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PRIME NUMBERS AND DYNAMICS OF THE POLYNOMIAL x2 − 1

IVAN PENKOV AND MICHAEL STOLL

ABSTRACT. Let n ∈ Z>2. By P(n) we denote the set of all prime divisors of the integers

in the sequence n,n2 − 1, (n2 − 1)2 − 1, . . . . We ask whether the set P(n) determines n

uniquely under the assumption that n 6= m2 − 1 for m ∈ Z>2. This problem originates

in the structure theory of infinite-dimensional Lie algebras. We show that the sets P(n)
generate infinitely many equivalence classes of positive integers under the equivalence

relation n1 ∼ n2 ⇐⇒ P(n1) = P(n2). We also prove that the sets P(n) separate all

positive integers up to 229, and we provide some heuristics on why the answer to our
question should be positive.

1 Statement of the problem

We consider the following question.

Question 1.1. Let n > 1 be an integer, not of the form n = m2 − 1. Consider the
sequence (ak)k>0 = (ak(n))k>0 defined recursively by a0 = n, ak+1 = a2

k − 1. Let P(n)
be the set of all prime divisors of all ak. Is n determined uniquely by P(n)?

Note that if p divides ak, then p will divide infinitely many terms of the sequence, as
the sequence considered modulo p will be periodic 0 7→ −1 7→ 0 from that point on. In
particular, P(n2 − 1) = P(n), and so P(ak(n)) = P(n) for all k.

The above question arose in the structure theory of certain infinite-dimensional Lie
algebras, see [PH22]. More precisely, for any n ∈ Z>2 one has an interesting chain of
inclusions of Lie algebras

(n) ⊂ (n2 − 1) ⊂ ((n2 − 1)2 − 1) ⊂ . . . ,

where the natural representation of each Lie algebra restricts to the adjoint repre-
sentation of the preceding Lie algebra. It is natural to ask when the direct limits of
such chains are isomorphic as Lie algebras. As explained in [PH22], the notion of
Dynkin index allows to infer that a positive solution to Question 1.1 implies that the
direct limit Lie algebras arising from sequences as above starting respectively with (n1)

and (n2) for n1 < n2 are isomorphic if and only if n2 is a member of the sequence
n1, n

2
1 − 1, (n2

1 − 1)2 − 1, . . . .

An equivalent formulation of Question 1.1 is as follows.

Question 1.2. For a prime p, let S̄(p) be the subset of the finite field Fp consisting of
all a such that iterating x 7→ x2 − 1 on a eventually produces 0. Denote by S(p) the
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preimage of S̄(p) in Z. Is it true that for each subset T of the set of all primes the
inequality

#
(

{n ∈ Z>0 : n 6= m2 − 1} ∩
⋂

p∈T

S(p) ∩
⋂

p/∈T

(Z \ S(p))
)
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holds?

On heuristic grounds (which we will detail below in Section 5), this appears to be very
likely, but we also expect it to be very hard to prove.

The purpose of this paper is to gather some experimental evidence and to propose some
heuristics that support a positive answer to the questions above.

We record here that some primes occur in all sets P(n) and so do not provide useful
information toward the answer of Question 1.1.

Lemma 1.3. For all n, {2, 3, 7, 23, 19207}⊂ P(n), and these are the only primes below 105

with that property.

Proof. One checks by a computation that S̄(p) = Fp for the five primes occurring in the
statement and for no other primes p < 105. �

This begs another question:

Question 1.4. Is
⋂

n P(n) finite or infinite?

See Section 5 for some heuristics regarding the likely answer.

This paper is structured as follows. In Section 2 we show that all sets P(n) are infinite.
Then in Section 3 we provide experimental evidence in favor of a positive answer to
Questions 1.1 and 1.2. In Section 4 we show that there are infinitetly many distinct
sets P(n). Finally, in Section 5 we present some heuristic considerations pertaining to
the questions asked above.
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2 The sets P(n) are infinite (but likely sparse)

Before we state and prove the claim in the title of this section, we need some auxiliary
results.

Lemma 2.1. Let n ∈ Z>1 and let ak = ak(n) for k > 0 be defined as above. Then for all
k > 0 we have the divisibility ak | ak+2.

Proof. Note that ak+2 = a2
k+1 − 1 = (a2

k − 1)2 − 1 = a2
k(a

2
k − 2). �

We set f := x2 − 1 ∈ Z[x] and write fm for its m-th iterate (i.e., f0 = x and fm+1 =

(fm)2 − 1 = fm(x2 − 1))-
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Lemma 2.2. For every m > 0, the polynomial fm−1 is irreducible (in Z[x]). Furthermore,
2 is the only ramified prime in the splitting field of fm − 1 (for m > 1).

Proof. The constant term of fm − 1 is −1 when m is even and −2 when m is odd, and
the constant term of fm(x−1)−1 is −2 when m is even and −1 when m is odd (we use
that fm+2(0) − 1 = fm+1(−1) − 1 = fm(0) − 1). The image of fm in F2[x] is x2

m

when m
is even and (x+ 1)2

m

when m is odd. Both observations together imply that for each m
either fm − 1 or fm(x− 1) − 1¨ is irreducible by the Eisenstein criterion at the prime 2.

It is not hard to show that discg(x2 − 1) = (−4)deggg(−1)(discg)2, where g ∈ Z[x]
and discg is the discriminant of g; see, e.g., [Jon08, Lemma 2.6] for a more general
statement. This implies that the discriminant of fm − 1 is a power of 2 up to sign, so
2 is the only prime that can possibly ramify in the splitting field of fm − 1. There are
no unramified nontrivial extensions of Q, so 2 indeed has to ramify when m > 1. (See
also [BJ09, page 222], where the result regarding the ramification is stated without
proof.) �

Now we show that P(n) is infinite.

Proposition 2.3. Let n ∈ Z>2. Then P(n) is an infinite set of prime numbers.

Proof. From Lemma 2.1, we can deduce that the set of primes dividing one of a0, . . . , ak+1

is the same as the set of primes dividing akak+1. Now a2
k − 2 is coprime to the odd part

of akak+1 = ak(a
2
k − 1) and is divisible by 2 at most once. This implies that unless

ak = 2, ak+2 = a2
k(a

2
k−2) has a prime divisor not dividing akak+1. So, with one possible

exception (which occurs only when n = 2), each ak contributes at least one new prime
to P(n). In particular, P(n) must be infinite. �

We remark that this is a special case of the much more general Thm. 6.1 in [Jon08].

On the other hand, the sets P(n) are likely sparse in the following sense.

Conjecture 2.4. Let n ∈ Z>2. Then P(n) is a set of prime numbers of density zero.

Note that we are in the exceptional case k = −1 of [Jon08, Thm. 1.2(iii)].

Let Gm denote the Galois group of fm(x) − 1 over Q. Then Conjecture 2.4 would follow
from the following statement.

Conjecture 2.5. Let δm be the proportion of elements σ ∈ Gm such that σ fixes at least
one root of fm(x) − 1. Then limm→∞ δm = 0.

Note that by the Main Theorem in [ABC+22], the corresponding group Gm(a) for
fm(x) − a is the level-m quotient Mm of the ‘arithmetic basilica group’ M∞ for all m
when a is outside a ‘thin set’. The statement of Conjecture 2.5 is expected to hold
in these cases (Rafe Jones, private communication). When a = 1, the limit group
G∞ = lim

←−

Gm is of infinite index in M∞, so this case requires additional work and is

still open (with the expectation being that Conjecture 2.5 above should hold).
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3 Separation of numbers up to a bound

The following definition is useful.

Definition 3.1. Let X be a positive integer and let P be a set of prime numbers. We say
that P separates the numbers up to X, if the sets P(n) ∩ P are pairwise distinct for all
n 6 X not of the form n = m2 − 1.

In other words, Questions 1.1 and 1.2 have a positive answer when restricted to n 6 X,
and this can be verified by only considering divisibility by primes in P.

With this notion, we have the following experimental data.

Theorem 3.2. Write P6m to denote the set of prime numbers p 6 m. Then:

(1) The numbers up to 101 are separated by P647.
(2) The numbers up to 102 are separated by P6223.
(3) The numbers up to 103 are separated by P6379.
(4) The numbers up to 104 are separated by P6919.
(5) The numbers up to 105 are separated by P62137.
(6) The numbers up to 106 are separated by P63001.
(7) The numbers up to 107 are separated by P64793.
(8) The numbers up to 108 are separated by P65791.

Proof. We run the following algorithm. The input is X = 10k with k = 1, 2, . . . , 8.

1. Initialize N := {{n ∈ Z>1 : n 6 X,¬∃m : n = m2 − 1}}, a set of finite sets of positive
integers.

2. Set p := 3.
3. Repeat the following steps until N is empty.

a. Replace p by the next larger prime number.
b. Compute S̄(p).
c. Replace each set N in N by the sets in the list N∩S(p), N\S(p) that have at least

two elements.
4. Return p.

Taking into account that the primes 2 and 3 do not give information by Lemma 1.3, it is
clear that this algorithm will return the minimal p such that P6p separates the numbers
up to X when it terminates. The algorithm does in fact terminate for all X = 10k with
k 6 8 and returns the bounds given in the statement. �

We note that the growth of the bound on the primes that are necessary to separate the
numbers up to X is numerically consistent with a growth of order (logX)2. The con-
siderations in Section 5 below would predict (logX)2 log logX, which is also consistent
with our numbers above (log logX grows too slowly to allow distinguishing the two
possibilities by experimental data).

We clearly get the “best” effect from using the information at a prime p when the set
S̄(p) comprises close to half the elements of Fp. So, to get a more efficient algorithm
than the one used in the proof above, we do the following.

1. Pre-compute the sets S̄(p) for all p up to a suitable bound.

2. Sort the list of pairs (p, S̄(p)) by increasing value of |#S̄(p)/p− 1/2|.
3. Use the primes in the order that is given by the sorted list of pairs.

4



The effect is that we can get similar results with less computation, because we need
fewer primes to get separation.

For example, considering the primes up to 10 000, the first ten primes in the sorted list,
together with the value of |#S̄(p)/p− 1/2|, are

(2713, 0.00350), (2137, 0.00726), (1399, 0.0232), (5927, 0.0534), (8681, 0.0637)

(4799, 0.0741), (3079, 0.0746), (71, 0.0775), (919, 0.0833) (7951, 0.0875) .

The actual splitting of the sets in N can be done in a breadth-first (like in the algorithm
in the proof above) or in a depth-first way. The latter is more space-efficient, but there
is no significant difference in run times (as long as there is sufficient memory available;
see below). The time complexity should be ≍ X logX (this is corroborated by the
running times), with a memory requirement of ≍ X.

Using this improved algorithm, we can show:

Theorem 3.3. The primes up to 10 000 separate the numbers up to 229 ≈ 5.37 · 108.

For comparison, our Magma implementation [Sto25] of the algorithm described in the
proof of Theorem 3.2 takes a bit over two hours to verify the result for X = 108 on the
second author’s current laptop, while both the breadth-first and the depth-first versions
of the second algorithm take about 35 minutes with the same bound (but only prove
the slightly weaker result that the numbers up to 108 are separated by the primes be-
low 10 000). The computation verifying the statement of Theorem 3.3 takes a bit less
than four hours (using the depth-first version and with some other tasks being executed
in parallel; the breadth-first version requires too much memory to run in reasonable
time, probably caused by the overhead incurred when working with a very large num-
ber of sets at the same time in Magma). We expect that a low-level implementation in
C could be made sufficiently (time and space) efficient to be able to extend the bounds
further, but it is perhaps not so clear that the additional effort spent for writing, testing
and debugging such an implementation justifies the somewhat marginal improvement
in experimental evidence.

4 Infinitely many classes

We can define an equivalence relation on Z>0 by declaring

n ∼ m : ⇐⇒ P(n) = P(m) .

Then Theorem 3.3 shows that there are at least 536 847 742 = 229 − ⌊
√
229 + 1⌋ distinct

equivalence classes. We can in fact show more. But first we need a lemma.

Lemma 4.1. Let p > 3 be a prime number. Then S̄(p) = {−1, 0, 1} ⊂ Fp ({−1, 0, 1} is the

minimal possible set S̄(p)) if and only if p ≡ ±3 mod 8.

Proof. Since 1 and −1 both map to 0 under x 7→ x2 − 1, the inclusion {−1, 0, 1} ⊂ S̄(p)

holds for all p. The only preimage of −1 is 0. So S̄(p) is larger if and only if there are
preimages of 1 in Fp. But this is equivalent to 2 being a quadratic residue mod p, which
is well known to be equivalent to p ≡ ±1 mod 8. �

Theorem 4.2. There are infinitely many equivalence classes under the relation “∼” defined
above.
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Proof. We show that the sets P(p), where p ≡ ±3 mod 8 is a prime, are pairwise distinct.
This follows from the observation that p ∈ P(p) and that for q < p with q ≡ ±3 mod 8
we have 1 < q < p−1, so q 6≡ −1, 0, 1 mod p, which means that p /∈ S(q) by Lemma 4.1,
hence q /∈ P(p). (A similar argument works for P(p − 1) or P(p + 1) with the same
primes.) �

One can ask whether primes p ≡ ±3 mod 8 are sufficient to separate all positive inte-
gers not of the form m2 − 1. However, the answer is “no”. Indeed note that

P ′(n) := P(n) ∩ {p : p ≡ ±3 mod 8} = {p : p ≡ ±3 mod 8, p | (n− 1)n(n+ 1)} ,

in particular,

P ′(2) = P ′(7) = P ′(17) = {3}

P ′(4) = P ′(5) = P ′(6) = P ′(9) = P ′(16) = {3, 5}

P ′(10) = P ′(11) = P ′(21) = {3, 5, 11} .

Moreover, looking at the sets P ′(n) for n up to 10 000 seems to suggest that any given
finite set of primes p ≡ ±3 mod 8 occurs infinitely often.

5 Heuristics

From the discussion in Section 3, it is reasonable to consider asymptotic properties of
the distribution of the relative sizes #S̄(p)/p as p gets large.

Here is a heuristic model for the size of S̄(p): We start with 1 → 0 ↔ −1 and follow 1
backwards. For a given x 6= −1, the chances that x + 1 is or is not a square in Fp are
equal, so we add two preimages with a probability of 1/2 and recurse.

Writing

F(z) =
∑

n

P(#S̄(p) = n)zn = z3G(z) ∈ Q[[z]] ,

this gives

2G(z) = 1+ z2G(z)2 =⇒ G(z) =
1−

√
1− z2

z2
,

so

F(z) = z(1−
√

1− z2) =
∑

n>1

(−1)n+1

(

1/2

n

)

z1+2n .

The coefficient of z2n+1 is
∣

∣

∣

∣

(

1/2

n

)
∣

∣

∣

∣

=
1

2n− 1

∣

∣

∣

∣

(

−1/2

n

)
∣

∣

∣

∣

=
4−n

2n− 1

(

2n

n

)

∼
1

2n
√
πn

.

For the regime of relative sizes < 1− ε, the heuristic model above should be reasonably
accurate. Indeed, counting the primes p < 105 such that #S̄(p) = 2n + 1 shows a
reasonably good agreement with the prediction from the model for, say, n 6 20 (for
larger n the numbers of primes are too small for a meaningful comparison).

The model would predict that for 0 < a < b < 1, we should expect there to be about

const

∫X

3

(∫bx

ax

dt

t3/2

)

dπ(x) ≈ const

√
X

logX

(

1√
a
−

1√
b

)

primes p 6 X such that ap 6 #S̄(p) 6 bp.
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For instance, we expect there to be infinitely many primes p such that
∣

∣

∣

∣

#S̄(p)

p
−

1

2

∣

∣

∣

∣

6
1

10
.

The first few primes satisfying this inequality are

5, 71, 919, 1399, 2137, 2713, 3079, 4799, 5927, 7951, 8681, 10271, 10711, 11369,

12487, 12577, 22409, 22871, 24623, 24631, 27647, 29641, 46457, 54751, 84559,

87583, 99929, 103703, 105449, 106753, 120199, 120607, 123289, 131111, 147703 .

This fits reasonably well with the heuristic growth.

Each such prime will lead to a nearly 50-50 split of the numbers n, and so the very
likely fact that there are infinitely many of them gives another strong indication that
the sets P(n) do actually separate all positive integers n not of the form m2 − 1.

For the “probability” that #S̄(p) = p (i.e., S̄(p) = Fp), the model predicts something

like O(p−3/2), which would suggest that the answer to Question 1.4 is “finite”.

However, the model does not take into account that #S̄(p) 6 p. If we include the cases
where the size would be larger than p according to the model, the “probability” grows
to p−1/2, which would indicate that the answer is “infinite”! A refined model will be
necessary to obtain reasonable predictions in the regime of S̄(p) close to maximal. So
we now develop another heuristic regarding the existence of infinitely many primes
with S̄(p) = Fp.

The directed graph on the vertex set Fp with edges x → y when y = x2 − 1 consists of
a number N(p) of connected components, each of which contains precisely one cycle.
Define the polynomials Φn so that

∏

d|n

Φd = fn − x ,

where f = x2 − 1 and fn denotes the n-th iterate of f. So, e.g.,

Φ1 = x2 − x − 1

Φ2 = x2 + x = x(x + 1)

Φ3 = x6 + x5 − 2x4 − x3 + x2 + 1

Φ4 = x12 − 6x10 + x9 + 12x8 − 4x7 − 7x6 + 4x5 − 4x4 + x3 + 4x2 − 2x + 1

etc.

At least up to m = 6, we have

Gal
(

∏

n6m

Φn

)

=
∏

n6m

Gal(Φn)

(where Gal(g) denotes the Galois group of a polynomial g over Q) and (for n 6= 2)

Gal(Φn) = Gn := Cn ≀ Skn with kn =
degΦn

n
=

1

n

∑

d|n

µ
(n

d

)

2d .

Here, Cn ≀ Skn denotes the wreath product, i.e., the semidirect product of C
#Skn
n with

Skn acting via permutation of the factors, and Cn is the cyclic group of order n.

7



If we assume that this remains true for larger m (this is the case for generic polyno-
mials f), then the density of primes p such that f has no cycle of length n ( 6= 2) in Fp

is (by the Chebotarev Density Theorem) the fraction of elements in Gn without a fixed
point, which is

kn∑

k=0

(

kn−k∑

j=0

(−1)j

j!

)

(1− 1/n)k

k!
.

This is quite close to

e−1e1−1/n = e−1/n .

So under this model and assuming that the events “f has a cycle of length m on Fp” are
independent for 3 6 m 6 p, the expected “probability” for a prime p to have N(p) = 1
is close to

1

2
exp

(

−
∑

36n6p

1

n

)

∼
1

2
exp
(

−(logp+ γ− 3/2)
)

=
c

p

for a constant c. This would lead us to expect roughly c log logX such primes up to X.
In particular, this indicates that the answer to Question 1.4 is “infinite”.

A bit more realistically, since (except for −1) every element in a cycle has two preim-
ages, we can stop at m = (p− 3)/2 (subtract 3 for 1, 0,−1), which basically doubles c.
We’d then actually expect a prime ≈ 163 and one ≈ 2130 and then one around 100 000
in the intersection of all sets P(n). Of course, these are not precise predictions, and
they serve only as an indication of the expected growth of the numbers in

⋂

n P(n).

See also [JKMT16] for some general results on the proportion of preperiodic points
mod p under iteration of polynomials or rational functions.
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