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Abstract. We compute the automorphism groups of finite and cofinite ind-
grassmannians, as well as of the ind-variety of maximal flags indexed by Z>0. We
pay special attention to differences with the case of ordinary flag varieties.
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1. Introduction

The flag varieties of the classical Lie groups are central objects of study both in
geometry and representation theory. In a sense, they are a hub for many directions
of research in both fields. Several different infinite-dimensional analogues of the
ordinary flag varieties have been studied in the literature, one such analogue being
the ind-varieties of generalized flags introduced in [1] and further investigated in
[2], [3], [4], [5]; see also the survey [6]. The latter ind-varieties are direct limits of
classical flag varieties and are homogeneous ind-spaces for the simple ind-groups
SL(∞), SO(∞), Sp(∞). Without doubt, some of these ind-varieties, in particular
the ind-grassmannians, have been known long before the paper [1].

A natural question of obvious importance is the question of finding the automor-
phism groups of the ind-varieties of generalized flags. The purpose of the present
note is to initiate a discussion in this direction and to point out some differences
with the case of ordinary flag varieties: see Section 4. The topic is very close to
Vasil’s interests and expertise, and for sure I would have discussed it with him if
he were still alive.
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2. Automorphisms of finite and cofinite ind-grassmannians

The base field is C. Let V be a fixed countable-dimensional complex vector space.
We fix a basisE = {e1, . . . , en, . . . } of V and set Vn := spanC{e1, . . . , en}. Then
V = ∪nVn. Fix k ∈ Z>0. By definition, Gr(k, V ) is the set of all k-dimensional
subspaces in V and has an obvious ind-variety structure:

Gr(k, V ) = lim
−→

Gr(k, Vn).

The projective ind-space P(V ) equals Gr(1, V ). Note that the basis E plays no
role in this construction. We think of the ind-varieties Gr(k,E) for k ∈ Z>0 as the
"finite ind-grassmannians."

The basis E plays a role when defining the "cofinite" ind-grassmannians. Fix a
subspace W ⊂ V of finite codimension in V and such that E ∩W is a basis of
W . Let Gr(W,E, V ) be the set of all subspaces W ′ ⊂ V which have the same
codimension in V as W and in addition contain almost all elements of E. Then
Gr(W,E, V ) has the following ind-variety structure:

Gr(W,E, V ) = lim
−→

Gr(codimV W, V̄n)

where {V̄n} is any set of finite-dimensional spaces with the properties that V̄n ⊃
span{E\{E ∩ W}}, dim V̄n = n > codimV W , E ∩ V̄n is a basis of V̄n,
and ∪V̄n = V . The map identifying the direct limit of Gr(codimV W, V̄n) with
Gr(W,E, V ) is

W ′′ 7→W ′′ ⊕ span{E\(E ∩ V̄n)}

for W ′′ ∈ Gr(codimV W, V̄n).

It is clear that the ind-varieties Gr(W,E, V ) and Gr(k, V ) are isomorphic: the
isomorphism is given by

Gr(W,E, V ) 3W ′ → AnnW ′ ⊂ V∗ := span{E∗}, (1)

where E∗ = {e∗1, e∗2, . . . } is the system of linear functionals dual to the basis
E: i.e. e∗i (ej) = δij . The map (1) is an obvious analogue of finite-dimensional
duality. Therefore the automorphism groups Aut Gr(k, V ) and Aut Gr(W,E, V )
for codimW V = k are isomorphic; by an automorphism we mean of course an
automorphism of ind-varieties.

The following result should in principle be known. We present a proof which
shows a connection with the work [2].
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Proposition 1 Aut Gr(k, V ) = PGL(V ) where GL(V ) denotes the group of all
invertible linear operators on V and PGL(V ) := GL(V )/CmultId (where Cmult

is the multiplicative group of C).

Proof: An automorphism φ : Gr(k, V ) → Gr(k, V ) induces embeddings φn :
Gr(k, Vn) ↪→ Gr(k, VN(n)) for appropriate N(n) ≥ n. These embeddings are
linear in the sense that
φ∗n(OGr(k,VN(n))(1)) is isomorphic to OGr(k,Vn)(1), where by O·(1) we denote the
positive generator of the respective Picard group. According to Theorem 1 in [2],
φn is one of the following:

(i) an embedding induced by the choice of an n-dimensional subspace Wn ⊂
VN(n) for some N(n) ≥ n,

(ii) an embedding factoring through a linearly embedded projective space PM(n) ⊂
Gr(k, VN(n)) for some M(n) < N(n).

If k > 2, option (ii) may hold only for finitely many n as the contrary implies that
the image of φn is contained in a projective ind-subspace

P := lim
−→

PM(n) ⊂ Gr(k, V ).

Then, since P is not isomorphic to Gr(k, V ) by Theorem 2 in [2], the image of φn
would necessarily be a proper ind-subvariety of Gr(k, V ), which is a contradiction.

For k = 1, options (i) and (ii) are the same, and therefore without loss of generality
we can now assume that for our fixed k option (i) holds for all n. The embeddings
φn : Gr(k, Vn) ↪→ Gr(k, VN(n)) determine injective linear operators φ̃n : Vn →
VN(n). Moreover, the operators φ̃n are defined up to multiplicative constants which
can be chosen so that φ̃n|Vn−1 = φ̃n−1 for any n. Therefore, we obtain a well-
defined linear operator

φ̃ : V = lim
−→

Vn → V = lim
−→

VN(n)

which induces our automorphism φ. Since φ is invertible, φ̃ is also invertible,
and since φ̃ depends on a multiplicative constant, we conclude that φ determines a
unique element φ̄ ∈ PGL(V ).

In this way we have constructed an injective homomorphism

Aut Gr(k, V )→ PGL(V ), φ 7→ φ̄.

The inverse homomorphism

PGL(V )→ Aut Gr(k, V )



4 Ivan Penkov

is obvious because of the natural action of PGL(V ) on Gr(k, V ). The statement
follows. �

3. Ind-variety of maximal ascending flags

We now consider a particular ind-variety of maximal generalized flags, in fact the
simplest case of maximal generalized flags. Let V and E be as above. Define
Fl(FE , E, V ) as the set of all infinite chains F ′E of subspaces of V

0 ⊂ (F ′E)1 ⊂ · · · ⊂ (F ′E)k ⊂ . . .

where dim(F ′E)k = k and (F ′E)n = Fn
E := span{e1, . . . , en} for large enough n.

This set has an obvious structure of ind-variety as

Fl(FE , E, V ) = lim
−→

Fl(Fn
E)

where Fl(Fn
E) stands for the variety of maximal flags in the finite-dimensional

vector space Fn
E .

Denote by GL(E, V ) the subgroup of GL(V ) of automorphisms of V which keep
all but finitely many elements of E fixed. The elements of GL(E, V ) are the E-
finitary automorphisms of V .

Proposition 2

AutFl(FE , E, V ) = P (GL(E, V ) ·BE)

where BE ⊂ GL(V ) is the stabilizer of the chain FE in GL(V ) and GL(E, V ) ·
BE is the subgroup of GL(V ) generated by GL(E, V ) and BE .

We start with a lemma.

Lemma 3 Fix k ≥ 2. Let ψk−1, ψk : V → V be invertible linear operators such
that ψk−1(Wk−1) ⊂ ψk(Wk) for any pair of subspaces Wk−1 ⊂ Wk of V with
dimWk−1 = k − 1, dimWk = k. Then ψk−1 = cψk for some 0 6= c ∈ C.

Proof: Assume the contrary. Let v be a vector in V such that the space Z :=
spanC{ψk−1(v), ψk(v)} has dimension 2. Extend v to a basis v = v1, v2, . . . of V .
Then, setting Wk = spanC{v1, . . . , vk} and Wk−1 = spanC{v1, . . . , vk−1}, we
see that the condition ψk−1(Wk−1) ⊂ ψk(Wk) implies Z ⊂ ψk(Wk). Similarly,
setting W ′k = spanC{v1, vk+1, vk+2 . . . , v2k−1} and W ′k−1 = spanC{v1, vk+1,
vk+2 . . . , v2k−2} we have Z ⊂ ψk(W ′k). However clearly

dim(Wk ∩W ′k) = 1,
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hence the dimension of the intersection ψk(Wk) ∩ ψk(W ′k) must also be 1 due to
the invertibility of ψk. Contradiction. �

Proof of Proposition 2: We first embed A := AutFl(FE , E, V ) into the group
PGL(V ). For this we consider the obvious embedding

A ↪→ Π∞i=1 Aut Gr(i, V )

arising from the diagram of surjective morphisms of ind-varieties

Fl(FE , E, V )

uu �� ))
P(V ) = Gr(1, V ) Gr(2, V ) . . . Gr(k, V ) . . . .

By Proposition 1, the groups Aut Gr(k, V ) are isomorphic to PGL(V ) for all
k ∈ Z>0. Moreover, it is clear that the homomorphism A → ΠkPGL(V ) is
injective as the ind-varieties Gr(k, V ) are pairwise nonisomorphic for k ≥ 1 [2]
(this argument is false in the finite-dimensional case). It is also clear that this
homomorphism factors through the diagonal of ΠkPGL(V ) since Lemma 1 shows
that an automorphism from A induces necessarily the same element in PGL(V )
via any projection Fl(FE , E, V )→ Gr(k, V ).

It remains to determine which elements of the group PGL(V ) arise as images of
elements of A. It is clear that this image contains both PGL(E, V ) and PBE

as each of these groups acts faithfully on Fl(FE , E, V ). Indeed, the fact that
PGL(E, V ) acts on Fl(FE , E, V ) is clear. To see that PBE acts on Fl(FE , E, V )
one notices that for any F ′E ∈ Fl(FE , E, V ) and any γ ∈ PBE , the flag γ(F ′E)
differs from FE only in finitely many positions, hence is a point on Fl(FE , E, V ).

On the other hand, it is clear that the image φ̄ ∈ PGL(V ) of φ ∈ A is contained
in P (GL(E, V ) · BE). Indeed, the composition ψ ◦ φ̄ with a suitable element of
PGL(E, V ) will fix the point FE on Fl(FE , E, V ). This means that ψ◦φ̄ ∈ PBE .
Therefore the image of A in PGL(V ) is contained in P (GL(E, V ) ·BE), and we
are done.

�

4. Discussion

First, Proposition 1 can be generalized to ind-varieties of the form Fl(F,E, V )
where F is a finite chain consisting only of finite-dimensional subspaces of V , or
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only of subspaces of finite codimension of V . The precise definition of the ind-
varieties Fl(F,E, V ) is given in [1]. In these cases, the respective automorphism
groups are always isomorphic to PGL(V ), however in the case of finite codimen-
sion there is a natural isomorphism with PGL(V∗).

We now point out some differences with the case of ordinary flag varieties. A first
obvious difference is the following. Despite the fact that Gr(k, V ) = PGL(E, V )/
Pk, where Pk is the stabilizer in PGL(E, V ) of a k-dimensional subspace of V ,
the automorphism group of Gr(k, V ) is much larger than PGL(E, V ). There-
fore Gr(k, V ) is a quotient of any subgroup G satisfying PGL(E, V ) ⊂ G ⊂
PGL(V ), and there is quite a variety of such subgroups. Similar comments apply
to the other examples we consider.

Next, we note that the automorphism group of an ind-grassmannian is in gen-
eral not naturally embedded into PGL(V ). Indeed, the case of the cofinite ind-
grassmannian Gr(W,E, V ) shows that the natural isomorphism Aut Gr(W,E,
V ) = PGL(V∗) does not embed Aut Gr(W,E, V ) into PGL(V ) by duality, but
only embeds Aut Gr(W,E, V ) into the much larger group PGL((V∗)

∗) in a way
that its image does not keep the subspace V ⊂ (V∗)

∗ invariant. This is clearly an
infinite-dimensional phenomenon.

Finally, recall that the group of automorphisms of a finite-dimensional grassman-
nian is naturally a subgroup of the automorphism group of the corresponding
full flag variety; more precisely, the former group is the connected component
of unity of the latter group. This note shows that the situation in the infinite-
dimensional case essentially different: indeed, the injection Aut Fl(FE , E, V ) ↪→
Aut Gr(k, V ) constructed in the proof of Proposition 2 is proper.

We hope that the above differences motivate a more detailed future study of the
automorphism groups of arbitrary ind-varieties of generalized flags.
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