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Abstract

We extend previous work by constructing a universal abelian tensor category T; gen-
erated by two objects X,Y equipped with finite filtrations 0 € Xg € ... € X441 = X
and 0 C Yy € ... € Vi1 =Y, and with a pairing X ® Y — 1, where 1 is the monoidal
unit. This category is modeled as a category of representations of a Mackey Lie algebra
g™ (V,V.) of cardinality 2%, associated to a diagonalizable pairing between two vector
spaces V.V, of dimension N; over an algebraically closed field K of characteristic 0. As
a preliminary step, we study a tensor category T; generated by the algebraic duals V*
and (V4)*. The injective hull of the trivial module K in T; is a commutative algebra I,
and the category T consists of all free I-modules in T;. An essential novelty in our work
is the explicit computation of Ext-spaces between simples in both categories T; and Ty,
which had been an open problem already for ¢ = 0. This provides a direct link from the
theory of universal tensor categories to Littlewood-Richardson-type combinatorics.

MSC 2020: 17B65; 17B10; 18MO05; 18E10; 16S37.

1 Introduction

Fix an algebraically closed field K of characteristic 0. For us, a tensor category is a K-linear,
not necessarily rigid, symmetric monoidal abelian category. In this paper we construct a tensor
category Ty, generated by two objects X and Y, equipped with finite filtrations 0 C X, C
e 8 X1 =Xand0C Yy, € ... CY,; =Y, and with a pairing X ® Y — 1 where 1 is the
monoidal unit, such that the category T, is universal in the following sense: for every other
tensor category equipped with objects X', Y’ a morphism X’ ® Y’ — 1/, and finite filtrations
0CX)C...CX, =X and0CYjC.. CVY),=Y witht <t thereis a left exact
monoidal functor from the category T, to this other category such that
FX)=X", FY)=Y", F(Xa) = X{a), F(Ya) =Y,

for some order preserving surjection s : {0, ...,t + 1} — {0,...,t' + 1}.

Our work extends several previous works [PS2014], [SS2015], [ChP2019], [ChP2017], [ChP2021].
The most recent of them is the paper [ChP2021] where the filtrations of X and Y are just of
length two, i.e., amount to fixed subobjects Xy C X and Yy C Y. This case has many features
of the general case, and we follow the main idea of [ChP2021]. Namely, we first construct a ten-
sor category T; which consists of tensor modules over the Mackey Lie algebra g™ = g™ (V, V)



of a diagonalizable pairing p : V®V, — K. Here V is a vector space of dimension ¥; over K and
V. is the span within V* := Hom(V,K) of a system of vectors {x;} dual to a basis {v,} of V.
The Lie algebra gl consists of all linear operators ¢ : V' — V such that ©* (Vi) C Vi, where ¢*
stands for the dual operator. We recall that the gI*-modules V* and V := (V,)* = Hom(V,,K)
have finite filtrations V, = Vy € ... C Vi, =V*and V =V, C ... € V4 = V with irreducible
successive quotients. Using these filtrations we compute the socle and radical filtrations of the
adjoint gl™-module, and also describe all ideals of the Lie algebra g™ . The latter result is not
necessarily needed for our study of the category T; and is of interest on its own.

The category T, is defined as the full tensor subcategory of the category of gl*-modules,
generated by the two modules V* and V, and closed under arbitrary direct sums. This category
is not yet our desired universal tensor category, but is a natural and interesting tensor category.
We classify the simple objects in T,;. It turns out that they are parametrized by pairs A, tte
where A\, and p, are finite sequences of length ¢ 4+ 2 with elements arbitrary Young diagrams.
We then describe the indecomposable injective objects in T, (equivalently, the injective hulls
of the simple objects) and compute explicitly the layers of their socle filtrations. The simple
objects of T, have infinite injective length and the injective hull I of the trivial 1-dimensional
glM-module K plays a special role. In particular, the gi*-module I has also the structure of a
commutative associative algebra.

An essential novelty going beyond the ideas of [ChP2021] is that we write down an explicit
injective resolution of any simple object, and hence obtain explicit formulas for all Exts between
simple modules in T;.

Finally, following again [ChP2021], we define the desired universal category T;. This is the
category of (g[M , I)-modules, whose objects are the objects of T; which are free as I-modules
(in particular, I € T;) and whose morphisms are morphisms of glM-modules as well as of I-
modules. The tensor product in T; is ®; and the simple objects in the new category are nothing
but simple objects of T; tensored by I. These new simple objects have finite injective length
in T;. Moreover, as an object of T; the module [ is both simple and injective. We compute
explicitly all Exts between simple objects in T; by writing down canonical injective resolutions
of simples. In the case of T studied in [ChP2021], this yields a new formula for the dimension of
Extg, (1 @ Lisy oo s L @ Ly oyuo,un ) a8 the multiplicity of I® L1 .0, in the g-th layer of the
socle filtration of the injective hull of the module I ® Lyt ;.. ., Where Ly, oo s L dospo
are arbitrary simple objects in Ty and * stands for conjugate Young diagram.

A brief outline of the contents is as follows. In §2 we define Mackey Lie algebras and de-
termine their ideals. In §3 we introduce the module I. In §4 we collect necessary notions from
category theory. In 85 and §6, which contain the technical bulk of the paper, we study the
categories T; and T, respectively. We exhibit some unexpected combinatorial symmetries of
these categories in §7. In §8 we prove the universality property of T;.
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980/9-1. V.Ts. is also supported by the Bulgarian Ministry of Education and Science, Scientific
Programme “Enhancing the Research Capacity in Mathematical Sciences (PIKOM)”, No. DO1-
67/05.05.2022. Some initial inspiration for our work came from a set of examples of injective
resolutions and a conjecture on the injective length of modules in a subcategory of T; due to
T. Pham, [Ph2022]. We thank a referee for several thoughtful suggestions.



2 Basic notions

The ground field for all vector spaces and tensor products is an algebraically closed field K
of characteristic 0, unless stated otherwise. We set ® := ®g. If V is a vector space, then
V* := Hom(V,K) stands for the dual vector space and gl(V') denotes the Lie algebra of all
linear operators on V. By N we denote the natural numbers (including 0), and |A| stands for
the cardinality of a set A. We assume the Axiom of Choice, hence the class of cardinals is well
ordered. By definition, ¥, is the smallest infinite cardinal (the cardinal of a countable set),
N; is the successor of Ny, and N, is the successor of N;_; for £t — 1 € N. We do not assume
the Continuum Hypothesis (or the Generalized Continuum Hypothesis), which means that the
equality X; = 2% does not necessarily hold.

Let V' be a vector space. For any subset A C V', we write spanA C V for the set of all
(finite) linear combinations of elements of A. A subset B C V' is a basis of V, if span5 = V' and
B is minimal with this property. The Axiom of Choice implies that every vector space admits
a basis. The dimension of a vector space is the cardinality of a basis.

The space of linear operators on a vector space V', considered as a Lie algebra, will be
denoted by gl(V).

If M is a module over a Lie algebra, or an associative algebra, the socle of M, socM is
the semisimple submodule of M. The socle filtration of M is defined inductively by setting
soc! M := socM, sociM = W;_ll(soc(M/socqflM)), where m,_1 : M — M/soc?'M is the
canonical projection. The layers of the socle filtration are defined as soc? M := soc?M /soc?™ 1 M.
The socle filtration of a module M is exhaustive if M = h_r)n soc?M . The socle filtration of a

module of finite length is always exhaustive.

The radical of a M is the joint kernel of all homomorphisms from M to simple quotients.
Setting rad' M := radM and rad?M := rad(rad? ' M) we obtain the radical filtration of M.

In the main body of the paper we quote extensively results from previous works in which
the ground field is the field of complex numbers. We have ensured that all necessary results
hold over a general field K as above, and we do not mention this explicitly below.

2.1 Mackey Lie algebra and its structure
Let V, W be fixed vector spaces and

p:VaW oK

be a fixed nondegenerate pairing (nondegenerate bilinear form). This determines embeddings
W CcV*and V C W*. The Mackey Lie algebra associated to the pairing p is

gV, W) ={pegl(V): "(W) C W},

where ¢* stands for the endomorphism of V* dual to ¢. We consider gl (V,W) as a Lie
subalgebra of gl(V'), but it can also be considered as an associative subalgebra of EndV'.

We shall focus on the case where the vector spaces V and W are isomorphic and the pairing
is diagonalizable. The latter means that there exist bases {v, : b € B} of V and {w, : b € B},

parametrized by the same set B, so that, for v = > v(b)v, € V and w = > w(b)w, € W, we
beBs beBs
have



Recall that, by a classical theorem of G. Mackey [M1945], every nondegenerate pairing of
countable-dimensional vector spaces is diagonalizable. This result does not generalize to higher
dimensions, and we take the diagonalizability of p as an assumption. In this situation, W is
referred to as the restricted dual V, of V. Since W =V, and p are fixed, we shall use the short
notation gl for the Lie algebra gl™ (V,V.). Also, we denote V := (V,)* and assume that V is
embedded in V by use of the pairing p.

From now on, we suppose that the dimension of V' is an infinite cardinal number of the
form N; with a fixed t € N. Let B be the index set for a fixed pair of dual bases of V' and V,
as above. We have |B| = N,. Since a pair of dual bases is fixed, both vector spaces V* and
V can be identified with the space Maps(B,K). For s <t + 1 we define V* and V; to be the
respective subspaces of V* and V, identified with the subspace {x € Maps(B,K) : [supp(z)| <
Ny} C Maps(B,K), where supp(z) := {b € B : z(b) # 0}. Thus V, = V§, V =1, V* = V3,
and V = Vt+1-

Using [J1956, Theorem 4.1], the reader can check that the cardinalities and the dimensions
of the vector spaces V*, V, g™, EndV are all equal to |K|¥. The dimensions of V and V, equal
N; by definition, but the cardinalities |V| and |V,| equal max{®;, |K|}. In addition, when |K| =
K™ we have |V| = |V,| = |[V*| = |V| = |K|, while dim V* = dim V > X, = dim V = dim V.

The notion of support is extended from vectors in V* to vectors in tensor powers (V*)®7 as
follows. Any v € (V*)®7 can be written as a finite sum v = 3. v/ @ v @ ... ® v) with vl € V™.

7j=1
We put

supp(v) := Usupp(vf ) -

Clearly |supp(v)| = max{|supp(v?)|}. The notion of cardinality of support is well defined also
27]

for elements of the quotient spaces V*/V¥ by use of representatives. Analogous definitions are
valid for elements of V" and V' /V.
The Mackey Lie algebra can be expressed as
g™ = {p e gl(V) : Vb e B, |supp(¢*(z3))| < oo}
=~ {o e KB*F Wb € B, [supp(ps.)| < 00, |supp(p. )| < oo},
where, as customary, ¢, denotes the value of ¢ at (a,b) € B x B. After choosing a linear order
on B, the Mackey Lie algebra can be identified with the space of B x B-matrices with finitely

many nonzero entries in each row and each column, with commutator the Lie bracket. The
support of an element ¢ € gl with respect to the fixed basis, is defined as

supp(p) := {(a,b) € B x B : ¢ap # 0} .

The subalgebra gl(V,V;) := V ® V, C g™ is an ideal and consists of all elements in gl
of finite rank. We put sl(V,V,) := kerp. This is also an ideal of gI*. The set of elementary
matrices {e, ) := v, ® xp : a,b € B} is a basis of gl(V, Vi).

Proposition 2.1. ([ChP2017])
The filtration of length t + 2

Vi=VogcVicVyc..cVi, =V"

is the socle filtration of the g™ -modules V*. The layers ViV are irreducible. Analogous
statements hold for the filtration

V:‘_/OC‘_GCVQC---C‘Z:H:V-



Consequently, the above filtrations of V* and V depend only on the pairing p and not on
the chosen basis of V' used in their definition.

Our goal in the rest of this section is to determine all ideals of the Lie algebra g™ . We also
compute the socle and radical filtrations of the adjoint gl*-module. We start with

Lemma 2.2. (i) The center of the Mackey Lie algebra consists of the scalar transformations
Kidy of V.

(ii) For 0 < s <t+1, there is an ideal gt™ C g™ given by
gy ={pea " (V) C 1},
Proof. The proof is straightforward. n

Remark 2.1. Note that gl)’ = gl(V,V.) and g[%rl = g™ . Furthermore, if gt™ is considered as
a subalgebra of gl(V,) instead of gl(V'), then the ideal gt is given by {¢ € gi™ : *(V) C V,}.

For any subset A C B we denote by g” the subalgebra whose elements are supported on
A x A. In particular, gl = gB. If |A| = n is finite, then g* is a copy of gl,. If |4] is infinite,
then g# is a Mackey Lie algebra for the obvious restriction of the pairing p. If A, B C B are
disjoint then g* and g® commute, and we have a subalgebra of the form g* @ g? c g™, which
is block-diagonal if an order on B is chosen so that A < B.

Lemma 2.3. Let o € gi™. There exists a partition of B into a disjoint union of countable

(possibly finite) sets B = || Cy such that
beB!

pel, =g, ie, supplp) C | |7, (1)

beB’ beB’

where B' is an arbitrarily chosen set of representatives of the sets partitioning B. Each set C,,

admits a partition into a disjoint union of finite sets Cy, = | | C (possibly with finitely many
neN
parts) so that

supp(y) C | | (U(CZLUCZJ“)“) : (2)

beB’ \neN

Moreover, there exists a well-order on B, with respect to which the matriz of p is block-diagonal
with blocks of (possibly finite) countable dimensions. Within each block there is a block structure
with finite blocks, such that all nonzero entries of the matrix of  lie within the main block-
diagonal and the two adjacent block-diagonals.

Proof. For b € B we set A,(b) :={a € B: . # 0 o0r ¢, # 0}, and note that A,(b) is a finite
subset of B since ¢ € gi™. We define an equivalence relation on B by declaring two elements
a,b € B equivalent if either a = b or there is a finite sequence b = by, by, ..., b, = a such that
bj € A,(bj_1) for j = 1,...,n. Each equivalence class is at most countable. Let C}, denote the
equivalence class of b € B and let C}' denote the (finite) set of elements a for which a sequence
bo, -, b, as above exists, but a shorter sequence does not exist. Also let CP := {b}. We fix a



set of representatives B’ for the equivalence classes. Thus we obtain a decomposition of B into
finite subsets:

5| | (|_|(ng>. ®)

beB’ \neN

Now formula (2) follows by construction and implies formula (1). The asserted order is
defined as follows. For b € B’, we define a well-order on Cj by declaring b to be the minimal
element, ordering each C}' well, and setting C}' < Cg‘“. These orders are combined into a
well-order of B through an arbitrarily well-order of B’. Moreover, the subalgebra [, C g™
containing ¢ takes the form of a block-diagonal subalgebra with blocks of countable dimension,
and the remaining statements concerning the countable blocks of  are easy to verify. O]

Remark 2.2. The block structure of the matrix of ¢ constructed in Lemma 2.3 can be made
transparent as follows. Let D € gi™ be the diagonal element with Dyo=n+1ifa € Cy where
b € B’ is the unique element such that a € Cy,. Then ¢ can be decomposed as p = p_1+ po+ p1
with [D, ;| = jp;. Hence p_1, o, ¢1 belong to any ideal of g™ containing ¢.

The matriz of @q is block-diagonal with respect to the decomposition (3), while the matrices of
w_1 and @1 are supported respectively on the first block-diagonal below and above the main block-
diagonal. We observe that ¢ = @ if and only if ¢ is diagonal, i.e., if B' = B. Furthermore, if
¢ 1s not diagonal and a block of w11 vanishes, then the transposed block of p+1 is nonzero, i.e.,
for every b € B' and every n € N such that C{;”H 15 nonempty, we have

supp(i) N (G x Cp) U (G x C))) £ 0. (4)

Lemma 2.4. Let the matriz of p € gI™ have an infinite support, i.c., |supp(p)| = R, with
s € {0,...,t}. In case s = t, suppose furthermore ¢ ¢ Kidy @ glM. Then the ideal Jp C gl
generated by o is equal to g[ﬁl.

Proof. For dimV = Xy and ¢ ¢ gl(V, V,) @ Kidy, the statement is proven in [PS2014, Corollary
6.6] and the result is J, = gl™. We shall use Lemma 2.3 to reduce the general case to the case
dim V' = Ry. In what follows, we identify the elements of gI* with their matrices.

The first step is to show that the ideal J, contains a diagonal matrix whose support has
the cardinality of the support of ¢. Let [, C gI™ be the subalgebra containing ¢ provided by

Lemma 2.3 and let ¢ = Y ¢® be resulting the decomposition, ¢® being the projection of
beB’

¢ to g¢. For each b € B’ there are two possibilities: Cj, is either finite, or infinite countable.
If Cy is finite, then the ideal generated by ¢® within g& = glic,| contains diagonal matrices
by [PS2014, Lemma 6.5] (there exists z,y,z € g such that [z, [y, [z, 0®]]] is diagonal). If
C} is infinite countable, we can apply the aforementioned statement [PS2014, Corollary 6.6] to
©® € g% because ¢ is not equal to the sum of a scalar matrix and a finite matrix by (4).
We deduce that the ideal of g¢ generated by p® is the entire g¢ and contains, in particular,
the diagonal subalgebra of g©.

Now suppose that ¢ is diagonal and either s < t or ¢ ¢ Kidy @ gl. For the next step we
will need a certain family of diagonal matrices ¢9) belonging to J,. Consider a splitting of B
in two parts, B = By U By, such that By C supp(p), |Bi| = |supp(p)|, and there is an injection
[ By — By with vy # @), s for all b € By. Put

1
xr = Z eb,f(b) ) y = Z g(b)ef(b)’b ’

beBy Pob — Prb),f(b) beBy




where g : By — K is arbitrary. Then

09 =y, [z, 0] = Z g(b)evs — g(b)esw),rv)
beBy

is a diagonal matrix with support contained in By Ul f(B;) and determined by the function g.
Next, using suitable matrices ¢¥ we will show that any matrix in g[é‘fL1 with zeros on its
diagonal actually belongs to J,,. Let ( g™ )diag—o be the set of matrices with zeros on the diagonal

and ¢ € (g1")giag—o be an arbitrary matrix with |[supp(¢))| = |supp(g)|. Let B= || Cj be the
beB”
partition of B defined by ¢ as in Lemma 2.3. Note that

supp(¢) C I_l Cx? .

beB':|Cp|>1

Hence the set B” = {b € B" : |Cy| > 1} has cardinality |[supp(¢)|. There is a surjective map

supp(p) — |_| Cy=:Bs .
beB'
Let By C supp(yp) be any subset such that |B;| = |supp(p)| and |B\B;| = |B|. Put By := B\ B.
Let f : By = B, be an injection such that ¢y, # @), ) and Bs C BiUf(By). Theng: By = K
can be selected so that go,(fi)z #* go((l‘f?a, whenever a,d’ € C, for some b and a # «’. The matrix @@
satisfies

[Qp(g)a (g[M)diag:O N [w] - (g[M>dmg:0 N [w .
In particular ¢ € J,. We conclude that (gt )diag—0 N g[ﬁl C Jyp, which in turn implies
g[ﬁl C J,- Since ¢ € g[ﬁl, we get g[é‘il = Jo- O

Corollary 2.5. The nonzero ideals of g™ contained in gl are exactly si(V,V,) and gl
for s € {0,...,t}. There is a single proper ideal of g™ strictly containing gI, and this is
Kidy & g[i”

Proof. Both statements follow immediately from Lemma 2.4. O]
We are now in a position to describe the socle filtration of the Lie algebra gi*.

Theorem 2.6. The adjoint gi™ -module is indecomposable, has length t + 4, and its socle
filtration is given by

soctg™ = Kidy @ sl(V,V,)

soc?gl™ = Kidy @ gl(V,V,) , soc’glM =q=K

socs g™ = Kidy @ glll;, , socHgl™ =g, /gl | s=0,..,t—1,
soctt3gM = giM ., socT3glM = g™ /(Kidy @ gt .

Moreover, for s > 1 the layer soc®™ g™ is a simple gi™ -module.

Proof. The submodules of the adjoint gl*-module are the ideals of the Lie algebra gi™. We
begin with the chain of ideals obtained in Lemma 2.2, with added initial term sl(V, V;), i.e.,

sV, V) Cgl(V, Vi) =glyf cglif ... gl)f g, =gl (5)



The Lie algebra sl(V, V,) is simple, being a direct limit of simple Lie algebras, and there are no
ideals of g™ between sl(V,V,) and gl(V, V) because the quotient is 1-dimensional. Moreover,
Corollary 2.5 implies that all inclusions in (5) are essential, and that all quotients gl’ 1 g™ for
s=0,..,t—1, as well as the quotient gl /(Kidy & gl ), are simple. Since Kidy C soc'gl?,
the statement about the socle filtration follows.

The fact that all inclusions in (5) are essential implies that in order to establish the inde-
composability of gl it suffices to show that the ideal Kidy does not split off. This is a direct
corollary of the famous assertion of Heisenberg that the equation [z, y] = idy has a solution in
infinite three-diagonal matrices. Classically this statement is known for ¢ = 0, but it holds for
any t since one easily constructs block-diagonal matrices z,y in g™ \ gl such that [z,y] = idy .
It is essential that each diagonal block, being a three-diagonal Heisenberg matrix of countable
size, has finite rows and columns, which ensures that z, y lie in gl and not just in gl(V). O

Corollary 2.7. The radical filtration of the adjoint gt™ -module is the following modification
of filtration (5):

sl(V, V) C gl(V, Vi) = gl)f c gl € ... C oI}, C Kidy @ gl}' C gl}f, = gt™ .
In other words,
rad'gl™ = Kidy @ gt |, rad*™ g™ = gt for s =1,....t, rad™gl™ = sl(V, V) .

Proof. The statement follows immediately from the properties of the chain (5), and from the
fact that the direct sum Kidy @ gl is a direct sum of ideals. O

Theorem 2.8. The following is a complete list of nonzero proper ideals in the Mackey Lie
algebra g™ :

(i

(i) sl(V,Vi);

) the center Kidy;
)

(i) Kidy @ sl(V,V.) = soc'gl™;
)

K(zidy +ep) +51(V, Vi) C soc?gl™ for arbitrary = € K\ {0} and b € B; this ideal depends
only on z and not on b;

(iv

(v) g™ C socst2gIM for s =0, ..., (recall that gy’ = gl(V,V.));
(vi) Kidy @ gl = socs*2gI™ for s =0, ...t

Proof. Let § C gI™ be a nonzero proper ideal of g™ and let r be the minimal integer such
that J C soc"gl™. Then r < t + 2 since any ¢ € gI™ which lies in the preimage of a nonzero
element of the simple quotient gl /soc*?gl™ generates g™, If 7 = 1 then J is one of the ideals
(1),(ii),(iil). Assume 2 <7 <t + 2. The minimality of r ensures that J projects nontrivially to
the layer soc” g™, which is a simple module. We consider two cases, r = 2 and r > 2. If r > 2,
then the layer soc" gl = g’ , /gl , is a nontrivial simple gi™-module. Hence, the projection
of J to gl is the entire gI,. Since Kidy is central, we conclude that gl*, C J. So the
possibilities are J = gl or J = Kidy @ gl ,, which account for items (v) and (vi) in our list
with 7—2 = s > 0. The case r = 2 is covered by (v) and (vi) for s = 0, along with the remaining
item (iv). Indeed, if J C Kid @ gl(V, V) projects nontrivially to soc’gl™ = K, we have either



socy = Kidy @ sl(V,V,) or socy = sl(V, V). In the former case, we get J = Kid @ gl(V, Vi)
covering item (vi), s = 0. In the latter case, since soc?gl™ /sl(V, V) = K@K, we conclude that
soc’y = K and J is generated by an element of the form ¢ = zidy + epp With a suitable z € K
and any b € B (it is clear that all b € B yield the same ideal for a fixed z). For z = 0 we obtain
J = gl(V, Vi) covering item (v) with s = 0. For z # 0 we obtain item (iv). O

Corollary 2.9. The only ideal of g™ which is not principal, i.e., is not generated by one
element, is Kidy @ gl(V, Vi).

Proof. The result follows from the above proof and Lemma 2.4. O

Remark 2.3. The ideals of item (iv) in Theorem 2.8 are very similar to certain ideals of the
Lie algebra gl(V') found in [S1972], see also [BHO2023].

2.2 Tensor algebras and Schur functors

Let us recall some general results for decompositions of tensor powers.

We denote by T'(X) the tensor algebra generated by a vector space X. For any Young
diagram X\ and any vector space X, we denote by X, the image of X under the Schur functor
corresponding to A\: X, C X®X. Here || denotes the number of boxes in A. Also, we denote
by A the set of Young diagrams, by () the empty diagram, and by A the transposed Young
diagram (the corresponding partition is called conjugate). Standard Schur-Weyl duality yields
the following decomposition in our context

xXem= P KeX,  TX) =PKeX,,
A

[Al=m

where K* is the irreducible module of the symmetric group on || letters determined by the par-
tition A. The m-the symmetric and skew-symmetric tensor powers S™X and A™X correspond
to A = (m) and A = (1, ..., 1), respectively.

We denote by ¢, : X®Al - X, the projection associated to a standard Young tableau of
shape A, which we fix once and for all to be the tableau where the numbers 1, ...,|A| fill the
boxes of A in their initial order.

Proposition 2.10. ([ChP2021, Proposition 2.2]; [PS201/, § /])
Let X, Y be two objects in a tensor category. Then the following hold.

1. Formn>0, X?"@Y*" = @ KeoK'eoX,QY,.

[A=m,|u|=n

2. Form>0,S"(X®Y)= @ X,Y,.
[A|l=m

3. Form>0, A"(X®Y)= @ X,®Y,..
[A|l=m

2.3 Dense subalgebras

Definition 2.1. Let & be a Lie algebra, R be a &-module, and $ C & a subalgebra. The
subalgebra $) is said to act densely on R, if for any finite subset of vectors ry,...,r, € R and
any g € O, there exists h € ) such that g-r; =h-r; forj=1,...,n.



Proposition 2.11. Let & be a Lie algebra and R be a &-module.

(a) If a subalgebra $ C & acts densely on R, then § acts densely on the tensor algebra T'(R)
and on all its subquotients.

(b) If & acts densely on R as a subalgebra of gl(R) (R considered as a vector space), then for
any partition X the &-module Ry is simple with Endg Ry = K.

(¢) If J is an ideal of & acting densely and irreducibly on R with EndyR = K, then the
functor
e®R:&/J—mod — G—mod

18 fully faithful; it sends simple modules to simple modules and essential inclusions to
essential inclusions.

Proofs are given in [PS2014, Lemma 7.3] for part (a), [ChP2017, Proposition 4.5] for part
(b), [ChP2017, Lemma 4.4] and [ChP2021, Lemma 3.3| for part (c).

3 The module [
Consider the canonical projection
p: VRV — VeV /(s(V,V) +sl(V,,) = Q, (6)

where sl(V, V*) := ker(V @ V* — K) and s[(V, V) := ker(V @V, — K). Recall that gl(V,V,) =
V@V, and sl(V,V,) =ker(p : V ® V, — K) are ideals of gi*. Hence

g=pVeV)=pVeV)=pVeV,)caq

is a 1-dimensional trivial gi™-module, generated by p(vp ® xp) for an arbitrary b € B. Conse-
quently, there is a short exact sequence of gi™-modules

0—K-"—>Q-"F—0, (7)

where ((K) = q with «(1) = p(vy ® 1) for any b € B and F :=V/V @ V*/V,.
We define a gl*-module by setting

I :=lim S*Q, (8)
—
where ¢}, : S*Q — S*1(Q is the map generalizing 1o = ¢, given by
SFQ = SFQ @ K U gk @ @ MUY gk |
The exact sequence (7) generalizes, for k € N, to
0 — SFQ 25 S =5 SHHE 0. (9)

It follows that the successive quotients (or layers) of the defining filtration of I are S*F for
k=0,1,2, ...

10



Proposition 3.1. (/ChP2021])

The module I carries a commutative algebra structure, made evident by the isomorphism
of gi™-modules I = S*Q/(1 — (1)), where (1 — 1(1)) denotes the ideal of S*Q generated by
1—(1).

We observe that for every pair of natural numbers 7, s < t + 1 there is a gl™-submodule of
() defined as B
Q" =p(V,aV])CQ.

Since q C Q™ the construction of I can be repeated with Q" instead of @, yielding a gl™-
module

I™% .= lim S*Q"* (10)

k—o0

which is an essential extension of the trivial module q = K. Thus we obtain a family of
gl™-submodules and commutative subalgebras of I

qC[T7SC[t+1,t+1:[’ T78§t+1
Note that I™* C I"*" if and only if r </ and s < §'.

Our next aim is to define a morphism of gi™-modules ¢ : I — F @ I. Let S*Q = P S*Q
k=0
be the symmetric algebra over (), and

A:5Q—SQeSQ , Av)=v1+1®uvforveq

be the comultiplication which defines a Hopf algebra structure on S°(). The comultiplication
is a morphism of gl*-modules. We denote by

k. ok j k—j
A7 5Q = S7Q @ 57 Q
k
the composition of the restriction A : S*Q — @ S7Q ® S*77Q with the projection to the j-th
5=0
summand.
For k € N we have a morphism ¢* = (7, ® id) o A%:

W8 Q2 Qe s B P giig

This enables us to define the morphism ¢ by setting

Ypo=lmy*: I —FI. (11)

—
Lemma 3.2. We have "1 o1, = (id ® 1p_1) o ¥*.
Proof. The argument in [ChP2021, § 3.1] can be repeated in our context without alteration. [
Lemma 3.3. The kernel of ¢ is 1-dimensional, given by keryp = q = K.
Proof. Since ker(m, ®id) = (1, 0 ... 0 11)(q) ® S*71Q, we have
kery — (A5 ((tx 0 . 0 1)(q) © 5*71Q)
= (tp0...001)(q) .
O

The constructions of this subsection can be carried out for I™* (see formula (10)) instead

of I. One only needs to replace Q by Q" and F by F"* = V,/V @ V/V.. The restricted
morphism s : I™* — F™* @ I"™* factors through I™* — I"™*/q.
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4 Background from category theory

4.1 Ordered Grothendieck categories

Definition 4.1. (/ChP2021, Def. 2.3]) Let (P, =) be a poset. An ordered Grothendieck cate-
gory with underlying order (P, <) is a Grothendieck category C with a given set of objects X;,
1 € P with the following properties.

(a) The objects X; have exhaustive socle filtrations.
(b) Every object in C is a subquotient of a direct sum of copies of various X;.

(c) For every isomorphism type of simple objects in C there exists a unique i € P such that
this type occurs in

S, = {isomorphism types of simples in socX;} .

(d) Simple subquotients of X; outside socX; are in the socle of some X; with j < i.
(e) Each X; is a direct sum of objects with simple socle.

(f) For j < i, the mazimal subobject X, ; C X; whose simple constituents belong to various
Sy, fori = k £ j is the common kernel of a family of morphisms X; — X;.

We refer to X;, i € P as the order-defining objects of the ordered Grothendieck category C.

Proposition 4.1. ([ChP2017, Proposition 2.5, Corollary 2.6])

Let U be a simple subobject in socX; for some 1 € P and let U be the direct summand of X;
such that U = socU. Then U is an injective hull of U.

The indecomposable injective objects in C are, up to isomorphism, precisely the indecompos-
able summands of the objects X;, i € P.

4.2 Tensor categories
Let C be a tensor category.

Remark 4.1. Let 0 —» 2’ — x — 2" — 0 be a short exact sequence in a tensor category. Then
the symmetric power S¥x has a filtration 0 = F_y C Fy C ... C F, = S*z with F/F;_; =
Sk=ig! @ Six" for 0 < j < k.

Lemma 4.2. Suppose that the tensor product of any two injective objects in C is again an
ingjective object. Let

0>U - M > M > M? 5 ... 5 M™—0
0—>U, N 5N 5 N2 .5 N" =0

be injective resolutions of two objects Uy, Us. Then an injective resolution of Uy ® Uy is given
by
00U, Uy R R' 5 R*— ... 5> R"™ >0,

k . .
where R¥ = @ M* 3@ N7 for k =0,1,...,m+n, and the differential of this complex, restricted
j=0
to M*T®@ N7, equals the tensor product of the respective differential of the initial two complezes.

12



Proof. The exactness of the resulting sequence follows from the Kiinneth formula. The modules
R’ are injective, by hypothesis, and hence we have and injective resolution. O

Definition 4.2. A simple object in a tensor category is called pure, if it is not isomorphic to
the tensor product of two nontrivial simple objects.

5 Categories of tensor modules for Mackey Lie algebras

We denote by T; the smallest full tensor Grothendieck subcategory of gi™-mod that contains
V* and V and is closed under taking subquotients. For any set of objects X,Y,... in T;, we
denote by T(X,Y,...) the smallest full tensor Grothendieck subcategory of T; containing these
objects and closed under taking subquotients. In particular, T, = T(V*, V). Since t is fixed in
the discussion, we abbreviate the notation to T = T; most of the time.

5.1 The category T(V,,V)

Here we recollect some known results on the category T(V,, V') that will serve as building blocks
for some subsequent constructions. As before, A stands for the set of Young diagrams and its
elements are usually denoted by A, u, etc.

For any pair of nonnegative integers [, m we have a gl*-module decomposition

‘/:k®l®v®m: @ KA®KM®(‘/*))\®VM

A=, ul=m

For (i,7) € {1, ..., |u|} x {1,...,|v|} we denote by p;; : V& @ VEm — VI @ y@m=1) the
contraction obtained by applying p : V., ® V — K to the i-th tensorand of V¥ and the j-th
tensorand of V®™. The submodule annihilated by all these contractions is

Vi = ﬂker(pi,j) Cc Ve Ve™
1,5
For any pair of Young diagrams A, u with |A\| = [ and || = m, and any fixed copy of (V) ®V,
inside V' @ V®™ we denote

V= ﬂker(pi,j\(v*h@v”) :

i?j
More generally, for a pair of nonnegative integers m,n and a pair of multiindices of the same
size 1 = {1 <4y < .. <idp <m}, j ={1 <j1 <..<jr <n}, we have a morphism of
g™-modules

pg,l :V®m ® v@n N ‘/*®(m—k) ® V@(n—k)

*
k

(21 ® . @) ® (11 @ .. @ vg) = (] [ Plas, @ 0,))(@iggi) @ (Rgj0;) -

Proposition 5.1. For any pair of Young diagrams X, p, the representation V., of gl s
irreducible and the action of the subalgebra gl(V,V,) C g™ on Vi @s dense in the sense of
Definition 2.1.
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Proof. In the case where V' has countable dimension (i.e., ¢ = 0) the result is proven in [PS2014]
in two steps: first showing that gl(V, V,) acts densely on V @ V, as a subalgebra of g™ and
second, using the fact that Vy,, is a glM-submodule of the tensor algebra T(V@V,) and applying
Proposition 2.11,(a).

The general case can be reduced to the case t = 0 by means of Lemma 2.3. Indeed,
let ri,...,rn € V@V, and ¢ € g™, By Lemma 2.3 there is a well-order on B such that
the matrix of ¢ is block-diagonal with blocks of countable dimension. Let C' C B be the
union of the index sets of the blocks of ¢ where the supports of rq,...,7, occur. Then C is
countable and we have rq,...,r,, @ry, ..., or, € U @ U,, where U := span{v, : b € C} C V and
U, :={xp,:be C}) CV,. Now we can apply the argument of [PS2014] outlined above to infer
the existence of ¢ € gl(U, U,) C gl(V,V,) such that ¢r; = ¢r; for j =1,...,n. O

Proposition 5.2. (/PS2014, Theorem 4.1])
Let 1,m be nonnegative integers. The socle filtration of the sl(V, V,)-module V' @ V™ s
given by
sock (VP @ Vem™) = ﬂ ker(py;) , k=1,...,min{l,m} .

Hi=dj=k

In particular,
soc(VERVE) =Vim= P KeK'@V,.
|>\‘:l7‘ﬂ‘:m

Theorem 5.3. ([PSt2011, Th. 2.3/, [PS2014, § 4])

Let A\, € A be Young diagrams. Then the layers of the socle filtration of the sl(V,V,)-
module (V.)x ® V,, have the following isotypic decompositions

soc" (Ve V)= @ hl Ve, , where hEh:=> NANL . (12)
€mEN|X|—l€|=k veA

The same applies for the Mackey Lie algebra gt™ instead of sl(V, V).

It is an elementary but essential observation that h?fﬁf # 0 implies that there exists a unique
A, A
b= K3 = |\ — |€] = [ — [n] such that B3 = Hom(V, soct*1((V)y  V,)) £ 0.

Definition 5.1. Let P be the poset with underlying set N> and the following relation:

l—m=0U—-—m

(m) < (im) = |y T

Theorem 5.4. (/ChP2017, § 4.2])
The category T(V.., V) is an ordered Grothendieck category with order-defining objects (V,)*'®
Ve parametrized by the poset P. The socles of the order-defining objects are

soc((V.)®' @ V™) = Vi, .

The simple objects and the indecomposable injectives of T(V,, V') are, up to isomorphism, re-
spectively, V., and (Vi)\® V,, with A\, pn € A.

The next theorem describes injective resolutions of the simple objects in T(V,, V).

14



Theorem 5.5. ([PSt2011]; [PS2014]) For any pair of Young diagrams \, i, the simple g™ -
module Vi, admits the following injective resolution in T(V., V') of length |\ N p*|:

0= Vip = Z°(Va) = T (Vi) = . = IV (V) = 0

; A A,
with ZF(Vy.,) = b me - (Va)e @ Vi where ml = 3 Ng‘VNan.
Ene:|A|—[¢|=F veA
Consequently, for k > 0

EXt']E‘(V*,V)(Vé;m VA;H) = Hom(vﬁm%@lpﬂ((m))\ ® VAH-)) )

and Bixthyy, ) Ve, Vi) # 0 implies k = k20 = [ = |¢] = [l — |n].

. L
In addition we observe that mg\;’j; = hgf; .

5.2 Some families of tensor modules

In this section, generalizing constructions of [ChP2017],/ChP2021], we determine the simple
glM-subquotients of the tensor algebra T(V* @ V). We also define and study several families
of gi™-modules relevant for the structure of T, as an ordered Grothendieck category.
We let
A= AT A X A x AT

be the set of 2(¢ + 2)-tuples of diagrams. We view its elements A € A as pairs of sequences
of length (¢ 4+ 2), notation-wise separated by semicolon, with indices increasing outwards, and
unindexed initial entries, i.e.,

A= ()\Oa)\;l'['7,u0) = ()‘t7 -'-7)‘07)‘;M7M07 "'Mut) .

If the tail of a sequence v, = (1, ..., ;) consists of empty diagrams, we often omit these empty
diagrams if the number ¢ is fixed in the context. The sequence of empty diagrams is denoted
by 0,.

We define the following four families of modules indexed by the set A:

L xippe = (é(V;H/V;)Aa) ® Vi ® (é(vﬁ'Fl/Vﬁ)Mﬁ) ’

a=0 £=0

Traioie = (éw*/vsm) VeV, ® (émm) ’ (13)

a=0 B=0

Dappe 7= 1@ Ing xppe s
K)\.,A;u,u. = I® L>\07/\§M»M- :

Further, let
P =N x N x N x N+ (14)

be the set of (2t + 4)-tuple of nonnegative integers, which we convene notation-wise to split
into two sequences of equal length and write as

L= (le,l;m,mqe) = (Lt ..., Lo, l; mymg, ...y my)
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similarly to the elements of A. We define the following families of modules parametrized by P:

t t _
Llhl?mamo = (® (V;+1/V;)®la) ® ‘/E;m ® (® (Vﬁ'f'l/vﬂ)@mﬁ) )
a=0

A (é(V*/V@@la)®<v*>®l®<m®m®(éw/%)w) . m)

a=0 BZO
Ly tmme = 1@ Jig mma
Klul%mymo = I ® Ll.al;mvml .

Remark 5.1. Notation-wise, it will sometimes be convenient to include | and m into the
indexed sequences ly and me as | = 1_1 and m = m_q, respectively. In other words, P will be
interpreted alternatively as N'™' x N x N x N+ or a5 N2 x N2 Correspondingly, we set
V¥ =0CV*and V_y := 0 C V. The range of the index will be made clear in the context,
with the initial convention as default. We do similarly for the elements of A.

There is a natural map from A to P given by component-wise size:
| ’ | : A — P ) ()‘07)‘;#“7:&0) = (|)\.|a |>‘|7 |lu|7 |lu'|) :

We use the same notation for the map

t
[P =N, (e mome) = LA mA+ Y (lo+ma) |

a=0
and we denote the composition of these two maps by
t
111 A = Ny e A pa) = AL+ Tl 4 Pal + [tal -
a=0

We denote the symmetric group on n letters by &,,, and for I = (l,,1;m, ms) € P we let &;
be the product of 2t symmetric groups of sizes corresponding to the entries of I:

6[ = Glt X ... X Glo X 6[ X 6m X 610 X ... X 6mt . (16)

Note that &; acts naturally on each of the modules (15), and

Ly = @KA@)LA, Jy = @K)‘@JA; I = @KA(X)IA’ K = @KA@)K)\ (17)
I\[=L I\[=L I\=L A=t

(recall that K* denotes the irreducible representation of &; determined by A € A).

5.2.1 Simple tensor modules

Theorem 5.6. Let X = (Ao, \; 1, te) € A and let Ly, Jx be as in (13). Then the g™ -module
Ly 1s simple and Ly = socJx. In particular, the inclusion Ly C Jy is essential.

The proof will be given after some technical preparation. Let us note that the case po = 0,
is settled in [ChP2017, Lemma 4.9]. We shall combine this fact with a suitable generalization
of [ChP2019, Proposition 4.1 and Corollary 4.3] to obtain the complete result.
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Lemma 5.7. Let vy, ..., 0p, W1, ..., w, € V with vy, ...,v, linearly independent modulo V;, and
L1,y Ty Y1y - Yqg € V5 with xq, ..., x4 linearly independent modulo V;*. Then there exists ¢ €
g™ such that o(v;) = w; and ¢*(v;) =y; foralli=1,...p and j =1, ...,q.

Proof. The argument is analogous to the proof of [ChP2019, Lemma 4.2], but with transfinite
recursion. Recall that B is the index set for a basis of V', and assume that B is ordered by the
initial ordinal number with cardinality |B| = X;. In particular B is well-ordered and, since the
cardinals ¥, for t € N are regular, for every b € B the set B, := {c € B : b < ¢} has the same
cardinality ®; as B while B<;, := {c € B : ¢ < b} has strictly smaller cardinality. Let M be
the matrix of size B x p with columns vy, ...,v, and N be the matrix of size ¢ x B with rows
Ty, ...,24. For b€ B, let M(b) and N(b) denote the corresponding row of M and, respectively,
column of N. The set of indices of the rows appearing in a given p X p-minor of M, respectively
q X g-minor of N, will be called the support of that minor. The set of nonsingular p x p-minors
of M has cardinality N;. Furthermore, it contains a subset, say M, such that |[M| = ¥, and
distinct elements of M are supported on disjoint sets of rows of M. Let B — M,b — M,
be any injective map. Let M, be the ¥, x p-matrix obtained from M by replacing the minor
M, by its inverse and setting all other rows equal to 0. Similarly, there exists an injection
B — N,b— N, defined using the matrix N and its ¢ x g-minors. We also use the analogous
notation N, for the resulting ¢ x N, matrices. The assumption on the order of B guarantees
that the assignments b — M, and b — N, can be made so that for every b € B and every
¢ € supp(M,) U supp(NV,) we have b < c.

Now we are ready to give a recursive definition of ¢ as a matrix with respect to the chosen
order of B. Let by be the minimal element of B. Define the first row of ¢ by setting ¢,,0) == 0
for a ¢ supp(M,,) and

(90(170,&1)7 ooy So(bo,ap)> = (wl(b())? a3 wp(bo))Mlygl

if supp(My,) = {a1, ..., a,}.
The first column has now its first entry ¢, 5,) fixed. Put ¢.py) := 0 for ¢ ¢ {bo} Usupp(Ny,)

P(e1,bo) y1(bo) 1’1(50)
L =N f | Qo)
P(cq;bo) Yq(bo) z4(bo)
if supp(Ny,) = {c1, .., ¢4 }-
Let b € B and assume that the rows and columns of ¢ are given for indices strictly smaller

than 0. To define the b-th row ;) we extend the given data by setting p,q) := 0 if d > b and
d ¢ supp(M,), and

(Plar)s s P0dp) = (W1(0), ey wp(0)) = D P00y (v1(a), oory vp(a)) My

a<b

if supp(M,) = {ds, ..., d,}. Similarly, we extend the b-th column by 0 outside supp(/N;) and put

Der,b) y1(b) 1 (a)
: = —N; " D) e
Peq,b) yq(b) ash :Eq(a)

if supp(NV,) = {e1, ..., e,}. The resulting matrix ¢ determines an element of g™ which satisfies
the required properties by construction. O
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Lemma 5.8. Let 0 < oy < ... < a;,, < t be n natural numbers. For m € {1,...,n}, let
o Ut W W € Vomir/Van, and T T YT Yt € V[V be arbitrary pairs
of tuples of vectors in the respective spaces.

If the tuples {v7",...,v" } and {a7", ..., 27" } are linearly independent for every m, then there

exists a transformation o € gl such that

p(vf") =wj* and " (x") =yi" Vj,Vm.
Proof. We shall reduce the statement to the case of Lemma 5.7. Let 07", w]" € V and 7 AN TINS
V* be representatives of the respective elements. We define subsets Al, . A of B by settlng

Ay = Uj(supp(05") Usupp(wy")) U (U;(supp(Z}") U supp(7;")))

Note that |A,,| =V, and, by the hypothesis of linear independence, the above representatives
can be chosen so that A, N A; = 0 if m # [. As in the previous lemma, we fix a well-
order of B and work with g™ as a matrix algebra. If necessary, we change the order so that
Ay < Ay < ... < A,. Let g* c g™ be the subalgebra consisting of elements with supports in
A, x A,,. Note that g™ is isomorphic to the Mackey Lie algebra of the restriction of the pairing
p to Ka,, ® V., where Ky, := span{z, : a € A,,} C K := Vi and V,,, := span{v, : a €

An} CVe:=V. Let | = gt ap.. @gA be the resulting block-diagonal subalgebra of g™ | which
is clearly contained in the ideal g[a +1- Thus it suffices to show that, for every m € {1,...,n},
there exists ¢, € g™ such that gp( vf') = wi* and ¢*(27') = yi* for all j. Furthermore, the
elements 07", w]" can be seen as elements of the quotient YAm /Vﬁg and similarly z7", y" in
KA /K. Thus we have n occurrences of the situation of Lemma 5.7 in distinct dimensions
Ny, ooey Ny, , Which is the claimed reduction. O

Lemma 5.9. The g™ -module Ly, g . is simple for A, je € A

Proof. Let L := L,, g9, and note that L = Ly, gp0, ® Ly, p.0,..- We follow the idea of the
proof of [ChP2019, Prop. 4.1] and use the simplicity of Ly, g9, (and analogously Ly, g.0...)
established in [ChP2017, Prop. 4.2]. We identify L with the submodule of Lz, g,,..| obtained
as the image of the product of Young symmetrizers ¢y, ® ¢,, = (QaCh,) ® (RacCy, ), Where we
use the convention for ¢,, v € A, from Section 2.2.

Let M, C L be the gi™-submodule generated by a fixed w € L\ {0}. The decomposition
L = Ly 000, ® Ly, 0.0, enables us to express w as a finite sum of decomposable tensors,
w = > 2/ ®v. By the argument of [Ch2014, Prop. 1], we can assume (up to applying a
suitable sequence of elements of gI*") that the sets A; = U;jsupp(z7) and Ay = U;supp(v?) are
two disjoint infinite subsets of B, and there exist subsets By, By C B with A; C B;, BiN By = 0
and |By| = |By| = |B| = ¥,. Let [ = g8 @ g”2 g% = g™ be the corresponding block-diagonal
subalgebra; note that there are isomorphisms g% = gP = g™, The Lie algebra [ acts on
the space ij,@;@,w' of vectors in Ly, g0, supported on B;, as well as on the space L%’@;M.

of vectors in Ly, 9.p.., supported on B,. Furthermore, LAB.1 00,0, and L%@_@ L. are irreducible

[-modules since they are irreducible respectively over g5 and g?2 by [ChP2017, Prop. 4.2].
Hence
By By
Ly o090, © Loloo e © Mo

is an irreducible [-submodule of M,,. This [-submodule is spanned by the vectors of the form

AT @ v, With z € L‘/\ 1,0:0,00 and v € L0 0:0, 10| supported respectively on By and Bs.
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To show that LAB:’Q);@’(D. ®Lg 270;0)7“. generates the entire L), g9 ,, Over g™ we will apply Lemma
5.8. To connect to the setting of the lemma we note that: the [-th tensor power U®' of a vector
space U is spanned by the set of decomposable tensors u = u; ®...®u; with linearly independent
tensorands uy, ..., u;, the Schur projection cy(u) of such u is non-zero for any A € A of size [,
and U, is spanned by the set of such ¢y(u). Thus, our proof will be complete if we show that
(cre ® cu,)(w') € My, for any fixed w' € Lz, .0, u.| Of the form

W = <®(y? R...Q® y";a|)> (059 (®(u? ®...&Q ucﬁ\a|)>

with y',...,y0 | € Vi1 /Vy linearly independent and uf, ..., uf, | € Vii1/Va linearly indepen-
dent. By the first part of the proof we may assume that w = (c), ® ¢, ) (@) for

¢ t
/lI] = <®($? ® ® xﬁ\a)) ® <®(Ula ® ® /UO;‘ozI)> E Ll)\.l’w;&l#.l

a=0 a=0

with 2, ...,a:‘cf\a| € V. ,/VZ supported on B; and linearly independent, and vf, ...,"Uﬁm‘ €
Viur1/Va supported on By and linearly independent. Then we apply Lemma 5.8, several times
if necessary, to obtain a sequence of elements o1, ..., o, € gi™ such that

or0...op(w)=uw.

Hence M, 5 ¢, 0...0@1(w) = (e, ® ¢y, )(pr 0 ... 0 01(0)) = (cn, ® ¢, )(w'), which implies
M, = L as desired. ]

Proof of Theorem 5.6. To verify the simplicity of Ly, 1., ., We start with the decomposition
Ly xppe = Lxg 0:0,u0 @ Ly, where both tensorands are simple due to Lemma 5.9 and Theorem
5.4. Now, Proposition 5.1 allows us to invoke Proposition 2.11,(c) for & = gi™, 3 = gl(V, V%),
R = L), = Vi, and apply the functor ¢ ® R to the simple module Ly, ¢.p ,,. This confirms
that L, xup. is simple. Finally, the inclusion Ly, x.upue C Jag e 15 €ssential as a consequence
of Lemma 5.8 and the fact that V), is essential in Vi @ V. []

Theorem 5.10. The simple modules Ly for A = (X, \; i, tte) € A are pairwise nonisomorphic
and have scalar endomorphism algebras, EndL, = K.

Proof. There are known cases of the theorem, as follows. The case p, = (s (and by analogy the
case Ay = (J,) is proven in [ChP2017, Proposition 4.2]. The case t = 0 is proven in [ChP2021,
Theorem 3.6]. A combination of the two methods of proof yields the general result. m

5.2.2 Tensor products of simple tensor modules

Here we study the socle filtration of a tensor product Ly ® L. of two simple tensor modules for
A= (e, A; 1) and X = (AL, N5 1/, p1l) in AL Tt turns out that the difficulty is concentrated
in the tensor product V), ® Vi, of simple modules in T(V,,V’). We handle this case in the
following lemma.

Lemma 5.11. Let A\, u, N, p/ € A be four Young diagrams. The layers of the socle filtration of
the tensor product of the simple modules Vy,, and Vy.,, are

® L

R EAIAHIN |~ |r|=q

1%

soc?*! (V)\W ® VN;M’)
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where the multiplicities can be expressed as

M), (N5 ¢ 0 0
E(n;u) - Z N)\)\’Nuu’ hi;u -
¢,0eA

. 1y A N Ej—13mj—17.55—13Mj—1 ¢ 0 ¢;0
0§r<|)\|2+‘)\/|7‘ﬁ‘( 1) . 27 ‘. héomo h&g;n() (0<1;[§T h&j;nj h&};n; )Nﬁr&’n Nmn# hﬂ;v ’
Moy -+ Ny
567 ) 5’]’“7
7767 ceey 77;“7
¢,0 e\

[€ol+Igs | <IAI+IN]
1651+ <16 —1 [ +1€) |
0<j<r

with the numbers hij; defined in (12). (Note that the sum over v is empty if |\ +|N| — |k| = 0,
and the product over j is empty if r =0.)

Proof. First recall that the tensor products (Vi) ® (Vi)y and V, ® V,, are semisimple, and
that the socle filtration of (Vi)\ ® V)., i.e., the case p = ) = X, is known from Theorem 5.3.
Since Vi, = soc((Vi)r ® V,,) and Vi,,» = soc((Vi)y ® V) we have an inclusion of the module
W = V), ® Vi, in the module W= (Vor@V,® (Vi)xy ® V. The module W decomposes as

W= (V@ Vu® (Vv @ Ve = @ N Ni, - (V)@ Vy
¢,0eA

and, by Theorem 5.3, the layers of its socle filtration are
soc”t (W) = & (Z NACXNﬁM,thV) Vi -
K VENIA+|N |—|k|=¢ \(,0€A

On the other hand, we can express the above layers as

soc™™ ' (W) = P soc?™ (soc™H((Vi)a ® V) @ socd (Vi) @ Vi)

i+j+p=q
~ )\7 )\/; !
= @ &pﬂ @ hﬁ;:hf/;#’ Ve @ Very
Z+j+p:q 57 777 6/777/ E A
A=l =4
(X =1¢'1 =

We observe that .
soc(W) = soc(W) = @ NN View

KVEA

and, more generally, soc?™* (W) occurs as the summand corresponding to i = j = 0,p = ¢ in
soc?™(W). Hence

soc'™ (W) 2 soc* (W)/( @D s0c'™ 7 soc ™ ((Va)r © V) © 500 (Vo) & Vi)

0<i+75<q
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We derive the following recursive formula for the multiplicities nE i )) N,

) (Nsu') ¢ a0 1CO Xiph N (€m), (&'
—(/-c v Z NM’Nuu/hﬂ;V Z h hé’m =(r;v) ’
QZSHY &8’ EAE[HIE[<IAIHN]
Now, the formula for ﬂgil/f )) X#) laimed in the lemma follows by induction on |A| + [N|. O

Proposition 5.12. Let (Ao, \; 1, fte), (Ao, N5 1/, 11l) € A

(a) The simple module Ly, ..., s pure if and only if either just the two inner diagrams X,
are nonempty, or all diagrams except at most one are empty.

(b) For the layers of the socle filtration of the tensor product Ly, x.pue @ Ly, xiyw i, we have

JINTA
1 ~ 1
80 (Lng pygigie @ Ly vt i) = Lnapitie @ Liv 90,4 @ 80€7 (Ve ® Vi)

~ Ke Ve ( yu)v()‘/;ul) .
- @ <N)\ WA N,u.,u. —(k;v) ) L’%vf'ﬂ%’/#-
(Ko, v, Ve ) EAL| A+ N |—|k|=¢

where Ng:n- = aH Ng;’n for Ea, e, Co € AT

(c) The socle of Lx, xpupe @ Ly, xiyw i, decomposes as

~Y K 14 Ve
S0C(Lag Apipe © Loy it ) = @ NA X, Nx\/\’Nuu’Nu.u’. “Lia v -

(Ke,kiVVe)EA

(d) The tensor product Ly, xppe © Ly xw il
one of the following four conditions holds:

15 a semisimple module if and only if at least

(e) The tensor product Ly, x09, @ Lo, 0:uue has socle filtration of length |\ N p| with layers

1 ~ A
ﬁq—‘r (L)\.,)\;@ﬂ. ® L@o,@;ﬂ:ﬂ') = @ h’f{jllj : L)\.,H;ZAM. .

K, VEN:|N|—|k|=¢

Proof. Part (a) follows immediately from the classification of simple modules. Part (b) im-
plies parts (c),(d) and (e) as special cases. To prove part (b) we begin with the following
decomposition:

Lxeope © Lx, 00,4, = . NN Lie oo, -

(Kejve)EALTL X AtHL

Indeed, this decomposition holds over the Lie algebra

DotV V) @ (@ ot(Vsia/ Vi)
a=0 B=0
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and, by Theorem 5.6, remains unchanged after restriction to gi*. Hence the module L e 0i0, 110 @
Ly g.0,, is semisimple. Furthermore, again by Theorem 5.6, the tensor product L, g.p.., ® Ve,
is isomorphic to Ly, ¢y, and remains simple.

Next, observe that essential extensions between submodules of V' ® VV¥™ remain essential
after tensoring by Ly, 9.0, because this holds for the restriction of these representations to
gl(V, V,) which acts trivially on L, g.9,.. From these observations we deduce that

s0c™ (Lag e @ Lt vipr i) = D0 ie @ L0,y © 50¢™ (Vi ® Vi) -
Now the full the statement of part (b) follows from Lemma 5.11. O

The semisimplicity of the tensor products of “one-sided” simple modules, i.e., Ly, x0®L, 1.0
or Lgax, ® Lo, ., as well as the obvious symmetry between the two cases, prompts us to

introduce the following notation for any A, u8”, ..., ™ € AL

NY
sl

= dim Hom(V}, g, vuﬁ”,@);(b Q& V#£m>7@;@)
= dimHom(Vign,, Vi 0 @ - ® |2 @ ()

(m 2)

- 2. HNAu) <1>( H N7 (r) <r>)N (m=1),,(m) -
oV, ol Denttr @ He
5.2.3 Two orders and a family of morphisms
Here we introduce two partial orders on the set P defined in (14). For I, = (I, ..., ;) € N+,
t
we denote |l := > Iy and [, | :== > la.
a=0 B

BLa<t

Definition 5.2. Let < be the partial order on P defined by

L=m+[le| = [me| =1 —m' +[I{] — [my]
[<U,m<m
. / - !
(lo,l;m,me) = (I,, l;m,m,) <= lossl = |1 ,| for Be€{0,...t}

’m.>6| > ’m.>3’

From now on, (P, <) denotes the resulting poset.

P
Definition 5.3. We define a partial order < on the set P by strengthening the relation < with
the additional requirements | + |lo| < U+ |1L], m + |me| < m' 4+ |ml|, and denote the resulting
poset by P.

Next, we define several attributes of a fixed element I = (l,,[;m,m,) of the set P. There

P
are two parallel constructions corresponding to the partial orders < and <. We begin with the
notation

PU)={keP:k=<1}, Pl ={keP:k=1}.

Remark 5.2. 1. Both posets P(l) and P(l) have the following property: every strictly as-
cending sequence is finite.
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2. The common underlying set N>*2) of the posets P and P is a monoid under component-

wise addition. If 1 <k andl' < K thenl+1U <X k+ Kk'. The same property holds for
P
<.

Lemma 5.13. For l = (l.,l;m,ms) € P let P'(l) be the set of elements obtained from 1 by
one of the following elementary alterations:

(i) if I >0 (resp., lo, > 0), subtract 1 from | (resp., from l,) and add 1 to ly (resp., lo+1);

(ii) of m > 0 (resp., mq > 0), subtract 1 from m (resp., from m,) and add 1 to mq (resp.,

ma+1);

(iii) if both | and m are positive, subtract 1 from each of them;

(iv) add 1 to both ly and my.

Then P(1) is the set of mazimal elements of the poset P(I) \ {l}.
Let P(1) be the subset of PY(l) obtained using only (i), (ii) and (iii). Then P'(l) is the set
of mazimal elements of the poset P(1) \ {l}.

Proof. For any k <1 it is straightforward to construct an element k' obtained from I by using
one of the alterations (i)-(iv) and satisfying k < k’ < I. This proves the statement for P*(I).
The statement for P1(l) is proven analogously. O

Definition 5.4. For ¢ > 1 let PY(l) C P(l) be the set of mazimal elements of the set

{keP: k<I1}\ (UPW)) ,

J<q
with the convention P°(l) = {l}. We define P(l) analogously.

To any element I = (l,,1;m, m,) we associate the number

t

¢V = (L m)(t+ 1)+ > (1 +my)(t— ). (19)

Jj=0

Note that ¢® = 0 if and only if I has the form I = (1,0, ...,0;0,...0,m;). Lemma 5.13 and
Remark 5.2 imply that P(I) and P(l) split as disjoint unions:

Pl = || Py, PO)=|]|P). (20)

0<g<q® q€N
This structure behaves well with respect to addition in the underlying monoid, i.e.,
PI)+PYl) c P (141, for I,I' €P,q, ¢ €N. (21)

Furthermore, if I = (o, [;m, m,) then

Pil) = ' Uk Pi(l,,0;0,) + Pi(l;m) + P*(0,;0,m,)
1+j+k=
e | b (22)
= U (P PR 1,050) 4 PR 00,1,) )
lie|+7+|ke|=q a=0

23



where (1,,0;0,) denotes the element (,,0;0,) € P with [, having a single nonzero term equal
to 1 at position «, and (0,;0, 1,) is the obvious analogue.

Properties (21) and (22) hold as well for the poset P instead of P.

We now move our attention to morphisms f : [; — Ix. The notation below refers to
subtraction of elements in the monoid P, and we automatically assume that the parameters
satisfy the inequalities ensuring that the results are in P.

Definition 5.5. Forl = (l,,1;m,m,) € P we let Z'([}) be the set of morphisms Iy — Iy, with
k € PY(1), associated with the four types of elements of P*(l) according to Lemma 5.13, as
follows:

(1) f5 1 b = Dy, —14_1,0) 18 the projection V*/Vy | — V* V¥ applied to the j-th tensorand
in (V*/V*_)®le=1 extended by identity on all other tensorands in I, for 0 < a < t and
O S] S lafl;

(ii) fjo‘ t Iy = D1 0-1,1,14) 1 the projection V Va1 — V)V, applied to the j-th tensorand
in (V/Vy_q)®me1 extended by identity on all other tensorands in I, for 0 < a <t and
O S j S mafl;

(iii) piy : L = Li—ayn is the morphism p : V* ® V — Q C I applied to the relevant pair of
tensorands V* and V in I, extended by identity on all other tensorands, for 0 < i <
and 0 < 5 <m;

(iv) ¥ It = Diya000) is the morphism i : I — (V*/V,) @ (V/V) @1 = I 901 (see formula
(11)) applied to the tensorand I, extended by the identity to all other tensorands in 1.

We let Z9(1;) be the set of morphisms I — Iy, with k € PI(l) obtained as compositions f,o...0f1,
where f; € El(lkj) for some decreasing sequence I = ko >~ ki = ... = k, = € satisfying
kij S Pl(kjfl) fOT'j = 1, .y q.

We also introduce a family of morphisms with domain J;. Since soc/ = K there is a canonical
embedding J; C I ® J; = I;. Let Z9(J;) be the set of restrictions to J; of morphisms from Z7(1;)
which are obtained as compositions of morphisms of type (i),(ii) and (iii). The codomains of
these morphisms are of the form I, with k € P4(1).

5.2.4 The socle filtrations of the modules Jj, j.;, m, and Jy, .

Here we study the families of modules J; and Jy defined in (15). We begin with the former
family, and the observation that there is an isomorphism

S @ Jy = T
for 1,1’ € P.

Example 5.1. Let us consider Ji; = V* ® V' and describe its socle filtration. From Theorem
5.6 we get B
soc(V* @ V) =soc(V,®V) = L1, = kerp = sl(V, V)

and observe that B
soc(V*®@V) = ﬂ kerf .

fezt(Jin)
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Further, we have soc?t'(V*) = V¥ and soc?™ (V) =V} for j =0,....,t + 1, and consequently

soc™(V*@ V) C Z soc™(V*) @ socd T (V Z VeV, (23)
i+j=q i+j=q
for g > 0. For g > 1, the containment in (25’) 15 an equality, as can be shown by induction.
Thus the length of the socle filtration of V* @V is 2(t+ 1) + 1, and
soc™ (V@ V) = ﬂ kerf .
feEati(Ji;)
For the higher layers of the socle filtration we obtain
soc? (V@ V) = (/V5) @ Vo) e K@ (Vg @ (Vi/Vh)) = Lio1 @ Loo @ Lo,

and
soct™(V* @ V) @ soctH(V*) @ soc?TH( @ Ly,

i+j=q i+j=¢q
forq > 2.

Proposition 5.14. Let l = (l,,l;m, m,) € P and p = min{l,m}. The socle filtration of J; has
length 14 qW, see (19). For 0 < q < ¢ we have

soc™ g, = () kerf
fEEIT( )
soc™ = @ () (F)soc(soc ™ ik ® 50¢ T T km,)
i+j+k=q,k<p
=T ()0 soctsoc H(V)20-9) & 50 (7o)
i+j+|ie|+|je | +Ek=q
t
h=p ® (@ soc Ty, 0.0 ® 50 Jo0my )
a,B=0
= @ b%ch’
kePa(l)

where PY(1) is as in Definition 5.4, and for k € P(1),

Tk w0 ey

! 1<8<t v 1<8<t g Osest 0<B<t .0<5<t g
k+ (:ZOé+q0t =dq s e - -
a;( )
> (Vs =k
—1<a<t

the sum running over all sets of integers k,q_1,...,q,G-1,...,q € N, k < p, and all sets of ele-
ments (Te e )), (rst), SE)) € P satisfying, in addition to the above equalities, (rs_l); 0.) €
P (1 — k;0,), (0s; Ne DY e Pi-1(0,:m — k) and (r$%;0,) € P (1,;0,), (04; s$*) € P (0, m,)
for0 < a <t

Proof. From (17) and Theorem 5.6 we obtain

socJ; = Ly = ﬂ kerf = <®(V;+1/V;)®l“> ® Vim ® <®(Va+1/‘7a)®m“> .

feE1(Jy) a=0 a=0
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We have a corresponding decomposition of Jj, j.m.m,., Whose tensorands are essential extensions
of the respective tensorands of socJj, .m.m.:

t t
Jl.,l;m,m. = <® Jl(uO;Oo) ® ‘]l;m ® <® J00§07ma> . (24)
a=0 a=0

We can split the proof of the proposition into two steps: first, verify the statement for each
of the above tensorands, and second, show that the tensor product of the resulting filtrations
yields the claimed socle filtration of .J;. For both steps, we use Kiinneth-type products of the
socle fitrations of the relevant tensorands. The key observation is that no simple constituent
descends to a layer lower than expected. This follows from the density statement of Lemma 5.8
which allows us to apply Proposition 2.11,(c) to the ideals gl and to the relevant extensions.

The three types of elements in P!(1), given as (i),(ii),(iii) in Lemma 5.13, correspond to the
types (i),(ii),(iii) of morphisms in Z!(.J;) (see the discussion under Definition 5.5). The modules

of type Ji, 0.0, can only be the domain of morphisms of type (i). By (22), the set P?(l,,0;0,)
la

consists of elements of the form " (1,4,,,0;0s) with g1, ..., q, € N satisfying Zj q; = q. We
i=1

have

la la
soc™™ 0.0, = @ ® soct L (V" V) = @ ® Voran/Va

qa+..+q,=q i=1 a+..+q,=q i=1

= ﬂ kerf ,

FEETT(J1g 0:00)

la la
q+1 ~ Gi+1y7* /1% o * *
soc” " 1, 000 = EB ®_SOC (V*/Vy) = @ ®Va+qi+1/va+qi

q+...+q,=q i=1 q+...+q,=q i=1

1%

lo!
D T R | Ly 005 -

(ke,0;00)EPI(1,0;00) a<B<t

The situation with the modules Jy, .0 m, is completely analogous, with =9(Jy,.0.m,) consisting
of superpositions of morphisms of type (ii). The tensorand J;,,, can be the domain of all three
types (i),(ii),(iii) of morphisms in Z'(.J;,,), as long as both I, m are nonzero. We handle the
morphisms of type (iii) involving V* ® V using Example 5.1.

As indicated above, Proposition 2.11 implies that the socle filtration of Jj, ;.s,,m. is obtained
as the Kiinneth product of the socle filtrations of the three modules J;, o.0,, Ji:ms Joe:0,m.- The
formula for the multiplicities follows by a standard counting argument. O]

Next we turn our attention to the socle filtrations of the modules Jy for X = (s, A; 1, fte) €
A defined in (13). It was shown in Theorem 5.6 that Jy is an essential extension of the simple
module Ly. We observe that Jy splits as a tensor product along the individual diagrams in A:

t
J)\ - J)\y@ ® JQ)?M ® (® J)\D“(Z);@ ® J@;@,MQ) *

a=0

With this in mind we shall successively compute the socle filtrations of Jy, g0, Jx,np and

J/\-,)\;uvu- .

26



Lemma 5.15. Let Ae = (N, ..., A\_1) € A2, Then the length of the socle filtration of Jy,.g. is
1+ ¢(Pl0) and the layers are

q+1 ~ A
soc?™ "y, 00 = @ 20 Ly,
ke EAIT2:(|ke[;00)EPYI(|Ne ;00)
where
t
Z A
Zi\. = Nﬁﬁﬁ 8 Nl‘{:l t o
(]
. PpPpy1--Pt Pe  ---Pe

ot b EAF2: (|0 :00)EP7B (1N 5]506),3 =g =1

Proof. The lemma is a reformulation of [ChP2017, Proposition 4.30] in our notation. The proof
is done in steps, first observing that for every g € {—1,...,t}

q+1 ~ Ag
soc J/\B?@° = @ Npﬁ---ﬂt : Lp.;@. )
pe€EAF2:(|pe;0e)EP(|Ag];0)

and then using the decomposition

t
o @ @ s .

J-1+...Jt=q p=—1

Note that the sets P75 (|]\s];0,) and P4(|\s|; 0,) are described in the proof of Proposition 5.14.
[

Working towards the socle filtration of Jy, x, .., the decomposition Jy, xpupue = Jrerg ®
o0 leads us to consider, for k € Z>(, the semisimple glM-module

k1 +1 j+1
Z = @ soc(soc" Iy, a0 @ s0¢/ T Ty, )

AesAips e N
i+j=k
Ao o st
@ ’ Zere b+ Lo s
(Ko,k5v,ve ) EA:(|Kol, K5 V], [ve ) EP? (| Xa || A[50,00) X PT (00,05 | ], | e |) siti =k
(25)

I

whose decomposition is derived from Lemma 5.15 and Proposition 5.12.

Proposition 5.16. Let X = (A, \; i1, o) € A. Then
soc™ o = €D @D Hom(Vegy, 500 (Via @ Vo) © 23T

Ao &M, 10
Jj+k=q§meA

EXe 1 A 1,10
@ (Z Z’iv’{: h&m ZVvV: ’ LH’MKJ;V’V- .

K=(Ke,r;V,Ve)EA:|R|EPI(|A]) \§nEA

Il

Proof. From Theorem 5.6 we know that Jy is indecomposable with simple socle Ly. By (17),
Jx appears as a direct summand in the module Jjy. Furthermore, by Proposition 5.14, the
layer soc?™!Jjy is a direct sum of modules of the form L with k € P2(|A|). In turn, each Ly,
decomposes as a direct sum of modules of the form L, with k € A, |k| = k. Hence soc?™.Jy
consists exactly of the simple subquotients of Jy of isomorphic to some L, with || € P(|A]).
It remains to compute the multiplicity with which L, occurs as a subquotient of Jy. To this
end, we start with the decomposition Jx, xupe = Jrer0e @ Jouippue- Lhe socle filtrations of the
two tensorands are obtained from Lemma 5.15. The tensor products of simple modules are
described in Proposition 5.12, and the formula for the multiplicities follows immediately.  []
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5.2.5 The socle filtrations of the modules I, )., .. and I, ;. m,

Proposition 5.17. The socle filtration of the module I = lim S¥Q defined in (8) is infinite and
_>
exhaustive: for g € N the (q + 1)-st layer is given by

soc'™ 1= (P sod Mg = D 2. -
J+lcI=q JFlcl=g

Proof. The socle filtration of a direct limit of modules of finite length is always exhaustive. The
layers of the defining filtration of I are (see formula (9))

SkQ/SFIQ = SEF(VH V. @V )V) = SF T 01 = @ Je ot -
[¢|=F

By Proposition 5.16 we have

i+1/ qk k—1,9) A +1
soc/ 1 (S*Q/S" Q) = D) Zlgy -
I<I=Fk
This yields a filtration of I with layers as indicated in our statement. To show that this is the
socle filtration, it remains to show that no simple constituent appears in a socle lower than

expected. It suffices to prove the statement for the submodule S*Q C I, and we will do this
by induction on k. The case k = 0 is trivial. By Theorem 5.6 we have

soc(S*Q/SF'Q) 2 soc(S* i 00,1) = @LCMC (26)
I¢I=k

On the other hand, we have the finite filtration K = 10 c 1Yt ¢ ... ¢ "5 = [ following
from the definition of I™* in (10). The submodule /! C I has the module (26) as the k + 1-
st layer of its defining filtration I''! = lim S*Q'!'. Note that for I'! the defining filtration

k—o00
coincides with its socle filtration, i.e.,

sod T (1M 2 SV V. @ Vi V) = @D Legac -
I¢l=k

It follows that soc(S*Q/S*¥71Q) C soc*™'I and, by induction on j, soc/™'(S*Q/S*1Q) C
soc/ TF+1 ] This completes the proof. O

Proposition 5.18. For (Ae, A; 11, tte) € A the layers of the socle filtration of Ix, xpu. are
0™ (xu g @ 1) = @ 50, s ® s0CHHT
J+k=q
~ 1 k+|¢l+1
= EB Hom(Vg,, soc ™ (Viy @ V,)) ® Zf\+€77u ® Z: g6,

i+j+k+|¢|=q
&mn,CeN

~ )\,u j+1 k+|¢l+1
- @ h ZA SN ®Z G006
A= €]+5+k=q
§m,CeEN

where the numbers hg‘;f; are defined in (12).
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Proof. The socle filtrations of Jy, r,uu. and I are described in Propositions 5.16 and 5.17,
respectively. All simple subquotients of I have the property that their tensor products with
semisimple tensor modules are semisimple and their tensor products with essential extensions
yield essential extensions. The implies the first line in the above formula. The rest follows from
the expressions for ﬂj+1j>\.7)\m7u. and soc**1T given in Propositions 5.16 and 5.17. ]

Corollary 5.19. Forl = (l,,l;m,ms) € P the socle filtration of I, and its layers, are

soc?™r, = ﬂ kerf , socit = EB socdd J, @ soct T .
FeEa+1(Ty) j+k=q

Consequently, Hom(Ly,soc?™ 1) # 0 implies k € P(1).

Proof. The statement on the layers follows from 5.18 and the decompositions of I; and J,
given in (17). The last statement of the corollary follows immediately. The expression for

soc?™ ;= () kerf is then deduced by induction using (22) (applied for the poset P(1)),
fEETTI(T)
by an argument similar to the one applied for soc?™1.J; in Proposition 5.14. O

5.3 Order on the category T;
Theorem 5.20. The category T, is an ordered Grothendieck category with order-defining objects

L=I®J, leP,

parametrized by the poset P of Definition 5.2, see (15). The socles of the order-defining objects
are given by

socly =socJ; = [; & @ K* ® Ly
AES;

where S :={A € A: |\ =1}.

Proof. We need to check the axioms (a)-(f) of Definition 4.1. Let Il = (l,,l;m, m,) € P. The
socle filtration of I; is determined in Corollary 5.19. In particular, we obtain the claimed
expressions for socl; (see also (17)). Therefore, axioms (a) and (e) are satisfied. Axiom (b)
holds by the definition of T. Axiom (c) holds with the above set &, in view of Theorem 5.10.
Axiom (d) holds because of Corollary 5.19. The family of morphisms required in axiom (f),
for k < I, consists of f : I} — I} such that f € Z9(I;), where ¢ is the unique integer such that
k € Pi(l). O

Corollary 5.21. The map A — Ly induces a bijection of A with the set of isomorphism classes
of simple objects in the category T. Furthermore, Iy is an injective hull of Ly, and the modules
In, XA € A, exhaust (up to isomorphism) the indecomposable injectives of T.

Proof. The statement follows immediately from Theorem 5.20 and Proposition 4.1. m

Our next goal is to determine injective resolutions of the simple objects Ly = L, xp . in
the category T. As an intermediate step we shall solve the same problem for Ly, y¢ in the
category T(V*), or, analogously, Ly, . in T(V). The general solution will be constructed in

§5.5 with these ingredients, along with the resolutions of Ly, 1,9, = V), given in Theorem 5.5.
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5.3.1 An involution on A

We introduce here some symmetries of the set A that will be useful in the descriptions of
injective resolutions of simple objects. For any sequence A\, of Young diagrams, we denote by
AL the sequence whose terms are the conjugates AL of the terms of \,. We denote by A\t and
oL the sequences, where only the diagrams with even, respectively odd, index a are replaced
by their conjugates, while the odd, respectively even, terms remain unchanged. For an element
A= (A, N i1, te) € A, we set A0 = (AE N\ ut uot). Clearly this defines an involution on
A.

5.4 The category T(V*)

Recall that T(V*) is the smallest full tensor Grothendieck subcategory of T; containing V* and
closed under taking subquotients. In this section we use the notation I, = (I_1,...,1;) € Nt*2,
as in Remark 5.1.

Definition 5.6. Let Py be the poset with underlying set N2 and the following partial order:

L] = 0]
lo =1l <— | y .
- ZQZB la > ZQZB l,oz vﬁ

Remark 5.3. The underlying set of Py is included in the underlying set N>+2) of both posets
P and P as the set of elements (lo;0,) with I, € N2, The partial order on Pl coincides
with the restrictions of both partial orders of P and P. Analogously, we define a poset Prigns
(isomorphic to Pies) as the set of elements of P of the form (04;ms) with me € N2 with the
restricted order from P or P.

Theorem 5.22. ([ChP2017, § 4.2])
The category T(V*) is an ordered Grothendieck category with order-defining objects

t

T = Q) (V*/Vi)®le

a=-1

parametrized by the poset Peg. Moreover,

sochuo = Lo P K ®Lyg.
)\oeAleft3|/\o|:lo

The simple objects and the indecomposable injectives of T(V*) are, up to isomorphism, the
modules Ly,.p and Jy,.p with A\e € Ao, Tespectively.

Remark 5.4. The following properties hold in the category T(V*):
1. Any tensor product of semisimple modules is semisimple.
2. Any tensor product of injective modules is injective.

3. The pure simple modules are, up to isomorphism, exactly the modules of the form (V},,/V})x
with A € A and o € {—1,0, ..., t}.
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5.4.1 Injective resolutions of simple objects in T(V*)

Proposition 5.23. For any Young diagram X\ and o € {—1,0,...,t}, there is an injective
resolution in T(V*) of the simple gi™ -module (V¥ /V¥)s of length 0 if « = t, and length |\| if
a < t. In the latter case, this resolution is

0= (Vi /Vix = Z0((Vi /VE)a) = (Vi /VIA) = o = TV /ViA) = 0,
with

I(Viy JVEA) = (VS VA
IV VO =V Vepe( @ (VF/Vi.) .

oEA:N (1)71

D(Van/Vi = @ Noww - (V Vi), @ (V/Vi)s

o,TEN:|T|=]
IV V) = (VF Vi)

Proof. The result is proven in [ChP2019] under the assumption that ¢ = 0, but this assumption
is inessential. O]

Theorem 5.24. Let Ay € Ajegi. There exists an injective resolution of the simple module Ly, .g
in T(V*) of length equal to ||Xe_,|| = >. |Xa|- The decomposition of the k-th term of this

—1<a<t
resolution into indecomposable injective direct summands is

Ik(L)\.;@) = @ pi: ’ Jn.;(Z) )

Ko €Aty kg =k

where

= Y e Dlnal =D, mi= > My T Ak N @D

0<a<t Ce,Te €A :0t=T—_1=0 —1<a<t

The last nonzero term of the resolution is
TPe<tll(Lyg0) = (VF/Vi)n @ ( Q (V7 /Viis ) |
—1<a<t

and this term is an indecomposable gi™ -module if and only if A, = 0 or Ay = 0.

Proof. The category T(V*) has the property that the tensor product of injective modules is
injective and the tensor product of semisimple modules is semisimple. Thus we can apply
Lemma 4.2, which yields the first line in the formula below; the second line follows from
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Proposition 5.23, and the rest follows by standard rules for tensor products:

T"(Lawo) = D &) T (La)

jo1tjote =k —1<a<t

vV ivione( @ X D N (VIVi)© (VHV),)

Jj-1+...+jt—1=k —1<a<t—1 o, 7€A|T|=ja

V*/Vin @ ( P Q) N (VD m ® (VIVE)o)

o-aTDéJrl
Oe,Te EMeft:0t=T_1=0,||Te||=k —1<a<i

Kt Ao /-za
D 3 Ve T N N | s

Ke€Alett \ Te,TeEAt:0t=T_1=0,||Te||=k a=-1

I

1%

I

To obtain the explicit form of the coefficients p)s stated in (27), it remains to show that the
condition ||7.|| = k appearing above can be substituted by the condition k = k2. We claim
that pge # 0 implies the following:

1. [Xe| = |Ke| in the poset Pieg;

2. supp(ke) C supp(As) U (1 4 supp(s));

3. every nonvanishing summand in the defining formula for pﬁ: arises for a,, 7, satisfying

[I7ell = k.
Indeed, the nonvanishing of a summand of p: implies |7;| = [k¢| — [A¢], since N7 # 0, and
ITol = |Ka| = Aa|+|Tat1| for =1 < a < tsince N * o Ngze  #0. Now part 3 of the claim follows

Tat1
by induction on £. Parts 1 and 2 are trivial to Verlfy The statement on the injective dimension

and the last nonzero term of the injective resolution follows immediately. This completes the
proof. O

The above theorem allows us to compute the dimensions of the Ext-spaces of pairs of simple
objects in T(V*).

Corollary 5.25. Let ke, Ao € Aot Then

ph if k=K,

dim Ext® 1.y (Ly..0, L
T(V)( w0 Laso) = {O otherwise.

In the next corollary we encounter a new family of modules, whose socle filtrations relate
to the injective resolutions of simple modules given in Theorem 5.24. For (l,;m,) € P and
(Xe; fte) € A, we denote

M i= (V11710 (@ (Vo V) ) ( @ (Vasaf Vo) ) (070

a=—1 a=-—1

Misg 1= V0 (@ (Viia/Vin) & (@ (Vasal V) &V /Tih 2

oa=-— a=—1

Corollary 5.26. For ke, Ae € Aty and k > 0,
dim Exty o) (Lot g, Lagrg) = dim Extf o) (Lyer g, Lygrg) = dimHom(L,,, soc*™! (M, ) ,
where My, g is defined in (28).
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Proof. First we compute the socle filtration of M,,.y. Since My, g = @, M),.p, we have

o (M) 2 (Ve [ B Q) sed (Vie/Vih)

J-1t+..+ji—1=k —1<a<t

= LAt;(iJ X @ ® @ N?? : (V;+2/V;+1>T ® (V;H/Vof)a

J—1t..+ii—1=k —1<a<t o, T € A

7] = Ja
~ Kt N e .
- @ Z N)\m H O'aTa+1 a Ta Lyep-
HﬂeAleft 0'077'.EAleft70't:T—1:®7"TOHZk 71<a<t

On the other hand, we apply Corollary 5.25 to compute pigi = dim Ext%(v*)(LﬁgL;@,L/\gl;@),
the case of EXt%(V*)(LRiL;Q, Lyc1 ) being analogous. We also assume ¢ to be even, the odd case
being similar. In the calculation below, we begin by replacing the product over {—1,0,...,t}
in the formula for pigi by a product over the even indices of twofold products of the respec-
tive consecutive terms. The subsequent manipulations follow by standard properties of the
Littlewood-Richardson numbers. We obtain

. k _ AL KL Aat1 Ko
dim EXtT(V*)<L“2J‘?@’ LA?LE@) o Z H NUQTJ'HNU‘”TO‘N%HTilz NGO“ETO‘“
ey To € Mg —1 < ax <t
or=r1=0|r|l=k @ 0dd

— )\a Ra )\a+1 Ka+1

o Z H Ngé_T(rFlNgé_T(i_ Ng(x+17—i'+2 N0a+17'a+1
OesTo €E Aleig —1 <<t
or=T_1=0,||Te||=k o odd

. E Ao Ra )\a+l Ka+41

- H No'aTa+1N0'aTaN0'a+lTa+2No'a+17a+1
OoyToe € Mg —1 < <t
ov=r1=0|n|=k @ 0dd

= dim Hom(L,,,soc*™ (M, 9)) .

5.5 Injective resolutions of simple objects in T;
Proposition 5.27. An injective resolution of the trivial module K = Ly.g in the category T is
gien by

0K I8 TeoF ST FS "5 ToNFY

where F := V*/V, @V [V = Jigo1, %o = ¥, and the j-th map is deﬁned as the direct limit
P, = klim w;? of the morphisms
—00

id®@multiply pe &
—

P Qo NF AN $100 00 NF “U$4 g0 g F o AP 10 @ NHF

33



The j-th term I%(K) =1 @ NF of this resolution decomposes into a direct sum of indecom-
posable injectives as

K 2 P Ipoc
CeA:Cl=]
Proof. The proposition is proven in [ChP2021, § 3.5] for ¢ = 0, but this assumption is not
necessary. O

Corollary 5.28. For A € A and j € N we have

; K if A= 0,¢H) with |¢] = 3
bt (o) {E 1A= (G00.C) with | =3
0  otherwise.
Theorem 5.29. Let A = (Ae, \; 4, ite) € A. There is an injective resolution of the simple
module Ly in T, with k-th term

TH( e rspe) = $b Ti(K) ® Extd . 1y (Ve Vi) © Doy (Daw 0) © Titp (Lo )
itjrl+tm=k
§nel

o E & Xe Ko, A ATVO o Thiibe .
- @ ( pmpﬁ->oNpCm£;nNegipl/ﬂ,u.w) Iﬁ-v'ﬁ%”»”-v

(Ko isvyve)EAkpe it =) \EMLCP,0EA

where k2 ete = A = 5[+ 3 (04 D)(Isal = Aol + vl — o))
0<a<t

Proof. Let us first establish the relation between the two expressions for ZE(Lx, xpu.)- The

building blocks of the first expression are computed, respectively, in Theorem 5.24 for the

injective resolutions of the “one-sided” modules L, »p, and Lg,., ., in the respective categories

T(V*) and T(V), Proposition 5.27 for the resolution of K in T, and Theorem 5.5 for the
resolution of V), in T(V,, V). Compiling the coeflicients from these building blocks we obtain

k o £ e R0, N NTVO o Tl .
o= D > PR N Noa Pl | e
(e 30,00 ) EA €m0 0€A
A= [EHICI R D e g TR S =F
i — €N 7 ke — el e
and observe that the equality || — [£] + [C] + Kipnasy T Fubme., = keiiiile holds whenever

pi’j‘)jﬁ.M N mg?’; N é’g N pZ:gL.w = 0. This establishes the equivalence of our two expressions.

The modules ZE(Ly) are injective since, by Corollary 5.21, the modules I, for k € A are
indecomposable injectives in T. To show that we have the desired resolution, it remains to
construct an exact sequence of morphisms yj. x : Zh(Lx) — I’{,H(L ), with kerypx = L.

We consider the triple Kiinneth product with k-th term

I%(L/\.,A;(D. ® L@.;u,u-) = @ I’]ZT(K) ® Iqul(v*)(LA.,A;(Z).) ® I%?V)(LQ.;M,M.) ) (29)
i+j1+j2=k

and we let gxx 1 ZE(Lxo ape @ Loppe) = T8 (Lawrpe ® Lgoyip,) be its k-th map. We have
kergox = La, a0, @ Ly, ., and hence (29) is an injective resolution of Ly, rp, ® Lp, e in T.
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We shall modify this resolution into a resolution of the simple module L, )., ., using the fact
that, by Proposition 5.12,

L)\.,)\;u,u. = SOC(‘L)\.,)\;(Z). ® L@o;ﬂ,ﬂ»o) g L)\.,@?(ZL,U/. ® SOC(‘L)\;@ ® L@;u) *

We note that for every &, € A such that mg\fff # 0 and k:g\ff =1 we have mé\,’; = 1. Thus
/\; 0 ~
@ mf,:; ’ IT(L>\07§§®0 ® L@oﬂ'],llo) = @ I)mﬁm,#. :
§,n€A:kg\:#:1 £’77€A:m2\;s:k2;#:1
Let
wx = ( @ f)iIx— @ Ixegme -
FEE (Ing i pa) of type (iii) E,nEA:mg‘;#:kg‘;#:l

We obtain a morphism

Yo = o B wx 1 Z2(Lag xppe) = Zo(Lag ripia) (30)

with the properties keryox = L, app. and imygx N ITOT(L)\.@@. ® Loeype) = Lagempe- We
proceed to define

Yix = gixd( @ Y0.(Ae Eimne))

oy N LA
f’77€A'm£m _kfm =1

and, more generally,

mA;u mk;u
Yk = ( @ (gkfké‘;n“,()\.,g;n,p.))@ 5;71) S ( @ (w(ko,i;mu.))@ 5;71) .

. Asp A
£,nEA,0§k£m <k {,neA.kgm =k

It follows by induction on |A N p*| (which is the injective length of V., in T(V,, V)), using the
Koszulity of the category T(V, V'), that the morphisms yj, » form an exact sequence. [

Corollary 5.30. Let (Ao, A; 14, fte ), (Ko, K3V, Ve) € A. Then, for k >0,

. k
dim Exty (L, e s L djie) = .
_ £ \e K0 ATV e
- Z Prp, NPC Mg Nﬁﬁlp’/797”->o

K
E,WXC,;?,GEA >0
N IEHICHRE pa s b, =

U,O,U.>0 -

[f EXt%(LH.,H;V,V.u L)\.,)\;p,,u.) # 0 then k — kA.,)GNvNQ'

Ke,R;V,Ve

6 The category T,

Recall Proposition 3.1 which states that the gl™-module I is endowed with a structure of
a commutative algebra via the isomorphism I = S*Q/(1 — «(1)). Generalizing a concept
introduced in [ChP2021], we define a category T; as follows. An object of T; is any object of
T, isomorphic as a gI*-module to a tensor product I ® M for some M in T,. In addition to their
glM-module structure, the objects of T; are free I-modules with respect to left multiplication
by elements of I. The morphisms in T, are, by definition, morphisms of gl*-modules which
are also morphisms of I-modules, i.e., commute with the action of I. The category T, is a
tensor category with respect to ®;. Since t is fixed, we put T = T,. Note that the functor
I ®e: T — T is left adjoint to the forgetful functor T — T. The simple objects in T are
related to those in T as follows.
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Theorem 6.1. ([ChP2021, Theorem 3.24]) The simple objects in T are exactly the modules
of the form I ® L with L - a simple object in T. Furthermore, each simple object in T has
endomorphism algebra isomorphic to K.

Consequently, the isomorphism classes of simple objects in T are parametrized by the set
A = A2H2) of 9(t + 2)-tuples of Young diagrams, with representatives (see (13))

Ky=1I®Lx, A€ A.
The proof given in [ChP2021] is independent of the assumption ¢ = 0 made in that article.
Proposition 6.2. There is a surjective morphism of g™ -modules
PV e, (IeV)—1.
Proof. The claimed morphism is the following composition
TeVYe(IeV)2Ie (V' eV) S rgQ ™2 .
It is surjective, since K =2 q C Q. n

Proposition 6.3. Let A = (Ao, \; i, te) € A. The injective object Iy has finite length in T.
The socle filtration of Ix in T has length 1 + ¢ and its layers are

a+1 _ q+1
SOCT  Ing nppe = L @ 80CT" I, Apipe

= @ @ Hom(‘/g,mﬂ%ﬂ(‘/xw ® V@;u)) RI® Zyte

Aes&3Ms 1o
Jjt+k=gq§meA

@ @ hg\;: 1 ® Zl)fig;n,u. ’

Jtk=q € nEA:|\|—|E|=7

where Z/’\“:fglmw are the gi™ -modules defined in (25) and hé\;,’; are the numbers defined in (12).

I

Proof. Note that the finiteness of the length of I follows from the proposed description of the
socle filtration, because the multiplicities of simple objects in the (finitely many) socle layers
are finite. Next, recall that the socle filtration of I as a gl*-module is known from Proposition
5.18. Theorem 6.1 allows us to determine the simple subquotients of Iy in T and observe that
they correspond to the simple subquotients of Jy in T. To prove the first line of the formula
claimed in the theorem, it remains to show that the number of the layer in which a given simple
subquotient of J) appears remains the same for the respective simple subquotient of I in T.
This holds, since socrl, = L, for every kK € A, and the T-socle filtration of I is subordinate
to the T-socle filtration. This implies the first line, and the rest follows from Proposition 5.16
describing soctt! Jy. O

We are now ready to prove the following generalization of [ChP2021, Proposition 3.25] where
the result is obtained for t = 0.

Theorem 6.4. The category T is an ordered Grothendieck category with order-defining objects
I, 1 € P, parametrized by the poset P of Definition 5.3. The isomorphism classes of simple
objects in''T are parametrized by the set A, with representatives Ky, X € A. The indecomposable
imjectives are, up to isomorphism, I for A € A. The socles of the order-defining objects are

SOCTIl = Kl = @KA ®K)\ ,
AES;

with S = {\ € A : |A| =1} as in Theorem 5.20.
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Proof. From Proposition 6.3 we deduce that
ﬂ]%“[l =1 ®ﬂé‘f+1Jl . (31)

Now, the theorem follows by arguments analogous to these in the proof of Theorem 6.4, using
the socle filtration of J; determined in Proposition 5.14 where the layers correspond to indices

P
k=1 ]

6.1 Tensor products of simple objects and a subcategory T of T

We make here some technical observations which will be used further on for the construction
of injective resolutions of simple objects in T.

Proposition 6.5. Let A = (Ao, A\ pt, o), N = (N, N5/, ul) € Ao Then, for ¢ > 0, we have
SOC?FH(KA @ Ky) 21 ® SOC%H(LA ® Lx) and

soch™ (Kx ®; Kx) = I @ soc™ (Lx ® Ly)
= Ky 0:0,00 @1 K 00,0, @1 ﬂqTH(KA;M Q1 Kxy)

~ ), (N5
keI ~Ir|=q

~ Ko o (NK), (V5K ) Wy Ve .
= @ <N)\.>\/_ﬂ(,{;y) N“.#/.> Klihl'i;ll,l/. )

(Ko kv ve)EA

where the numbers @Eif’:))’(xml) and Ni:/\,. are given respectively in Lemma 5.11 and Proposition
5.12.

In other words, the socle filtration of Ky ®r Kx in T is determined by the socle fitration of
Lx® Ly inT. In particular, the analogues of parts (a),(c),(d),(e) of Proposition 5.12 hold for

Ky ®1 Ky .

Proof. The socle filtrations of the gl modules Vi, ® V,, remain unaltered after restriction to
the ideal sl(V, Vi) C gl(V), by Theorem 5.3. On the other hand, sl(V,V,) acts trivially on
1. It follows from Proposition 2.11 that the claim holds for the socle filtration of a tensor
product of the form K, ®; Kp,,. Now the general statement follows from Proposition 5.12 in
a straightforward manner. O

Let T be the smallest full tensor Grothendieck subcategory of T containing the objects
Kio=1® YV, and Ko; =1 ®V and closed under taking subquotients.

Theorem 6.6. The categories T(Vi,V) and T are equivalent under the functor I @ e. This
functor is also determined by the universality property of T(V.,V) and the assignment V,

Ko, V= Ko, pr (K o®1 Ko 2 I1V,.QV 43P I). In particular, T has the structure of an
ordered Grothendieck category, with order-defining objects I, for (I;m) € N x N, parametrized
by the poset P from Definition 5.1. Representatives of the isomorphism classes of simple objects
and indecomposable injective objects of T are given respectively by Ky, and Iy ®r Iy, for

(Aip) €A XA,
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Proof. The existence of the claimed functor is due to the universality property of T(Vi, V),
cf. [PS2014],[ChP2019]. The fact that I ® e fits exactly with the required assignment for
the universal functor is obvious. The verification that this functor defines an equivalence is
straightforward in view of Proposition 6.5. [

Theorem 6.6 allows us to translate the results from Section 5.1 into results about the cate-
gory T. In particular, Theorem 5.5 yields the following.

Corollary 6.7. For A\, u,&,n € A and k > 0, we have

dim EthI(Ké;na K/\,u) = dim EXt?’Y‘(V*,V)(Vf;m VML) - mg\jvl; )

If this dimension is nonzero then k = kg‘;f; =N =&l = |p| —Inl

6.2 Injective resolutions of simple objects in T,

Theorem 6.8. Let A = (Ao, A; 14, ite) € A. There is an injective resolution of the simple object
Kx in T, of length k™ := ||A|| — (M| + |pe]) and with k-th term

Ir];‘ (KA.)‘;HHM.) = @ @ mg\;;; ' (I;:j[} (KAO,£§®| ) ®I I;:j[‘z (KQC;T]LLL. ))

i+j1+j2=Fk 5777@\;@}: =

D D w1 (L) © T (o)
Hitiz=k ¢ ne Akl =i

Ae A e
@ ( Z pi’:”om&f;pz’;fo) ’ ]’{07””’71/0 )

(Ko mivve)EARRS Wi =k N&MEA

I

I

where kXeXtte s as in Theorem 5.29.
o, Ve

Proof. The strategy relays on the fact that the tensor product of injective objects in T is
injective, which allows us to apply Lemma 4.2.

We begin with the one-sided case, and the observation that the injective resolution of Ly, x.p,
in T(V*) (see Theorem 5.24) is transformed under the functor / ® e into an exact sequence with
j-th term Zh (K, ap.) i= I®I%(V*)(LAW\;@.). The indecomposable injectives of T(V*) are of the
form J,, ..., and hence I ® e transforms them into indecomposable injectives of T, by Theorem
6.4. In particular, I%(K xen0.) 18 injective in T for all j, and the above exact sequence is an
injective resolution of Ky, », in T. The case of Zp(Kg,.. ) = I®I%(‘—/)(L@.%M.) is analogous.

By Lemma 4.2, the Kiinneth product of the resolutions of K, ., and Ky,., .. is a resolution
of Ky, a0, @1 Ko, e With k-th term

@ I%:} (K)\-,A§@o) ®I I"%(K@ﬁpﬂﬂt) .

J1+i2=k

We have an analogous resolution of K}, ¢.9, @1 Ky, e for £, € A such that mé\fr’f, and we can

combine these resolutions, using Corollary 6.7, in a manner similar to the one in the proof of
Theorem 5.29, to obtain the claimed resolution of K, x, .. - O
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Corollary 6.9. For (Ke, KV, Ve ), (Ae, A; 1, fte) € A and g > 0 we have

; q — § : EXe oo Nilh 1)
dim EXtT(Kn.,H;V,V.u K)x.,)\;/t,/h) - p:‘fﬁ:mfmpl’,l’: :
EMENq=RE RS +EEE +RLES

If Bxtd (K mves Knargupe) 7 0 then q = k)editbe

Ke,RiV,Ve

Corollary 6.10. For k,A € A and q¢ > 0,

dim Exth (K er0, Kyeto) = dim Exth( K o1e, Kyoic) = dim Homy (K, sockt (I @ My)) ,
where My, x5 the module defined in (28) and “+° is the involution defined in §5.5.1.
Proof. The corollary follows from Corollary 6.9, Corollary 5.26, Theorem 5.5. m

As a special case we obtain the following.

Corollary 6.11. Assume t = 0, meaning that V is of countable dimension. Then
dim EXt]’%O (Kné-,m;yi-,um K)\(J)-,)\;;H-,,uo) = dim HomT()(KHO,H;l/,VO?%”}‘?I}\O,)\;MMO)
holds for any (Ko, k; v, 1), (Noy A; 14y fo) € A and k > 0.

Proof. Under the assumption ¢t = 0 we have I, = I® My and My = Jy for all A € A. Therefore
the statement follows from Corollary 6.10. O

7 Symmetries

In the preceding sections we have shown that the categories T; and T, have finite-dimensional
Ext-spaces between simple objects, as well as finite-dimensional Hom-spaces from simple objects
to socle layers of indecomposable injective objects. The explicit combinatorial formulas for these
dimensions facilitate the study of various relations between Ext- and Hom-spaces. Some such
phenomena correspond to symmetries of the set A parametrizing the isomorphism classes of
simple objects in both T, and T,. We have already encountered the involution A — A€ of A
(see §5.3.1) in relation to several equalities between dimensions of Ext- and Hom-spaces given
in Theorem 5.5 and Corollaries 5.26, 6.10 and 6.11. In the next proposition we derive equalities
related to another involution of A.

If \e = (A_1,X0,---, A\¢) s a finite sequence of Young diagrams, we denote the reversed
sequence by reve := (A, ... A0, A_1).

Proposition 7.1. Let (Ae; fte), (Ke;ve) € A and ¢ > 0. Then

TEVKe

1. py = Dievre and if this number is nonzero then ke

if this number is nonzero then kje = kyoy®;

— revee.
T revie’

reviie
revie

analogously ps = p and

. +1 : +1
2. dim HomT(LH.;@u&% J)x.;@.) :dlmHomT<Lrev>\.;®.7ﬁ% Jrevn.;@.);'

3. dim EXt%(LH.;V). s Lo, ) = dim EXt%‘(Lrew\.;@. s Lrevresps );

) 1 . 1
4. dim HomT(K,.m@.,ﬂqTJr I, p.) = dim HomT(Kmv)\.;@.,SOC?Er Levie0s);
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5. dim EXt%(Kﬂ.;@_, K)\.;@.) = dim EXt%‘(Krev)\.;@., Krev,{.;@.),'

6. we have
dim EXt%‘<LH0,H;V7Vo’ L>\0 by Mo) = dim EXt%(L/\ A0; 10,1 Ly No;'/o,l/)
_ ® 3 n 1
= ) NEN{ NS NENE NI Ng NP
577—7978071#757777(6‘/\

and if this number is nonzero then q is unique and equals
q = [rol = [Xo| + [l = [v] = [A] = [&] + |vo| = |pol ;

7. if [ Xo| + |A| = |ko| + |K| we have

. q s q
dim Ext (K mm Kko,k;u,uo) = dim EXtT(KA,Ao;uo,w K rowo)
RO A 140)
z : NAOTN u9lN9uo )
T,0EA

and if this number is nonzero then q is unique and equals
q = Al = |&] + [p] = [v] = |Ko| = [Xo| + |u| = || = [A] = |&] + [vo| — |uol -

Proof. The first statement follows by standard properties of Littlewood-Richardson coefficients
from the defining formulas of pj: and k)2 in Theorem 5.24. The rest of the statements follow
from the first and the explicit formulas for the dimensions of the involved Ext- and Hom-spaces,
obtained in Proposition 5.16, Corollary 5.30 and Corollary 6.9. [

8 Universality

Before addressing the topic of universality we should point out that a seed of the following
discussion can be traced to the work [SS2015]. Here we follow [ChP2021].

Let Tg, denote the full tensor subcategory of T containing I; for I € P and closed under
taking subquotients. The goal of this section is to prove the following theorem.

Theorem 8.1. Let t € N. Let (D,®,1) be a (K-linear abelian) tensor category with a given
pair of objects X,Y, a morphism

qQ: XY =1, (32)

and filtrations0 =X 1 C XoC X7 C...C Xy =X and0=Y ;CYyCcYiC..CY =Y.
Then the following hold.

(i) There is a unique, up to a monoidal isomorphism, left-exact symmetric monoidal functor
® : T, — D sending the pairing 1p : (I @ V*) ®@; (I ® V) — I to the pairing q, and for
—1 < o < B <t the morphisms IQ(V*/Vy) = I@(V*/V5) and I&(V/V,) = 1@(V /Vp)
respectively to the morphisms X/ X, — X/Xg and Y/Y, — Y/Yj.

(ii) If D is additionally a Grothendieck category then ® extends to a functor T — D.

The proof will be given after some preparation. In the next proposition we relate the
endomorphism algebras of the objects I; to the groups &; defined in (16).
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Proposition 8.2. Forl € P, the endomorphism algebra ¥EndrI; is isomorphic to the group
algebra K[&,] via the S;-action on I, where the &, -factor of &, permutes the tensorands in
the tensorand (V*/V)® of I and the &,,, -factor permutes the tensorands in the tensorand
(V /Vy)®me of I.

Proof. We follow the idea of [ChP2021, Lemma 3.34] and only outline the main steps as the
details are analogous. By Theorems 6.1 and 6.4, the endomorphism algebra of every inde-
composable injective is trivial: Endply, = K for all A € A. The G;-action defined in the
proposition extends to an injective homomorphism K[&,;| < Endr/;. The surjectivity follows
from a dimension argument. m

Let R be the tensor algebra in T of the object Ry := @ I, and let Ry := R?Id be the
leP:|l|=1
degree d component of R. Let

A= P Homr (R, Ry) = @D Hom (I, Ii) ; (33)

k,lEN k,lcP

this is an N-graded algebra with degree components

A= @  Homr(l, L) .

k,lcP:kePd(l)

Theorem 8.3. The category T is Koszul, in the sense of [ChP2017], namely, for every pair of
simple objects K, L and every q > 2, the canonical Yoneda map

- Ext!(K, M) @ Ext' (M, M) ® ... ® Ext'(M,_1, L) — Ext?(K, L)

My,...,Mq_1 simple
1s surjective. Consequently, the algebra A is Koszul and, in particular, quadratic.

Proof. The surjectivity of the Yoneda maps in T follows from Corollary 6.9. It is shown in
[ChP2021] that the Koszulity of the category T implies that A is a Koszul algebra, and is hence
quadratic. O

In the proposition below, we study certain (&;, & )-bimodules of homomorphisms I; — Ij.
These bimodule structures of the models provided for these bimodules are obtained as follows.
If [,1" € N satisfy | <1’ we consider &, as the subgroup of &, fixing [+1,...,’. If all coordinates
of I € P are smaller or equal to the respective coordinates of I’ € P, then we consider &; as the
subgroup of &y given by the component-wise embeddings &;, C &y, and &,,, C &,,, fixed
above. Now, if &; C &y and & C &y are two such inclusions, every (&, &y )-bimodule is a
(6, Sk)-bimodule by restriction. All models for homomorphism spaces used in the proposition
below are bimodules of this form. For instance, for I’ = k'’ the group algebra K[&,] is a
(61, Gk)—bimodule.

Proposition 8.4. The space of quadratic relations between degree 1 elements of A decomposes
as a sum of monogenerated (&, Sg)-bimodules, along the pairs l, k at distance 2 in the poset
P, as follows:

ker(.A1 (024 ./41 — ./42) == @ kergl,k s kergl,k = (K[Gk] X K[@l]) . f”c.
k,leP:keP2(1)
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Here

ik - @ Hom([k/, Ik) ®End1k/ HOHI(I[, ]k’) — Hom([l, [k)

P P
k'eP:l>-k'~k

is the morphism induced by composition, it is surjective, and a generator fi, € kergyy is
specified below in the various relevant cases. Forl = (l,,l;m,n,) € P, we let py : I; = Ij_1,1)
stand for the morphism defined by the identity on all tensorands in Iy = I, 0.0.ne @1 If?él ®I§?{m,
except on the last tensorand of]f?él and the last tensorand offg?{m on which p : I1,0® o — loyp
is applied. Similarly, for0 < o <t, fi* + Iy = liy(10,—1._1,0) 18 the projection V*/Vi_| — V* [V
applied to the last tensorand in Iﬁ’f‘f;o, extended by identity on all other tensorands in Ij, and
f& = L0101 1.) is the analogous morphism obtained from V [Vo_y — V /V,.

1. Forl = (ly,....,lo, l;m,mg,...,my) and k = (I, ..., Lo, — 2;m — 2,mg, ....my) =1 — (2;2),
we have a single intermediate element k' = (Iy, ..., lo, 1 — 1;m — 1,mg,....,my) =1 — (1;1);
the domain of gy, s

Y

HOHI(Ik/, Ik) ®End1k/ Hom([l, Ik/) & K[Gl]
as an (&y, Sg)-bimodule, and the kernel of giy, is generated by

fik =P @®P1 —Prw @P10S5,

where s is the product of the two simple transpositions in &, x &, exchanging respectively
the last two tensorands in (V*)®' and the last two tensorands in V™.

2. Forl = (I, ..., Lo, l;m,mq, ....my) and k = (I, ...,lo + 1,1 — 2;m — 1,my, ...,m;), we have
two intermediate elements k' = (I, ..., lo,l — L;m — 1,mqg, ....my), K" = (L, ..., lo + 1,1 —
L;m,mg, ...,mq); the domain of iy is

Hom ([, It) ®gnar,, Hom(1y, Iys) © Hom(Iyn, Iy) ®knar,,, Hom (I, [yr)
NG
= K[Glt,..‘,lo-‘rl,l;m,mo,..‘,mt]692 = (dejEHK[Gl])@Q

as an (S, Sg)-bimodule (the two summands are isomorphic), and the kernel of gy is
generated by

Jik=foOpPi— P ® f o,
where s is the simple transposition in G; C &; exchanging respectively the last two tenso-
rands in (V*)®".

3. Forl = (ly, ..., lo, l;m,mo, ...,my) and k =1+ (14, —1o—1;—15-1,15), with 0 < o, 8 < ¢,
there are two intermediate elements k' =1+ (1o, —1a—1;0e), K" =1+ (0e; —15-1,15); the
domain of gy 1S

Hom(lk/, Ik) ®End[k/ Hom(]l, Ik’) D I‘IOII](]k//7 Ik) ®Endlk// HOl'Il(]l, ]k”> = K[Gpr(la;lﬂ)]eﬂ

as an (S, Sg)-bimodule (the two summands are isomorphic), and the kernel of gy is
generated by

fik=fo o ff —fhefe.
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4. Forl = (l;,....lo,l;m,mg,...my) and k =1+ (24, —24-1;0s), with 0 < a < t, there is one
intermediate element k' =1+ (1,, —1,-1;04); the domain of gy is

Hom(Ik’7 [k) ®End]k/ Hom(Il7 [k/) = K[6l+(2a;00)]
as an (&;, Sg)-bimodule, and the kernel of giy, is generated by
fik=5o(fe@f)—(fe®fi)os,

where s € &;,_, C &y is the transposition of the last two tensorands in (V)% as a
tensorand of Iy and ' € &, 1o C Sy is the transposition of the last two tensorands of
(V¥)®lat2 gs q tensorand of Iy.

5. Forl = (I, ....,lo, l;m,mg, ....my) and k =1+ (14, —1a_1; .)—l—(lg,—lg 1;04), with 0 <
a < B < t, there are two intermediate elements k' = 1 + (14, —14-1;0,), K" = 1 +
(14, —15_1,0.), the domain of gy, is

Hom (I, Ix) ®gnar,, Hom (I, Ir) © Hom(Iyr, Ix) ®gnar,, Hom(1y, I1r) = K[6l+(15,1a;0.)]@2

as an (S, Sg)-bimodule (the two summands are isomorphic), and the kernel of gy is
generated by an element fiy, determined depending on 3 — o as follows:

(a) if 6 =a+1 then
fl,k _ f]?// ® fa+1 ( a+1 ® fl )

where s € 6,11 C Gyp(1,,1.14:0.) 45 the transposition of the last two tensorands in
(VE)®le as a tensorand of Iji(1,, ;1 1.:00)-

(b) if B> a+1 then
fik =@ ) = fa @ ff,
where s € G, 11 C Gp(1,,1,1:0.) 45 the transposition of the last two tensorands in

(V2)®le as a tensorand of Iji(1,, 1 1.:00)-

Proof. The proof is a compilation of the proofs of [ChP2017, Lemma 5.16] and [ChP2021,
Theorem 3.33]. O

Proof of Theorem 8.1. We follow the strategy of [ChP2021, Theorem 3.33|, [ChP2017, Theorem
5.3]. The general properties of tensor categories imply that the relations given Proposition 8.4
are satisfied in D for the respective objects and morphisms derived from X and Y instead of V*
and V. Now Theorem 8.3, together with Proposition 8.4, implies that the assignment ®(V*) =
X, ®(V,) =Y, for a = —1,0,...,t, ®(p) = q, (V*/V* = V¥ Vi) = X/ X = X/ Xo,
OV /Vy =V )Vay1) =YYy = Y/Yoy1, for a = —1,...,t — 1, provides a consistent definition
of a functor ® : Ty, — D. The uniqueness of this functor, up to tensor natural isomorphism,
its left-exactness, and its extension to the Grothendieck category T if D is a Grothendieck
category, follow from standard arguments as in [ChP2021, §8]. O

Corollary 8.5. Let0 < s < t and let T(V}, I5%,V,) C Ty be the smallest full tensor Grothendieck
subcategory of T; containing V¥, V, and the module I%°, which is also a commutative subalgebra
of I, defined at the end of Section 3. Let T(VF, I V,) be the category, whose objects are
g™ -modules in T(V;, 152, V,) which are also free as I*-modules, and whose morphisms are
morphisms of gl -modules as well as of I%*-modules. Then T(Vr, 1%, V,) is equivalent to the
category Ty constructed from an arbitrary diagonalizable pairing between two RNg-dimensional
vector spaces.
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