respective automorphism groups are always isomorphic to PGL(V), however in the case of finite codimension there is a natural isomorphism with $PGL(V_*)$.

We now point out some differences with the case of ordinary flag varieties. A first obvious difference is the following. Despite the fact that $Gr(k,V) = PGL(E,V)/P_k$, where P_k is the stabilizer in PGL(E,V) of a k-dimensional subspace of V, the automorphism group of Gr(k,V) is much larger than PGL(E,V). Therefore Gr(k,V) is a quotient of any subgroup G satisfying $PGL(E,V) \subset G \subset PGL(V)$, and there is quite a variety of such subgroups. Similar comments apply to the other examples we consider.

Next, we note that the automorphism group of an ind-grassmannian is in general not naturally embedded into PGL(V). Indeed, the case of the cofinite ind-grassmannian Gr(W, E, V) shows that the natural isomorphism $\operatorname{Aut} Gr(W, E, V) = PGL(V_*)$ does not embed $\operatorname{Aut} Gr(W, E, V)$ into PGL(V) by duality, but only embeds $\operatorname{Aut} Gr(W, E, V)$ into the much larger group $PGL((V_*)^*)$ in a way that its image does not keep the subspace $V \subset (V_*)^*$ invariant. This is clearly an infinite-dimensional phenomenon.

Finally, recall that the group of automorphisms of a finite-dimensional grassmannian is naturally a subgroup of the automorphism group of the corresponding full flag variety; more precisely, the former group is the connected component of unity of the latter group. This note shows that the situation in the infinite-dimensional case essentially different: indeed, the injection $\operatorname{Aut} \operatorname{Fl}(F_E, E, V) \hookrightarrow \operatorname{Aut} \operatorname{Gr}(k, V)$ constructed in the proof of Proposition 2 is proper.

We hope that the above differences motivate a more detailed future study of the automorphism groups of arbitrary ind-varieties of generalized flags.

References

- [1] Dimitrov I., Penkov I., *Ind-Varieties of Generalized Flags as Homogeneous Spaces for Classical Ind-Groups*, IMRN **2004** (2004) 2935–2953.
- [2] Penkov I., Tikhomirov A., *Linear Ind-Grassmannians*, Pure and Applied Math. Quarterly **10** (2014) 289–323.
- [3] Ignatyev M., Penkov I., Wolf J., Real Group Orbits on Flag Ind-Varieties of $SL(\infty,\mathbb{C})$. In: Lie Theory and Its Applications in Physics, Springer Proceedings in Mathematics and Statistics, V. Dobrev (Ed), Springer Verlag, Heidelberg 2016, pp. 111–135.

- [4] Fresse L., Penkov I., Schubert Decompositions for Ind-Varieties of Generalized Flags, Asian Journal of Mathematics **21** (2017) 599–630.
- [5] Fresse L., Penkov I., *Orbit Duality in Ind-Varieties of Maximal Generalized Flags*, Transactions of the Moscow Mathematical Society **78** (2017) 131–160.
- [6] Ignatyev M., Penkov I., *Ind-Varieties of Generalized Flags: a Survey of Results*, arXiv:1701.08478.

Ivan Penkov Jacobs University Bremen Campus Ring 1, 28759 Bremen, Germany Email: i.penkov@jacobs-university.de