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Abstract

Branching laws for tensor modules

over classical locally finite Lie algebras
by

Elitza I. Hristova
Doctor of Philosophy in Mathematics

Jacobs University Bremen

Professor Ivan B. Penkov, Chair

Given an embedding g’ C g of two Lie algebras and an irreducible g-module M, the
branching problem is to determine the structure of M as a module over g’. In this
thesis, we consider the case when g’ C g is an embedding of classical locally finite
Lie algebras ([DP1]) and M is a simple tensor g-module ([PSt], [PSe|). The goal of
the thesis is to solve the branching problem for these data. Since M is in general a
not completely reducible g’-module, we determine the socle filtration of M over g'.
Due to the description of embeddings of classical locally finite Lie algebras given in
[DP1], when g’ % gl(00) our result holds for all possible embeddings g’ C g.
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Chapter 1

Introduction

The structure and representation theory of locally finite Lie algebras has been a
very active research area in the last 15 years and is nowadays an important part
of the theory of infinite-dimensional Lie algebras and their applications. Locally
finite Lie algebras of countable dimension are direct limits of finite-dimensional
Lie algebras and can be considered as natural generalizations of finite-dimensional
Lie algebras. Many notions from the finite-dimensional case have their “locally
finite” counterparts. In particular, the notions of a (semi)simple Lie algebra (resp.,
solvable, nilpotent) are replaced by the notions of a locally (semi)simple (resp.,
locally solvable, locally nilpotent) Lie algebra. Furthermore, the notions of Cartan,

Borel and parabolic subalgebras are introduced in a most natural way.

An important subclass of the general class of locally finite Lie algebras is the class
of simple finitary Lie algebras, introduced by A. Baranov. In a series of papers
Baranov classified, up to isomorphism, the simple finitary Lie algebras over R and
C ([B1], [B2], [B3]). Baranov’s result for simple finitary Lie algebras of countable
dimension over C is very easy to state. Up to isomorphism, there are only three
such Lie algebras: sl(c0), sp(c0), and so(co) ([B1]). The analogous problem in group
theory had been solved previously by Hall ([Ha]), and some notions from there have

been adapted by Baranov to the case of Lie algebras.

The structure and representation theory of countable-dimensional finitary Lie alge-
bras is nowadays quite developed. In particular, their Cartan, Borel and parabolic
subalgebras have been classified ([DaPSn|, [DP2], [Dal, [DaP]). The current thesis
solves the branching problem for simple tensor modules over the classical finitary

Lie algebras gl(o0), sl(o0), sp(oo), and so(oo).

The branching problem is a classical problem in the theory of irreducible represen-
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tations of finite-dimensional Lie algebras. Given a pair g’ C g of finite-dimensional
Lie algebras and an irreducible g-module M, the branching problem is to determine
the structure of M as a module over g’. When ¢ is semisimple, in view of Weyl’s
semisimplicity theorem the branching problem reduces to finding the multiplicity of
any simple g’-module M’ as a direct summand of M. This is however not a simple
task, due to the abundance of possible isomorphism classes of embeddings g’ C g
([Dy]). Therefore, even for the classical series of Lie algebras an explicit solution of
the branching problem is known only for specific cases. Examples of such branch-
ing rules are the Gelfand-Tsetlin rule ([Z], [GW]) and certain branching rules for
diagonal embeddings ([HTW]).

When we consider the classical locally finite Lie algebras gl(c0),sl(c0), sp(co), and
so(o00) the situation is quite different. On the one hand, one can give a description of
the Lie algebra embeddings which is simpler than the classical description of Dynkin
in the finite-dimensional case. On the other hand, the modules of interest, called
simple tensor modules, are in general not completely reducible over the subalgebra.
Therefore, the branching problem involves more than just determining the multi-
plicities of all simple constituents. One has to determine a semisimple filtration
of the given module over the subalgebra. It is a natural choice to work with the
socle filtration. In this way, the goal of the present work is to solve the following
branching problem. Given an embedding g’ C g of two classical finitary Lie algebras

and a simple tensor g-module M, find the socle filtration of M as a g’-module.

Four main articles lie in the background of this thesis, namely [DP1], [PSt], [PSe],
and [DaPSe]. In [DP1] a description of all possible embeddings g’ C g is given,
where g 2 gl(0), sl(00), sp(00), or so(oo) and ¢’ is a simple locally finite subalgebra.
Then, in [PSt] the structure of certain basic tensor g-modules is described. In
[DaPSe] the general definition of tensor module is given and the category T, of
tensor modules for g = sl(00),sp(c0), or so(co) is introduced. Furthermore, [PSe]

defines a larger category of g-modules for g = sl(c0),sp(c0), or so(oo), denoted by

Tensy. Both categories T/‘en\/sg and T, have the same simple objects, and those are
precisely the modules for which we study the branching problem. A very recent
work by Frenkel, Penkov, and Serganova shows that the category T, is interesting
not only for representation theoretic reasons, but moreover plays a major role in a

categorification of the boson-fermion correspondence.

An important consequence from [PSe] is that whenever g’ is a locally simple subalge-
bra of g and M is a simple tensor g-module, M considered as a g’-module is an object

in 'fe\n/sg/. Thus, the different embeddings g’ C g provide a tool for constructing a



3

large variety of objects in fe\/nsg/, some of which are not necessarily tensor modules.
And the solution of the branching problem for g’ C g describes the structure of these

objects.

We now describe the body of the thesis in detail. In Chapter 2 we define the basic
notions related to locally finite Lie algebras of countable dimension and discuss the
results from the papers [PSt], [DP1], and [PSe] mentioned above. Following the
description of the possible embeddings given in [DP1], we introduce the notion of an
embedding g’ C g of general tensor type. In the end of the chapter we present some
branching rules for embeddings of finite-dimensional Lie algebras. These branching

rules will be used throughout the thesis.

In Chapters 3 and 4 we consider embeddings g’ C g where g’ = g. We decompose the
embeddings of general tensor type into several intermediate embeddings of specific
types and solve the branching problem for each of these intermediate embeddings.
In particular, we show that the case sl(co) C sl(00) is equivalent to the case gl(co) C
gl(o0).

Chapter 5 focuses mainly on the proof of Theorem 5.2. This theorem shows that the
branching problem for embeddings g’ C g of general tensor type can be reduced to
branching problems for embeddings of simpler types. In the cases g’ = g these are
exactly the types considered in Chapters 3 and 4. Thus, Theorem 5.2 justifies the
choice of intermediate embeddings made in Chapters 3 and 4, and as a consequence

solves fully the branching problem for embeddings g’ C g with g’ = g.

In Chapter 6 we solve the branching problem for embeddings g’ C g such that g’ and
g are non-isomorphic. We start by reducing the number of possible pairs g’ C g via
identification of equivalent pairs. Then, using Theorem 5.2, we further reduce the
branching problem for embeddings of general tensor type to much simpler branching

problems which we then solve explicitly.

Finally, Chapter 7 contains some remarks and observations on the results obtained
in the thesis. In particular, we point out what are the invariants of an embedding
g C g which determine completely the solution of the branching problem. We also

derive some immediate corollaries of the main results of the thesis.
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Chapter 2

Preliminaries

All Lie algebras considered will be defined over the field of complex numbers C and

will be at most countable dimensional.

2.1 The classical locally finite Lie algebras

An infinite-dimensional Lie algebra g is called locally finite if every finite subset of g
is contained in a finite-dimensional subalgebra. When g is at most countable dimen-
sional, being locally finite is equivalent to admitting an exhaustion g = UiEZ>o 5

where
g CgaC---Cg C... (2.1)

is a sequence of nested finite-dimensional Lie algebras. A locally finite Lie algebra is
called locally simple (respectively locally semisimple) if it admits an exhaustion (2.1)
so that all g; are simple (resp. semisimple). It is an easy fact that any locally simple
Lie algebra is simple. The first examples of infinite-dimensional locally simple Lie
algebras are the Lie algebras sl(c0), sp(c0), and so(co). They are defined respectively
as sl(00) = U,ez., sl(i), sp(00) = U,ez., 5P(2i), and so(o0) = Uy, s0(i) via the
natural inclusions sl(i) C sl(i + 1), sp(2i) C sp(2i + 2), and so(i) C so(i +1). In
contrast to the finite-dimensional case, here we do not distinguish the types B and
D. The reason is that both the union of odd orthogonal Lie algebras and the union of

even orthogonal Lie algebras under the natural inclusions are isomorphic to so(oo).

A first example of a locally finite Lie algebra which is not locally simple is the Lie
algebra gl(oco). It is defined as the union gl(co) = [, gl(é) via the inclusions
gl(i) C gl(i + 1). A Lie algebra is called finitary if it isomorphic to a subalgebra of

5
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gl(co). As we already mentioned in the introduction, sl(co), sp(c0), and so(co) are,
up to isomorphism, the only finitary locally simple Lie algebras ([B1]). Together
with gl(oco), these four Lie algebras are usually referred to as the classical locally

finite Lie algebras.

Now we give a quick overview of another approach to defining the Lie algebras gl(c0),
sl(c0), sp(00), and so(co), which will be extensively used in the thesis. Let V and
V. be countable-dimensional vector spaces over C together with a non-degenerate
bilinear pairing (-,-) : V' x Vi, — C. The vector space V' ® V, is endowed with the

structure of an associative algebra such that
(v1 @ wy)(v2 ®@ wy) = (v, wi) V1 @ Wy

where vy, vy € V and wy,wy € V,. We denote by gl(V,V,) the Lie algebra arising
from the associative algebra V ® V., and by sl(V, V) we denote its commutator
subalgebra [gl(V,V,),gl(V,Vi)]. If (,-) : V x V — C is an antisymmetric non-
degenerate bilinear form, we define the Lie algebra gl(V,V') as above by taking
V. = V. In this case S?(V), the second symmetric power of V', is a Lie subalgebra
of gl(V, V) and we denote it by sp(V'). Similarly, if (-,-) : V xV — C is a symmetric
non-degenerate bilinear form, we again define gl(V, V') by taking V., = V and then
A*(V) is a Lie subalgebra of gl(V, V), which we denote by so(V/).

The vector spaces V and V, are naturally modules over the Lie algebras defined
above, such that (v; @ wy) - vy = (v9, wq) v1 and (v @ wo) - w1 = — (Ve wq) wo for any
v1,vy € V and wy,wy € V,. We call them respectively the natural and the conatural

representations. In the cases of sp(V') and so(V) we have V = V..

By a result of Mackey [M], there always exist dual bases { }ies of V and {& }ier
of V, indexed by a countable set I, so that <§Z~, fj*> = 0,5. Using these bases, we can
identify gl(V,V,) with the Lie algebra gl(oo), which we defined earlier. Similarly,
sl(V, Vi) = sl(00), sp(V) = sp(o0), and so(V') = so(o0).

In the rest of this section let g = gl(00),sl(00), sp(c0), or so(co). We now turn our
attention to the representation theory of g. We set V&®9) = V& g /24 where
V and V, are as above (V@) = V/@(P+9) when g = sp(co),s0(c0)). The modules
V&P9) were studied first in [PSt]. In particular, it was shown in [PSt] that V)
is a semisimple g-module only if pg = 0 for g = gl(c0),sl(c0), and if p+ ¢ < 1 for
g = sp(00),s0(c0). As a result, to describe the structure of these modules one needs

the language of socle filtrations.

The socle filtration of any module M over a ring or an algebra is defined in the
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following way:
0 CsocM CsocPMc - csocMc---

where socM, called the socle of M, is the maximal semisimple submodule of M,
or equivalently the sum of all simple submodules of M. The other terms in the
filtration are defined inductively as follows: soc"™YM = w1 (soc(M /soc™ M)),
where 7, : M — M/soc™ M is the natural projection. The semisimple modules
soc VUM = soc"t M /soc") M are called the layers of the socle filtration. We
say that M has finite Loewy length [ if the socle filtration of M is finite and [ =
min{r|soc M = M}.

The following three properties of socle filtrations will be very useful in the sequel.

o If N C M, then for all r

soc N = (soc"”" M) N N. (2.2)

e If M, and M, are modules over the same ring or algebra and M = M; N M,
then

soc M = (soc™ M) N (soc™ My). (2.3)
o If M and N are any two modules over the same ring or algebra, then

soc (M @ N) = soc” M @ soc" N, (2.4)

In what follows, if M is a module over the Lie algebra g we will use the notation
SocéT)M instead of soc(™ M.

When g = gl(co), we set VP4 = soc, VO, Tt is also the maximal semisimple
submodule of V®®9) for g = sl(co) ([PSt]). For g = sp(co),so(cc) the maximal

semisimple submodule of V®®+9) is denoted respectively by V*4 and VP+dl,

By definition, a g-module M is called a tensor module if it is a subquotient of a finite

direct sum of copies of P Vew®a) for some integer . If M is simple, being a

+q<r
tensor module is equivalelft i?) being a submodule of V@9 for some p,q ([PSt]).
Moreover, it is shown in [PSt] that there exists a choice of Borel subalgebra b in
g such that all simple tensor modules are b-highest weight modules. Their highest
weights are described using integer partitions. A non-negative integer partition A
with &k parts is an integer sequence A\ > Ay > -+- > A\ > 0. As in [HTW], we write

[(A) to denote the length (or depth) of the partition A (i.e. [(A) = k) and || for the
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size of the partition (i.e. [A| = >, \i).

For g = gl(c0),sl(co) the simple tensor modules coincide. Their highest weights
are given by pairs of non-negative integer partitions (A, p) and we denote them
by Vi, Moreover, if Vi, C VP9 then |\| = p and |u| = ¢. The modules
V. are constructed explicitly in [PSt] using a generalization of Weyl’s construction
for irreducible gl(n)-modules (see [FH]). For g = sp(c0),so(oco) the simple tensor
modules are denoted respectively by Vyy and V[, where X is a non-negative integer
partition. If Viyy C VEPTD or respectively Vjyy C VEP+9, then |\ = p+g¢. It is
shown in [PSt] that

Viy = Vao N y e Viyy = Vao N ylptal

The tensor modules are natural analogues of the finite-dimensional representations
of the classical Lie algebras sl(n), sp(2n), and so(n). The main motivation for this
analogy is the fact that Weyl’s construction provides a way to construct all irre-
ducible finite-dimensional modules of sl(n) and sp(2n) and almost all such modules
for so(n) (see [FH]). And as we mentioned above, the simple tensor modules are

defined using a generalization of this construction.

In [DaPSel, the category T, for g = sl(c0), sp(00), so(c0) is introduced. Its objects
are precisely the tensor modules. Furthermore, the simple tensor modules are di-
rectly related to several larger categories of g-modules (see e.g. [PSe], [DaPSe]).
Here we define two of these categories, the latter one being directly connected to

the following work.

Let g = sl(c0), sp(00),s0(00). A g-module M is called integrable if dim span{m, g -
m,g®>-m,...} < oo for any m € M and g € g. Since g is locally simple, this
definition is equivalent to the condition that, when restricted to any semisimple
finite-dimensional subalgebra f of g, M is isomorphic to a (not necessarily countable)
direct sum of finite-dimensional f-modules. Following [PSe], we denote by Int, the

category of integrable g-modules.

The other category we define is the category Tensy. Its objects M are integrable
modules of finite Loewy length such that the algebraic dual M* is also integrable and
of finite Loewy length. In other words, 'fen\/sg is the largest subcategory of Inty which
is closed under algebraic dualization and such that every object in it has finite Loewy
length. Then, it is proven in [PSe] that the simple objects of Tg/nsg are precisely the
simple tensor modules. Another important result in [PSe] is that rfen\/sg is functorial

with respect to any homomorphism ¢ : g’ — g where ¢', g = sl(00), sp(o0), so(00).
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This means that, given such a homomorphism ¢ : g’ — g, any M € fe\/nsg considered
as a g’-module is an object of rl/“e\n/sg/. In particular, for our purposes it is important
that if we have an embedding g’ C g and M is a simple tensor g-module, then M
has finite Loewy length as a module over g’ and all simple constituents in the socle

filtration of M as a g’-module are simple tensor g’-modules.

Let again g = gl(00),sl(c0),sp(00),so(c0). It is shown in [DP1] that any locally
semisimple subalgebra g’ of g is isomorphic to a direct sum of simple Lie algebras
each of which is either finite-dimensional or is itself isomorphic to sl(c0), sp(c0), or
so(o0). As we mentioned above, the latter was also proven earlier by Baranov in
[B1]. Furthermore, for any fixed g’, Dimitrov and Penkov describe the structure of
the g-modules V' and V, as g’-modules. Here we consider only the case when g’ is a

simple subalgebra of g. Then the following result holds.

Theorem 2.1. [DP1] Let g = gl(00),sl(c0), sp(o0), or so(co) and let g' be a simple
infinite-dimensional subalgebra of g. Let V and V, be respectively the natural and
conatural represenations of g. Similarly, let V' and V! be the natural and conatural

representations of g'. Then

socy V = EV @IV ® N, V/socyV = Ny,

(2.5)
socg Vi 2 IV @ kV] ® N,  V./socyVi = Ny,

where k,l € Z>q such that at least one of them is in Z~q, and N,, Ny, N., and Ny

are finite- or countable-dimensional trivial g'-modules.

We denote a = dim N,, b = dim N,, ¢ = dim N, and d = dim N,.

Motivated by Theorem 2.1, in this thesis we consider pairs g’, g of two classical
locally finite Lie algebras such that the embedding g’ C g satisfies property (2.5).
We will refer to such embeddings as embeddings of general tensor type. In view of

Theorem 2.1, when g’ 2 gl(00), (2.5) describes all possible embeddings g’ C g.

2.2 Finite-dimensional branching laws

In this section we present some branching rules for embeddings of finite-dimensional
Lie algebras. In view of Theorem 2.1 and the discussion above we are interested in

the following type of embeddings.

Definition 2.1. An embedding f1 C fo of finite-dimensional classical Lie algebras is
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called diagonal if

V%flgyl@"'@VL@VF@“'@VC@NI@"'@]\@
v e M

where V; is the natural f;-module (i=1,2), V" is dual to V1, and Ny is the trivial one-

dimensional fi-module. The triple (I,r,z) is called the signature of the embedding.

In particular, we consider two types of branching rules. The first one is for embed-
dings of signature (1,0, r), which are often referred to as standard embeddings and
the second one is for embeddings of signature (k,0,0) often called proper diagonal

embeddings.
We start by presenting branching rules for the Lie algebra gl(n). The irreducible

finite-dimensional gl(n)-modules are in one-to-one correspondence with n-tuples A =
(A, .oy An), where \; € Cand \; — Ny € Zsp fori =1,...,n—1. Such an n-tuple
is called the highest weight of the corresponding representation. Let V)" denote the
irreducible highest weight gl(n)-module with highest weight A\. We say that a weight

o=(01,...,0n-1),witho; € Cand 0;,—0;11 € Zso foralli =1,... ,n—2, is aligned
with A in the sense of Gelfand-Tsetlin if \; — 0; € Z>¢ and 0, — \it1 € Z> for all
1=1,...,n—1. If A and o are integral weights, the above implies that

M >0 2020922 XNy 2 0pe1 > A

One often says in this case that o interlaces A.

Now the following multiplicity-free branching rule holds.

Proposition 2.2. [Z] Consider an embedding gl(n—1) — gl(n) of signature (1,0,1).

Then
n ~ n—1
Vilgm-1 = @ Vo
where 0 = (01, . ..,0,_1) Tuns over all weights aligned with A in the sense of Gelfand-
Tsetlin.

A similar branching rule holds for the group GL(n,C). A detailed exposition about
the analogous embeddings at the group level and the corresponding branching rules
can be found in [GW].

The Gelfand-Tsetlin rule can be iterated to obtain a branching law for embeddings
of gl(n) into gl(n + k). More precisely, we have the following proposition.
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Proposition 2.3. Let gl(n) — gl(n+k) be an embedding of signature (1,0, k). Then
n+k ~ k n
VI i = D mA Vs

where the multiplicity m’}w is the number of possible sequences of weights o' =
(0, .0t 1)y, o b= (o7, ... 00 ]) such that each o7+t is aligned with o’
in the sense of Gelfand-Tsetlin, o' is aligned with \, and o is aligned with o*~1. In
other words, we have the following trapezoid of aligned weights, often referred to as

Gelfand-Tsetlin trapezoid:

/\1) /\27 R )\n—l—k—l) /\n—l-k

1 1 1
0-170-2""70-77,—‘1-]6—1
2 2
0-17"'70-71-1—]{3—2
01, -y 0n

In what follows we will refer to the numbers m’f\ﬂ as Gelfand-Tsetlin multiplicities.

Next, we consider embeddings of signature (k,0,0). In order to obtain branching
rules for these embeddings, we use the results from [HTW]. All branching rules
below involve only irreducible modules with integral highest weights, and that is
why we introduce the following notations. Let A\ and u be two non-negative integer
partitions with p and ¢ parts, where p + ¢ < n. Let V', denote the irreducible
gl(n)-module with highest weight (A, ) = (A1,...Ap,0,...0, =g, ..., —p1). We
derive the desired branching rule in several steps. Consider first the block-diagonal
subalgebra gl(n) & gl(m) C gl(n +m). By Theorem 2.2.1 in [HTW] we have the
following decomposition:

n+m ~ ()\,,LL) n m
VA’“ legl(n)egl(m) @ Clat,am),(8+,6) Yatiam ® Vﬂ*ﬁf’

a+7ﬁ+7a_7ﬁ_
where
(M) _ PN TR A A
Clatarnor6m) = D OrrsthsCorgsCa g
yrEy~,0

and the numbers 3. are Littlewood-Richardson coefficients. Next, we consider the

direct sum of k > 2 copies of gl(n) as a subalgebra of gl(kn) by block-diagonal
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inclusion. Then one can iterate the above branching rule to obtain the following:

kn (M) n n
VA Migl(n)@ ®g1 @ 0/51 3 7Bk :81 IR 7Bk )V/Bl 761 ® Vﬁk 75}@ (26)
ﬁ N 7ﬁk
By By
where
(Am)
C 61 EN 7Bk )(61 EN 7Bk )
Z (M) C(al o) C(O‘;lsval;?,) C(aﬁzv%;z)
L~ (a0 )(B7.87) (ag .03 ) (B3 .82) "7 (g _gua o) (B 585 o) (BY_ 1B (BB )
oy ey,
Qp e Qo
The next step is to consider the gl(n) & gl(n)-module V, ~ ® Vg, ;. By Theorem
2.1.1 in [HTW], as a module over the subalgebra gl(n) = {x@:v]a: €glin)}, Vi -
(s has the decomposition
n ~ A/, /
at,a— ® Vﬂ+ﬁ igl (a+ua) B+’B V)\/ ’y
Ny
where
(\.u') _ ot B~ proN
d(tﬂ*@‘%(ﬂ*ﬁ‘) - Z Cal’YlC%ﬁzcﬁl'yzcwwco&al B2f1°
a1,a2,B1,82
Y1,72
Iterating this branching rule, we obtain for k > 2
n n ~ (/\/711 n
Vi g ® - @ Vi o e @ D ey ey Vit (2.7)
where
(Am) _
D(ﬁl e BR )BT By )
(@ ay) (f ) CHIPYAPY (Ah)
Z d(ﬁl 751 ﬁz ’Bg)d(% 00 )(53 By )" d(azfyo‘;fs)(ﬁlil’Bk_fl)d(o‘szaizﬁ)(ﬁljﬂk_).

a1v ak 2

Qp Qo

Now we can combine (2.6) and (2.7) in the following proposition.
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Proposition 2.4. Let gl(n) C gl(kn) be an embedding of signature (k,0,0). Then

(N ') n
A»wgl EB CBI, BB ,...,ﬁpD(ﬂf,...,ﬁ,:)w;,...,5,;>VN7M’ for k> 2,

ﬁl )" 7Bk

61 N 75)C
X!

and
~Y ()\,/j,) (Al“u/) n B
Vi Hlgl(n) — @ Clata-),8+ 5 U0t o) 5+ ,5-) Vargw Jor k= 2.
Ot+,ﬂ a B~
,,LL
In particular, from the properties of Littlewood-Richardson coefficients it follows that

if Vi enters the decomposition of VI then |A| — [u| = [N — 1]

Note that in the case p = 0 the two formulas from Proposition 2.4 reduce to the

following two well-known branching rules:

2n ~ A N n
VAmgl(n) = @ Cy,82CB1,8, V0
517527Al

and

o Y n
VA%gl (n) @ %, BeCBr B VN 00
ﬁl?"wﬁkv

where the numbers cg .5, are the generalized Littlewood-Richardson coefficients.

() (OXNTY)
Notice that the coefficients C’(ﬁp BB B and D(ﬁp BB B are defined
only for £ > 2. For convenience we extend these definitions to the case k = 2 by
setting
(Asp) _ ()
Clar it ors5) = Cat )6 87)"
PO _

(B BB By (BTB).(Br .8y

It is interesting to mention that many of the branching rules described in [HTW] had
been known previously. However, in [HTW] the authors developed a new approach
based on the theory of dual reductive pairs. This approach allowed them to relate
branching rules for one symmetric pair to another and as a result to generalize many
of the known branching rules for some symmetric pairs to all classical symmetric

pairs.

Analogous branching rules hold for the Lie algebras sp(2n) and so(n). We will
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introduce them explicitly in the course of the thesis.



Chapter 3

Embeddings of gl(co) into gl(oo)

and of sl(co) into sl(co)

In this chapter we describe a procedure for deriving branching rules for embeddings
gl(oo) C gl(o0) (respectively sl(co) C sl(c0)) of general tensor type, i.e. embeddings
which satisfy (2.5). Our procedure consists of the following steps. First, we de-
compose the embedding under consideration into several intermediate embeddings.
Then in Sections 3.1, 3.2, and 3.3 we derive branching laws for each of the inter-
mediate embeddings. The branching law for an embedding of general tensor type is

then a corollary of Theorem 5.2 in Chapter 5.

Let g’ = g and both be isomorphic to one of gl(co) or sl(cc). Let ¢ : g — g be an
embedding of general tensor type. Let

Socg/V:%@--'@Vk@wl@“'@m@]vm

k L ) (3.1)
SOCQ'V“:V&*@@V;@WFGB®m*@Nc,

where V; is isomorphic to V' for each i = 1, ...,k and Wj = V/ foreach j=1,...,1.
Similalry, V;* = V/ and Wj* =V'foralli=1,...,kand j =1,...,0. Let {v}}icr,
{vl*}ier be a pair of dual bases of V' and V. We construct the following bases of V'

and V, respectively:

where Uf denotes the image of v} into f/j and similarly for the others. Furthermore,

A = {z}ier, and C = {t;};c5, are bases respectively for N, and N. as submodules

15
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respectively of V' and V,, where I, and [, are index sets with cardinalities a = dim N,
and ¢ = dim N.. Similarly, B = {z;};e;, and D = {y; };es, are bases of N, and N,
considered as vector subspaces of V and V,, where I, and I; are index sets with
cardinalities b = dim NV, and d = dim N;.

Then we have the following proposition.

Proposition 3.1. Let ¢, g, and ¢ be as above. There exist decompositions of socy V'
and socyV, as in (3.1) such that

<vzl7 522*> - 511126_71]27 <?J ]2*> = O,
<wz1, J2*> _ 511125]“2’ <w11 ]2*> —0.

217

Furthermore, for each i in the respective index set, z; pairs trivially with all elements
from ‘71* PP \7,: &) Wl* S RERNC> VT/Z* and x; pairs non-degenerately with infinitely
many elements from ‘N/l* DD Vk* ) Wl* D---D VNVZ* Similarly, t; pairs trivially with
all elements from Vi @ -+ @ Ve @ W1 @ --- ® W, and y; pairs non-degenerately with
infinitely many elements from Vi@ - - @V, W1 ®- - -@W,. Finally, if g = g = gl(co)

we have for all i, s

/ l; 1 1 k k 1 1 l l
QO(’UZ-@)US*):Ui ®Us*+'”+vi ®Us*_ws®wi*_'”_ws®wi*’

and if ¢ = g = sl(o0) we have fori # s

/ ! 1 1 k k 1 1 l l
(,O(UZ-@US*):U,L- ®Us*+”'+vi ®Us*_ws®wi*_'”_ws®wi*’

/ ! / / 1 1 1 1 k k k k
gD(Ui@'UZ-*—US@U:) =1; ®/U7Z*_vs®vs*+'“+vi ®vi*_vs®vs*+
1 1 1 1 l l l l
w, QW —w; Qw4+ w, @w —w; @w,;”.

Proof. We fix decompositions of socyV and socy V; as in (3.1). Then for ¢, j, m,n in

the respective ranges we have
(vl t) = (p(v] @ V) vl 1) = — (V) (v, @ V) ) = 0.

Suppose now that vzj pairs trivially with all elements from socy Vi. Then there exists
Ym such that <vg,ym> # 0. But then

(vl ym) = (p(v; @ ") - 0] ym) = = (v, (0} @ V]") - ym) = (v], 0)

for some v € Socg/V Hence, < J v> # 0, which contradicts our assumption. This
implies that Vi aVidW,®---®& W, and Vl D Vk @ I/V1 DD VVl pair



17

non-degenerately.

Furthermore,

<Z, m> <gov®v’*) vl o :—<v (vl @) - U;ﬁf>—5zm<vs, :”>

for all 7, j, m,n,s. Hence, <v§,v§§?> = 0 for all j,n and for 7 # m. In addition,

(o7, 01") = (vl 01")

for ¢ = m and all s. In the same way we prove that <w7, w;';?> = 0 for all j,n and

for i # m and <wf,w;k"> = (v],v™) for i = m and all s.

S S

Now, for all 7, 7, m,n

<Ung::> = <90(,U; ® U'Z*> ' UZ? U):;?> - <U1790 U @ UI*) ) = _52m <v£7 U):;?> .
Hence, <vf, wi') =0 and in the same way <wl, vty = 0.

Since the pairing between Vi@- - -@Vi@W @ - -@W; and Vi @®- - -V aWie- - oW
is non-degenerate, the above considerations imply that for each j there exists m
such that <’UZ, v > # 0 for all ¢ € I. Similarly, for each j there exists m such that
<w w; > # 0 for all i € I. We can then renumerate the spaces f/j, ‘Z;*L, VT/j, W;;

J> =1 and (w] > =1 for all j and all i. Then all the

above implies in the case of gl(co) that

in such a way that <

Z’ Z

! N 01 1% 1 1% l Ix
¢(Ui®vs>_vi®vs + - +U ®U _ws®wi __ws®wz

for each i,s € I. Similarly, when g = sl(co) we obtain that ¢ also has the desired
form. O

Before we continue, we show that the case of embeddings sl(co) C sl(oo) reduces to

the case of embeddings gl(oco) C gl(c0).

Proposition 3.2. Let ¢ : sl(V',V]) — sl(V,V,) be an embedding satisfying (2.5)
with certain values of a, b, c,d, k,l and let M be a semisimple tensor sl(V, V. )-module.
Then ¢ can be extended to an embedding ¢ : gl(V',V!) — ¢l(V,V.) which satisfies
(2.5) with the same values of of a,b,c,d, k,l. Furthermore, the socle filtration of M
over o(sl(V', V) is the same as the socle filtration of M considered as a gl(V, V,)-
module over p(gl(V', V).

Proof. We fix decompositions of the sl(V, V,)-modules V' and V, as in Proposition
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3.1. Then ¢ : sl(V', V) — sl(V, V) has the form

/ /sy 1 1% k kx* 1 1% ! 1%
Py, @) =v;, @+ + 0, QU —wy, @w;T — -+ —wy @ w;”,

/ i / / 1 1 1 1 k k k k
e, ® v =V, V) =v; ® ;" — v, QU 4 -+ U @ v — vf @ v+
1 1 1 1 l l l l
w, QW —w; @w;T + -+ wg @ wy — w; @ w;

for all i # s. We can naturally extend ¢ to an embedding ¢ : gl(V', V) — gl(V, Vi)
by setting

/ ' 1 1 k k 1 1 ! I
ey @) =v; @™+ + U QU —w; ®wyT — - —w) @ wy

Next, let M be as above. From [PSt] we know that the set of semisimple ten-
sor gl(V, V,)-modules coincides with the set of semisimple tensor sl(V, V.)-modules.
Then M is both a semisimple tensor gl(V, V,)-module and semisimple tensor sl(V, V,)-
module. We will use the notation My (resp., M) to mark that we consider M as
a gl(V, Vi) (resp., sl(V,V.)) module. Then, on the one hand, we have the chain of
embeddings

p(s(V!, VD)) C sV, Vi) C el(V, Vi),

This chain yields the following equality for every r:

T

( _ (r)
So%(sl(vf,v*/))Msl = SOC@(S](V’,V,{))Mgl' (3.2)

On the other hand, we have the chain of embeddings

p(sI(V, VD) Colel(V,VY)) C gl(V, Vi),

which yields the equality

(r)

S0C (g

(r)
wrvenMa = S0C 1 vy M- (3.3)
From (3.2) and (3.3) the statement follows. ]

In view of Proposition 3.2 it is enough to consider embeddings gl(co) C gl(o0).
Therefore, in the rest of the chapter g’ and g will be both isomorphic to gl(oo).

Proposition 3.3. Let ¢’ = g = gl(co) and let g C g be an embedding of general

tensor type, i.e. which satisfies (2.5). Then there exist intermediate subalgebras g;
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and gs such that g’ C go C g1 C g and the following hold.

(1) The embedding g1 C g has the properties:

socg, V = Vi @ N, V/socg,V = Ny,
Socgl‘/* = Vvl* D Ncn ‘/*/SOCglV; = Nd,

where
Ny =A{v € Ny| (v, N.) =0} and N, = {w € N,| (N,,w) = 0}.
(2) The embedding go C g1 has the properties:
Vi 2 Vo @ N, Vie 2 Vo, & N,

where N,, and N., are such that N, = Noy ® Ng, and N. = N, & N,,.

(3) The embedding ¢’ C g2 has the properties:
Vo 2RV @1V, Vo, Z IV @ KV,
Proof. We take decompositions of socy V' and socy Vi as in Proposition 3.1. Set
V=No-al,oW o oW,
Vo, =Vi @ dVioW:a oW

Then Proposition 3.1 yields that V5 and V5, pair non-degenerately and we put g, =
Vo @ Vau.

Next, let A and C' be as above. Let Ay = {2}y, consist of those elements in A
which pair trivially with all elements in C', and analogously let C; = {#]}ic;, consist
of the elements in C' which pair trivially with all vectors in A. Let Ay = A\ A; and
Cy = C'\ Cy and denote their elements respectively with z/ and ¢/ and their index

sets with [,, and I.,. Now set
Vi = ‘/2 5% Span{zz{/}ielaga ‘/1* == ‘/2* S¥ Span{t;/}iEICQ .

Then V; and Vi, pair non-degenerately and we put g; = V; ® Vi,.

The Lie algebras g; and g, satisfy the required properties.

Motivated by Proposition 3.3 we give the following definition.
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Definition 3.1. (i) An embedding ' C g is said to be of type I if

socy V= V' & N, V/socyV = Ny,
socy Vi 2 V] ® N, V.. /socy Vi = Ny,
where N, and N, pair trivially.

(ii) An embedding ¢’ C g is said to be of type II if

V=V @N,, V.=V @ N,

(iii) An embedding ¢' C g is said to be of type III if

VeV eV, V.2 IV kY

In the following sections we derive branching rules for embeddings of the different
types. In each case we start with determining the socle filtration over g’ of one of
the g-modules V', V&4 Vipdt y®@a9) Then for the simple g-submodules of these

modules we use properties (2.2) and (2.3) of socle filtrations.

3.1 Branching laws for embeddings of type I

3.1.1 The modules V*? and V2?1

Let us consider embeddings g’ C g satisfying the following conditions:

socg V=V @ N,, V/socyV = N,

(3.4)
socg Vi 2 V]! ® N, V./socy Vi = N,.

So far we make no assumptions about the pairing between N, and N.. Recall that we
denote dim N, = dim(V})* = a, dim N, = b, dim N, = dim(V’)* = ¢, dim N; = d.

Moreover, codimy V' = a + b and codimy, V] = ¢ + d.

Our first goal is to compute the socle filtrations of the g-modules V*? and V7. We

have the following short exact sequence of g’-modules

0=V aN, 5V LN —o (3.5)
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For each index 1 < i < p we define
L : VP 5 VL@ N, @ VP 2 VL @ N,

Li=idoid®--0id® fRid® - ®id,

where f appears at the i-th position in the tensor product.

Similarly, for each collection of indices 1 < 47 < i < -+ < i < p we define the

homomorphism
Lif,iy VP = VETTIQ N, @ VERT 1T @ Ny @ - - @ VP 2 VEPh ¢ N2E
Ly 4, =1d® - Qdfid®--®id® f®id---®id,

where the map f appears at positions 4; through 75 in the tensor product.

Proposition 3.4. For embeddings ¢’ C g which satisfy (3.4) we have

soch)V@)p: ﬂ ker L

i1 < <dpg1

U1 yeenyfrgl "

Moreover,

SOCé7;+1)V®p = (p) NE" @ (V' & N,)®P".
r

Proof. We denote SU*1) = ker L Note that ST+ consists of

linear combinations of monomials from V%P such that at most r terms in each

11 < <lpg1 11,0yl t1”

monomial are outside of socy V. We need to check two properties:
(1) for any u € ST+2\ STV there exists g € U(g') such that g -u € ST+ \ S,
(2) the quotient S+Y /S is semisimple.

Proof of (1): Take u € S+ \ S+l ¢ = Y iy iyt @ - @ g, where u;, € V.

More precisely, denote u;; = v;, for u;; € socV and w;; = @y, for (3 ¢ socV.

Now suppose that u; is a monomial of highest degree in the expression of u. In other
words, u; has r 4+ 1 entries not in socy V. Consider an element ¢; = w; @ wi € ¢
such that

° <xij,w’{> # 0 for at least one x;; from wuy;
° <vij,w]‘> = 0 for all v;; which appear in the expression of u;

o w; # v;; for all v;; that enter u.
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The existence of such an element g; follows from the fact that all elements z;; ¢
socy V' pair non-degenerately with infinitely many elements from V/. Then ¢, - u €
Sr+D A\ S or gy -u € SUFD N\ SCFD . In the latter case there is a monomial
up € g1 -u with 7 + 1 entries not in socyV. We proceed as above to find an
element g, = wy ® wj analogous to g;. Thus, after finitely many steps we obtain
(gso---0gyog)-ue ST\ s,

Proof of (2): The map

B L. :ST/SO = B (socg V)T @ (N,

11 < <lip 11 <<l

is a well-defined isomorphism of g’-modules. ]

In order to compute the socle filtration of V.27 we take the short exact sequence
05V &N, 5V.5 N, —0

and define

My, VI 2 VI @ Ny@ VIR @ Ny @ -+ - @ VP 2 VEIF @ NJF,
M, ., =1d® - QidR¢®id®---®idRg®id®---®id,

where the map g appears at positions ¢; through 75 in the tensor product.

Proposition 3.5. The socle filtration of V29 over ¢ is

SOCE;)V*QM: ﬂ ker Miy. i

g <o <ldp

3.1.2 Submodules of V® and V¢

Recall that property (2.2) of socle filtrations states that if N is a submodule of
M then socN = (soc™M) N N. We will now use this to determime the socle
filtration of any simple tensor g-module V), C V. To compute the multiplicity
of each simple subquotient, we need to extend the definition of the Gelfand-Tsetlin

multiplicity mlia to the case k = oo. More precisely, we define

o 1 k
my, = lim mj .
k—ro0
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In other words,

0 if m§, =0 forall k,
my, =4 1 ifo=\ ie m§,=1forallk,

oo if mk > 1 for at least one k.

Furthermore, for convenience we set m{ = 0 for A # ¢ and m§ , = 1. We will refer

to the values mj , for k € Z>o U {co} as the extended Gelfand-Tsetlin multiplicities.

Before stating the general result we need two lemmas.

Lemma 3.6. Let g’ C g be an embedding which satisfies (3.4) with a = 0. Then for
any Vio C VP we have

socgVao = Vi

===(r+1) ~ b !
S0Cy Wao = @ my vV 0s

NI=IAl=r

where mlj\’)\/ are the extended Gelfand-Tsetlin multiplicities.

Proof. From Proposition 3.4 above and from Theorem 2.1 in [PSt] it follows that

r+1 ~ (P r —r ~

[N |=p—r

e —_(r+1 —(r41
for some multiplicities c¢),. Moreover, socg;+ )V,\O C SOCS+ )y ep , hence

socy "o P AVi (3.6)

|N|=p—r

for some unknown c},. Thus, we only need to compute the multiplicity with which
each V)(',o enters the decomposition of V) o. Note that on distinct layers of the socle

filtration non-isomorphic simple constituents V/\’,’O appear.

Let {v;i}iez., and {v}}iez., be a pair of dual bases in V'’ and V/, and {&;}icz.,,
{& }iez., be respectively a pair of dual bases in V' and V,. For each n, put V,, =
span{&y, ..., &} and V¥ = span{¢7, ..., & }. The pairing between V' and V; restricts
to a non-degenerate pairing between V,, and V,*. Therefore we can define the Lie
algebra g, = V,, ® V7. Furthermore, we set b, = bh; N g, and b, = by N g,. It is
clear that g, = gl(n) and that b, (respectively, b,,) is a Cartan (respectively, Borel)
subalgebra of g,. Moreover, if we set Vj = Vi o N V,#P, then for n > p, VY is a
highest weight g,-module with highest weight (A, 0) with respect to b,.
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Now we apply the same procedure to g’. We define V! = span{vy,...,v,} and
V= span{v],...,vi}. Weset g, =V, @V b =hyNg, b, =byNg,, and

Vit = V{,NV/®P. In this way we obtain a commutative diagram of inclusions

o g5 . gy, e g
9m1 ng e gm/,C e g

in which all horizontal arrows are standard inclusions. Then for large k£ each em-

bedding g} — @, is diagonal, i.e. in our case
Vi, =V, ® Ny,

where N/ is some finite-dimensional trivial g)-module. Moreover, if we set n, =
dim N}, = codimy,, V) then b = codimy V' = limy_,o, ng. Thus, when b is finite we
obtain that for large £ all vertical embeddings in the above diagram are of signature
(1,0,b). In the case b = oo, for large k all vertical embeddings are of signature

(1,0,ng) with limy_,o ny = o0.

Let us consider first the case when b is finite. Then for large k£ we can use the
Gelfand-Tsetlin rule for the embedding gj, — g, and the module VYt = V) N V5P

to obtain the decomposition

V/\T,ré)k = @ mg,xv/fio- (3.7)
A/

Then (3.6) and (3.7) imply

(50c™ ™ Va0) N VP /(s0cVy o) N V2P o @ mi v Viaros

[N|=p—r
and passing to the direct limit we obtain the statement.

Now let us consider the case b = co. Then from the Gelfand-Tsetlin rule we obtain

(soc(”l)V,\,o) N Vf}f’/(socmv,\,o N V®p = @ m’;’“)\,V "0

[N|=p—r
and passing to the direct limit we obtain the statement.

]

Lemma 3.7. Let g C g be an embedding which satisfies (3.4) with b = 0. Then
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any Vio C VP is a completely reducible g'-module and
V)\70 = @mi7/\/V></,0,
)\/

where m4 y, are again the extended Gelfand-Tsetlin multiplicities.

Proof. When b = 0 the map f from (3.5) is just the zero homomorphism, hence
Proposition 3.4 implies that V) o is completely reducible. Therefore, we only need
to compute the multiplicity of each VY, in the expression of V), and this is done

in the same way as in Lemma 3.6.

]

Now we can state the branching rule for arbitrary values of a and b.

Theorem 3.8. Let g’ C g be an embedding which satisfies (3.4) with a and b being

arbitrary non-negative integers or infinity. Then for any Vyo C VP we have

SOC g @ @ mA )\//m)\// )\/V)\/ .

A\ ‘)\/ ‘)\//l_r
Proof. Let {v;} and {v;} be a pair of dual bases in V' and V. Then

V =8pan{@i, ..., Tny vy 21y eeny ZlyeensUkys ey Ukpy e b

Vi=span{fi,..., f;: - Ukps-- s Vh s |y

where < z;,v; >= 0 for all 4, j, and < w;,v; >%# 0 for all ¢ and infinitely many
j. We divide the f;’s into two groups: those which pair non-degenerately with
21y, 2, ... we denote by f/, and the remaining ones we denote by f/. Next we

define the subspaces

"
V" =span{xy, ... Zn, o Ukyy ooy Vs v by

V/ =span{f{ ... fr, . V%, U5, )

Then V" and V! pair non-degenerately, and the four values which characterize the
embedding V'@V Cc V@V, are b’ =0, a" = a, d" =k, ¢ = [ for some integers k
and [. Therefore, this embedding satisfies the conditions of Lemma 3.7, hence every

simple g-module V), ¢ is completely reducible over g’ = V" ® V" and

V)\O = @mA A )\// 09 (38)

)\//
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where by VY, ; we denote the simple tensor g”-modules.

To see now how V), o decomposes over g’ it is enough to see how each VY, ; decomposes
over g'. The four values which characterize the embedding g’ C g” are b’ = b, ' =0,
d =k, ¢ =1, for some k and [. Therefore, this embedding satisfies the conditions

of Lemma 3.6, and for every simple g”-module VY ; we have

SOCS;JFU ;1/70 = @ mlj\//)\/v):/’o. (39)
N =AY |
Then (3.8) and (3.9) imply the statement of the theorem. O

An analogous statement holds for submodules of V2. Here is the result.

Theorem 3.9. Let ¢’ C g be an embedding which satisfies (3.4) such that ¢ and d

are arbitrary non-negative integers or infinity. Then for any Vo, C V.27 we have

—(7’“!‘1) ~ c d !
SOCEI ‘/()7M == mﬂ7ﬂllm#//,#l%7ﬂl-

w = =
3.1.3 The module V{»% and its submodules

Recall that in the previous two subsections we considered embeddings g’ C g which
satisfy (3.4) without any conditions on the pairing between N, and N.. However, in
order to compute the socle filtration of V{»% over g’ we have to consider separately

embeddings of type I and II.
Theorem 3.10. Consider an embedding g C g of type I, i.e. such that

socgV = V'@ N, V/socyV =2 N,
socg Vi 2 V! & N,, V. /socg Vi =2 Ny,

where < z,t >=0 for all z € N, and t € N.. Then for the socle filtration of V1P4}
we have

socg/V{p’q} = ((socg V) @ (socy V.E9)) N yipat
socgfﬂ)v{p’q} = ( Z ((socgf’ﬂ)\/@p) ® (socéilﬂ)\/;@q))) N vira,

m-+n=r

Proof. Denote S(mm) = (socgn)V‘@p) ® (socé@Vf’%. As in Proposition 3.4, we will

prove the following two steps.
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(1) For any

ue ( Z g(m+1,n+1)) N v ipa \ ( Z S(m+1,n+1)) A vind
m4n=r+1 m+n=r
there exists g € U(g’) such that
g-ue Z S(m+1,n+1)) N vird \ ( Z S(m+1’”+1)) ahratXis

m-+n=r m+n=r—1

(2) The quotient (>

semisimple.

S(m+17n+1)) N V{pvq}/(z S(m+1’n+1)) N V{p7Q} iS

m+n=r m+n=r—1

Proof of (2): Note that

( Z S(m+11n+1)) RRTALTIEN Z (5(m+1,n+1) N V{p,q})‘

m+n=r m+n=r
Hence,
( Z S(m+17n+1)) N V{p,q}/( Z S(m+1,n+1)) A yird o~
m-+n=r m4n=r—1
Z (S(m+1,n+1) N V{p,q})/ Z (S(m+1,n+1) N V{pﬂ}) o~
m4n=r m+n=r—1
@ (SmtLntl) it Z (Stm+lntl)  yivatyy,
m+n=r m+n=r—1
Now for any fixed m and n and sequences of numbers iy < --- <1, and j; < --- < J,

we consider the g’-module homomorphism

g Smttntl) Nb®m Q me Q (socV)®p_m X (SOCV*)®‘1_”

-----

Smrlntl) qypal 5 N2 @ NO™ @ ((socy V)P @ (socy Vi) 24 N VP,

Notice that this is a well-defined homomorphism also on the quotient

i Sl (v Z (S(mHLntl) o yiraly

m+n=r—1

Nb®m X Nc(l@n X ((SOCEIV)®p_m (3 (Socg,Vk)@q_" N V{P,q})'

.....
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Then for any fixed m and n the map

@ Li1 i ® Mj1 i S(m+17n+1) N V{p,q}/ Z (S(m+1,n+1) N V{p,q}) N

11 <<t m+n=r—1
Nn<--<jgn

P (NP @ NF" @ (((socg V)™ ™ @ (s0cg V)20 ") NV )

i1 < <im
J1<-<jn

is a well-defined injective homomorphism of g’-modules. Since N, and N, pair

trivially, we obtain
Nb®m 03¢ Nf” X (((SOCg/V)®p_m ® (socg,l/*)@q—n) N V{p,q}) o

p—m,g—n
@ (p _km) (q ; n) Nb®m ® Nc?n ® N(?k ® NSZ)Z ® Vl{p—m—k,q—n—l}’
k=0,1=0

which is a semisimple g’-module.

Proof of (1): Let u = Zf\;l a;u; ® u; where each u; ® u} is a monomial in some
(socéf”H)V@p) ® (socé7+l)m®q) with m +n = r + 1 and u € V{»%  Then each
u; is a monomial in V® and we denote it by u; = u;, ® -+ ® u;,. As before we
make the notation more precise by setting v;, = u;, if u;, € socyV and z;, = v,

k k

if u;, ¢ socyV. We use similar notations for u}. Then we take g; = wy; ® wj such
that w,; satisfies: <w1,x’{j> # 0 for at least one z7; that enters the monomial uj,
<w1,v>{j> = 0 for all v7;, and w; does not appear in any u;. Similarly, wy satisfies:
(w1;,w}) # 0 for at least one xy; that enters the monomial uy, (vy;,w]) = 0 for all

v15, and w] does not appear in any u;. Then

g1 (u@ub) € Z (S(m+1,n+1) N V{p,q}) \ Z (S(m+1,n+1) A V{p,q})'
m4n=r m+4n=r—1
After defining inductively gi,...¢g;—1, if (gi—10---0g1) -u; ® uj is not in the desired
space, we define g; in the same way as we defined ¢g;. Finally we set g = gyo---0q;

and then ¢ - u has the desired properties. O

Corollary 3.11. Let g’ C g be again an embedding of type I. Then for any simple
g-module Vs, C VP4 we have

socg Vi, = (socg Vi o ® socy Vg ) N yival

socg”Ll)VML = ( Z ((socé;nH)VA,o) ® (socgfﬂ)\/o,#))) Ny,
m—4+n=r



3.1. BRANCHING LAWS FOR EMBEDDINGS OF TYPE I 29

Moreover,

+
socC o )V)‘N = @ @ @ m/\ )\//mlj\// )\/m //m /V)\/ /.

m+n 7’)\” #// IA/‘ ‘)\Nl m
W |=|p""|=n

Proof. Note that

(> ((socy™ V) @ (socl  VEN)) N (Vig ® Vi) =

m4+n=r

Y (((socy™ IV ey @ (socg V) N (Vi @ Vo)) =
m—4n=r

Z ((SOC V,\ 0) X (SOC;?JA)‘/O,,LL))-
m4+n=r

Therefore, we have

SocérJr )V/\u = SOC(T_H)V{p’q} NV

(> ((socgm+1)V®p) ® (soc FIVEN) NVIPT Ny, =

m+n=r
( Z ((Soc(mH)V@p) (soc(n+1)v®q))) Avirad A Vao ® Vo =
m-+n=r
m 1 n 1
Z (((SOCé/ * )V/\,O) & (SOCE[,+ )\/M)) N V{zﬂ,q})7
m4n=r

which proves the first part of the statement. To compute the layers of the socle
filtration we notice the following. If {A,,} and {B,} are families of modules over a

ring or an algebra such that A,, C A, for all m and B,, C B, for all n, then

(Y An®@B))/( ), An®B,)=

m4n=r m—+n=r—1
@ Am/Am—l ® Bn/Bn—l'
m—+n=r

. +1
In our case, if we set A,, = socgn )V,\ oand B, = socg/ Vb# we obtain

(> (socg™ ™ Vag) @ (socy Vo)) /(D (socl Vo) ® (socg ™ V1h,) =

m4n=r m+n=r—1
ED ((SOC )V,\ 0)® (socng)VO,u)) =
m-+n=r

@ @ @ M M0 3 M Vi g @ VG s

ern T’)\N Mll |Al‘ I)\//‘ m
[ |=lp" |—n
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where the second isomorphism is a corollary of Theorems 3.8 and 3.9. Hence,

—(r+1) a b c d / / ~
SOCg/ V/\,,LL g SOCg/( m)\’A//m)\//,)\/m%“//li’H/VX7O ® ‘/(],/,L'> —

m4n=r " p' \)\/|=‘)\”|7m
//‘_

I 1=Ip

@ @ @ mi)\//mgu’)\/m //m " /V)\/ /.

mAn=r A", p" \)\/|=\)\”|7m

/l‘

w/ 1= | =
To prove the opposite inclusion we notice that every element from

Ve /( Z (socgnH)VA,o) (soc( H)V 2))

m+n=r—1

can be sent to

v/ ((socl V) @ (soch V5 ,)))

m+n=r—1

by an element in U(g’). In other words,

socg/(V®(”"Z)/( Z ((soc RATA 0)® (soc Vou)))) -

m4n=r—1

VIR (ST ((socl VA0) @ (s0ch V).

m+n=r—1

Therefore,

socg (D ((soct™ Va0) @ (soch ™ Vo,)))/( Y ((socl ™ Vae) @ (soct Vo)) C

m-+n=r m—+n=r—1

( Z ((soc RATA 0)® (socéf"H)Vg,ﬂ))) nviea /( Z ((soc Y, 0)® (soc

Vo)) =
m-+n=r m+n=r—1
SOC(TJr V-

3.2 Branching laws for embeddings of type 11

In this section g’ C g is an embedding of type II, i.e. such that

VV'®N, V.~V &N,
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Then N, and N, have the same dimension and there is a non-degenerate bilinear
pairing between them, which is the restriction of the bilinear pairing between V' and
V.

By definition (see [PSt]), for any partitions A and g with |A] = p and |u| = g we
have V), = yird n (Vio ® Vo). Hence, we can compute the socle filtrations of
Vao® Vo, and of VP4 and use property (2.3) of socle filtrations to obtain the socle
filtration for V) ,.

Proposition 3.12. Let g C g be an embedding of type II. Then

(i) Every Vyog C VP and every Vp,, C V.2 is completely reducible over g' and
V)\,O = @ m()l\’)\/V):/,O,
A/

~ c !
VO#L - @mu,u’vo,u“

o
(1)
SOC / V)\O &® %H = @ @ @m/\ )\/mu N/C)\// 'YC 2 V)\// ”.

A/M |A” |Al‘ r ’Y
I 1= [=r

Proof. Part (i). Since V' is semisimple over g’, then so is VP and similarly for V7.
Therefore, every Vo C V& and every V;,, C V27 is semisimple as well. To obtain

the exact multiplicities, we proceed as in the proof of Lemma 3.6.

Part (ii). From part (i) we have

a c / /
V)\,O X ‘/O,u = @m/x)\/m}%u/‘/)\/,o X ‘/E),M/.
Ao

Hence, property (2.4) of socle filtrations implies

a c (7“) / /
soc (V,\ 0® Vo) = @mk’/\,m%u,socg, (Vo @ Vg u)-
Mo

Then, using Theorem 2.3 in [PSt], we obtain the desired formula. O

To derive the socle filtration of the module VP4 we first need to give several

definitions. Let {z;}ier, and {t;}icr, be a pair of dual bases for the trivial g’-modules
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N, and N,.. We define a new bilinear form:
(,),: VxVe=C

such that (z;,t;), = d;; and for all other pairs of basis elements from V' x V, the
bilinear form is trivial. Then, for any pair of indices I = (7, 5) with i € {1,2,...,p}
and j € {1,2,...,q}, we define the contraction

P Ve _y V®(p71,q71)’

V1 Q- QU QU Q- QU

~

(0,V}), 11 Q-+ QG;® - QU RV ® - QU ® - Q.
Similarly, for any collection of pairwise disjoint index pairs I, ..., I, respectively

from the sets {1,2,...,p} and {1,2,...,q}, we define the r-fold contraction
LSS A vewa) _y 1/ep-rg-r)

in the obvious way.

Now we set No'®? = N® @ N®. Let ®? denote the restriction of ®; to the
submodule N&? and set NP9 = N ker ®5.

Proposition 3.13. Let g’ C g be an embedding of type II. Then

Socév;)v{p,q}: ﬂ ker @, 1.

Iy,
Moreover,
P
socg/V{p’Q} &~ (i) ((ZJ) Nikvl} ® Vr—ka-l}
k=0 1=0
and, fora>p+q—2,

p—r q—r
(r+1) g}~ p—r q—r kil —r—k,qg—r—l
soc, yipat o @ @ @ ( N > ( l )Ni Y g e q—r—l}

{Iy,...I,} k=0 1=0

Proof. Denote similarly as before S,(f:,; =;,..1. ker®p, 7. Clearly,

p q
1) ~ AW k.l —k,q—1
s =@ (7) (1)t vk
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Then for each disjoint collection of index pairs I,..., I, if we restrict ®;, ; to

S we obtain a map

®117---7Ir : SI()’T;—I) — S;l)

Moreover,

r r 1
@ CI)IL---Jr : SIE’;I)/SZ(M; — @ Sjgjr7q—r

{1, I} {1}

is a well-defined and injective homomoprhism of g’-modules. This shows the semisim-

plicity of the consecutive quotients.

Now we will show that if a > p + ¢ — 2, then for each r the above homomoprhism
is also surjective. Without loss of generality fix the following collection of index
pairs I; = (1, —r+1),...,I, = (r,q). Let v be an indecomposable element of

the copy of Sz()l) which corresponds to the chosen collection. By indecomposable

—7,q—T
here we mean that v cannot be decomposed as a sum v = v + v” such that all
monomials in v and v” belong to v and each of v' and v” is also an element of
S(l)

p—r,q—r"’
pair of dual bases {z;}, {t;}. Let iy, ..., beindices from I, such that neither z;, nor

Then v contains at most p + g — 2r entries with distinct indices from the

ti, for k =1,...,7r enters the expression of v. These exist thanks to the condition
a > p+q—2. In addition, let v, and v} be a pair of dual elements respectively from

V" and V] which do not enter the expression of v. Then the vector
u:Zil®---®zir®v®til®---®t“—u1
where

Ul :Uk®zi2®"'®Zir®U®Uz®ti2®"'®tir+
2, QU ®2, @ ®2, QUL QU R, @@t +---+
2, @ ®2z, ,QUEQURLt, Q- ®t;, , Uy

belongs to SV, and

Thus, for a > p + ¢ — 2 we obtain an exact expression for the layers of the above
semisimple filtration. To show that this filtration is indeed the socle filtration of
Vird we take u € S5\ ST, Then without loss of generality, u = uy + - - - + u,
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for some s such that

UL =2 @ @2, QU Ot @ty —

Ve ® 2y @+ ® 2y QU QUL Oty ® - Qi —

2 QU ® 2, @ Q2 QU Qly QUEQ L, Q-+ @ty — -+ —
2, @Rz, QUE QUi Rty @+ R t;, @uj + uf

where vy, v} is a pair of dual elements from V' ® V!, v} € VAp=r=La=—1} and
ul € S](,ZF Y. The elements Us, ..., Us have a similar form. Notice that if v, appears
at most k£ times in any monomial in the expression of v/, then it appears at most

k + 1 times in any monomial in u;. Hence, for j =1,...,k + 1, if we take
g; = vi; @ v

such that v;; does not appear in the expression of u and pairs trivially with all
entries in u} for all j, then (g 00 grr1)(ur) € S \ S We can do the same

procedure for us, ..., us and this will complete the proof of the statement. ]

In order to obtain an exact expression for the layers of the socle filtraiton of V{P.a}
also in the cases when a < p + ¢ — 2 we will use another approach. This approach
covers all cases in which «a is finite. Therefore, in what follows, we fix a € Z>o. As

is done in [PSt], for any index pair I = (i, j) as above we define the inclusion
oo Nip—l,q—l} N Nf(p,q)
given by

TIQ QTp 1 QT Q- @ Ty g

a

@@ ® 0, @R, ...
k=1

where z; is an arbitrary element in N, and 77 is an arbitrary element in N.. Similarly,
for any disjoint collection of index pairs I,..., I, where r = 1,... min (p,q), we

define the inclusion
\Ij?l,...,zr : Nipfr’q*’"} — N(?(p,q)

as the sum of the r-fold insertions of all possible ordered collections of r terms of

the form z; ® t;, including collections with repeating terms. Then, following [PSt],
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we denote

(NP = 3 im0y,
{Iy,...I,}

It is stated in [PSt] that for all a we have the direct sum decomposition
Nf(p,q) — N(;{p,q} ® (Na)ip,q} B D (Na)fp’q},

where [ = min (p, q).

Proposition 3.14. Let g’ C g be an embedding of type II such that a = dim N, €
ZZO' Then

p q
socéf“)v{p’q} o (JZ) (Cl]) (Nt}  yip—toa—tt,
k=0 1=0

Proof. Note that every element u € ﬂll it ker @, can be written as u =

g
U1 + uo, where

P q
P\ (4 {k,1} H{p—k,q—1}
ule@@(k) (l><Na>r ®V g ¢ )

U € m kerq)hwfr.

117"'71’7‘

This proves the statement. [

Note that for k£ or [ smaller than r we have (Na)ik’l} = 0 and so the formula in

Proposition 3.14 can be rewritten as

p—r q—T

Freya ~ p q r+r —k—r,q—l—r1
SOCE,H)V{M} ~OP (k: + 7") (l + r) (Na)fFHrltrt @ y/tp=horastory,

k=0 1=0
Comparing this formula with the expression from Proposition 3.13 we obtain
p q ktr, 47 p=r\(f4—T k,l
N, )Ftrlr) — NiED 3.10
(2 Jowser= @ (T)(1 ) e
1yeeesdr

where i € {i,...,p} and j7 € {1,...,q}. Having in mind that the set of all such

collections of r disjoint index pairs Iy, ..., I, has (f) (z)r! elements, we can further
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rewrite (3.10) as

(N {k+1“ I+r} _ @ N{k l}
{J17 ’J’F}

where the sum runs over all collections of disjoint index pairs Ji,...,J, with ¢ €
{1,...,k+r}and j € {1,...,l 4+ r}. This formula holds exactly in the cases when
the images of W9 ~; are all disjoint and this is precisely when a > k + 1. And
since k + [ < p+ q — 2 for all layers of the socle filtration, we have just proved that
Proposition 3.13 and Proposition 3.14 give the same formulas for finite dimension a
witha >p+q—2.

If we denote now K,ETIH) = dim(Na)ik’l}, where (Na)({)k’l} = N we can rewrite the

formulas from Proposition 3.13 and Proposition 3.14 in the following way:

p q
socy V P4r = GB EB (Z) ((l]) K,SI)V/{p_k’q_l};
k=0 1=0
for a € ZsoU{oo} and a > p+ q — 2,

SOC V{P at o @ Iéé qeé ( > (q - T) K’SZ)V/{P—k—r,q—l—'r};

{I1,..I,} k=0 =0

for all a € Z>y,

p—r g—T
(r+1)v{p,q} ~ p q K(r+1)v/{p,k,nq,l,r}
o D (00w |

Therefore, the last step in the discussion about the socle filtration of VP4 is to
determine the dimensions of the trivial g’-modules NP for all a, including a = oo,
and the dimensions of the modules (Na)ip 4 for finite values of a. Notice here that
NPT has the same dimension as the gl(a)-module VP In particular, if a = oo,
then V7Y is just the gl(oo)-module VP4t which is obviously infinite dimensional.
Similarly, (Na)ip’q} has the same dimension as the gl(a)-module (Va)ip’Q} (see [PSt]
for the notation). Thus, it is enough to determine the dimensions of the modules
viPd and (Va)ip D for any finite a.

Schur-Weyl duality (see, e.g. [FH]) yields

Va®(pﬂ) ~ @ Vie®@ Ve, @ (Hy® H,).

[Al=p
|ul=q



3.2. BRANCHING LAWS FOR EMBEDDINGS OF TYPE II 37

Here, H) (resp., H,) denotes the irreducible representation of the symmetric group
&, (resp., &,) corresponding to the partition A (resp., ). Vi, denotes as before
the irreducible gl(a)-module with highest weight (A, 0).

Furthermore, for a > p + ¢

Vi@ Ve, = @ A dh Vi (3.11)
Aol Y

Formula (3.11) can be found e.g. in [K], [HTW] and the condition a > p + ¢
is important there. When a < p + ¢, it is shown in [K], that modification rules
have to be applied to (3.11) in order to derive the correct branching rule. These
modification rules are described in detail in [K]. The main problem comes from the
fact that when a < p+q, terms Vy!  with [(A)+1(u) > a can appear in the expression
(3.11) and they do not define actual representations. Representations of the form
Vi, with [(A) +1(n) > a are called inadmissible or nonstandard, and R. King shows
that they cannot always be disregarded from the branching formula. Instead, the
modification rules tell us how to find equivalent admissible representations, which
then replace the inadmissible ones in the branching formula. One remark here is that
when a = p+ ¢ — 1 then all inadmissible representations vanish by the modification
rules, so for this case formula (3.11) applies as well. Hence, the condition for the
modified branching rule becomes a < p 4+ ¢ — 2, which unsuprisingly appeared also

as a condition in our considerations of the socle filtration of V {4},
Following the above discussion, we rewrite (3.11) as

a a A~ ~\ a
Vie@ Vi, = D ah Vi,

Ao/

where

oW
Ny = @cﬁ, Chr s (3.12)
il
fora >p+qg—2. Fora <p+q—2, 6’;}’7;, can be obtained from (3.12) by the

modification rules in [K]. Then

2 = (Bt Vi, @ (Hy @ Hy).

[A=p N,/
lul=q
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Recall that

VD = (V) & (Vi @@ (Vo)

a

and

ﬂ ker @?lw]rﬂ = (V(l)({)p”} o) (Va)ipﬂ} DD (Va)iM}

Inyelrga

forr=0,...,1.

Moreover, Schur-Weyl duality implies that a simple module VY with AN =p—r

—r—1,g-r—1
P=r=147=1) Hence Vi, C

and |u| = ¢ — r cannot be realized as a submodule of v
Nr..1.,, ker®7 ;. On the other hand, for each copy of the module Vy, inside
V2P there exists a contraction @7, 1. such that V! is a submodule of its image,
hence V!, & (N, ; ker®¢ ;. Thus, we proved that each (Va)ip’Q} contains only

simple modules V! with [A\| = p — 7 and |u| = g — 7. Therefore,

Vol = @ Ve @ (He H)).

[Al=p [N |=p—r
|ul=q |u'|=q—r

Finally,

KU = dim(V)lrth =Y Y &, dimVy, dim H), dim H,,.

P.q
|A=p [N |=p—r
lnl=q |p'|=q—r

In particular, for all a € Zs Ll {o0}

K=" dim VY, dim H, dim H,,.
|Al=p
lul=q

We are now ready to formulate the branching law for any simple tensor module V} .

Theorem 3.15. Let g’ C g be an embedding of type II, and let V), C vird  Then

r+1 A, !
SOCé, )V)‘vﬂ = @ @ TA,f;,’A//VM//V)\//#//,
k=0 120 [N =p—k |/ [=|N|r
W' |=q—1 |pn"|=|p'|—r
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where, for a € Z>g

A, — E a c X p q (r+1) . .
T)\/Jj’)\//’#” = mln( mA’A/mu7u/C>\//7,yCH//’,y, k + , l + ’ Kk+r,l+r dlm H)\// dlm HN”)’
ol

and for a € Z>o U {oco} witha >p+ q— 2
A . a c N
15" s = min( E M N, O Cor s
v

p\(q\(P—T\[q—T : .
A(O) (O ) (077t .

The above discussion, in particular the two approaches to computing the layers of
the socle filtration of V{P@} leads to the following combinatorial identity, connect-
ing the dimensions of certain simple representations of the symmetric group with

Littlewood-Richardson coeflicients.

Proposition 3.16. For any two partitions X' and p' with |N|=p—r, |¢/|=q—7r

for some integers p,q,r the following holds:

P\ (4 . . . .
(T) (7’) ridim Hy dim H,, = Z Z Cﬁ'WCZw dim H dim H),.

M=p ~
lul=q

3.3 Branching laws for embeddings of type III

In this section we consider embeddings g’ C g of type III, i.e. for which
VRV eIV, V.=V ekV,.

Proposition 3.17. If we have an embedding ¢’ C g of type 111, then
p q P q
SOC!(;—&-l)V@(p,Q) ~ @ @ (m) (n) /{i(m"_q_n)l(”"'p_m)socéf"'l)V’®(m+"’p+q_m_").
m=0 n=0
Proof. This follows directly from property (2.4) of socle filtrations. O
Before considering the simple submodules of V®®9  we need to derive the branch-

ing rule for diagonal embeddings gl(n) C gl(kn + In) of signature (k,1,0), i.e. for
embeddings given by
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g

k !
where V" is the natural representation of gl(n) and V*" is its dual. We do this
in several steps, using the formulas in [HTW]. First we decompose the embedding

gl(n) C gl(kn + In) in the following standard way, suggested to us by R. King:
gl(n) C gl(n) ® gl(n) = gl(n) & gl(n) C gl(kn) & gl(in) C gl(kn +In),  (3.13)
where the isomorphism gl(n) @ gl(n) = gl(n) @ gl(n) is given by
(A,B) — (A,—B")

for any A, B € gl(n). The other maps in (3.13) are the obvious ones. Recall from
Proposition 2.4 from Chapter 2 that for diagonal embeddings gl(n) C gl(kn) the
following branching rule holds:

kn ~ ()‘7“) ()‘/’.u‘/) n
Vw¢g1(n> - @ C(ﬁr ,,,,, BB s 6;)D B 1B (BT s ﬁ;)v)‘"“" (3.14)
By B
By By
>\/,,LL/
where the coefficients C**) ~__and DY) _ .. are as in Chapter 2.
(B 1B (BT 1By (B 3B (BT seensBy)

Thus, the decomposition (3.13), formulas 2.1.1 and 2.2.1 from [HTW], and equation
(3.14) yield

(k+l)n ~ (Avﬂ) (’Y+”77) (O’+,O'7)
VA,M lgl(n) @C(’Y+:’7_)v(5+’5_)c(af ..... a;)(al_ ..... a;)D(af ..... aZ’)(al_ ..... o)

1
C(5+757) D(TJWT*) dH) &8 (3.15)
BY 3BV BY 1B (B s BENBT oensBy) (0,07 ) (r ) TAHD
where the sum is over all partitions y©,v~,0%, 67, of,..., o}, a7 ,...,a,, 07,07,

ﬁra"'vﬁl—‘_a 61_7'”7ﬂl_7 T+7T_7 )‘lulu/'

Corollary 3.18. Consider an embedding g’ C g of type III. Then for each V, C

Vewa we have

p q
(r+1) Ayt
SOCg/ V)\’H = A)\/#L/V)\/,,LL”

m=0 n=0 |)\/‘:m+n—r
|t |=p+q—m—n—r
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where

A (vt7) (cT,07)
AN Zc(v+ (5+,6- )O( ot oot )(af,.‘.,a;)D(af,‘..,a;r)(af,.‘.,a;)
(6,67) (vt r7) (\,u")
C(5f776l+)(ﬁ17776;)D(617 ’Bl )(18;7--~75f)d(a+70-7)7(7—777-+)'

Proof. From Proposition 3.17 above and from Theorem 2.2 in [PSt] we obtain

SOC(H_ )V éé @ a)\, Vo

m=0 n=0 IN|=m+n—r
|t |=p+g—m—n—r

for some multiplicities a;\;f .o~ To compute those multiplicities explicitly we proceed

as before. Following Proposition 3.1, we take bases of V' and V, such that

_ 1 1 k k 1 1 !
Vo=8pan{vy, ..., Upyevoyee oy U e U o Wy e Wy eee ey Wy ey Wy oo }
_ 1% 1x kx Fex 1% 1x Ix %
Ve =span{oy™, ... 0" oo 00 o w L wy e w L wy )
and such that
g = span{v; ® v;* + -- +vf®vf*—w}@w}*—---—wé@wﬁ*}.

Then we easily construct exhaustions of g’ and g to obtain a commutative diagram
of embeddings in which all vertical arrows have signature (k,[,0). Thus from (3.15)

we obtain the values of the multiplicities. O]
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Chapter 4

Embeddings of sp(co) into sp(oo)

and of so(co) into so(oco)

The goal of this chapter is to obtain branching laws for all types of embeddings
g’ C g, where now g’ and g are both isomorphic to sp(cc) or so(oc). The approach
we use is analogous to the one in Chapter 3 and therefore the exposition is concise
and focused mainly on the end results. We start with decomposing the embeddings

of general tensor type into several intermediate embeddings.

Proposition 4.1. Let both ¢’ and g be isomorphic to sp(co) or to so(co). Let g’ C g

be an embedding of general tensor type, i.e. such that
socgV=EV' @ N,, V/socyV = N,.

Then there are intermediate subalgebras g1 and go of the same type as g and g, such
that ¢’ C g2 C g1 C g and the following conditions hold.

(1) The embedding g1 C g salisfies
socg, V=Vi & N,,, V/socy,V =Ny,

where Ny, = {v € N,| (v, N,) = 0}.

(2) The embedding g2 C g1 has the property Vi = Vo @& N,,, where N, is such that
N, = N,, & N,,.

(3) The embedding ¢’ C g2 has the property Vo = kV'.
Proof. We will prove the statement for the case when g’ and g are isomorphic to
sp(00). Let © be the non-degenerate antisymmetric bilinear form on V. Let V;

43
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be a submodule of socy V' isomorphic to kV’. Then, as in the proof of Proposition
3.1, we can show that the restriction of {2 to V5 is a non-degenerate antisymmetric

bilinear form on V5. Thus, if we set g, = S%(V3) then g, is a Lie algebra isomorphic
to sp(o0).

Let {v;}iez (o) be a symplectic basis of V5, i.e. such that Q(v;,v;) = sign(i)d;0.
Let also A = {z;};es, be a basis of N,, where [, is an index set with cardinality
a =dim N,. Let Ay = {}}jer,, be those elements in A which pair trivially with all
elements in A. Let Ay = A\ A; and denote its elements with zé-’ and its index set
with I,,. Now set

Vi = span{v; }icz\ {0y © span{2] }jer,,
Then the restriction of Q to V; is non-degenerate and we set g; = S?(V}).
The Lie algebras g; and go constructed in this way satisfy the required properties.
In the case of so(co) we follow the same construction. O]
As in Chapter 3 we give the following definition.

Definition 4.1. Let again both ¢’ and g be isomorphic to sp(oo) or to so(o0).
(i) An embedding ¢’ C g is said to be of type I if
socgV =V @ N, V/socgV =2 Ny,
where any two vectors from N, pair trivially.

(i) An embedding ¢’ C g is said to be of type 11 if V=V'@ N,.

(iii) An embedding ¢' C g is said to be of type I if V = kV'.

4.1 Embeddings of sp(oo) into sp(co) of types I, II, and III

In this section, unless otherwise stated, g = sp(V) and g’ = sp(V’) where V is a
countable-dimensional complex vector space endowed with a non-degenerate anti-
symmetric bilinear form  and V'’ is a subspace of V' on which €2 restricts non-

degenerately. First we consider embeddings g’ C g of type I, i.e. such that

socg V=V @ N,, V/socyV = N,
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where N, and N, are trivial g’-modules of finite or countable dimension and any
two vectors from N, pair trivially. As in Proposition 3.2 we can prove that the
embedding g’ C g extends to an embedding gl(V', V') C gl(V, V) of type I with the
same values for a and b. Moreover, from Chapter 3 we know the socle filtrations
over gl(V', V') of V& and of any Vy o C V&

Theorem 4.2. (i) The socle filtration of V¥ over g is

(r+1)y 7(d) (r+1) ®d (d)
S0C, Vv —SOCgl(v/,v/)V Nnv

(i) For any simple g-module V5, C V{9 we have
(r+1)

_ (r+1) d
socy Vi = SOCgl(VgV/)VA,o NV

Moreover, for the layers of the socle filtration we have

(r+1
S C / )v @ @ m)\ )\/Im)\// A/VA/

)\II ‘)\/ |>\//| r

where as before m§ \, are the extended Gelfand-Tsetlin multiplicities.

Proof. Proof of (i): From the previous chapter we know that

+1 d
Socglﬂ(v'),x/')v® = () kerLi i
i1 << g
where
d d—k k
Li1,~~-,ik VO — V®( ) ® Nb®
is defined as before for any set of indices 1 < iy < -+ < 4 < d. We take its

restriction to V(¥ namely
Lil i V<d> — V<d_k> ® Nb®k
Thus we obtain a well-defined map on the quotient

can 7D ®d ®d
@ Li, . .socgl V, v yednyld /soc (Vv yednyld

i< <
P (Ve N)* I nViE) o NP
1 <<l
which is an injective homomorphism of g’-modules, whence the semisimplicity of the

quotient.
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To show that this is indeed the socle filtration we proceed in the very same way as

in the proof of part (1) of Proposition 3.4.
Proof of (ii): From [PSt] we know that Vj5y = Va0 N V@, Therefore,

soc Wiy = (socl VD) NV = (soch iy VE) N VD AV =

(socéq;”‘},{v,)V@@d) NVao NV = (SOC;TK/,’V/)V)\’(]) Ny

which proves the first part of the statement.

The above implies

WS’,’H)VW (Soc( V, vy Vo) N vl /(socg()v,?v,)v/\o) AV

(r

1 r — (r+1
((socgl(t/,{v,)VA,o) NV 4 socél()v,y/)VA70)/(SOCS§1()V,’V,)V,\7O) C SOC;](V’),V/)V)MO‘

Thus we obtain

Wgﬂrl)‘/(/\) g S0Cy (Wg(—i—‘},{‘/,)‘/)\p). (41)

To prove the opposite inclusion we will first prove that

socy (soc l(V’ Vi) Ved) C

(( (r+1) V®d) N (d) + (r) ®d)/ (r) ®d (4'2)
SOCy) (17 11 V S0Cy (v )V S0Cy (v V0
Let u € SOCél(V, vV ©d gatisfy

r+1) r r
u+ socgl(v, vy yed ¢ ((S.oc(1 Vv Ve Ny 4 socél()v,yv,)V®d)/socélgv,,v,)V®d.
Then, v = uy + - - - + ug, where without loss of generality u; = z;, ® -+ ® x;, ® u
and u € V@@= \ Vd=) - Consequently, there exists g € U(g') such that g - u} €
V=" \ {0}. Hence, g-u; € (socéq;r‘},{v,)V®d) NV and g-u; ¢ socg()v,yv/)vm.

This proves (4.2). From (4.2) it follows that

(1
socg/(soc(q(v,)v, Vio) €

r+1) r r ~
((soc;ﬁ/, Vv Vio) N Vid 4 socél()v,’v,)VA,g)/(socél()v,,v,)v,\yo) > 50C,, -

Then (4.1) and (4.3) imply

SOCy/ (Wg;rvl,)y,) V/\,o) o socéfﬂ) V-
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Now we can apply Theorem 3.8 above and Theorem 3.3 from [PSt] to obtain

+
SOC(T ()\> = SOCg/(@ @ mi,A//mI;\//7A/V></’O) = @ @ m?\)\//mg//’/\/‘/(//\/),

N \)\/|=|)\”|77’ A |)\/|:|)\//|77.

which proves the second part of the statement. [

The next step is to consider embeddings g’ C g of type 11, i.e. such that V= V'&N,.
Note that in this case N, is an even-dimensional or countable-dimensional trivial
g’-module on which the bilinear form 2 restricts non-degenerately. As in the case of
embeddings of type I, V and V' are also respectively the natural modules of gl(V, V)
and gl(V’, V') with the same socle filtrations. To compute the socle filtration of
any simple g-module V{5, we proceed as in Section 3.2. More precisely, we use
property (2.3) of socle filtrations and the fact that Vi, = Vi n Vyo. We also
need the following notations. If ~ is the integer partition v; > 75 > -+ > g,
then by 77 we denote the transpose (or conjugate) partition of v, i.e. such that

(V)T = |{v; : 7; > i}|, and by 2y we denote the even partition 2y; > 27y > -+ > 2.
We start with the following proposition.
Proposition 4.3. For any partition A with |\| = d the gl(V, V' )-module Vo has the

following socle filtration over g':

soc VAO = @ @ @mA /\,c/\,,(QV)TV/\,,

NN =N =2r v

where as before ms, , are the extended Gelfand-Tsetlin multiplicities and C:\\:’(M)T are
the Littlewood-Richardson coefficients.

Proof. We consider the chain of embeddings g’ C gl(V', V') C gl(V, V). From Sec-
tion 3.1 it follows that V) o is completely reducible over gl(V’, V') and

V)\70 = @mi’/\/‘/){/p. (44)

>\/
Furthermore, Theorem 3.3 from [PSt] implies that

socg,+ )VX = @ @cw TV,\,, (4.5)

V=N |2

Combining (4.4) and (4.5) we obtain the result. O

Next, let {z;}icz\ 0y be a symplectic basis for N,. As in section 3.2 we define a new
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bilinear form
(,),:VxV=C

such that (z;, z;) = sign(i)d;+; 0 and all other basis elements from V' x V' pair trivially.
Then for any 1 < r < d and any collection of pairwise disjoint indices [, ..., I, from
the set {1,...,d} we define the r-fold contraction

(I)Il, N V®d N V®d 2r)

with respect to the bilinear form (-, -),. It is easy to check that ®;, _; is a g’-module
homomorphism. Then if 7 ; denotes the restriction of ®;, . to the submodule

N®4 we set
= ﬂker O3
I

Furthermore, for a € Z>, we define the inclusion

-----

as the sum of the r-fold insertions of all possible ordered collections of r terms of

the form z; ® z_;, including collections with repeating terms. Then we set

(Na)§d>: Z im‘l’?l,...,lT~

{11:---7Ir}

Now we have the following theorem.

Theorem 4.4. Let g C g be an embedding of type II. Then

soc ﬂ ker @7, 7.

117 7

Moreover, if a € Z>o U {oco} and a > 2d — 2, then

d—2r
1
v @ @ (1) eviers

{]1, :IT} s=0
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If a is finite (and necessarily even), then

d
o v =@ () e v -

d—2r d
<S . 2r) (Na)7<~8+2T> ® V/(d—s—2r> )

The proof is quite similar to the proofs of Propositions 3.13 and 3.14 and we skip it.

To finish the discussion about the socle filtration of V(% over g’ we need to determine
the dimensions of the trivial modules (Na)f«d> for all a € 2Z>( and the dimension
of N for a € 270 U {oco}. As in Section 3.2 we notice that this is the same as
determining the dimensions of the sp(a)-modules V¥ and (V)" (see [PSt] for the

notations).

Now let a be an even integer. Schur-Weyl duality for the gl(a)-module V,*? yields

V= (B VY, @ Hy.
|A|=d

Moreover, the gl(a)-module V{; considered as an sp(a)-module has the decomposi-

tion
Vio = P AV,
A/
where ¢}, = N c;‘,(%)T for a > 2d (see e.g. [K], [HTW]). For a < 2d, &), is obtained

from 3 c’A\,(%)T by the modification rules in [K]. Thus,

vt @ @AV ©

N=d N

Moreover, as in Secton 3.2 we can prove that

(V)i = @ @ Vi @ Hy.

IA|=d [X|=d—2r
Hence, if we denote K(y“) = dim(Na)@, where (]\fa)f)d> = N we obtain

Ky =37 3" & dimVy, dim A,
IA|=d |N|=d—2r
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In particular, when r = 0 the above formula holds also when a = oo, i.e.
= dimV{, dim Hj,
IA|=d
where a € 2Z>( Ll {c0}.

We are now ready to formulate the branching law for an arbitrary simple g-module
Vin-
Theorem 4.5. Let g’ C g be an embedding of type II and let Vi C Vil Then

d—2r

S c/ @ @ @ i /\,,V,\,,

s=0 |N|=d—s |\|=|\N|—2r

where for finite even integers a

d r 1) 1
T)?\/)\// mln{z m)\ )\ch” 2’Y (S + 27“) KS(+27‘) dlm H //}.

And for a € 2Z>¢ U {oco} with a > 2d — 2
, Y d\ (d\ (d—2r _
T/i\/’)\u = mln{z mA’)\/Ci//(Q,Y)T, 7! <7‘> (T) ( s )Ks(l) dim H)\//}.
o

In the rest of this section we will consider embeddings g’ C g of type I1I, i.e. such that
V = kEV'. We will proceed as in Section 3.3. First, we will determine the branching
rule for diagonal embeddings sp(2n) C sp(2kn) of signature (k,0,0). Using formulas
2.1.3. and 2.2.3. from [HTW] we define the following coefficients:

E :Cuu 7 (26)T : :C 500470/37’

a,Byy

A

where ¢, are again the Littlewood-Richardson coefficients. Next, as in Section 2.2,

for k > 2 we define the generalized versions of the coefficients a# v bﬁ o

A _ § A al Qg3 Qf—2
Am,...,uk - am,maaz,m o 'aak—Q:Mk—2aﬂk—1vﬂk’

ALy, X —2

A _ § o Lo A
Bﬂh SBE b#1,#2b&1 B3 "t bozk 3sHk— 1b0<k 2,1k

ALy O —2

Then, if Vg\’;” denotes the simple sp(2kn)-module with highest weight A, iterating
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the appropriate branching rules from [HTW], we obtain that

2]{271 )\/ 2n
VO‘) Isp(2n) @ Auu M uh...,ukV@v)- (4.6)

M1, nuka)\

Now we are ready to prove the following theorem.

Theorem 4.6. Let g C g be an embedding of type III. Then

: 1 1)
(i) socg{+ Jyod o kdsoc(iur yred,

(ii) for any Viyy C V& we have

SOC / ‘/()\> @ C))\\/ ‘/</)\/> s

[N|=d—2r

where

A )\/
C/\’ - z: Aﬂh Mk ﬂlw-,uk'

M1, 7/"/]67A

Proof. Part (i) follows directly from property (2.4) of socle filtrations.

To prove part (ii) we notice that part (i) and Theorem 3.2 from [PSt] imply

SOCS;JA)VZM = @ Ciz ‘/</)\/>

[N |=d—2r

for some unknown multiplicities ¢},. To determine the exact values of these multi-

plicities we use (4.6).

]

4.2 Embeddings of so(co) into so(co) of types I, II, and III

In this section g = so(V) and g = so(V’) where V is a countable-dimensional
complex vector space together with a non-degenerate symmetric bilinear form @
and V' is a subspace of V' on which () restricts non-degenerately. As in the previous
section each embedding g’ C g extends to an embedding gl(V', V') C gl(V,V) of
the same type. All statements and proofs in this section are analogous to those in

Section 4.1 and therefore we state only the end results.
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First, let us consider embeddings g’ C g of type I, i.e. such that

socgV =V @ N, V/socgV =2 Ny,

where the restriction of @) to N, is trivial. Then we have the following analogue of
Theorem 4.2.

Theorem 4.7. (i) The socle filtration of V!9 over g’ is

(r+1)y/d] _ (r+1) d d
socy VI = (s0cyyn VE) N v,

(ii) For any simple g-module Viy C V9 we have
(1), (r+1) d
socy Vi = (Socgl(v,’v,)\/,\,o) Ny,
For the layers of the socle filtration we obtain

— (r+1 ~ a b
SOCé/ )‘/[)\] = @ @ m)\7)\//m)\//7>\/‘/v[/>\/],

)\// ‘)\/|:‘)\//|7T’

where as before m§ . are the extended Gelfand-Tsetlin multiplicities.

Next, we move to embeddings of type II, i.e, such that V = V' @& N,. Then the
restriction of @ to N, is non-degenerate. Let {z;}icz\ (0} be a basis for N, with the

property that Q(z;, zj) = 0;+;0. Following Section 4.1, we define a new bilinear form

(), VxV=>C

such that (z;,2;), = 0;4;0 and all other basis elements from V' x V' pair trivially.
Then, for any 1 < r < d and any collection of pairwise disjoint indices I, ..., I,

from the set {1,...,d}, we define the r-fold contraction
(I)jl I V®d — V®(d_2r)

with respect to the bilinear form (-, -),. It is easy to check that ®;, ; is a g"-module
homomorphism for any r and any Iy,..., I,. Then if 7 ; denotes the restriction

of @7, 1 to the submodule N®? we set

NI = [ ker @§.
1
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Furthermore, if a is a finite number we define the inclusion
. A7ld—2 ®d
Wy o N NG

as the sum of the r-fold insertions of all possible ordered collections of r terms of

the form z; ® z_;, including collections with repeating terms. Then we set

(Na)Ld]: Z imq’%,..‘,lw

{Ilv---vlr}

Now we have the following analogue of Theorem 4.4.

Theorem 4.8. Let g C g be an embedding of type II. Then

SOC / ﬂ ker@h W

Ily 7

Moreover, if a € Z>q Ll {c0} with a > 2d — 2, then

d—2r
SOC(T—H V[d ~ @ @ ( )NC[LS] ® V/[d—2'r—s]'

{Ih,...Ir} s=0

If a € Z>g, then

soc r+1)v[d] ~ @ < ) [s] & 1//[d=s]
d—2r

@ ( d ) (Na)Ls+2r} ® V/[d7572r].
S \s+2r

Let K, (r1) = dim(N, )H for r > 0 and for any finite integer a. In addition, let
K((ll = dim N for arbitrary a including a = co. Then the following proposition
holds.

Proposition 4.9. For r > 0 we have

KUY Z Z & dim Vi}, dim H,

IX|=d |N|=d—2r

where for a > 2d we have &, = >, C)\’Q'y? and for a < 2d, &, is obtained from
>, Cyogy bY the modification rules described in [K].
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Furhtermore,
K =" dim Vg dim H,.
IA|=d

For an idea of proof see Section 4.1.

Using the above notations we are ready to state the analogue of Theorem 4.5.

Theorem 4.10. Let g’ C g be an embedding of type II and let Vi C Vid, Then

d—2r

S D D D Tl

5=0 |X|=d—s |\"|=|X|-2r

where for a € Zx

d

!
T3 ., = min mé .
MA {E ANz | o)

Y

And for a € Zso U {oc0} and a > 2d — 2
_ Y d\ (d\ (d—2r _
Ti\/’)\// = mm{; m/\’/\,cﬁ,,%, r! (r) (T) ( . )Ks(l) dim Hyn}.

Finally, in the rest of this section we consider embeddings g’ C g of type III, i.e.
such that V' =2 kEV’. As in Section 4.1 we start with determining the branching rule
for diagonal embeddings so(n) C so(kn) of signature (k,0,0). Using formulas 2.1.2
and 2.2.2 from [HTW] we define the coefficients

A YA A A oou v
pp = 2 :cMVC’Y%’ b;w - E : CapCarCpy
oy By
where cf;u are again the Littlewood-Richardson coefficients. Next, for £ > 2 we
define the generalized versions of the coefficients af‘L Vs bf; e
A _ A fe%1 ag—3 Qf—2
Aﬂlw-nuk o Z Qo Yoz, pus =+ Qoo pn—z Va1 11
ALy, A —2
A o (e %1 (e % Qp_o A
BlJvly--wl-lk - z : b#l,uzbal,m T bak—fiaﬂk—lbak—Qaﬂk'

Q5 X —2
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Then, if VP\] denotes the simple so(kn)-module with highest weight A\, we have

N n
A] J,SO n @ AM17 HHE BM17 Mk [A/} :

K1, uu‘k )

The following theorem is an analogue of Theorem 4.6.

Theorem 4.11. Let g’ C g be an embedding of type III. Then
- (r+D)1,0d oy pdgo (T /1@d .
(i) socy,VE = kfsocy, VY,
(ii) for any Viy C V® we have
socy Wiy = @ Cf/ Wl
N |=d—
where

A ,\’
C/\’_ §: Am, Mk ul,u-,uk'

M1, 7/"/]67A

95
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Chapter 5

Embeddings of general tensor

type. Main statements

In this chapter, using the results from Chapters 3 and 4, we prove a theorem for
embeddings g’ C g of general tensor type. Here g and g’ denote any two classical

locally finite Lie algebras, not necessarily of the same type.

Let g’ C g be an embedding of general tensor type, i.e. which satisfies the conditions

socgV = kEV' @ IV] @& N,, V/socgV = N,,
socg Vi 2 kV, @1V @& N., V./socyVi = Ng.

If g = sp(c0) or so(c0), then N, = N, and N, = Ny. If g’ = sp(00) or so(co), then

the above reduces to

socgV = (k+ 1)V & N, V/socgV =2 Ny,
socg Vi 2 (k+ 1)V @ N, V./socyVi = N,.

Throughout this chapter we will use the following notations. Let

be a basis for the submodule £V’ @[V, of V indexed by a countable index set I and

similarly

a basis for KV @[V’ as a submodule of V,. Let the two bases satisfy the conditions
of Proposition 3.1. Let also A = {z;}ier, and C' = {t;}ies. be bases respectively

o7
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for N, and N., where I, and I. are index sets with cardinalities a = dim N, and
¢ = dim N.. Similarly let B = {z;}ier, and D = {y; }icr, be bases of N, and Ny
considered as vector subspaces of V and V,, where I, and I; are index sets with
cardinalities b = dim NV, and d = dim Ny. We have proven the existence of such
bases for the pair g’, g = gl(oo) in Proposition 3.1. For the other cases such bases

exist by similar arguments.

Before turning to the general theorem we will consider a special case. Let g’ C g be

an embedding such that
VEV @IV and V, 2 IV @ kV,.

We define a bilinear form (-,-),: (V& V,) ® (V @ V,) — C by setting

) =0 (), = 0

<1) wss — z]; <w;‘53,v;81>d — 5ij
for all s1,s9=1,...,k and all s3,84 = 1,...,[. In addition, all other basis elements
pair trivially. Let Ji,...,Js be a collection of disjoint index pairs (i,7), where

1,7=1,...p+q. Let

fh, N L ema) _y pep-sq-s")

be the contraction with respect to the bilinear form (-,-),, where s’ +s” = 2s. In

the case g = sp(00) or g = so(oo) the above can be rewritten as

/ . ®d ®(d—2s)
Ty ds Vet -V .

It is not difficult to prove that @’ ; is a g’-module homomorphism.

Let us denote

V:%@"'@Vk®vk+l@"'@%+lv
V.=Vo-oWoVi,o oV,

where V4, ..., Vi are copies of V' inside V such that ‘73 = span{vf},»el forj=1,... k.
Similarly, Vi1, ..., Viy are copies of V/ inside V such that Vj; = span{w?},c; for
7 = 1,...,0l. In the same way, ‘71*7 e ‘N/k* are copies of V! inside V, with bases
{vf*}iel for j = 1,...,k and Vk*+17 .. .,‘N/k*H are copies of V' inside V, with bases
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{w!*}ies for j =1,...,1. Then

R(p,q) __ v * *
V@ (@.9) EBVU@ RV, 0Vi®---®V;,
i150mrip
VARTEED) Ja
where 41,...,%,,J1,...,J¢ = 1,...,k + [ are not necessarily distinct indices. Notice

that each V;, @ --- ® ‘ZP ® f/; ®--® f/]’; is isomorphic to V'€®.4) for some p’ and ¢’
with p' +¢ = p+¢q. For any Ji,...,J; as above, we want to define a map i)J17_..7JS
on V®®9 guch that on each subspace V'®#¢) it is the contraction with respect to
the standard bilinear form on V' x V.

We proceed in the following way. Let 7;,...;, denote the projection of Vewa) onto

jla';qu

the subspace \72-1 K- ® ‘Z‘p ® f/]’; Q- - ® V}’; Then we set

~ B , . '
q)le--st - @ @Jh...,Js © 7T7417~~~ﬂp‘

i15eesip J1y-dq
lequ
Thus,
5 ®(p,9) ! i/ /. % *) =
G0V — Vi ® eV, @Vi®- -0V =
11 5eenylp
]17--~7jq
@ V@ p—s'q=s")
ily-"7ip
j17"'7jq

for some §',s” such that s" + s” = 2s. The last isomoprhism follows from the
observation that ®; ~ ; actson Vi, ®-- -®\Z~p®f@: ®-- ®\~/]’; as the usual contraction

with respect to the standard bilinear form on V' x V/.

Then the following proposition holds.

Proposition 5.1. Let g’ C g be an embedding such that
VRV @IV, and V., 21V @ kV].
Then

socéf)V®(p’q): ﬂ ker®y ;.
le-"7‘]”'
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Proof. Property (2.4) of socle filtration implies

socg)V®(p’q) - F soc) V@0V, 0V @ - ® Vi
i1ensip
JLseen Jq

Moreover, from [PSt] it follows that

(r) (7 V4 e Tk ﬂ / ~ ~ B B
SOCg/ %1 (24 X ‘/zp X ‘/jl & X ‘/jq = keI' (I)Jl,...,Jr|V1-1®--~®Vip®vfl®~--®vjz .
len-v-]r

Then,

(M @Pa) — ! ~ o o
SOCg/ Vv = @ ﬂ ker ®J1,~.~,Jr w1®'"®%p®v}*1®'”®vjtz =

11,enslp J1,0,dp
J15--+5dq

ﬂ ﬂ ker(®, ;0 Mii.iy) = ﬂ ker @y, 7.

i yeensip J1 ey I1seda Ty
J15--50q

O

Now we are ready to state the main theorem for embeddings of general tensor type.

Theorem 5.2. Let g/ C g be an embedding of general tensor type. Let M = Vira}
for g = gl(o0), M = V9 for g = sp(c0), and M = VI for g = so(co). Suppose
that there exist intermediate subalgebras g, and g, of the same type as g, such that

g C g2 C g1 C g and the following properties are satisfied.
(1) For the embedding g1 C g one has

socV =V & N,,, V/socV = N,
socV, = Vi, @ Ny, V.. /socV, = Ny,

where
Ny, =A{v € Ny| (v, N.) =0} and N, = {w € N,| (N,,w) = 0}.
(2) For the embedding g2 C g1 one has
Vi = Vy @ Ny, Vie = Vo, @ N,

where N, and N, are such that N, = No, & N,, and N. = N., & N,,.
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3) For the embeddin "¢ 2 0ONeE has

Vo 2 kV @1V, Vo Z IV & KV,

Then, for any N C M,

socy, UN= P socy, ! (socir Y (soettN)).
l+m+n=r

Proof. We have the following short exact sequences:

0= kV' @IV &N, &N,, 5V LN, 0,

0 W @kV! &N, &Ny 5V, 5 N;— 0

and homomorphisms L;, ;. —and M;, . For g, g1 = sp(o0) or so(co) the exact

sequences coincide and ]\4]1,__7]-"2 = lev---van-

Jing g
Recall that if M is a g-module, such that M; = V;9 V¥ or VI then we defined

contractions ®;, _; with respect to the pairing (-, -)t on Vi x Vi.. We can extend

k

this pairing to a pairing (-,-), : V x Vi, = C by setting
(zistj), = 04

and such that all other basis elements from V x V, pair trivially. Then we obtain

contraction maps

Oy M — M,

where M’ = V{P=ka=k} for M = VP4t and similarly for the other cases. We claim

that for any choice of k£ and of disjoint index pairs [y, ..., I}, the maps @5, are

k
homomorphisms of go-modules and hence also of g’-modules. We now prove this
for k = 1, and by induction the statement will follow for any £ > 1. Let g € go,
I'=(,j),andu=u ® - Qu,®uj ®--- @ u; be an arbitrary pure tensor in M.

Then
O(g-u)=g-Ps(u)+ <g . Ui,U;>tft + <Uz'7g : u;‘>tﬂ,

wherea:u1®~--®121-®---®up®u’{®---®dj®---®u;. Moreover, if g =a ® b
then

<g - Ug, u;>t + <ulag ' U;>t = <u’i7 b) <CL, U’;>t - <a,7u;f> <uia b>t .
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But a € V5 and b € Vs, hence <a,u§>t = 0 for all u}, and similarly (u;,b), = 0 for

all Uj.

Similarly, we define ®; ;@ M — M" to be the contraction with respect to the
bilinear form (-, ), defined by

(v*,v7™), = iy and (wi", wj™), = 0y,
and such that all other basis elements from V' x V, pair trivially. This is an extension

of the bilinear form on V5 x V5, to a bilinear form on V' x V,. As in the settings for

Proposition 5.1 we set

Mo V,@- eV, Ve eV

Tit-oip o

J1,5--450q

i, is not a g’-module homomorphism, it is just a linear map.

Note that the map 7, ...
J1se-Jq
Then as before we define

which again is just a linear map.

Now, for any r > 0 we define

S(r) (M) = m ker é]lw.“]l @) @117”.7[”1 e} (Li17_”7in1 (024 Mjhm,an).

l+m+4n=r
. mtne=n
115--5tnq5J15--50ng
I1,....0m

J1endy
If ny = 0 (resp. ny = 0) we set Ly = id (resp. My = id) and similarly if m = 0
we set &5 = id and if [ = 0 we set @30 = id. For shortness, we write S instead of
ST)(M) when M is clear from the context.

1., for M being equal to VP,
V{4 and V14, but the definitions can be easily extended to modules of the form
D, V{pi»(h’}7 ®D. Vi) and D, Vldi]

Note that we defined the maps d T

----- l

-----

Now the following three properties hold:

(1) S is a g’-submodule of M for every 7 (see Lemma 5.3);

(2) for any u € SC+2\ S0+ there exists g € U(g') such that g(u) € STV \ S

(see Lemma 5.4);
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(3) SU*1) /51 is a semisimple g’-module and

St /80 = (B socy, Y (soelr ) (soci I M)

+m4n=r

(see Lemma 5.7).

Furthermore, if N is a submodule of M, then Lemma 5.7 yields

(ST AN/ NNy = P soc, ) (socl D (FocitUN)).
l+m—+n=r

Thus the statement of the theorem follows.

O

Theorem 5.2 provides a major tool for determining branching rules for embeddings
of general tensor type. When g’ = g, Propositions 3.3 and 4.1 give decompositions
of the embedding g’ C g which satisfy the properties of Theorem 5.2. Therefore,
for g = g we can apply Theorem 5.2 and thus reduce the branching problem for
embeddings of general tensor type to branching problems for embeddings of special
types, for which we already know the answer. In the next chapter we will use a

similar approach in the cases when g’ and g are not isomorphic.

Below we give proofs of the key lemmas used in the proof of Theorem 5.2.

Lemma 5.3. Let g C go C g1 C g, M, and S") be as in Theorem 5.2. Then S

is a g’ -submodule of M for every r.

Proof. Let u € S™. Suppose that there exists g € g’ such that g-u’ ¢ S™. In other
words, there exist integers [,m,n,ny,ny with [ + m +n = r and n; + no = n and

index sets 41,. .., %, J1s .-« Ings 41, -+, Im, and Jq, ..., J; such that
(i)JLW,Jl © q)fl,-..,fm ° (Lil,--.,inl ® Mj1,~~-,jn2)(g ’ u) 7£ 0. (51)

We set ' = &5, ;. © (Lil,...,inl ® Mjl,m,m)(u). Since Ly .4, & M; and

®;,....1,, are g-module homomorphisms, (5.1) implies that «’ # 0. Furthermore,

Lyerling

77777

Oy (W) =0, whereas ‘i)h 5,(g-u") # 0. This can only happen if an element z;,
or y;; appears in a monomial in ' in one of the positions specified by Ji, ..., J;. Let

without loss of generality J; = (1,1) and let u' have the form

V=2, Quy @ Qul, Ul Q- @ul +u. (5.2)
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Then, éJ17.'.7(]l (u”) =0 and
g-u' =(g 7,)Quy @ - Quy, @uy @ - @uy, +x;, u” +g-u’.

Moreover, ®;, (7, ® u") = 0. Assume at first that ®y . 5(g-u") =0 as well.
Then

Dy (g ) =25 ((g-2i,) ®@uy) 0 Dy

2300y

Uy ® - @uy @uy @ - ug,) # 0.

52

Here, if Jy = (i,7) then Jj = (i — 1,j — 1) and similarly for Ji, ..., J].

Therefore, @5, ;,(u') # 0. The last inequality and (5.2) imply that there exists an

index 7,11 such that
Py 0 Pry g © (Liy i im0 @ My, i, ) () # 0.

This is a contradiction with u € S,

If (i>J1,...,Jl (g-u") # 0 we can replace v’ in the above discussion with «”, which has
a strictly smaller number of monomials that «’. Thus in finitely many steps we will

reach a contradiction with the choice of u, and this proves the statement.

]

Lemma 5.4. Let g’ C go C g1 C g, M, and S™ be as in Theorem 5.2. Then for
any u € ST\ SUFY there exists g € U(g') such that g(u) € ST\ S0,

Proof. We order the triples of numbers (n,m,[) lexicographically. Let u € SU+2)\
S+ and let (n,m, 1) with [ +m +n = r + 1 be the largest triple for which there

exist index sets @1,...,%n,, J1s- -« Jngs L1, -+ Im, and Jy, ..., J; such that
Dy 0®n 1,0 (Liy, iy, @ My, g, ) (1) # 0.

Suppose first that n > 0. Then at least one monomial in v has an entry z; or y;.
Without loss of generality we may assume that z; appears in u. Then we take g € ¢’

of the form

_ 1 *1 k *k 1 *1 k *

k

I~

for g gl(oo). If ¢ = sp(c0), we symmetrize the above expression for g, and
if g’ = so(0o), we antisymmetrize the above expression for g. We choose v;® and

w}® such that they do not appear in u, at least one of them pairs non-degenerately
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with x;, and they pair trivially with all basis elements from V5 which appear in .
Similarly we choose v; and wj such that they do not appear in u and such that they

pair trivially with all basis elements from V5, which appear in u. Then

&)Jl,.A.,Jl o ®11,...,Im o (Lil,... 7;"7'1 ® Mjl,u.,jn2>(g : u) - O

and there exist indices 77, ...,4, _; such that

(I)le-,Jl © (I)h,me o (Lilll7--~7i;1/1—1 ® Mj1,~~-7jn2)<g ) u> 7& 0.
Now suppose that there exists another triple (n’/,m/,l') with I' +m’ +n’ = r +1
for which there are index sets 7/, . .. ,z';,l, Jiye-- ,jéé, I,....I, and Ji,...,J, such
that

B,

19

Jll/ © ®I£77[:n/ © (LZ/ 'LiL/l ® M]ivv];é)<g ’ u) % 0

10

But then there exists an index 4/, , such that

Dy, 0P 1 0 (Ly

® My,...;, )(u) # 0,

-/ !

venyl 7

kl IASY AR Ao |
ny n1+1

which contradicts with the choice of u. Hence, g -u € ST+ \ S0,

Now, suppose that n = 0. This means that v € socy, M and u consists only of
elements from Vi and V.. Notice that, when restricted to socgy, M, both maps
iy

e are g’-module homomorphisms. Therefore, in this case the

31 and (bIlv"wI

m

statement of the lemma reduces to the following claim. Let [ +m = r 4+ 1, and
Ii,..., I,,and Jy,...,J; be such that

Oy 0@ 1 (u)#0.
Then there exists g € U(g’) such that
‘i)Jh...,Jl © (I)Il,...,Im (9 : U) = 0.
Moreover,
(I)J{,...,Jl’, o®p . (g-u)#0

for some I7,...,I' ,, and Ji,...,J, with ' 4+m/ =r.

We consider two cases.
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_____ 1,,(u) # 0 with [ > 1. Then we can apply Lemma 5.5 to the
element @7, 7 (u). This yields an element g € U(g’) and disjoint index pairs
Ji, ..., J]_; such that

-----

®J{7"'7

g, ° ®117'“71m(g : u) 7A 0.

(2) Let &g o0 @y, 5 (u) # 0. Then, we can apply Lemma 5.6 to u. Thus there
exists g € U(g') with @0 ®;, 1 (g-u) =0, and there exist I],..., I’ , such
that

P, o QDIL,”J;”_I(Q ~u) # 0.

]

Lemma 5.5. Let u € socg, M be such that ®;, ;. (u) # 0 for some 1 and some
Ji,...,Ji. Then there exists g € U(g') such that él]l’m’]l (g -u) =0 and there exists
a collection Ji,...,J]_; such that é]{’.“,‘]llil(g ~u) # 0.

Proof. (1) If u consists only of elements from V5 and Va, then the claim follows
from Proposition 5.1.
(2) Let u contain elements from V; and V.. Then u = uy + - -+ + u; and without
loss of generality

w=uyQu] =u; @ (2;, @...2;, by, @ ... 4, +u"),

where v} contains only elements from V5 and Va,, and u” contains less than s
pairs z; ® t;. Then, either é]l7m7t]l(u1) = (i)le,Jl (u)) ® uf, or @Jl,,,m (uy) =

@y, 5 (u, @u”). In both cases we reduce this situation to case (1).

[

Lemma 5.6. Let u € socg, M be such that @y, 5, (u) # 0 for some m > 0 and
some Iy, ..., I,. Then there exists g € U(g') such that @5, 1. (9 -u) = 0 and

®I{,...,I;n71(g -u) # 0 for some collection I1,... I ;.

Proof. Let u be as in the statement of the lemma. Then v = u; + -+ 4+ u; and
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without loss of generality we can fix I, ..., I,, such that u; has the form

U1 :z“@zm@®zzm®u’1®t“®t12®®tzm—
U%®Zi2®"'®2im®U/1®U%*®ti2®"'®tim—"‘—
2 Rz, @Rz, QU QU Qt;, by, -+ Rt;,, @i +uj,

where t;; € N, is the dual to z;; € N,, and v{, v1* is a pair of dual basis elements
from V’ ® V/!. Moreover, @7, ; (uf) = 0. The elements us, ..., u; have similar
form. Notice that if the basis vectors U{ and w{*, j =1,...,k, appear in total at

most s times in any monomial in w] then they appear at most s + 1 times in any
monomial in v{ ® 2, -+ ® 2, QU O V" Vt;, @+ ®t; ... Let us take g; € ¢’
of the form

1ol koo ok 1 1 ! l
9i =0, QU+ ... 0 @) —w; Qu;T — -+ —w; @w,”

if g = gl(oc0), or respectively its symmetrization of antisymmetrization if g’ = sp(oo)
J

or so(c0). Then, if v ,... ;v;,,, and wl”, ... 25“, j=1,...,k, are vectors that do
not appear at all in the expression of w, then (giy 0+ 09, +1)(u1) has the desired
properties. We proceed in the same way with us, ..., u; to obtain the desired result.

[

Lemma 5.7. Let ¢ C go C g1 C g, M, and S™ be as in Theorem 5.2. Then

S+ /S s o semisimple g'-module and

StH0/s =y sooy, " (soelr Y (soe Y M)).

l+m—+n=r
Furthermore, if N is a submodule of M then

(ST AN)/(SD N N) = @ ﬁfj,ﬂ)(Socgm“)(soc(”ﬂ)]\f)).

l+m+n=r

Proof. Let SC+Lm+LI+1) denote the g'-submodule of M of elements v with the fol-

lowing properties:
(1) v € soc" ™V M:;
(2) m(v) € SOCSTH)(WS?H)M) where 7, socng)M — WS?H)M;

(3) Tpn 0 ma(v) € SOCé,+ ) (soem ™ (soe TV M), where

Tm SOC(m+1) (soc("+1)M) — SOC(m+1) (soc("+1)M).
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Notice that S +tm+1n'+1)  Gn+lm+Li+1) §f and only if (n/,m/,l') < (n,m,1) in

the lexicographic order. Thus, we obtain a filtration on M

0 C S(l,l,l) C 5(1,172) C---C 5(171,[/31) C 8(1,2,1) C--C S(l,Lgl,ng) C
5(27171) cC...C S(L1,L2,L3)’

where L, is the Loewy length of M as a g;-module and the other L’s denote the
Loewy lengths of the respective modules. Next, we intersect this filtration with
S+ Moreover, we take a coarser filtration in which only elements S+Lm+Li+1)

with [ +m + n = r appear:

0cC S(l,l,r+1) N S(r+1) C S(l,Q,r) N S(rJrl) C . C S(l,r+1,1) N S(rJrl) C

S(2,1,T) N S(r+1) C.oiC 5(2,7",1) N S(r+1) C--C S(T+1’1’1) N S(TJFI). (53)

Notice that the consecutive quotients in the filtration (5.3) have the following form:

e if m ?é 0, then (S(n+1,m+1,l+1) N S(r+1))/(8(n+1,m,l+2) N S(rJrl));
e if m =0 and n # 0, then (SCFLLHD A GO+ /(G421 A Gr+1)),

e if m =0 and n =0, then SGLHD N SO+,
We build now the corresponding filtration on the quotient ST+ /S,

0 c (WL g+ 4 gy 9 ... ¢ (SOHLLY A g+ 4 50 /5 (5 4)

For any [, m, and n, we define the following maps:

K, = @ @ Liy,.in, @ Mjy . jnys

ny+ng=n i1 <-<ip,
1< <iny

/ .
Km = @ ¢117---7Im’

{I1,....Im}

"o /
Kl - @ (th...,Jl'

{J1ses 1}

Furthermore, we set Ky = K = K{ = id. Recall that K, and K, are g’-module

homomorphisms, whereas K’ for [ > 0 is just a linear map.
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To prove that S+ /S() is a semisimple g’-module we proceed by induction. Notice
first that

K! o Kjo Ky : (ST n gl 1 gy /gt Wgﬂ)(socgg(socglM))

is an isomorphism of g’-modules. This follows from Proposition 5.1 and from the
observation that K restricted to S+ is a g’-module homomorphism. Thus we
proved that (SLr+h 0 S0+ 4 61 /S is semisimple.

Now suppose that S +Lm+LI41) A gr+1) 1 G(1) /§(") is semisimple for some n' 4
m’ + 1" = r and that

(S(n’+1,m’+l,l’+1) N S(rJrl) + S(r))/S(r) ~
@ socy V(socy ) socl ). (5.5)

g/
1 +m/ +n/ =r
(n”,m”,l”)g(n’,m’,l’)
Let (n,m,l) be the immediate succesor of (n’,m’,l") in the lexicographic order of
triples of integers with sum equal to 7. We prove next that S+bm+bLitl) q glr+1) 4
S /8 is semisimple.

Take an element u € S(PFLmFLIFD A G+ 4 G0 /S of the form u = uy + -+ +
us + S0, Let without loss of generality

U =Ty @ @ T, @U@y @ @Y, + U,
where ny + ny = n and uf has less than n elements z; and y;. Furthermore,

Uy =2, @ ® 25, QU @by, @+ @ t, +ul™,

Sm

where uﬁ“’) has less that m terms of the form z; ® t;. Let the elements uo, ..., u;

have a similar form. Then for any g € g’ either g-u =0 or g-u ¢ S +Lm+LI+) A
S+ 4 8 /S Let U denote the submodule of SM+tm+Li+) nglr+1) 4 (1) /§(r)

generated by all such elements u. Then

(S(n—l—l,m—i-l,l—l—l) N S(r+1) + S(r))/s(r) _ S(n’+1,m'+1,l’+l) N S(T+1) + S(r))/s(r) eU.
(5.6)

Moreover, we claim that

K/ o K, 0 K, : (StFmt LD q g0+ 4 60y /60— 5560 (soe(m Y (e M)
(5.7)
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is a well-defined surjective homomorphism of g’-modules with kernel (S 1™ +1LI'+1)n
Sr+1) 4 S(’“))/S(T).

It is clear that the above map is well-defined. Moreover, it is a g-module ho-
momorphism since K] is a g’-module homomorphism when restricted to K], o
K, ((S(+1m+Li+1)) - So we have to prove that the map is surjective and to com-

pute its kernel.

Theorems 3.10, 4.2, 4.4, 4.7, and 4.8 and Propositions 3.13 and 5.1 imply that
K]'o K!, 0 K,, = Timn © Tpmp © T, When restricted to SMHm+LHD Here 7, and

are defined as before and

Tmn - socélfq)(Wgﬂ)(ﬁgfl)M)) — socél/Jr )(socé’;“rl)(ﬁgf“)]\/[)).

This shows that the image lies in W(Z,Jr )(socm ! (soc" Y M)). Furthermore, every

[v] from the right-hand side has a representative v € M such that

o v e soc" VM — soc{V M,
o T, (v) € socir™ (soc Y M) — soc (socy Y M),

® Tn(v) € socél,ﬂ)(socé?q)(SOCS?H)M)) — socél) (soc ™ (soc Y ).

But then v € S(+im+Li+l) A §(r+1) " This proves surjectivity.

The last step is to compute the kernel of K} o K], o K,,. Suppose first that m # 0.
Then the immediate predecessor of SM+1m+Li+1) A §r+1) iy the filtration (5.3) is
Sntlmi+2) 4 §r+1) and every element from it belongs to ker K o K/ o K,. Hence,
ker K] o K! o K, D (S(tlmi+2)q gr+1) 4 5 /S We need to prove the opposite

inclusion.

Let v € ker K] o K! o K,. Suppose first that K, (v) = 0. Then v € St»m+La+l)n
S+ ¢ §ntlmi+2)AG(r+1)  Now, let v be such that K, (v) # 0 and K/ (K,(v)) = 0.
But then v € SC+Lmi+2) A U+ Finally, if K/ (K,(v)) # 0, it follows that
K] o K! o K,(v) = 0 and hence v € S™. Therefore, we proved that

ker Kl// o K7/n o Kn _ (S(n+1,m,l+2) N S(r+1) + S(r))/s(r)

Now, suppose that m = 0 and n # 0. Then the immediate predecessor of S*+1:Li+1)N
S+ in the filtration (5.3) is SFLD N S+ and it clearly belongs to ker K] o
K! o K,. Hence, (S!+1D) 0 g0+ 4 60y /S C ker K} o K|, o K,,. Vice versa,
if v € ker KJ' o K} o K, is such that K, (v) = 0 then v € Sm+Lutl) A gir+1)
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Snl+1.1) A §r+1) - Hence,

ker K] o K} o K,, = (S™!H1Y q g+l 4 gy /g(r),

Thus, we proved that (S+tm+Li+l) A gir+1) 4 G6()) /S s semisimple. Moreover,
(5.5), (5.6), and (5.7) imply

(S(n+1,m+1,l+1) N S(r—H) + S(r))/s(r) ~ @ mgl//-i—l)(mégn/_i_l)(ﬁgf/_i_l)M))‘

n'+m/+l'=r
(n',m/I")<(n,m,l)

This holds for every element in the filtration (5.4), so in particular STV /S is

semisimple and

Ste0/s0 = (B socy, Y (soel ) (socl M),
n+m-+l=r

Note that if N C M is any submodule of M, then we can interesect the above
filtrations with N and obtain

(ST AN)/(SINN) = P soc, Y (soel ) (socitUN)).

+m4n=r
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Chapter 6

Embeddings of non-isomorphic Lie

algebras

The goal of this chapter is to apply Theorem 5.2 to embeddings g’ C g, where g’
and g are non-isomorphic. More precisely, in each specific case we decompose an
embedding of general tensor type into intermediate embeddings in accordance with
Theorem 5.2. In this way, we again reduce the branching problem for embeddings of
general tensor type to a branching problem for embeddings of simpler types, which

will be then easy to derive.

We say that two embeddings g; C go and g3 C g4 of classical locally finite Lie
algebras are of the same type if they satisfy the conditions of Theorem 5.2 with the

same values k, [, a1, as,c1,b,d.

We start with an observation that considerably reduces the number of different

embeddings we have to consider.

Proposition 6.1. When the following groups of embeddings are of the same type,

the branching laws are the same in each group:

(1) sl(oc0) C gl(o0), gl(oo) C sl(c0), sl(oco) C sl(o0), and gl(co) C gl(oo),

Proof. Part (1) follows from Proposition 3.2. Parts (2) and (3) are trivial. The
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idea of proof of part (4) is to show as in Proposition 3.2 that every embedding
sl(V', V) C sp(V) can be extended to an embedding gl(V’, V) C sp(V) of the same
type. Thus, we obtain a chain of embeddings

sl(V/, V) C gl(V', VY) Csp(V)
which proves part (4). The proof of part (5) is analogous. O

As a result of Proposition 6.1, we can exclude from our considerations below the

cases of embeddings which involve sl(c0).

6.1 The cases sp(oo) C gl(oco) and so(oo) C gl(oo)

Let g’ be isomorphic to one of sp(V’) and so(V') and let g = gl(V,V.). Let g’ C g

be an embedding of general tensor type, i.e.

socyV = EV' @ N,, V/socyV =2 N,
socy Vi 2 kV' @ N, V/socyV = Ny.

Proposition 6.2. Let g’ C g be as above. Then there exist intermediate subalgebras
g1 = gl(Vi, Vi) and go = gl(Va, Vi) such that the conditions of Theorem 5.2 are
satisfied for the sequence g C go C g1 C g.

Proof. Notice that g’ C gl(V', V') C g. Therefore, we can apply Proposition 3.3 to
the embedding gl(V’, V') C g and construct g; and g, with the desired properties.
O]

In view of Proposition 6.2 and Theorem 5.2 it is enough to consider embeddings

g’ C g with the property
VeV, (6.1)

The following is an easy corollary of property (2.4) of the socle filtration of a direct

suimn.

Proposition 6.3. Let g C g satisfy (6.1). Then for the socle filtration of the

g-module VEPD we obtain

socg,"H)V@’(p’q) = k(p’Lq)socéTH)V’@(pﬂ).
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Corollary 6.4. Let ¢’ C g satisfy (6.1) and Vi, C VP9, Then
(i) if ¢ = sp(V'), we have

s @ A,
|o|=p+q—2r
where for k=1
A o\
Apr=3 CaBCal2n)T Ca(as)T
a,B,y

and for k > 2

(A1) (Vo)

Z Z C ozl S ,a G ,...,a;)D(aT,...,az')(al yeeer Q) aﬂca(QV)TC (25)

al, ,a;: X!

75

oy o, a,B,y
here the coefficients C’ A and DX are defined as in
1 yeey O )(O‘l 7"'70%) ( Qe )(al v"'rak)
Section 2.2;

(i) if ¢ = so(V’), we have

soeeVan = D B Vi,
|lo|=p+q—2r
where for k=1

A A o
By = Z CapCa(2y)Ca(26)
a,Byy

and for k > 2

A (') Y Iy
B Z Z C 0‘1 - ,a G ,...,a,:,)D(af,...,az)(a;,...,ak) O‘BC (2’7)65(25)'

+ M

O‘lv'vo‘kA
—

of oy B

Proof. Part (i): Proposition 6.3 above and Theorem 3.2 from [PSt] imply

FlaYal ~ Apy /!
s @ o,

|o|=p+q—2r

for some multiplicities a)**. To determine the value of a)* we have to derive the

branching law for embeddings sp(2n) C gl(2kn) of signature (k,0,0). There is the
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following chain of embeddings

sp(2n) C gl(2n) C gl(2kn)

which, using Proposition 2.4.2 from [HTW] for the first embedding and Proposition
2.4 from Chapter 2 for the second embedding, yields the desired expression for
a . ]

6.2 The cases gl(co) C sp(oco) and gl(co) C so(oo)

Let in this section g’ = gl(V',V)), and g = sp(V) or g = so(V). Furthermore, let
g’ C g satisfy the conditions

socg V =kV' @IV]® N,, V/socyV = N,.
The first observation we make is that k = [, as
socg Ve =1V @ kV! ® N, V./socyV. = Ny

by Theorem 2.1. However, in this case V' = V,, hence the socle filtrations of V' and

V., must be equal, and in particular &k = [.

Proposition 6.5. Let g = sp(V) and g’ C g satifsy the conditions

socgyV =kV' @ kV, ®N,, V/socyV = Nj.

Then there exist subalgebras g1 = sp(V1) and go = sp(Vz2) such that the chain g’ C
g2 C g1 C g satisfies the conditions of Theorem 5.2.

Proof. We now construct a subalgebra go = sp(V3) such that V, = £V’ @ kV/. Then

the existence of g; will follow from Proposition 4.1.

Consider the submodule V5 of V' such that V5, = kV' @ kV/. As in Proposition 3.1

we can show that there exists a decomposition
Vi=he---aoVioW oW,

with basis {vf}iel,jzl U {wf}ie[,jzl i such that Q(v{,wl) = 0;10;; and such that

----------

every element g € g’ lies in S?V,. Thus, on the one hand, the restriction of the

bilinear form €2 to V5 is non-degenerate and we can define the Lie subalgebra g, =
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sp(Va) = S2V,. Then trivially go C g = S?V. On the other hand, g’ C S?V; = gs.

In this way we obtain a subalgebra g, as desired. O]

An analogous statement holds for g = so(V).

Proposition 6.6. Let g = so(V) and ¢ C g satifsy the conditions

socgyV =kV' @ kV, ®N,, V/socyV = N,

Then there exist subalgebras g; = so(Vy) and go = so(Va) such that the chain g’ C
g2 C g1 C g satisfies the conditions of Theorem 5.2.

In view of Propositions 6.5 and 6.6 and Theorem 5.2 it is enough to consider em-

beddings g’ C g which satisfy the property
VEV @kV,. (6.2)

Proposition 6.7. Let g C g satisfy (6.2). Then

d
7’ d T
soc (r+1)y/®d _ @ (m) deOC( +1) 170 (m.d—m)

m=0

Corollary 6.8. Let g’ C g satisfy (6.2).

(i) If g = sp(V) then, for any simple g-module V5y C V¢,

d

(r+1) . A
SOCg/ ‘/<)\> = @ @ A /,,u’V/\/’,u’?

m=0 |N|=m—r
/| =d—m—r

where for k=1

A _ Y A
A Lt T 2 :CA’,M’C%%’

~,0
and for k > 2
A (A1,m1) (W'
Ay = g: +Z 2 .25C, (BY 3-8 (B 5eer ,Bk)le ..... Bi(BY )
VO B
By 5ens /B,Z
()\1 p1) (N,u")
The coefficients C ..... (B ) and D(Bfr ..... 856y OTC defined as before.



78 CHAPTER 6. EMBEDDINGS OF NON-ISOMORPHIC LIE ALGEBRAS

(i) If g = so(V) then, for any simple g-module Vi C V&9,

soc, )VA] @ @ B/\, ,VX ’

m=0 |X|=m—r
|u |=d—m—r

where for k=1
A A
B>\lvl/ = Z CKIHMICA/’(Q(S)T7
and for k > 2

(A1,p1) D(A’,u’)
W Z Z Ch 11 C( 25>Toﬂl, BB B ) (B BB By )
TOALL BB

61 I ?IBk
Proof. Part (i). Proposition 6.7 above and Theorem 2.2 in [PSt] imply
soc., / EB @ aj\\,#,V)f,’#/

m=0 |\|=
\u\dmr

for some unknown multiplicities aﬁ,’ - To determine those multiplicities we need to
derive the branching rule for an embedding gl(n) C sp(2kn) of signature (k, k,0).
We decompose such an embedding as gl(n) C gl(kn) C sp(2kn). Then we use
Proposition 2.4 from Chapter 2 for the first embedding, and Proposition 2.3.2 from
[HTW] for the second embedding, to obtain the desired value for a;\ -

6.3 The cases sp(oo) C so(oo) and so(oco) C sp(o0)

First we consider the case g’ = so(V’) and g = sp(V'), where the embedding ¢’ C g

is of general tensor type, i.e.

socyV = EV' @ N, V/socyV = N,

As in the previous sections we have the following proposition.

Proposition 6.9. Let g’ C g be as above. Then necessarily k € 2Z>y. Moreover,
there exist subalgebras g1 = sp(V1) and go = sp(Va), such that the chain g’ C g C
g1 C g satisfies the conditions of Theorem 5.2.
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Proof. To show that k is even we will employ the same ideas as in the proof of
Proposition 3.1. Let ¢ denote the embedding g’ — g. Let {v}}icz\ {0y be a basis of
V" with the property that Q(v;,v;) = d;1;0, where @) denotes the non-degenerate

symmetric bilinear form on g’. Consider the submodule V5 = kV' of V. Let

‘/2:‘71@...@‘/]{:

be a decomposition of V5 such that V; = V' for all i = 1,...,k and let vf e V; be
the image of v} under the isomorphism Vi = V'. Then, for all i, j, m,n and for any
positive s such that s # m and s # —i, we have

Qv], vp) = Qp(v; @ v_, — vl @) - vl,v) = —Qvd, (v @ v_, —v., @) - uy)
Sign(i)(si—km,OQ(Ug? Uﬁs) :

Hence, for m # —i we have Q(v/,v") = 0, and for m = —i we have Q(v/,v",) =
sign(i)Q(v?, v™,) for all positive integers s # —i and for all j,n. Since the restric-
tion of Q to V; is non-degenerate, for each j there exists n such that Q(v],v?) =

sign(i)d;+mo. We can adjust the Vi’s such that n is unique and different for each j.

However, now we will show that n cannot be equal to j. Suppose that for some j
we have n = j. Then {v}icz () is on the one hand a basis for V; which satisfies
Q(v],vl,) = sign(i)d; 1m0 and on the other hand a basis which satisfies Q(v/,v/,) =
di+m,0. But this is not possible. Hence each f/j is an isotropic subspace for 2 and
pairs non-degenerately with a unique V,,. This implies that & is even. We can further
renumerate the subspaces ‘7] so that f/j pairs non-degenerately with f/] e Then the

embedding ¢ has the form

/ / / no__ s 5"‘% s 3+§
o(v; @V — v @) = v ®u; P —vi®u; * +w

s—l—g

C_u i (6.3
PV - el (6.3)

J

Now we can define the Lie subalgebra go = sp(Vs) as S?V5. Clearly, go C g = S?V
and moreover (6.3) implies that g’ C S?V, = go. The existence of g; then follows
from Proposition 4.1. O

In what follows we replace k by 2k. Thus, in view of Proposition 6.9 and Theorem

5.2, it is enough to consider embeddings g’ C g with the property
V = 2kV! (6.4)

Theorem 6.10. Let ¢’ C g satisfy (6.4). Then the following hold.
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(i) The socle filtration of the g-module V¢ is

soc(r+1 Vel = (2k)? soc )y red,

(ii) For any simple Viyy C V4 we have

where for k=1

A . /
Ay = Z C)\l 1 725604 ﬁca QJC,B 27

’Y?(S A1 sH1
a,B,0,7

and for k > 2

A (A1,11) (A2,p2) N Ao
A " Z Z C)\l 1 7250 7 7ﬁk )(5;77Bk)D(ﬁ1 " 7ﬁ]€ )(6;775;)604 Bca QGCB 27

BBl 10
/317 ,ﬁ: A1, 01,2, 12

a?IB7U7T
T )\17/141 D Al:“’) .
he coefficients C,Bl, BB B and (B o5 (B ) OTE defined as before

Proof. Part (ii): From part (i) and Theorem 4.2 in [PSt] it follows that

SOC / g @ a/\/‘/[/\/

[N |=d—2r

for some multiplicities a3,. To obtain the values of a}, we construct the following

commutative diagram. Let {v]}icz (o) and {v!} ez o) be respectively the bases of

j=1,....2k
V' and of V' from Proposition 6.9. Let

V2/n = Span{vg}i:il,..‘,ﬁ:n

Vi, = span{v] } j—1,.. 2k -
i==%1,...,&n

We set g5, = A Vs, = so(2n), g5, = Vi, ® V3, = gl(2n), and gupn = 5*Vipn =
sp(4kn). Then we have an embedding

90/\‘/2171_>52V;1kn

given by (6.3) with k replaced by 2k. Notice that ¢ extends to an embedding



6.3. THE CASES sp(o0) C so(o0) AND so(o0) C sp(oo) 81

0 Vi @V) — S*Vjp, given by

K
o(v; ®v;) = va Uit + It @ ).

s=1

Therefore we obtain the following commutative diagram of embeddings

9on Bin - B
Y4kn 98kn ce Gdkrmn — . . .

We have to compute the branching laws for the vertical embeddings in the above
diagram. Each vertical embedding is of the form so(2n) C gl(2n) C sp(4kn). Then,
using Formula 2.4.1 from [HTW] for the first embedding and Section 6.2 above for

the second embedding, we obtain the desired multiplicities. O]

Remark. In Theorem 6.10 we actually prove that whenever we have an embedding
so(V') C sp(V) satisfying (6.4) there is an intermediate subalgebra isomorphic to
gl(V"). In other words, we have the following chain of embeddings

so(V') C gl(V') C sp(V).

Moreover, in the notations of Proposition 6.9, each V; is an isotropic subspace of V'
stabilized by so(V”) and by gl(V’). Thus

so(V') Cc gl(V") c m C sp(V),

where m = Stabso(vl)f/i and by Theorem 5.1 in [DP1] m is a maximal subalgebra of
sp(V).

The case of g’ = so(c0) and g = sp(o0) is treated in the same way and here we just

state the end results.

Let g’ C g be an embedding of general tensor type, i.e.

socgV = kV' @ N, V/socyV = N,
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Then we have the following analogue of Proposition 6.9.

Proposition 6.11. Let g’ C g be as above. Then necessarily k € 2Z=q. Moreover,
there ezist subalgebras g; = so(V}) and go = so(Vs), such that the chain ¢’ C go C
g1 C g satisfies the conditions of Theorem 5.2.

Thus, in what follows we replace k with 2k.

Theorem 6.12. Let g’ C g satisfy V = 2kV'. Then the following hold.
(i) The socle filtration of the g-module V¢ is

SOC(TJrl Vel = (2k)%soc 7;“ yred,

(ii) For any simple Vjyy C V& we have

soc )V[ N @ A, V<',\,>

|\ |=d—2r

where for k=1

A
Ay = Z S 7(25)Tcaﬁca20 B(2nT

V50,1541
a?/870-77—
and for k > 2
A (A1,p1) (A2,p2) AN o o2
Ay = Z Z S 2”0@17 ,ﬁk)(ﬁf,---,ﬁk)D(ﬁl BB i) (08020 G, 20T
,81 7Bk 77 )
B o
The coefficients C’ M) o gnd DY) __.are defined as before.

/81 ’” wgk )(ﬁl 7"'75k ) (ﬁl " 7ﬁk )(Bl 7"'7ﬁ]@ )



Chapter 7

Corollaries and further results

In this chapter we show what invariants determine the solution of the branching
problem completely. We also address two further questions of interest and show

how the results in this thesis give preliminary partial answers to these questions.

Corollary 7.1. Let ¢, g be classical locally finite Lie algebras and let g' C g be an
embedding satisfying (2.5). Then Theorem 5.2 implies that the branching law for
a fixed simple tensor g-module M depends only on the values k,l,a1,b,cq1,d, and

a9 = Co.

Let ¢’ C g be as above and let M’ and M be simple tensor modules for g’ and g
respectively. Denote by [M, M’] the total multiplicity of M’ in the socle filtration
of M as a g-module. Since M has finite Loewy length over g’ (see [PSe] or the
chapters above), [M, M'] is the multiplicity of M’ as a g’-module subquotient of M.
Our first goal is to determine the value of [M, M’].

Let us consider the case g’ = g = gl(c0). We fix M =V, and M' =V}, ,. First
we observe that if g’ C g is an embedding of type III, then isomorphic g’-modules

appear in a single layer of the socle filtration of M as a g’-module. Therefore

[V/\nu? V):’,u’] = Ai;ftufa (71)

where Aif . 18 as in Corollary 3.18. In particular, [Vaus Vi ] is finite.

If now g’ C g is an embedding of type I, we can sum up the multiplicities of all

occurencies of the module VY, , on the distinct layers of the socle filtration of V) ,

83
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as determined in Corollary 3.11. In this case we obtain

p+q
/ _ § § a b c d _ a+b, c+d
[V)\,,LM V)\’,}L’] — m)\)\//m)\//’A/mH’uum#//’ul — m/\7)\/mu7u/. (72)

r=0 [N+ =N |

When g’ C gis an embedding of type II, it is much easier to compute the multiplicity
[Vaus Vi ] directly, rather than use the socle filtration of V) , over g'. Therefore,

in this case we proceed as follows.

Let {v; }ier, {v] }icr be a pair of dual bases respectively for V/ and V, as submodules
of V and V, and let {z;}icr,, {ti}icr. be a pair of dual bases respectively for N,
and N.. Let as before V| = span{vy, ..., v} and V* = span{v],...,v;}. Similarly
let Vi, = span{vy, ..., v, 21, Z;m -k} and Vi = span{v}, ..., v5, t1, . b}

Then as before we can construct a commutative diagram of embeddings

g 95 e 9 . g
gm1 gmz te gmk g

such that all vertical arrows are of signature (1,0,m;) with ny, = my — k. If a
is finite we can construct the diagram so that np = a for all k. If a = oo then
limy 00 1 = a. We set V7 = V" N (V2P @ (V*)29) and similarly for V¥ ,,. Then
the Gelfand-Tsetlin rule implies

mi 1k . Nk Nk
[VAvll/ 9 V /7N//j| —_— TTLA’)\/TTL /

and thus

[V,\#“ V/\,/”u/] - mi)\/m;,;ﬂ. (73)

(7.1), (7.2), and (7.3) imply the following statement.

Corollary 7.2. Let g = g = gl(co) and let g’ C g be an embedding of general tensor

type. Then for any simple tensor g-module Vy, and any simple tensor g'-module

. we have

! o a+b, _c+d pA2,p2
[V/\vl“ V/\’,u’] - § : mA,Azmu,uzAN,#’ :

A2,142
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Proof. We have the following equalities:

/ a1+b C1+d >\27/J2 _
[V)\,/u V)\’ ’ E : M Ay Mo m)\l Agmul MQA -
A1,H1
A2,12
ai1+azs+b, ci4co+d /\2,,u2 _ a+b, c+d )\Q,Mz
E:mm My AN E:mug M AN
A2,12 A2, 142

]

Thus, the total multiplicity of VA’,#, in the decomposition of V) , depends only on
the values a + b, ¢ + d, k and [. Notice that when p = 0 Corollary 7.2 yields

a+b )\Q,M
V)\O,V)\/ / E m)\/\QA .

The above statement leads to the following observation. If M =V, , with A\, u # 0,
then there are simple constituents with infinite multiplicity in the decomposition of
M as a g'-module if and only if any of a,b, ¢, or d is infinite. In the special case
when M = V¢ (resp., M = V;,), the total multiplicity [M, M'] does not depend
on ¢+ d (resp., a +b), and Vyo (resp., Vp,) has simple constituents with infinite

multiplicity as a g’-module if and only if a or b (resp., ¢ or d) is infinite.

More generally, the following statement holds.

Corollary 7.3. Let g’ and g be any two classical locally finite Lie algebras and let
g C g be an embedding of general tensor type. Fix a simple tensor g-module M.
Then,

(1) if M =V, with \, ;1 # 0, there are simple constituents with infinite multiplicity
in the decomposition of M as a g’'-module if and only if any of the values a, b, c,

or d is infinite;

(2) if M = Vyg (resp., M = V,,,), M has simple constituents with infinite multi-
plicity as a g'-module if and only if any of a,b (resp., ¢,d) is infinite;

(8) in any other case a = ¢, b = d, hence M has simple constituents with infinite

multiplicity as a g'-module if and only if a or b is infinite.

Notice that to prove Corollary 7.3 it is enough to determine the multiplicity [V}y), V<’X)]
for embeddings sp(oco) C sp(co) of types I and II and the multiplicity [Viy, V[,N}] for
embeddings so(oco) C so(oco) of types I and II. By Theorem 5.2 all other cases reduce
to these and to Corollary 7.2.
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We now go back to the discussion of the category rT“en\/sg. Let g’ C g be a pair of

simple classical locally finite Lie algebras and let M be a simple tensor g-module.

Then, as we mentioned in Chapter 2, M as a module over g is an object of Tensy
([PSe]). A natural question to ask is when M is a tensor g’-module. The description
of tensor modules from [PSt] implies that each simple constituent comes with a finite
multiplicity. Thus, Corollary 7.3 gives a necessary condition for M to be a tensor

g’-module.

Let again g’ C g be an embedding of general tensor type of any two classical locally
finite Lie algebras and let M be a simple tensor g-module. Now we address the
question when M is indecomposable as a g’-module. Indecomposable modules play
a major role in [PSe| and [DaPSe]. One sufficient condition for indecomposability
is that the socle of M be a simple g’-module. Using the results from the previous

chapters we can check under what conditions on the embedding g’ C g this holds.

Let us again consider the case g’ = g = gl(oo) and M =V, ,. If ¢ C gis an
embedding of type I, then Corollary 3.11 implies that socy M is simple if and only

ifa=c=0.

If g’ C gis an embedding of type II, then Theorem 3.15 implies that socy M is never

simple.

If g C g is an embedding of type III, then Corollary 3.18 implies that socy M is
simple if and only if either k=1 and [ =0or k=0 and [ = 1.

Using Theorem 5.2, we can combine the above observations in the following propo-

sition.

Proposition 7.4. Let ¢’ = g = gl(co) and let ¢’ C g be an embedding of general
tensor type. Then, for any simple g-module Vy , with X\, u # 0, socg' Vs, is a simple
g’ -module if and only if a = ¢ =0 and either k =1 andl =0 or k=1 and [ = 0.
In addition, socy Vg is a simple g'-module if and only if a = 0 and either k =1
andl =0 ork=1andl=0.

In particular, Proposition 7.4 shows that socyVy , for A, i # 0 is simple if and only
if socy V' and socy Vi are simple. When i = 0, socy V) o is simple if and only if socy V'
is simple. Similar results can be obtained in the other cases too. Thus the following

corollary holds.

Corollary 7.5. If ¢’ and g are any two classical locally finite Lie algebras and g’ C g
is an embedding of general tensor type such that socyV and socyV, are simple g'-

modules, then any simple tensor g-module M is indecomposable over g'.
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