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Abstract

On Homomorphisms of

Diagonal Lie Algebras

by

Siarhei M. Markouski

Doctor of Philosophy in Mathematics

Jacobs University Bremen

Professor Ivan B. Penkov, Chair

Diagonal Lie algebras are defined as direct limits of finite-dimensional Lie alge-

bras under diagonal injective homomorphisms. An explicit description of the isomor-

phism classes of diagonal locally simple Lie algebras is given in the paper [A. A. Bara-

nov, A. G. Zhilinskii, Diagonal direct limits of simple Lie algebras, Comm. Algebra,

27 (1998), 2749-2766]. The three finitary infinite-dimensional Lie algebras sl(∞),

so(∞), and sp(∞) are important special cases of diagonal locally simple Lie algebras.

Many classical results have been extended to these three infinite-dimensional Lie al-

gebras. In particular, in the paper [I. Dimitrov, I. Penkov, Locally semisimple and

maximal subalgebras of the finitary Lie algebras gl(∞), sl(∞), so(∞), and sp(∞),

J. Algebra 322 (2009), 2069-2081] all locally semisimple subalgebras of g ∼= sl(∞),

so(∞), and sp(∞) are described, and moreover all injective homomorphisms s → g

are described in terms of the action of s on the natural and the conatural g-modules.

The present dissertation makes a substantial contribution to further extending these

results to the class of diagonal locally simple Lie algebras.

In Chapter 3 all locally simple Lie subalgebras of any diagonal locally simple

Lie algebra are described up to isomorphism. The main result of the dissertation,

Theorem 3.1.11, provides a list of conditions under which there exists an injective

homomorphism s → g of a locally simple Lie algebra s into a diagonal locally simple

Lie algebra g.

In Chapter 4, with Ivan Penkov, we study certain invariants of homomorphisms

of diagonal locally simple Lie algebras. The ideas and partial results presented in

this Chapter may lead to a description of such homomorphisms in the future.
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Chapter 1

Introduction

Infinite-dimensional Lie algebras have been studied over half a century, and it is

an accepted fact that there is no general structure theory of infinite-dimensional

Lie algebras. The reason is that there is a too large variety of types of infinite-

dimensional Lie algebras. In this thesis we study locally finite Lie algebras, i.e.

direct limits of finite-dimensional Lie algebras. These Lie algebras are a very natural

generalization of finite-dimensional Lie algebras, and for a long time their theory

has been overshadowed by the theory of affine or general Kac-Moody Lie algebras.

Only in the last decade the theory of infinite-dimensional locally finite Lie algebras

has started to play a more prominent role within the general subject of infinite-

dimensional Lie algebras and their representations.

The purpose of this thesis is to investigate a most natural class of locally simple

Lie algebras. This class consists of diagonal direct limits of simple Lie algebras,

and includes in particular the three classical locally simple infinite-dimensional Lie

algebras sl(∞), so(∞), and sp(∞).

Locally simple Lie algebras has been studied by many authors, in particular

by Y. Bahturin, A. Baranov, G. Benkart, E. Dan-Cohen, I. Dimitrov, K.-H. Neeb,

I.Penkov, H. Strade, N. Stumme, and A. Zhilinskii. A key role in the subject plays

the work of A. Baranov and his collaborators, see [B3], [B4], [BS]. In a series of

important papers Baranov classifies all simple finitary infinite-dimensional locally

finite Lie algebras over C and R. Over C Baranov’s result is extremely simple:

there are just three such Lie algebras sl(∞), so(∞), and sp(∞). In [B1], [B2]

Baranov introduces the class of diagonal locally finite Lie algebras and establishes

their general properties. In the important paper [BZ] A. Baranov and A. Zhilinskii

classify up to isomorphism the diagonal locally simple Lie algebras over C. The
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2 CHAPTER 1. INTRODUCTION

answer here is quite complicated, and the diagonal locally simple Lie algebras provide

a rich class of simple locally finite Lie algebras for which there is a hope for a

deep structure theory. Nevertheless, the classification of Baranov and Zhilinskii is

completely explicit.

There are already many results in the structure theory of the classical infinite-

dimensional Lie algebras sl(∞), so(∞), sp(∞), as well as of the wider class of root-

reductive Lie algebras. In particular, the Cartan, Borel, and parabolic subalgebras

of these Lie algebras have been described. This is the work of I. Penkov and his

collaborators, see [DP1], [PStr], [NP], [DaPS], [DP2], [Da], [DaP].

One of the key preliminary results for this thesis, along with the classification

of diagonal locally simple Lie algebras [BZ], is the recent paper of I. Dimitrov and

I. Penkov [DP3]. In this paper, among the other results, all locally semisimple

subalgebras of g ∼= sl(∞), so(∞), sp(∞), or gl(∞) are described up to isomorphism,

and the action of these subalgebras on the natural and conatural modules of g is

studied. This work is rooted in the classical works of A. Malcev [Mal] and E. Dynkin

[Dy], where all homomorphisms of semisimple finite-dimensional Lie algebras are

described. These latter works deserve a separate discussion, as they supply the

motivation for the work presented in the thesis.

The problem of classifying semisimple subalgebras of semisimple Lie algebras

is known from the beginning of the last century, and the solution of this problem

is one of the main results in the structure theory of finite-dimensional Lie algebras.

This problem is not only interesting by itself, but it has also had important alge-

braic and geometric applications. In particular, it is shown in [Mal] that the more

general problems of classifying semisimple subalgebras of arbitrary Lie algebras and

classifying all finite-dimensional Lie algebras with a given radical, can be reduced

to the above problem. There are also applications in the theory of Lie groups, for

example it was shown by Malcev that the problem of describing compact subgroups

of a real Lie group is equivalent to the problem of describing its complex semisimple

subgroups.

Malcev shows in [Mal] that the problem of classifying semisimple subalgebras

of semisimple Lie algebras reduces to the problem of classifying the semisimple

subalgebras of a simple Lie algebra. The study of semisimple Lie algebras of the

Lie algebra An is equivalent to the study of linear representations of semisimple Lie

algebras. The main results in this direction were obtained by E. Cartan and H.

Weyl in the first quarter of the last century. Semisimple Lie algebras of the classical

Lie algebras Bn, Cn, and Dn have been described by Malcev in [Mal] by studying
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orthogonal and symplectic representations of semisimple Lie algebras. Malcev also

described semisimple subalgebras of the exceptional Lie algebras G2 and F4.

In his work [Dy], E. Dynkin introduced new methods into the subject and was

able to complete the classification. In particular, he was able to list all semisimple

subalgebras of the exceptional Lie algebras E6, E7, and E8. Dynkin also introduced

an important invariant, the index of a simple subalgebra in a simple Lie algebra.

In relation to this present work, let us comment that in the finite-dimensional

case it is relatively easy to describe all pairs (s, g) consisting of a semisimple Lie

algebra s and a simple Lie algebra g such that there is an injective homomorphism

s → g. In their work, Malcev and Dynkin actually did much more: they described all

g-conjugacy classes of semisimple Lie subalgebras s ⊂ g. In the infinite-dimensional

case, however, the problem of describing all pairs (s, g) such that s admits an in-

jective homomorphism into g, already presents a challenge. The main result of the

thesis is the solution of the latter problem for diagonal locally simple g and locally

simple s (Theorem 3.1.11).

We now describe the body of the thesis in detail. In Chapter 2 we discuss some

ideas of Malcev’s paper [Mal] and recall the notion of index introduced by E. Dynkin

in [Dy]. We also discuss in detail some results of the two papers [DP3] and [BZ]

mentioned above, together with some general facts about diagonal Lie algebras. We

complete Chapter 2 by presenting two useful branching rules for finite-dimensional

Lie algebras of type A.

Chapter 3 contains the main result of the thesis, namely the classification of

locally simple subalgebras of diagonal locally simple Lie algebras up to isomorphism.

The first notable result (see Proposition 3.1.1 and Corollary 3.1.4) is that any sim-

ple finitary Lie algebra s admits an injective homomorphism into any diagonal Lie

algebra g. For the case when both s and g are non-finitary, the key statements

Proposition 3.1.5 and Proposition 3.1.6, together with some technical lemmas, lead

to the main result, Theorem 3.1.11. In this theorem the final description of all pairs

(s, g), of a locally simple Lie algebra s and a diagonal locally simple Lie algebra g

such that there is an injective homomorphism s → g, is given by a list of “if and only

if” conditions which are easy to check for concrete Lie algebras. In Section 3.2 we

present two further corollaries describing the set of equivalence classes of diagonal

locally simple Lie algebras.

In Chapter 4, jointly with Ivan Penkov, we study homomorphisms of diagonal

locally simple Lie algebras. In particular, the question of the existence of diagonal

and non-diagonal homomorphisms is discussed in Section 4.1. A natural represen-
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tation of a diagonal locally simple Lie algebra is defined in Section 4.2. We also

study the socle filtration of a natural g-module as an s-module for a homomorphism

s → g. A similar study plays a key role in the paper [DP3]. In Section 4.3 we

introduce the level of a homomorphism s → g; this is a new invariant which is used

in the proofs of Proposition 3.1.6 and Proposition 3.1.8.



Chapter 2

Preliminaries

All vector spaces and Lie algebras are defined over the field of complex numbers

C. We assume that all Lie algebras considered are finite dimensional or countable

dimensional.

2.1 Semisimple subalgebras of finite-dimensional Lie alge-

bras

Let s1 and s2 be two subalgebras of a given Lie algebra g. The subalgebras s1 and s2

are called Aut g-conjugate, or simply g-conjugate if there exists an automorphism f

of g for which s1 = f(s2). Clearly, two g-conjugate subalgebras of g are isomorphic.

The problem, solved by A. Malcev and E. Dynkin, is to describe all g-conjugacy

classes of semisimple subalgebras s ⊂ g for an arbitrary finite-dimensional Lie alge-

bra g.

An essential result from [Mal] states that if g′ is a maximal semisimple sub-

algebra of a finite-dimensional Lie algebra g, and s1 and s2 are two g-conjugated

semisimple subalgebras of g, then s1 and s2 are also g′-conjugated. This result

reduces the problem of classifying semisimple subalgebras of an arbitrary finite-

dimensional Lie algebra to the study of maximal semisimple subalgebras of a Lie

algebra and the study of semisimple subalgebras of semisimple Lie algebras. Both

of the latter two problems are solved in [Mal], [Dy].

Furthermore, let ε : s → g be an injective homomorphism of semisimple finite-

dimensional Lie algebras. Then g is isomorphic to a direct sum of simple Lie algebras,

so g ∼= g1 ⊕ · · · ⊕ gk with all gi being simple. The homomorphism ε is recovered

by the homomorphisms πi ◦ ε : s → gi, where πi are the corresponding projections.

5



6 CHAPTER 2. PRELIMINARIES

Therefore the problem of classifying the homomorphisms of semisimple Lie algebras

reduces to the problem of describing the homomorphisms of semisimple Lie algebras

into a simple Lie algebra.

The study of semisimple Lie algebras of the Lie algebra An is equivalent to

the study of linear representations of semisimple Lie algebras. The main results in

this direction were obtained by E. Cartan and H. Weyl in the first quarter of the

last century. Let g be a simple classical Lie algebra of type other than A, and s

be a semisimple Lie algebra. Malcev shows that to describe g-conjugacy classes of

s in g one needs the following two steps. First one finds all representations of s

which yield a homomorphism s → g: this is equivalent to finding all orthogonal or

symplectic representations of s of dimension equal to the dimension of the natural

representation of g, up to isomorphism. As a second step one describes all obtained

representations up to g-equivalence, where g-equivalent representations are the ones

which are conjugate by an outer automorphism of g. It is moreover shown in [Mal]

that if g is of type B or C, then the first step is sufficient, i.e. the isomorphism classes

of orthogonal or symplectic representations of s of a given dimension correspond

exactly to the g-conjugacy classes of s. Malcev further describes all symplectic and

orthogonal representations of semisimple subalgebras up to isomorphism, and in this

way solves the problem of classifying all semisimple subalgebras of simple classical

Lie algebras. He also studies the case when g is one of the exceptional Lie algebras

G2 and F4.

We now recall the definition of index of a simple subalgebra in a simple Lie

algebra introduced by Dynkin in [Dy]. For a simple finite-dimensional Lie algebra

g we denote by 〈 , 〉g the invariant non-degenerate symmetric bilinear form on g

normalized so that 〈α, α〉g = 2 for any long root α of g. If ϕ : s → g is an injective

homomorphism of simple Lie algebras, then 〈x, y〉ϕ := 〈ϕ(x), ϕ(y)〉g is an invariant

non-degenerate symmetric bilinear form on s. Consequently,

〈x, y〉ϕ = Ig
s (ϕ)〈x, y〉s

for some scalar Ig
s (ϕ). By definition Ig

s (ϕ) is the Dynkin index (or simply the index )

of s in g. If ϕ is clear from the context, we will simply write Ig
s . If U is any finite-

dimensional s-module, then the index Is(U) of U is defined as I
sl(U)
s , where s is

mapped into sl(U) through the module U . The following properties of the index are

established in [Dy].

Proposition 2.1.1. (i) Ig
s ∈ Z≥0.

(ii) Ik
sI

g
k = Ig

s .
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(iii) Is(U1 ⊕ · · · ⊕ Un) = Is(U1) + · · ·+ Is(Un).

(iv) If U is an s-module with highest weight λ (with respect to some Borel subalge-

bra), then Is(U) = dimU
dim s

〈λ, λ+ 2ρ〉s, where 2ρ is the sum of all positive roots of

s.

2.2 Diagonal infinite-dimensional Lie algebras

A Lie algebra g is called locally finite if any finite subset S of g is contained in

a finite-dimensional Lie subalgebra g(S) of g. If, for any S, g(S) can be chosen

simple (semisimple, reductive), g is called locally simple (semisimple, reductive). An

exhaustion

g1 ⊂ g2 ⊂ · · ·

of a locally finite Lie algebra g is a direct system of finite-dimensional Lie subalgebras

of g such that the direct limit Lie algebra lim−→ gn is isomorphic to g.

The classical locally finite infinite-dimensional Lie algebras sl(∞), so(∞), and

sp(∞) are defined as the unions ∪i∈Z>1sl(i), ∪i∈Z>1o(i), and ∪i∈Z>1sp(2i), respec-

tively, for any inclusions sl(i) ⊂ sl(i + 1), o(i) ⊂ o(i + 1), and sp(2i) ⊂ sp(2i + 2),

i > 1. It is easy to show that each of the above Lie algebras does not depend up

to isomorphism on the particular exhaustions chosen for its definition. In particu-

lar, the union of even orthogonal Lie algebras and the union of odd orthogonal Lie

algebras are isomorphic Lie algebras. We therefore do not distinguish the types B

and D in the infinite-dimensional case, and when considering classical simple Lie

algebras, we consider three types A, C, and O, where O stands for both types B

and D.

A locally reductive Lie algebra gl(∞) is defined as the union ∪i∈Z>1gl(i) for

the standard left-hand corner inclusions gl(i) ⊂ gl(i+ 1). A Lie algebra isomorphic

to a subalgebra of gl(∞) is called finitary. As it was shown by A. Baranov, up

to isomorphism, the Lie algebras sl(∞), so(∞), and sp(∞) are the only countable-

dimensional finitary locally simple Lie algebras, see [B2], [B3], [B4], [BS].

The notion of a diagonal locally finite Lie algebra is closely related to the notion

of a diagonal injective homomorphism of two finite-dimensional Lie algebras. Let

g1 and g2 be two finite-dimensional perfect Lie algebras (i.e. [gi, gi] = gi, i =

1, 2). Let si = s1
i ⊕ · · · ⊕ sni

i be a Levi subalgebra of gi, where s1
i , . . . , s

ni
i are the

simple constituents of si, and let V k
i be the natural ski -module, i = 1, 2. Since si

is perfect, there exists a unique irreducible si-module W k
i such that the restriction
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W k
i ↓ ski is isomorphic to V k

i , i = 1, 2. An injective homomorphism g1 → g2 is

called diagonal if all the simple constituents of the s1-module W l
2 ↓ s1 belong to

the set {W 1
1 , . . . ,W

n1
1 , (W 1

1 )∗, . . . , (W n1
1 )∗, T1}, 1 ≤ l ≤ n2, where T1 is the trivial

one-dimensional s1-module, and (W k
1 )∗ is the dual module to W k

1 . A locally finite

Lie algebra g is called diagonal if it admits an exhaustion by perfect subalgebras gi

such that all inclusions gi ⊂ gi+1 are diagonal homomorphisms.

In the papers [B1], [B2] some general properties of diagonal locally finite Lie

algebras are established. For instance, a criterion proved in [B1] which claims that

a simple locally finite Lie algebra is diagonal if and only if it admits an injective

homomorphism into a Lie algebra associated with some locally finite associative

algebra.

In this thesis we will be interested in the more restrictive class of diagonal

locally simple Lie algebras. The definition of these Lie algebras can be rewritten in

a simpler way. Indeed, if g1 ⊂ g2 are simple classical Lie algebras, the definition of

a diagonal inclusion is equivalent to the requirement that

V2 ↓ g1
∼= V1 ⊕ . . .⊕ V1︸ ︷︷ ︸

l

⊕V ∗
1 ⊕ . . .⊕ V ∗

1︸ ︷︷ ︸
r

⊕T1 ⊕ . . .⊕ T1︸ ︷︷ ︸
z

,

where Vi is the natural gi-module (i = 1, 2), V ∗
1 is the dual of V1, and T1 is the

one-dimensional trivial g1-module. The triple (l, r, z) is called the signature of g1 in

g2. The signature of ε : g1 → g2 is by definition the signature of ε(g1) in g2.

It is a result of Baranov (Corollary 5.9 in [B1]) that for any exhaustion g1 ⊂ g2 ⊂
· · · of a diagonal locally finite Lie algebra g, all injective homomorphisms gi ⊂ gi+1

are diagonal for large enough i. As a consequence, a diagonal locally simple Lie

algebra can be defined as a diagonal Lie algebra which admits an exhaustion

g1 ⊂ g2 ⊂ · · · (2.1)

by classical simple finite-dimensional Lie algebras, or equivalently as the direct limit

of a sequence of diagonal inclusions (2.1) of classical simple finite-dimensional Lie

algebras.

The class of diagonal locally simple Lie algebras contains the three finitary Lie

algebras sl(∞), so(∞), sp(∞). It makes sense to consider finitary and non-finitary

Lie algebras separately, as in the finitary case many more advanced results are

available. In particular, the result of Malcev and Dynkin mentioned above is partly

generalized in [DP3]. The ideas of the paper [DP3] play a key role in Chapter 4 of

the present thesis.
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We now recall an alternative definition of the Lie algebras sl(∞), so(∞), sp(∞),

and gl(∞). Let V be a fixed countable-dimensional vector space with basis v1, v2, . . .

and V∗ is the restricted dual of V , i.e. the span of the dual set v∗1, v
∗
2, . . . (v∗i (vj) =

δij). The space V ⊗ V∗ has an obvious structure of an associative algebra, and by

definition gl(V, V∗) (or gl(∞)) is the Lie algebra associated with this associative alge-

bra. The Lie algebra sl(V, V∗) (sl(∞)) is the commutator algebra [gl(V, V∗), gl(V, V∗)].

Given a symmetric non-degenerate form V × V → C, we denote by so(V ) (so(∞))

the subalgebra
∧2(V ) ⊂ sl(V, V∗) (the form V × V → C induces an identification of

V with V∗ which allows to consider
∧2(V ) as a subspace of V ⊗V∗). Similarly, given

an antisymmetric non-degenerate form V ×V → C, we denote by sp(V ) (sp(∞)) the

subalgebra S2(V ) ⊂ sl(V, V∗). Following these notations, the vector spaces V and

V∗ are by definition the natural and the conatural g-modules for g ∼= sl(∞), so(∞),

sp(∞), or gl(∞). These modules can be defined alternatively: V (respectively, V∗) is

(up to isomorphism) the only simple g-module which, for any exhaustion g = ∪igi,
restricts to a direct sum of the natural (respectively, its dual) representation of gi

and a trivial module. Notice that for g ∼= so(∞) or sp(∞) the natural g-module V

is isomorphic to the conatural g-module V∗.

Let g ∼= gl(∞), sl(∞), so(∞), or sp(∞). It is shown in [DP3] that a locally

semisimple subalgebra of g is isomorphic to a direct sum of simple Lie algebras and,

moreover, that each of these simple constituents is either finite-dimensional or is

itself isomorphic to sl(∞), so(∞), or sp(∞). In the framework of extending Malcev’s

approach to homomorphisms of infinite-dimensional Lie algebras, it is furthermore

shown that the structures of the natural g-module V and the conatural g-module

V∗ as modules over any locally semisimple subalgebra s ⊂ g can be described as

follows:

• the socle filtration of V (respectively, V∗) has depth at most 2;

• the non-trivial simple direct summands of the socle V ′ of V (resp., (V∗)
′ of V∗)

are just natural and conatural modules over infinite-dimensional simple ideals

of s, as well as finite-dimensional modules over finite-dimensional ideals of s;

each non-trivial simple constituent of V (resp., V∗) as a module over a simple

ideal of s occurs with finite multiplicity;

• the s-modules V/V ′ and V∗/(V∗)
′ are trivial.

In contrast with the finite-dimensional case, V and V∗ are not necessarily

semisimple s-modules. Nevertheless, the above three statements show that V and

V∗ have very “rigid” and completely explicit structures as s-modules.
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As we already mentioned in the first section, it has been shown by A. Malcev

in [Mal] that a homomorphism of finite-dimensional Lie algebras s → g can be

characterized by the induced structure of the natural g-module V as an s-module.

It is not known whether this is the case for infinite-dimensional Lie algebras as

the problem of determining g-conjugacy classes of locally semisimple subalgebras

s ⊂ g remains open for g ∼= gl(∞), sl(∞), so(∞), or sp(∞). However, the study

of the structures of the natural and the conatural g-modules as an s-module is an

important step as essential invariants of a homomorphism s → g are encoded in

these s-module structures.

We now go back to discussing general diagonal locally simple Lie algebras.

These Lie algebras are described by A. Baranov and A. Zhilinskii in [BZ]. Let us

recall some notions of this paper and state its main result, namely the classification

of diagonal locally simple Lie algebras up to isomorphism. This classification plays

a key role in the present thesis.

Let p1 = 2, p2 = 3, . . . be the increasing sequence of all prime numbers. A map

from the set {p1, p2, . . .} into the set {0, 1, 2, . . .}
⋃
{∞} is called a Steinitz number.

The Steinitz number which has value α1 at p1, α2 at p2, etc. will be denoted by

pα1
1 p

α2
2 · · · . Let Π = pα1

1 p
α2
2 · · · and Π′ = p

α′1
1 p

α′2
2 · · · be two Steinitz numbers. We

put Π Π′ = p
α1+α′1
1 p

α2+α′2
2 · · · , and we say that Π divides Π′ (or Π|Π′) if and only

if α1 ≤ α′1, α2 ≤ α′2, . . . . In the latter case we write ÷(Π′,Π) = p
α′1−α1

1 p
α′2−α2

2 · · · ,
where by convention p∞−∞

i = 1 for any i. We also define the greatest common

divisor GCD(Π,Π′) as p
min(α1,α′1)
1 p

min(α2,α′2)
2 · · · .

Let q ∈ Q. We write Π = qΠ′ (or q ∈ Π
Π′ ) if there exists n ∈ N such that nq ∈ N

and nΠ = nqΠ′. If there exists 0 6= q ∈ Q such that Π = qΠ′, then we say that Π

and Π′ are Q-equivalent and denote this relation by Π
Q∼ Π′. Suppose q ∈ Π

Π′ for

some 0 6= q ∈ Q. If p∞ divides Π, then p∞ also divides Π′ and so Π = qpkΠ′ for all

k ∈ Z. Hence in this case {qpk}k∈Z is a subset of Π
Π′ in our notation. On the other

hand, if there is no prime p with p∞ dividing Π, then the set Π
Π′ consists of the only

element q. If S = (s1, s2, . . .) is a sequence of positive integers, Stz(S) denotes the

infinite product
∞∏
i=1

si considered as a Steinitz number.

Let s be an infinite-dimensional diagonal locally simple Lie algebra, so there is

an exhaustion s = ∪isi with all inclusions si ⊂ si+1 being diagonal. Without loss

of generality we may assume that all si are of the same type X (X = A, C, or O),

and we say that s is of type X. Note that a diagonal Lie algebra can be of more

than one type. The triple (li, ri, zi) denotes the signature of the homomorphism
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si → si+1 and ni denotes the dimension of the natural si-module. We assume

that ri = 0 if X is not A (for all classical Lie algebras of type other than A the

natural representation is isomorphic to its dual). We also assume that li ≥ ri for

all i for type A algebras. (This does not restrict generality as one can apply outer

automorphisms to a suitable subexhaustion if necessary.) Finally, if not stated

otherwise, we assume that n1 = 1, l1 = n2, r1 = z1 = 0. Denote by T the sequence

of all such triples {(li, ri, zi)}i∈N. We will write s = X(T ) as a manifestation of the

fact that T determines s up to isomorphism.

Set si = li + ri, ci = li − ri (i ≥ 1), S = (si)i∈N, C = (ci)i∈N. Put δi = s1···sn−1

ni
.

Then δi+1 = s1···sn

ni+1
= s1···sn−1

ni+(zi/si)
≤ δi. The limit δ = lim

i→∞
δi is called the density index

of T and is denoted by δ(T ). Since δ2 = s1/n2 = 1, we have 0 ≤ δ ≤ 1. If δ = 0

then the sequence of triples T is called sparse. If there exists i such that δj = δi 6= 0

for all j > i, the sequence is called pure. We say that T is dense if 0 < δ < δi for

all i.

If there exists i such that cj = sj for all j ≥ i, then T is called one-sided

(in which case we can and will assume that cj = sj for all j ≥ 1). Otherwise it

is called two-sided. If, for each i, there exists j > i such that cj = 0, then T is

called symmetric. Otherwise it is called non-symmetric. In the latter case we will

assume that ci > 0 for all i ≥ 1. Set σi = c1···ci
s1···si

. The limit σ = lim
i→∞

σi is called the

symmetry index of T and is denoted by σ(T ). Observe that 0 ≤ σ ≤ 1. Two-sided

non-symmetric sequences T with σ(T ) = 0 are called weakly non-symmetric, and

those with σ(T ) 6= 0 are called strongly non-symmetric.

The classification of the infinite-dimensional diagonal locally simple Lie algebras

is given by the following two theorems.

Theorem 2.2.1. [BZ] Let X = A, C, or O. Let T = {(li, ri, zi)} and T ′ =

{(l′i, r′i, z′i)}, where ri = r′i = 0 if X 6= A. Set δ = δ(T ), σ = σ(T ), δ′ = δ(T ′),

σ′ = σ(T ′). Then X(T ) ∼= X(T ′) if and only if the following conditions hold.

(A1) The sequences T and T ′ have the same density type.

(A2) Stz(S)
Q∼ Stz(S ′).

(A3)
δ
δ′
∈ Stz(S)

Stz(S′) for dense and pure sequences.

(B1) The sequences T and T ′ have the same symmetry type.

(B2) Stz(C)
Q∼ Stz(C ′) for two-sided non-symmetric sequences.

(B3) There exists α ∈ Stz(S)
Stz(S′) such that α σ

σ′
∈ Stz(C)

Stz(C′) for two-sided strongly non-

symmetric sequences. Moreover, α = δ
δ′

if in addition the triple sequences are
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dense or pure.

Theorem 2.2.2. [BZ] Let T = {(li, ri, zi)}, T ′ = {(l′i, 0, z′i)}, and T ′′ = {(l′′i , 0, z′′i )}.

(i) A(T ) ∼= O(T ′) (resp., A(T ) ∼= C(T ′)) if and only if T is two-sided symmetric,

2∞ divides Stz(S ′), and the conditions (A1), (A2), (A3) of Theorem 2.2.1 hold.

(ii) O(T ′) ∼= C(T ′′) if and only if 2∞ divides both Stz(S ′), and Stz(S ′′), and the

conditions (A1), (A2), (A3) of Theorem 2.2.1 hold.

It is easy to see from Theorem 2.2.1 that a diagonal locally simple Lie algebra

X(T ) is finitary (i.e. isomorphic to sl(∞), so(∞), or sp(∞)) if and only if Stz(S) is

finite.

As we see from the above classification, the density type and the symmetry

type are well-defined invariants of a diagonal locally simple Lie algebra. We will

call such an algebra pure, dense, or sparse if its sequence of triples T can be chosen

pure, dense, or sparse, respectively. We will also call an algebra one-sided, two-sided

symmetric, two-sided strongly non-symmetric, or two-sided weakly non-symmetric if

its sequence of triples T can be chosen with that respective property.

For an arbitrary sequence S = {si}i≥1 by sl(Stz(S)) (respectively, so(Stz(S)),

sp(Stz(S))) we will denote the pure Lie algebraA({(si, 0, 0)}i≥1) (resp., O({(si, 0, 0)}i≥1),

C({(si, 0, 0)}i≥1)).

The following result is due to A. Baranov.

Proposition 2.2.3. Any simple subalgebra of a diagonal simple Lie algebra is di-

agonal.

Proof. Let s be a simple subalgebra of a diagonal Lie algebra s′. Corollary 5.11

in [B1] claims that a simple locally finite Lie algebra is diagonal if and only if it

admits an injective homomorphism into a Lie algebra associated with some locally

finite associative algebra. Hence s′ admits an injective homomorphism into a Lie

algebra g associated with a locally finite associative algebra. Since s is locally finite,

the existence of the injective homomorphism s → s′ → g implies that s is diagonal

too.

Proposition 2.2.3 reduces the study of locally simple subalgebras of diagonal

Lie algebras to the study of diagonal locally simple subalgebras.

As we have seen from the classification theorems, the isomorphism class of a

diagonal locally simple Lie algebra s can be characterized in terms of the sequence
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T of signatures of a fixed simple exhaustion s = ∪isi. The following corollary of

Proposition 2.1.1 expresses the Dynkin index of a diagonal inclusion of classical

simple finite-dimensional Lie algebras in terms of the signature of the inclusion.

Corollary 2.2.4. Let s ⊂ g be a diagonal inclusion of signature (l, r, z), s and g

being finite-dimensional classical simple Lie algebras of the same type (A, C, or O).

Then Ig
s = l + r.

Proof. Indeed, if V is the natural s-module then clearly Is(V ) = Is(V
∗), and (iii)

implies the result for type A algebras. If s and g are of type O or C then the result

follows from the observation in [DP3] that I
sp(U)
s = Is(U) and I

so(U)
s = 1

2
Is(U) when

U admits a corresponding invariant form. This latter observation follows easily from

[Dy].

If s and g are two diagonal locally simple Lie algebras, then constructing a

homomorphism θ : s → g is equivalent to constructing commutative diagram

s1

θ1
��

ϕ1 // s2

θ2
��

ϕ2 // . . .

g1
ψ1 // g2

ψ2 // . . .

(2.2)

for some exhaustions s1
ϕ1→ s2

ϕ2→ . . . and g1
ψ1→ g2

ψ2→ . . . of s and g respectively.

An injective homomorphism θ is called diagonal if all θi can be chosen diagonal for

sufficiently large i.

To deal with diagonal homomorphisms we will need the following result.

Lemma 2.2.5. Let ε1 : s1 → s2 and ε2 : s1 → g be diagonal injective homo-

morphisms of finite-dimensional simple classical Lie algebras of signatures (l, r, z)

and (p, q, u) respectively. Let a triple of non-negative integers (p′, q′, u′) satisfy the

following conditions:

p+ q = (l + r)(p′ + q′), p− q = (l − r)(p′ − q′), n = n2(p
′ + q′) + u′,

where n and n2 are the dimensions of the natural g- and s2-modules respectively.

Then, under the assumption that s2 and g are of the same type X, there exists

a diagonal injective homomorphism θ : s2 → g of signature (p′, q′, u′) such that

ε2 = θ ◦ ε1. If s2 and g are of different types X and Y , the statement holds under
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the following additional conditions on the triple (p′, q′, u′):

p′ = q′ if (X, Y ) = (A,O) or (X,Y ) = (A,C);

p′ is even if (X, Y ) = (O,C) or (X, Y ) = (C,O).

Proof. Lemma 2.6 in [BZ] states the same result in case all Lie algebras s1, s2,

g are of the same type. The proof of Lemma 2.6 in [BZ] works also when the

three algebras are not of the same type, but only if s2 can be mapped into g by

an injective homomorphism of signature (p′, q′, u′). It is easy to check that the

additional conditions guarantee the existence of such a homomorphism.

Consider the diagram in (2.2) without the commutativity assumption. Lemma

2.2.5 implies that if each θi is a diagonal injective homomorphism and, for any i ≥ 1,

the two diagonal injective homomorphisms ψi◦θi and θi+1◦ϕi of si into gi+1 have the

same signature, then there are diagonal injective homomorphisms θ′i with the same

property making the diagram commutative. Later on in the thesis when constructing

diagrams as in (2.2) in concrete situations, we will check commutativity by showing

only that the signatures of ψi ◦ θi and θi+1 ◦ϕi coincide for all i ≥ 1. It will then be

assumed that θi are replaced by corresponding diagonal injective homomorphisms

θ′i making the diagram commute.

We conclude this section by the result which can be found in [BZ] (see also all

references in there, for instance [B2]).

Lemma 2.2.6. Let h ⊂ g ⊂ s be finite-dimensional classical simple Lie algebras,

rk h > 10. Assume that the inclusion h ⊂ s is diagonal. Then the inclusions h ⊂ g

and g ⊂ s are also diagonal.

Corollary 2.2.7. Let h ⊂ g ⊂ s be infinite-dimensional diagonal locally simple Lie

algebras. Assume that the inclusion h ⊂ s is diagonal. Then the inclusions h ⊂ g

and g ⊂ s are also diagonal.

2.3 Branching rules

For a given injective homomorphism ε : s1 → s2 of Lie algebras, a branching rule is a

rule which allows to decompose an arbitrary s2-module as a s1-module through the

homomorphism ε. In this thesis we use branching rules for two types of homomor-

phisms. The first one is the so-called standard homomorphisms, i.e. homomorphisms

of signature (1, 0, 1) which are used to define the classical infinite-dimensional Lie
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algebras. The second type are the homomorphisms of signature (k, 0, 0) (”proper”

diagonal homomorphisms). We now present these two branching rules for Lie alge-

bras of type A.

Throughout the thesis F λ
n denotes an irreducible sl(n)-module with highest

weight λ = (λ1, . . . , λn), λi ∈ Z≥0. Note that the isomorphism class of F λ
n is

determined by the differences λ1 − λ2, . . . , λn−1 − λn.

Theorem 2.3.1. (Gelfand-Tsetlin rule [Z]) Consider a subalgebra sl(n) ⊂ sl(n+ 1)

of signature (1, 0, 1). Then, there is an isomorphism of sl(n)-modules

F λ
n+1 ↓ sl(n) ∼=

⊕
µ

F µ
n , (2.3)

where the summation runs over all integral weights µ = (µ1, . . . , µn) satisfying λ1 ≥
µ1 ≥ λ2 ≥ · · · ≥ µn ≥ λn+1.

Consider the sl(n) ⊕ sl(n)-module F µ
n ⊗ F ν

n . By Theorem 2.1.1 of [HTW] its

restriction to sl(n) := {x⊕ x, x ∈ sl(n)} decomposes as
⊕
λ

cλµνF
λ
n , where cλµν is the

Littlewood-Richardson coefficient. One can iterate this branching rule to obtain the

decomposition for higher tensor products. Let cλµ1...µk
denote the coefficient obtained

in this manner, so,

F µ1
n ⊗ · · · ⊗ F µk

n ↓ sl(n) ∼=
⊕
λ

cλµ1...µk
F λ
n , (2.4)

where the summation runs over all integral dominant weights λ with λi ≥ 0. We

will call the numbers cλµ1...µk
generalized Littlewood-Richardson coefficients.

The following branching rule was communicated to us by J. Willenbring.

Proposition 2.3.2. Consider a diagonal subalgebra sl(n) ⊂ sl(kn) of signature

(k, 0, 0). Then, there is an isomorphism of sl(n)-modules

F λ
kn ↓ sl(n) ∼=

⊕
ν

(
∑

µ1,...,µk

cλµ1...µk
cνµ1...µk

)F ν
n , (2.5)

where one summation runs over all integral dominant weights ν with νi ≥ 0 for all i

and the other summation runs over all sets of integral dominant weights µ1, . . . , µk

with (µj)i ≥ 0 for all i, j.

Proof. Consider the block-diagonal subalgebra sl(l) ⊕ sl(m) ⊂ sl(n) (n = l + m).

By Theorem 2.2.1 of [HTW] F λ
n ↓ sl(l)⊕ sl(m) decomposes as

⊕
µν

cλµνF
µ
l ⊗ F ν

m. Let
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now the direct sum of k copies of sl(n) be a subalgebra sl(kn) with block diagonal

inclusion. By iteration of this branching rule we see that the decomposition of

F λ
kn ↓ sl(n) ⊕ · · · ⊕ sl(n) is determined by the generalized Littlewood-Richardson

coefficients:

F λ
kn ↓ sl(n)⊕ · · · ⊕ sl(n) ∼=

⊕
µ1...µk

cλµ1...µk
F µ1
n ⊗ · · · ⊗ F µk

n , (2.6)

where sl(n)⊕· · ·⊕ sl(n) is the block-diagonal subalgebra of sl(kn), and the summa-

tion runs over all integral dominant weights µ1, . . . , µk with (µj)i ≥ 0.

Consider now a subalgebra sl(n) ⊂ sl(kn) of signature (k, 0, 0). One can obtain

(2.5) as a combination of the two branching rules (2.4) and (2.6).

In Proposition 2.3.2 the sum is taken over all integral dominant weights ν with

νi ∈ Z≥0 for all i. In order for F ν
n to have a non-zero coefficient in (2.5) both

Littlewood-Richardson coefficients cλµ1...µk
and cνµ1...µk

must be non-zero for some

µ1, . . . , µk. But for that we must have
kn∑
i=1

λi =
n∑
i=1

νi. Therefore the summation

in (2.5) may be taken to run over only those weights ν with fixed
n∑
i=1

νi. Hence

all modules F ν
n which are present in (2.5) with non-zero coefficients are pairwise

non-isomorphic. Indeed, if F ν′
n
∼= F ν

n both have non-zero coefficients in (2.5), then

the weight ν ′ can be obtained by shifting the weight ν by an integer, so
n∑
i=1

νi =

n∑
i=1

ν ′i implies ν ′ = ν. This argument allows us to refer to a non-zero coefficient

(
∑

µ1,...,µk

cλµ1...µk
cνµ1...µk

) as the multiplicity of F ν
n in (2.5).

Corollary 2.3.3. For a diagonal subalgebra sl(n) ⊂ sl(kn) of signature (k, 0, 0) the

restriction F λ
kn ↓ sl(n) has a submodule with highest weight

(ν1, . . . , νn) = (λ1 + · · ·+ λk, λk+1 + · · ·+ λ2k, . . . , λkn−k+1 + · · ·+ λkn).

Proof. Indeed, if we set µi = (λi, λk+i, . . . , λkn−k+i) for i ∈ {1, . . . , k}, then it easy

to check that both coefficients cλµ1...µk
and cνµ1...µk

are non-zero, and therefore the

highest weight module F ν
n is present in (2.5) with non-zero multiplicity.



Chapter 3

Locally simple subalgebras of

diagonal Lie algebras

In this chapter we classify up to isomorphism the locally simple subalgebras of

diagonal locally simple Lie algebra. These results are presented in the article [Mar].

Throughout the rest of the dissertation all diagonal Lie algebras considered will be

assumed to be infinite dimensional diagonal locally simple.

3.1 The main classification

We begin the classification by asking whether sl(∞) admits an injective homomor-

phism into any non-finitary diagonal Lie algebra. The answer turns out to be posi-

tive, and the following construction was suggested to us by I. Dimitrov.

Let Fn be the natural representation of sl(n). Note that under the injective

homomorphism sl(n) → sl(n+1) of signature (1, 0, 1), the exterior algebra
∧·(Fn+1)

decomposes as two copies of
∧·(Fn) as an sl(n)-module. Fix a map θn : sl(n) →

sl(2n) such that the natural representation of sl(2n) decomposes as
∧·(Fn) as an

sl(n)-module. Then there exists a map θn+1 : sl(n + 1) → sl(2n+1) such that the

natural representation of sl(2n+1) decomposes as
∧·(Fn+1) as an sl(n + 1)-module

and the following diagram commutes:

sl(2)

θ2
��

// . . . // sl(n)

θn

��

// sl(n+ 1)

θn+1

��

// . . .

sl(22) // . . . // sl(2n) // sl(2n+1) // . . . .

(3.1)

17
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Here the lower row is assumed to consist of injective homomorphisms of signature

(2, 0, 0). By induction, the diagram in (3.1) yields an injective homomorphism of

sl(∞) into sl(2∞).

We will prove now that similar injective homomorphisms exist in a more general

setting. The following result will be used later to prove that any finitary diagonal

Lie algebra admits an injective homomorphism into any diagonal Lie algebra.

Proposition 3.1.1. sl(∞) admits an injective homomorphism into any pure one-

sided Lie algebra s of type A.

Proof. By Theorem 2.2.1 s is isomorphic to sl(Π) for some infinite Steinitz number

Π. Therefore it is sufficient to show the existence of a commutative diagram

sl(2)

θ2
��

// sl(3)

θ3
��

// . . . // sl(k)

θk

��

// sl(k + 1)

θk+1

��

// . . .

sl(n1n2) // sl(n1n2n3) // . . . // sl(n1 · · ·nk) // sl(n1 · · ·nk+1) // . . .

(3.2)

for suitable {ni}, where θi are injective homomorphisms and n1, n2, . . . are chosen

so that
∞∏
i=1

ni = Π. Indeed, the diagram in (3.2) yields an injective homomorphism

sl(∞) → sl(n1n2 · · · ), and sl(n1n2 · · · ) is isomorphic to s by Theorem 2.2.1. We will

choose the homomorphisms θk so that there is an isomorphism of sl(k)-modules

Vk ↓ sl(k) ∼= ak0

0∧
(Fk)⊕ ak1

1∧
(Fk)⊕ · · · ⊕ akk

k∧
(Fk).

Here Vk stands for the natural sl(n1 · · ·nk)-module, Fk is the natural sl(k)-module

and the coefficients aki , i = 0, . . . , k, are non-negative integers. The above injective

homomorphism of sl(∞) into sl(2∞) corresponds to the particular case nk = 2 and

aki = 1 for all k ≥ 2, i = 0, . . . , k.

We see that if the numbers {aki } satisfy the conditions aki + aki+1 = nka
k−1
i , k ≥

3, i = 0, . . . , k − 1 and a2
0 + 2a2

1 + a2
2 = n1n2, then the homomorphisms θk can be

chosen so that the diagram in (3.2) commutes.

We will add numbers a1
0, a

1
1, a

0
0 to the set of coefficients {aki } and will require

a2
0 + a2

1 = n2a
1
0, a

2
1 + a2

2 = n2a
1
1, a

1
0 + a1

1 = n1, and a0
0 = 1. Then the numbers {aki }
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will form an infinite triangle

a0
0

a1
0 a

1
1

a2
0 a

2
1 a

2
2

. . .

such that

aki + aki+1 = nka
k−1
i , k ≥ 1 and a0

0 = 1. (3.3)

It is enough to prove that a triangle of non-negative integers satisfying (3.3)

exists for a suitable choice of ni. Set bk :=
ak

k−1

n1···nk
for k ≥ 1. A simple calculation

shows that akk = n1 · · ·nk(a0
0−b1−b2−· · ·−bk). Notice that since a0

0 = 1, the numbers

b1, b2, . . . uniquely determine the entire triangle, as the lth “diagonal” {ak+lk }k≥0 of

the triangle is determined by the previous diagonal {ak+l−1
k }k≥0 and the sequence

n1, n2, . . . .

Now we will find conditions on bk which ensure that all aki are non-negative.

Since ak+1
k ≥ 0, the numbers bk should be non-negative. In order for akk to be non-

negative we should have
k∑
i=1

bi < a0
0 for all k (since bi are non-negative, we can

rewrite these conditions as
∞∑
i=1

bi ≤ 1). The entries of the diagonal {ak+2
k }k≥0 can

be found from (3.3): ak+2
k = n1 · · ·nk+2(bk+1 − bk+2) for k ≥ 0. This requires the

sequence {bk − bk+1} to be non-negative. If we set b
(1)
k := bk − bk+1 for k ≥ 1,

then in a similar way we obtain ak+3
k = n1 · · ·nk+3(b

(1)
k+1 − b

(1)
k+2). This requires the

sequence {b(2)
k := b

(1)
k − b

(1)
k+1} to be non-negative. Continuing this procedure, we

get ak+lk = n1 · · ·nk+lb(l−1)
k+1 for all l ≥ 3, where by definition b

(l+1)
k = b

(l)
k − b

(l)
k+1.

Now we see that the non-negative integers aki satisfying (3.3) exist if there exists a

non-negative sequence {bk}k≥1 with bk ∈ 1
n1···nk

Z≥0 and
∞∑
k=1

bk ≤ 1 such that

all iterated sequences of differences {b(l)k }k≥1 are non-negative. (3.4)

Note that the sequence {bk = 1
qk }, q > 1 satisfies (3.4) as b

(l)
k = 1

qk (1 − 1
q
)l > 0

for all k, l ≥ 1. (In the case nk = n for all k, taking q = n yields an injective

homomorphism sl(∞) ↪→ sl(n∞).) We will find the desired sequence {bk} as a

convergent infinite linear combination of geometric sequences.

Fix q ≥ 4 and let Π = m1m2 · · · . Choose a strictly increasing sequence of

integers {lk}k≥0 so that l0 = 0 and m1m2 · · ·mlk > (q−1)qk2+1

q−2
for k ≥ 1, which
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is possible as Π is infinite. Take nk = mlk−1+1 · · ·mlk for k ≥ 1. Then clearly

n1n2 · · · = Π.

Let us now construct the sequence {bk} for the chosen n1, n2, . . . . For i ≥ 1

we denote ci = 1 +
∞∑
j=i

εj
1
qi (

1
qi − 1

q
) · · · ( 1

qi − 1
qi−1 )(

1
qi − 1

qi+1 ) · · · ( 1
qi − 1

qj )
, where the

numbers εj, satisfying

0 ≤ εj <
q − 2

(q − 1)qj2+1
, (3.5)

are to be chosen later, and put bk =
∞∑
i=1

ci

(
1

qi

)k
. We will show that, if the numbers

εj satisfy (3.5), then the series for ci converges to a positive number for i ≥ 1, the

series for bk converges for k ≥ 1, and
∞∑
k=1

bk ≤ 1. Moreover, we will show that by

varying εj inside certain intervals we can make each bk to be of the form 1
n1···nk

Z≥0.

We will have then b
(l)
k =

∞∑
i=1

ci

(
1

qi

)k (
1− 1

qi

)l
≥ 0, so {b(l)k } will be a sequence of

non-negative numbers for any l. Hence the final condition in (3.4) will be satisfied.

As a matter of convenience we denote qi = 1
qi . Then let cij =

εj

qi(qi−q1)···(qi−qi−1)(qi−qi+1)···(qi−qj)

for i ≤ j. We see that ci = 1 +
∞∑
j=i

cij. Let us prove that this series converges abso-

lutely. We have

|ci − 1| =

∣∣∣∣∣
∞∑
j=i

εj
( 1
qi )j(1− qi−1) · · · (1− q)(1− 1

q
) · · · (1− 1

qj−i )

∣∣∣∣∣
≤

∞∑
j=i

εj
( 1
qi )j(qi−1 − 1) · · · (q − 1)(1− 1

q
) · · · (1− 1

qj−i )

≤
∞∑
j=i

εjq
ij

(1− 1
q
)(1− 1

q2
) · · ·

≤
∞∑
j=i

εjq
ij

(1− 1
q
− 1

q2
− · · · )

=
∞∑
j=i

εjq
ij(q − 1)

q − 2
.

Then, using (3.5), we obtain |ci − 1| ≤
∞∑
j=i

qij

qj2+1
=

1

q
+

1

qi+2
+

1

q2i+5
+ · · · <

1

q
+

1

q2
+ · · · = 1

q − 1
. Thus, the series 1 +

∞∑
j=i

cij converges absolutely and its sum

ci is a number from the interval
(
q−2
q−1

, q
q−1

)
(in particular, ci is positive) for all i.
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Furthermore,

∞∑
k=1

bk =
∞∑
i=1

ci
qi

+
∞∑
i=1

ci
(q2)i

+ · · · < q

q − 1

(
∞∑
i=1

1

qi
+

∞∑
i=1

1

(q2)i
+ · · ·

)

=
q

q − 1

(
1

q − 1
+

1

q2 − 1
+

1

q3 − 1
+ · · ·

)
<

q

q − 1

(
1

q − 1
+

1

(q − 1)2
+ · · ·

)
=

q

q − 1
· 1

q − 2
< 1 because q ≥ 4.

Since every term in these expressions is non-negative, the convergence of each series

bk =
∞∑
i=1

ci

(
1

qi

)k
follows.

Finally, let us show that the numbers εj, satisfying (3.5), can be chosen so that

bk ∈ 1
n1···nk

Z≥0. We know that bk =
∞∑
i=1

ciq
k
i =

∞∑
i=1

qki +
∞∑
i=1

∞∑
j=i

cijq
k
i . From what

we proved it follows that the latter sum is absolutely convergent. Therefore we can

rewrite it as bk =
∞∑
i=1

qki +
∞∑
j=1

j∑
i=1

cijq
k
i . Note that the numbers cij were defined

as solutions of the equation


q1 . . . qj
...

. . .
...

qj−1
1 . . . qj−1

j

qj1 . . . qjj




c1j
...

cjj

 =


0
...

0

εj

 using the well-

known formula for inverting a Vandermonde matrix. Thus,

j∑
i=1

qki cij = 0 for k < j

and

j∑
i=1

qji cij = εj. Hence, bk =
∞∑
i=1

qki +
k−1∑
j=1

j∑
i=1

cijq
k
i +εk, so bk−εk depends only on

ε1, . . . , εk−1. Let us introduce the notation fk(ε1, . . . , εk−1) =
∞∑
i=1

qki +
k−1∑
j=1

j∑
i=1

cijq
k
i

for k ≥ 2 and f1 =
∞∑
i=1

qi =
∞∑
i=1

1

qi
=

1

q − 1
.

Now we define inductively the numbers εk. We choose ε1 in such a way that b1

is the smallest number of the form 1
n1

Z≥0 which is not less than f1. Then we have

0 ≤ ε1 = b1 − f1 <
1
n1
< q−2

(q−1)q2
(because of the choice of n1), so ε1 lies inside the

corresponding interval of (3.5). Assuming that ε1, . . . , εk−1 are already chosen, we

choose εk to make bk the smallest number of the form 1
n1···nk

Z≥0 which is not less than

fk(ε1, . . . , εk−1). Then 0 ≤ εk = bk − fk(ε1, . . . , εk−1) <
1

n1···nk
< q−2

(q−1)qk2+1
(again,

because of the choice of n1, . . . , nk), so εk satisfies (3.5). Therefore the sequence
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{bk} satisfies all the required conditions, and the statement follows.

Remark. Since so(∞) and sp(∞) are subalgebras of sl(∞), each of them

admits also an injective homomorphism into any one-sided pure Lie algebra of type

A.

The following two lemmas show that certain conditions guarantee the existence

of injective homomorphisms of non-finitary diagonal Lie algebras.

Lemma 3.1.2. Let s1 = X(T1) and s2 = X(T2) be diagonal Lie algebras of the

same type (X = A, C, or O), neither of them finitary. Set Si = Stz(Si), S =

GCD(S1, S2), Ri = ÷(Si, S), δi = δ(Ti), Ci = Stz(Ci), C = GCD(C1, C2), Bi =

÷(Ci, C), and σi = σ(Ti) for i = 1, 2. We assume that R1 is finite.

(i) Assume that s1 and s2 are non-sparse of type A, both R1 and R2 are finite, and

S is not divisible by an infinite power of any prime number. If 2R1

δ1
< R2

δ2
, then

s1 admits an injective homomorphism into s2. If 2R1

δ1
= R2

δ2
, then s1 admits an

injective homomorphism into s2 unless s1 is pure and s2 is dense.

(ii) Assume that s1 and s2 are non-sparse, both R1 and R2 are finite, and S is not

divisible by an infinite power of any prime number. In addition, assume that

one of the following is true:

– both s1 and s2 are one-sided;

– B1 is finite, either s1 is one-sided and s2 is two-sided non-symmetric or s2

is two-sided weakly non-symmetric and s1 is two-sided non-symmetric;

– B1 is finite, both s1 and s2 are two-sided strongly non-symmetric, either

B2 is infinite or C is divisible by an infinite power of some prime number;

– both B1 and B2 are finite, both s1 and s2 are two-sided strongly non-

symmetric, C is not divisible by an infinite power of a prime number, and
R1σ1

B1
≥ R2σ2

B2
.

Under these assumptions R1

δ1
< R2

δ2
implies that s1 admits an injective homo-

morphism into s2. If R1

δ1
= R2

δ2
, s1 admits an injective homomorphism into s2

unless s1 is pure and s2 is dense.

(iii) Assume that s1 and s2 are non-sparse. If R2 is infinite or S is divisible by an in-

finite power of some prime number, then s1 admits an injective homomorphism

into s2.

(iv) If s2 is sparse, then s1 admits an injective homomorphism into s2.
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Proof. The Steinitz numbers S1, C1 and the indices δ1, σ1 are in general not well-

defined for a Lie algebra s1: these values characterize a given exhaustion of s1.

However, if s1 is non-sparse and S1 is not divisible by an infinite power of any prime

number, then the number R1

δ1
does not depend on the exhaustion of s1 (because then

by condition A2 of Theorem 2.2.1 Stz(S1)
Stz(S′1)

is a set containing exactly one element for

S ′1 corresponding to any other exhaustion of s1, and therefore R1

δ1
is well-defined by

condition A3). Also, under the assumptions made in the last statement of (ii), the

number σ1R1

B1
does not depend on the exhaustion of s1 (this follows from condition

B3 of Theorem 2.2.1). The finiteness of R1, R2, B1, B2 does not depend on the

exhaustion either, so in the proofs of all four statements we can exhaust s1 in any

convenient way. The same applies to s2.

We will assume that X = A and prove all statements for type A Lie algebras.

If s1 and s2 are of type O or C, then both s1 and s2 are one-sided and the proof is

analogous to the proof in the type A case when s1 and s2 are one-sided.

Let us now set up some notations. Let s1 be exhausted as sl(n0) ⊂ sl(n1) ⊂ · · · ,
each inclusion sl(ni) → sl(ni+1) being of signature (li, ri, zi), i ≥ 0. By possibly

changing some first terms of the exhaustion, we can choose n0 to be divisible by

R1. Similarly, let sl(m0) ⊂ sl(m1) ⊂ · · · be the exhaustion of s2, each inclusion

sl(mi) → sl(mi+1) being of signature (l′i, r
′
i, z

′
i), i ≥ 0. Set si = li + ri, ci = li − ri,

s′i = l′i + r′i, and c′i = l′i − r′i for i ≥ 0. Then S1 = n0s0s1 · · · , C1 = n0c0c1 · · · ,

S2 = m0s
′
0s
′
1 · · · , C2 = m0c

′
0c
′
1 · · · , δ1 = lim

i→∞

n0s0 · · · si−1

ni
, δ2 = lim

i→∞

m0s
′
0 · · · s′i−1

mi

,

σ1 = lim
i→∞

c0 · · · ci
s0 · · · si

, and σ2 = lim
i→∞

c′0 · · · c′i
s′0 · · · s′i

.

Consider a diagram

sl(n0)

θ0
��

// sl(n1)

θ1
��

// . . . // sl(ni)

θi

��

// sl(ni+1)

θi+1

��

// . . .

sl(mk0) // sl(mk1) // . . . // sl(mki
) // sl(mki+1

) // . . . ,

(3.6)

where θi is a diagonal homomorphism of signature (xi, yi,mki
− (xi + yi)ni), i ≥ 0.

Taking into consideration the argument given after Lemma 2.2.5, we see that to

make such a diagram well-defined and commutative it is enough to have

si(xi+1 + yi+1) = (xi + yi)s
′
ki
· · · s′ki+1−1, (3.7)

ci(xi+1 − yi+1) = (xi − yi)c
′
ki
· · · c′ki+1−1, (3.8)
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and

mki
≥ (xi + yi)ni (3.9)

for i ≥ 0. Finally, we set p0 = n0

R1
and pi = p0s0 · · · si−1 for i ≥ 1. We are now ready

to prove that there exist numbers xi, yi, i ≥ 0 satisfying (3.7) − (3.9) in all four

cases.

(i) The Steinitz number R2 is finite in this case. Possibly by changing the

exhaustion of s2 we can choose m0 to be divisible by R2. Choose also each ki large

enough so that m0s
′
0 · · · s′ki−1 is divisible by R2pi (this is possible since pi divides S)

and put qi =
m0s′0···s′ki−1

R2pi
for i ≥ 0. Put also xi = yi = qi. Then it is easy to verify

that (3.7) and (3.8) hold, and (3.9) is equivalent to
m0s′0···s′ki−1

R2mki
≤ n0s0···si−1

2R1ni
.

Suppose that δ2
R2

< δ1
2R1

. Pick α ∈ ( δ2
R2
, δ1

2R1
). Since δ1 = lim

i→∞

n0s0 · · · si−1

ni

and δ2 = lim
i→∞

m0s
′
0 · · · s′i
mi

we have
m0s′0···s′ki−1

R2mki
≤ α ≤ n0s0···si−1

2R1ni
for i ≥ i0, ki ≥ j0.

Obviously we can choose each ki greater than j0. Also we can construct θi only for

i ≥ i0 and the diagram in (3.6) will still give us an injective homomorphism of s1

into s2.

Let now δ2
R2

= δ1
2R1

. If s2 is pure then
m0s′0···s′ki−1

R2mki
= δ2

R2
= δ1

2R1
≤ n0s0···si−1

2R1ni
, where

the latter inequality holds because the sequence n0s0···si−1

ni
is non-increasing. Finally,

if both s1 and s2 are dense, then for each i we have δ2
R2

= δ1
2R1

< n0s0···si−1

2R1ni
, so to make

m0s′0···s′ki−1

R2mki
≤ n0s0···si−1

2R1ni
we choose ki sufficiently large.

(ii) Possibly by changing the exhaustions of s1 and s2 we choose n0 to be divisible

by R12
u and m0 to be divisible by R22

u, where u is the maximal power of 2 dividing

S (u is finite because 2∞ does not divide S). We also choose m0 large enough so

that m0

R2
≥ n0

R1
. Denote again qi =

m0s′0···s′ki−1

R2pi
, i ≥ 0 (ki is chosen large enough to

make R2pi divide m0s
′
0 · · · s′ki−1).

If both s1 and s2 are one-sided, we put xi = qi, yi = 0. In the other three

cases B1 is finite, so c0c1 · · · divides Mc′0c
′
1 · · · for some finite M . By changing

the exhaustion of s1 we can make c0c1 · · · divide c′0c
′
1 · · · . For that we replace the

signature (li, ri, zi) with ((li + ri + 1)/2, (li + ri− 1)/2, zi) for finitely many i (li + ri

is odd for all i ≥ 0 because s0s1 · · · = R1S
n0

is not divisible by 2). Now we can choose

each ki large enough so that c0 · · · ci−1 divides c′0 · · · c′ki−1. Then denote ti =
c′0···c′ki−1

c0···ci−1

for i ≥ 1 and t0 = 1. Notice that for each i ≥ 0 the numbers ci and c′i have the

same parities as the numbers si and s′i respectively. But all si and s′i are odd, so

ci and c′i are odd as well. Hence ti and qi are odd, and we put xi = (qi + ti)/2 and

yi = (qi − ti)/2. Let us check that yi ≥ 0 (or qi ≥ ti). This is obvious for i = 0. For
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i ≥ 1 the inequality yi ≥ 0 is equivalent to R2

m0
·
c′0···c′ki−1

s′0···s′ki−1
≤ R1

n0
· c0···ci−1

s0···si−1
, or

R2

m0

(σ2)ki
≤ R1

n0

(σ1)i, (3.10)

where (σ1)i = c0···ci−1

s0···si−1
is a non-increasing sequence which tends to σ1 and (σ2)i =

c′0···c′i−1

s′0···s′i−1
is a non-increasing sequence which tends to σ2. Let us verify the inequality

in (3.10) case by case.

If s1 is one-sided, then (σ1)i = 1 for i ≥ 1 and our inequality is equivalent to

(σ2)ki
≤ m0R1

n0R2
. This holds in case s2 is two-sided non-symmetric because of the

assumption m0

R2
≥ n0

R1
made at the beginning of the proof. If s2 is two-sided weakly

non-symmetric, then lim
i→∞

(σ2)ki
= σ2 = 0, and therefore (σ2)ki

≤ m0R1

n0R2
(σ1)i for large

enough ki in case s1 is two-sided non-symmetric.

Let now both s1 and s2 be two-sided strongly non-symmetric, B2 be infinite

or C be divisible by an infinite power of some prime number. In this case there

exists an infinite Steinitz number C ′ such that c0c1 · · · divides 1
C′ c

′
0c
′
1 · · · . Since

σ1 = lim
i→∞

(σ1)i > 0 and the sequence (σ1)i decreases, to verify (3.10) it suffices to

prove that (σ2)ki
≤ m0R1

n0R2
σ1. We have m0

R2
≥ n0

R1
, therefore it is enough to prove that

(σ2)ki
≤ σ1. This clearly holds for large enough ki if σ2 < σ1. Otherwise we change

the exhaustion of s2 such that the new symmetry index σ̃2 = σ2/N is less than σ1

for a finite N |C ′ (we replace l′i, r
′
i by (s′i+u)/2, (s

′
i−u)/2 respectively, where c′i = uv

and v|N for finitely many i) and repeat the same construction of xi, yi. Then σ1

stays the same and in the new construction the inequality (σ̃2)ki
≤ σ1 holds for large

enough ki.

Finally, let both B1 and B2 be finite, both s1 and s2 be two-sided strongly non-

symmetric, C be not divisible by an infinite power of a prime number, and R1σ1

B1
≥

R2σ2

B2
. Then c′0c

′
1 · · · = Nc0c1 · · · for an odd number N , and by possibly changing the

exhaustion of s2 we can make c′0c
′
1 · · · = c0c1 · · · and repeat the same construction.

Then B1

B2
= n0

m0
, and therefore R1σ1

R2σ2
≥ B1

B2
= n0

m0
. Then lim

i→∞
(σ2)ki

= σ2 <
m0R1

n0R2

(σ1)i

for all i, since (σ1)i is a non-increasing sequence which does not stabilize. Now

clearly (3.10) holds for large enough ki.

So far we have proven that in all cases we can choose exhaustions of s1 and s2

such that xi = 1
2
(qi + ti) and yi = 1

2
(qi − ti) are non-negative integers (in the first

case, where both s1 and s2 are one-sided, we just put ti = qi, so xi = qi, yi = 0).

Since we have xi + yi = qi and xi − yi = ti, it is easy to check (3.7) and (3.8). The

condition in (3.9) is equivalent to
m0s′0···s′ki−1

R2mki
≤ n0s0···si−1

R1ni
, and under the assumption
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δ2
R2
< δ1

R1
or δ2

R2
= δ1

R1
its proof is analogous to that in (i).

(iii) Let us fix an exhaustion of s1 and choose m0 in the exhaustion of s2 such

that R′
2p0|m0 and m0

R′
2
s′0s

′
1 · · · is divisible by S for some finite R′

2. Moreover, we

can choose R′
2 to be arbitrary large (if R2 is infinite, then R′

2 can be any divisor of

R2; if p∞|S, then R′
2 can be pN for any N ≥ 1). Denote qi =

m0s′0···s′ki−1

R′
2pi

and put

xi = yi = qi (xi = 2qi, yi = 0 for types O and C). Similar to the proof of (i), the

conditions in (3.7) and (3.8) are satisfied, and (3.9) is equivalent to the inequality
m0s′0···s′ki−1

R′
2mki

≤ n0s0···si−1

2R1ni
. Since the exhaustion of s1 is fixed, the right-hand side is

bounded by δ1
2R1

from below. But
m0s′0···s′ki−1

R′
2mki

≤ 1
R′

2
, and therefore it is enough to

choose R′
2 to be greater than 2R1

δ1
.

(iv) Choose each ki large enough so that m0s
′
0 · · · s′ki−1 is divisible by pi and

denote qi =
m0s′0···s′ki−1

pi
, i ≥ 0. Then put xi = yi = qi (xi = 2qi, yi = 0 for

types O and C). The conditions in (3.7) and (3.8) are again satisfied, and (3.9)

is equivalent to the inequality
m0s′0···s′ki−1

mki
≤ n0s0···si−1

2R1ni
. But s2 is sparse, therefore

lim
i→∞

m0s
′
0 · · · s′i
mi

= 0, so the inequality holds for large enough ki.

Lemma 3.1.3. Let s1 = X1(T1) and s2 = X2(T2) be diagonal Lie algebras, neither

of them finitary. Set Si = Stz(Si), S = GCD(S1, S2), Ri = ÷(Si, S), and δi = δ(Ti)
for i = 1, 2. We assume that R1 is finite.

(i) Assume that s1 and s2 are non-sparse, both R1 and R2 are finite, and S

is not divisible by an infinite power of any prime number. In addition, let

(X1, X2) = (A,C), (A,O), (O,C), or (C,O). If 2R1

δ1
< R2

δ2
, then s1 admits

an injective homomorphism into s2. If 2R1

δ1
= R2

δ2
, then s1 admits an injective

homomorphism into s2 unless s1 is pure and s2 is dense.

(ii) Assume that s1 and s2 are non-sparse, both R1 and R2 are finite, and S is

not divisible by an infinite power of any prime number. In addition, assume

that (X1, X2) = (C,A) or (O,A). If R1

δ1
< R2

δ2
, then s1 admits an injective

homomorphism into s2. If R1

δ1
= R2

δ2
, then s1 admits an injective homomorphism

into s2 unless s1 is pure and s2 is dense.

(iii) Assume that s1 and s2 are non-sparse. If R2 is infinite or S is divisible by an in-

finite power of some prime number, then s1 admits an injective homomorphism

into s2.

(iv) If s2 is sparse, then s1 admits an injective homomorphism into s2.
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Proof. The proofs of all four statements in the lemma are analogous to the corre-

sponding proofs of Lemma 3.1.2. We will point out only the essential differences.

(i) If (X1, X2) = (A,C) or (A,O), we put xi = yi = qi as in the proof of

Lemma 3.1.2 (i). If (X1, X2) = (O,C) or (C,O), we put xi = 2qi, yi = 0. Since

we are dealing with Lie algebras of different types we have to pay attention to

the additional conditions of Lemma 2.2.5. These conditions are obviously satisfied.

The rest of the proof is the same and the diagram in (3.6) (with Lie algebras of

corresponding types) yields an injective homomorphism of s1 into s2.

(ii) Since s1 is of type O or C, s1 is one-sided. The Lie algebra s2 is not two-

sided symmetric because 2∞ does not divide S2. Thus s2 is either one-sided or

two-sided non-symmetric. Both cases were considered in Lemma 3.1.2 (ii) for type

A Lie algebras. The construction of an injective homomorphism of s1 into s2 is the

same in the case we now consider.

(iii), (iv) If (X1, X2) = (A,C) or (A,O), we put xi = yi = qi, and if (X1, X2) =

(C,A), (O,A), (O,C), or (C,O), we put xi = 2qi, yi = 0. The proofs of (iii) and

(iv) are completed in a way similar to the proofs of Lemma 3.1.2 (iii) and (iv).

Corollary 3.1.4. The three finitary Lie algebras sl(∞), so(∞), and sp(∞) admit

an injective homomorphism into any diagonal Lie algebra.

Proof. Let s be a diagonal Lie algebra. If s is finitary, then s is isomorphic to one

of the three Lie algebras sl(∞), so(∞), sp(∞). Hence sl(∞), so(∞), admit sp(∞)

admit an injective homomorphism into s. If s is not finitary, then (by an easy

corollary from Lemma 3.1.3 (iii), (iv)) there exists a pure one-sided Lie algebra s′

of type A which admits an injective homomorphism into s. Then each of the Lie

algebras sl(∞), so(∞), sp(∞) can be mapped by an injective homomorphism into

s′ by Proposition 3.1.1, and the statement follows.

Proposition 3.1.5. Let s1 = X1(T1) be a subalgebra of s2 = X2(T2). Set S1 =

Stz(S1), S2 = Stz(S2). Then S1|S2N for some N ∈ Z>0.

Proof. We take s := s1 and g := s2, in order to use the notation si for an exhaustion

of s. Since s admits an injective homomorphism into g there is a commutative

diagram

s1

θ1
��

// . . . // si

θi

��

// . . .

gk1 // . . . // gki
// . . . .
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Set M = I
gk1
s1 (θ1). Then, by Proposition 2.1.1 (ii), we have I

gki
gk1
M = Isi

s1
I

gki
si (θi)

for i ≥ 1. Then
i−1∏
j=1

I
sj+1
sj |M

ki−1∏
j=k1

I
gj+1
gj for i ≥ 1. Thus, S1|S2Mn1, where n1 is the

dimension of the natural representation of s1.

Proposition 3.1.6. Let s be a sparse one-sided Lie algebra of type A not isomorphic

to sl(∞). Then s admits no non-trivial homomorphism into a pure one-sided Lie

algebra of type A.

Proof. Assume for the sake of a contradiction that there is an injective homomor-

phism of s into some pure one-sided Lie algebra of type A. Let s be exhausted as

sl(n1) ⊂ sl(n2) ⊂ · · · , each inclusion sl(ni) → sl(ni+1) being of signature (li, 0, zi).

Recall that by the definition of a sparse Lie algebra, lim
i→∞

n1l1 · · · li−1

ni
= 0. Then

there is a commutative diagram

sl(n1)

θ1
��

// . . . // sl(ni)

θi

��

(li,0,zi) // sl(ni+1)

θi+1

��

// . . .

sl(m1) // . . . // sl(m1 · · ·mi)
(mi+1,0,0) // sl(m1 · · ·mi+1) // . . . .

(3.11)

The lower row constitutes an exhaustion of the pure Lie algebra sl(m1m2 · · · ).

Denote by Vi the natural sl(m1 · · ·mi)-module for i ≥ 1. Note that θi makes Vi

into an sl(ni)-module. Let

Vi ↓ sl(ni) ∼=
⊕
λ∈Hi

Tλ ⊗ F λ
ni

(3.12)

be the decomposition into a direct sum of isotypic components. Here Tλ = Homsl(ni)(F
λ
ni
, Vi ↓

sl(ni)) is a trivial sl(ni)-module, and Hi is the set of all highest weights appearing

in this decomposition. We can rewrite (3.12) (non-canonically) as

Vi ↓ sl(ni) ∼=
⊕
λ∈Hi

F λ
ni
⊕ · · · ⊕ F λ

ni︸ ︷︷ ︸
tλ

, (3.13)

where tλ = dimTλ. Since all weights λ ∈ Hi are dominant, for each λ = (λ1, . . . , λni
),

λ1−λni
is a non-negative integer. Set di = max

λ∈Hi

(λ1−λni
). We define H(ϕ) and d(ϕ)

in a similar way for an arbitrary injective homomorphism ϕ of finite-dimensional

classical simple Lie algebras of type A, so that H(θi) = Hi and d(θi) = di.

Let us show that di ≥ di+1 for i ≥ 1. By ϕi we denote the injective ho-

momorphism sl(m1 · · ·mi)
(mi+1,0,0)−→ sl(m1 · · ·mi+1) as in (3.11). Notice first that
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H(ϕi ◦ θi) = H(θi) = Hi and dim Homsl(ni)(F
λ
ni
, Vi+1) = mi+1 dim Homsl(ni)(F

λ
ni
, Vi)

for all λ ∈ Hi. Furthermore, d(ϕi ◦ θi) = d(θi) = di.

Let λ ∈ Hi+1 be a weight such that λ1 − λni+1
= di+1. Since (li, 0, zi) is

the signature of the diagonal injective homomorphism sl(ni) → sl(ni+1), there is a

chain of inclusions sl(ni) ⊂ sl(lini) ⊂ sl(lini + 1) ⊂ · · · ⊂ sl(lini + zi) = sl(ni+1)

such that their composition is the original map in (3.11). Applying the Gelfand-

Tsetlin rule (see Theorem 2.3.1) repeatedly, we obtain that F λ
ni+1

↓ sl(lini + zi − j)

has a submodule with highest weight (λ1, λ2, . . . , λlini+zi−j−2, λlini+zi−j−1, λni+1
) for

j = 1, . . . , zi. We then apply Corollary 2.3.3 to the submodule of F λ
ni+1

↓ sl(lini)

with highest weight (λ1, . . . , λlini−1, λni+1
) and see λ̂ := (λ1 + · · ·+ λli , λli+1 + · · ·+

λ2li , . . . , λlini−li+1 + · · · + λlini−1 + λni+1
) ∈ H(ϕi ◦ θi), i.e. the sl(ni)-module with

highest weight λ̂ is a constituent of F λ
ni+1

↓ sl(ni). Hence, d(ϕi ◦ θi) ≥ (λ̂1 − λ̂ni
) =

(λ1 + · · · + λli) − (λlini−li+1 + · · · + λlini−1 + λni+1
) ≥ λ1 − λni+1

= di+1, where the

latter inequality holds because λ is dominant. Since d(ϕi ◦ θi) = di, we have the

desired inequality di ≥ di+1.

Since {di} is a non-increasing sequence of positive integers, it stabilizes, so there

exists d ∈ Z>0 such that di = d for all i ≥ J . Pick K such that lJ · · · lK−1 > d (this is

possible since s is not isomorphic to sl(∞), and therefore
∞∏
i=1

li is infinite). Consider

now the following part of the diagram in (3.11):

sl(nJ)

θJ

��

// . . . // sl(nK)

θK

��
sl(m1 · · ·mJ) // . . . // sl(m1 · · ·mK).

The injective homomorphism sl(nJ) → sl(nK) is diagonal of signature (l, 0, z), where

l = lJ · · · lK−1 and z = nK − lnJ . Using similar arguments as above we obtain that

λ̂ = (λ1 + · · · + λl, λl+1 + · · · + λ2l, . . . , λnK−l+1 + · · · + λnK−1 + λnK
) ∈ HJ for any

λ ∈ HK . This shows that λ1 + · · ·+λl− (λnK−l+1 + · · ·+λnK
) ≤ d. If λd+1 6= λnK−d,

then λd+1 ≥ λnK−d + 1, in which case λ1 + · · · + λl − (λnK−l+1 + · · · + λnK
) ≥

(λ1 + · · ·+λd+1)− (λnK−d+ · · ·+λnK
) ≥ d+1 as l > d. Hence, λd+1 = λnK−d which

yields λd+1 = λd+2 = · · · = λnK−d. We thus conclude that for i ≥ K each integral

dominant weight appearing in Hi has the property that all its marks apart from the

first d and the last d must be equal.

Let us calculate the index I
sl(m1···mi)
sl(n1) of the corresponding composition of homo-

morphisms in (3.11). Using Proposition 2.1.1 (ii) and Corollary 2.2.4, we compute

I
sl(m1···mi)
sl(n1) = I(θ1)m2 · · ·mi by following down θ1 and to the right; similarly we
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compute I
sl(m1···mi)
sl(n1) = l1 · · · li−1I(θi) by going to the right and then down θi. By

Proposition 2.1.1 (iii), (iv) we have

I(θi) =
∑
λ∈Hi

tλI(F
λ
ni

) =
1

n2
i − 1

∑
λ∈Hi

tλ dimF λ
ni
〈λ, λ+ 2ρ〉sl(ni), (3.14)

where 2ρ is the sum of all the positive roots of sl(ni).

Note that 〈λ, λ + 2ρ〉sl(ni) = (λ̃, λ̃ + 2ρ), where λ̃j = λj −
1

ni

ni∑
k=1

λk for j =

1, . . . , ni, 2ρ = (ni − 1, ni − 3, . . . ,−(ni − 1)), and ( , ) is the usual scalar product

on Cni .

Fix i ≥ K, using the notation from above, so that λ1 − λni
≤ d and λd+1 =

λd+1 = · · · = λni−d. Set α = λ̃d+1, so that |λ̃j−α| = 0 for j = d+1, d+2, . . . , ni−d.

Then |λ̃j−α| = |λj−λd+1| ≤ d for all j. Since

ni∑
j=1

λ̃j = 0 and λ̃1−λ̃ni
= λ1−λni

≤ d,

we have |λ̃j| ≤ d for all j. Hence,

|〈λ, λ+ 2ρ〉sl(ni)| = |(λ̃, λ̃+ 2ρ)| =

∣∣∣∣∣
ni∑
j=1

λ̃j(λ̃j + ni − 2j + 1)

∣∣∣∣∣
=

∣∣∣∣∣
ni∑
j=1

λ̃j(λ̃j − α− 2j) + (ni + 1 + α)

ni∑
j=1

λ̃j

∣∣∣∣∣
=

∣∣∣∣∣
ni∑
j=1

(̃λj − α+ α)(λ̃j − α− 2j)

∣∣∣∣∣
=

∣∣∣∣∣
ni∑
j=1

(λ̃j − α)2 − 2

ni∑
j=1

(λ̃j − α)j +

ni∑
i=1

(α(λ̃j − α)− 2αj)

∣∣∣∣∣
=

∣∣∣∣∣
ni∑
j=1

(λ̃j − α)2 − 2
d∑
j=1

(λ̃j − α)j − 2

ni∑
j=ni−d+1

(λ̃j − α)j − niα
2 − ni(ni + 1)α

∣∣∣∣∣
≤

ni∑
j=1

d2 + 2
d∑
j=1

jd+ 2

ni∑
j=ni−d+1

jd+ niα
2 + ni(ni + 1)|α|

= 2nid
2 + 2(ni + 1)d2 + niα

2 + ni(ni + 1)|α|.

Since λ̃1 + · · ·+ λ̃d+α(ni−2d)+ λ̃ni−d+1 + · · ·+ λ̃ni
= 0 (which implies |α| ≤ 2d2

ni−2d
),

we obtain the following inequality:

|〈λ, λ+ 2ρ〉sl(ni)| ≤ 2d2ni + 2d2(ni + 1) +
4d4ni

(ni − 2d)2
+

2d2ni(ni + 1)

ni − 2d
≤ c0ni
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for all i ≥ K, where c0 is some positive constant. Then from (3.14) we have I(θi) ≤
c0ni
n2
i − 1

∑
λ∈Hi

tλ dimF λ
ni

=
c0ni
n2
i − 1

m1 · · ·mi. Hence, I(θ1)m2 · · ·mi = I
sl(m1···mi)
sl(n1) =

l1 · · · li−1I(θi) ≤ l1 · · · li−1
c0ni

n2
i−1

m1 · · ·mi. This implies I(θ1)
c0m1

≤ l1 · · · li−1
ni

n2
i−1

, so
l1···li−1

ni
≥ c1 for some positive constant c1. The last inequality contradicts the fact

that lim
i→∞

n1l1 · · · li−1

ni
= 0, so the proposition follows.

Corollary 3.1.7. Let s1, s2 be non-finitary diagonal Lie algebras. Assume that s1

is sparse and there is an injective homomorphism of s1 into s2. Then s2 must be

sparse as well.

Proof. Suppose, on the contrary, that s2 is pure or dense. Lemma 3.1.3 (iv) implies

that there exists a sparse one-sided Lie algebra s′1 of type A which admits an injective

homomorphism into s1. By Lemma 3.1.3 (iii) there exists a pure one-sided Lie

algebra s′2 of type A such that s2 admits an injective homomorphism into s′2. If s1

would admit an injective homomorphism into s2, then s′1 would admit an injective

homomorphism into s′2 through the chain s′1 ⊂ s1 ⊂ s2 ⊂ s′2, which would contradict

Proposition 3.1.6. Hence the statement holds.

Proposition 3.1.8. Let s1 = A(T1) and s2 = A(T2) be pure one-sided Lie algebras,

neither of them finitary. Set Si = Stz(Si) for i = 1, 2, and S = GCD(S1, S2).

Assume that both Steinitz numbers ÷(S1, S) and ÷(S2, S) are finite and S is not

divisible by an infinite power of any prime number. An injective homomorphism of

s1 into s2 is necessarily diagonal.

Proof. Let S = pl11 p
l2
2 · · · for the increasing sequence {pi} of all prime numbers

dividing S. Denote ni = S1

S
(p1)

l1 · · · (pN+i)
lN+i for i ≥ 0, where the integer N is to

be fixed later. Suppose that there is an injective homomorphism θ : s1 → s2. Then

it is given by a commutative diagram

sl(n0)

θ0
��

// . . . // sl(ni)

θi

��

// sl(ni+1)

θi+1

��

// . . .

sl(m0) // . . . // sl(mi) // sl(mi+1) // . . . ,

(3.15)

where mi = S2

S
(p1)

l1 · · · (pN+ki
)lN+ki for i ≥ 0 for some k0, k1, . . . . By possibly

shifting the bottom row of the diagram we may assume that ki ≥ i + 1 for each

i ≥ 0.

Denote by Wi the natural sl(mi)-module. Let H(ϕ) and d(ϕ) be as in the proof

of Proposition 3.1.5 for an arbitrary injective homomorphism ϕ of finite-dimensional
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classical simple Lie algebras of type A. Set Hi = H(θi) and di = d(θi) for i ≥ 0.

Similarly to (3.13) we then have

Wi ↓ sl(ni) ∼=
⊕
λ∈Hi

F λ
ni
⊕ · · · ⊕ F λ

ni︸ ︷︷ ︸
tλ,i

,

where tλ,i = dim Homsl(ni)(F
λ
ni
,Wi ↓ sl(ni)).

As in the proof of Proposition 3.1.5, {di} is a non-increasing sequence, and

therefore di = d for i ≥ i0. By choosing N large enough we make di = d and

pN+i > d+1 for all i ≥ 0. Take now 0 ≤ i < j ≤ ki and consider the following piece

of the diagram in (3.15):

sl(ni)

θi

��

// . . . // sl(nj)

θj

��
sl(mi) // . . . // sl(mj).

(3.16)

Here the injective homomorphism sl(ni) → sl(nj) is of signature (q, 0, 0), where

q = (pN+i+1)
lN+i+1 · · · (pN+j)

lN+j . Take an arbitrary non-zero highest weight λ in

Hj, yielding the sl(nj)-module F λ
nj

. Since nj = qni, by Proposition 2.3.2 we have

F λ
qni

↓ sl(ni) ∼=
⊕
ν

(
∑

µ1,...,µq

cλµ1...µq
cνµ1...µq

)F ν
ni
.

Since the coefficients cλµ1...µq
and cνµ1...µq

are independent of the order of µ1, . . . , µq,

we can rewrite this as

F λ
qni

↓ sl(ni) ∼=
⊕
ν

(
∑

[µ1,...,µq ]

Cq1,...,qr
q cλµ1...µq

cνµ1...µq
)F ν

ni
. (3.17)

Here [µ1, . . . , µq] stands for the multiset with elements µ1, . . . , µq, and q1, . . . , qr is

the set of multiplicities of [µ1, . . . , µq]. Note that q1 + · · ·+ qr = q.

Fix a highest weight ν such that F ν
ni

has non-zero multiplicity in (3.17) and

fix a multiset of integral dominant weights [µ1, . . . , µq] making both generalized

Littlewood-Richardson coefficients cλµ1...µq
and cνµ1...µq

non-zero. We will show that q

divides Cq1,...,qr
q (and hence the contribution from [µ1, . . . , µq] to the multiplicity of

F ν
ni

) if the module F ν
ni

is non-trivial. Suppose that pl divides all q1, . . . , qr for some

N + i + 1 ≤ l ≤ N + j. Note that the sl(ni)-module F ν′
ni

for ν ′ = µ1 + · · · + µq

also has non-zero multiplicity in (3.17) because cν
′
µ1...µq

6= 0. Since all q1, . . . , qr are

divisible by pl, we have ν ′ = plµ
′ for some integral dominant weight µ′. Furthermore,
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using the path along θj in (3.16), we see that F ν′
ni

has non-zero multiplicity in Wj,

and since Wj ↓ sl(mi) is a direct sum of copies of Wi, it must be that F ν′
ni

has

non-zero multiplicity in Wi ↓ sl(ni), i.e. ν ′ ∈ Hi. Since di = d < pl − 1 we have

pl > ν ′1 − ν ′ni
= pl(µ

′
1 − µ′ni

) which possible only if µ′1 = µ′ni
(equivalently, ν ′1 = ν ′ni

).

Therefore ν ′ is the zero highest weight, and hence all µ1, . . . , µq are zero as well.

Then the coefficient cνµ1...µq
is non-zero only if the weight ν is zero, so F ν

ni
is a trivial

module.

Suppose now that pl does not divide at least one of q1, . . . , qr for each l such

that N + i ≤ l ≤ N + j. A combinatorial argument shows that Cq1,...,qr
q = q!

q1!···qr!

is divisible by q if each prime divisor of q fails to divide at least one of q1, . . . , qr.

We thus conclude that each non-trivial sl(ni)-module F ν
ni

with non-zero multiplicity

in (3.17), has multiplicity divisible by q. As a corollary, any non-trivial simple

constituent of Wj ↓ sl(ni) appears with multiplicity divisible by q.

By following the diagram in (3.16) down θi and then to the right, we get Wj ↓
sl(ni) ∼=

mj

mi

⊕
ν∈Hi

tν,iF
ν
ni

. Since q = (pN+i+1)
lN+i+1 · · · (pN+j)

lN+j is relatively prime to

mj

mi
= (pN+ki+1)

lN+ki+1 · · · (pN+kj
)lN+kj (as j ≤ ki), the commutativity of the diagram

in (3.16) implies that tν,i is divisible by q for any non-zero ν in Hi.

Let us introduce a new notation. For an arbitrary injective homomorphism

ϕ : g1 → g2 of finite-dimensional classical simple Lie algebras of type A we denote

by N(ϕ) the number (counting multiplicities) of simple non-trivial constituents of

the natural representation of g2 considered as a g1-module via ϕ. Then Ni := N(θi)

is divisible by q = (pN+i+1)
lN+i+1 · · · (pN+j)

lN+j by the above argument. Taking

j = ki we obtain that Ni is divisible by (pN+i+1)
lN+i+1 · · · (pN+ki

)lN+ki .

Fix now j = i + 1 in the diagram in (3.16), and let ψ : sl(ni) → sl(mi+1)

denote the map produced by this diagram. As shown above, each non-zero weight

λ ∈ Hi+1 yields a non-zero weight in H(ψ) = Hi with non-zero multiplicity divisible

by (pN+i+1)
lN+i+1 , and hence at least (pN+i+1)

lN+i+1 . Therefore by following the

diagram to the right and then down θi+1, we obtain N(ψ) ≥ (pN+i+1)
lN+i+1Ni+1.

Note also that equality holds here only if for each non-zero λ ∈ Hi+1 we have F λ
qni

↓
sl(ni) ∼= qF ν

ni
⊕T for a non-zero ν ∈ Hi, where T is a trivial (possibly 0-dimensional)

module. Meanwhile, by following the diagram down θi and to the right we have

N(ψ) = (pN+ki+1)
lN+ki+1 · · · (pN+ki+1

)lN+ki+1Ni. As a result we obtain the inequality

(pN+ki+1)
lN+ki+1 · · · (pN+ki+1

)lN+ki+1Ni ≥ (pN+i+1)
lN+i+1Ni+1, i.e. αi ≥ αi+1, where

αi := Ni

(pN+i+1)lN+i+1 ···(pN+ki
)
lN+ki

are integers for i ≥ 0. Since {αi} is a non-increasing

sequence of positive integers it stabilizes, and by choosing N sufficiently large we
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can assume that α0 = α1 = α2 = · · · .

Now take an arbitrary non-zero λ ∈ Hi+1. Since αi = αi+1, the decomposition

in (3.17) becomes F λ
qni

↓ sl(ni) ∼= qF ν
ni
⊕T for some non-zero ν ∈ Hi, where T is some

trivial (possibly 0-dimensional) module. Since the contribution from each multiset

[µ1, . . . , µq] to the multiplicity of F ν
ni

in (3.17) is divisible by q, there exists exactly

one multiset [µ1, . . . , µq] making a non-zero contribution to the multiplicity of F ν
ni

.

Moreover, the fact that Cq1,...,qr
q cλµ1...µq

cνµ1...µq
= q together with the fact that q divides

Cq1,...,qr
q implies Cq1,...,qr

q = q. It is easy to check that q!
q1!···qr!

= q only if r = 2 and

{q1, q2} = {1, q − 1}. Then we safely can assume that µ1 = µ2 = · · · = µq−1. Since

ν ′ = µ1 + · · · + µq is a non-zero weight satisfying cν
′
µ1...µq

6= 0, the module F ν′
ni

also

has non-zero multiplicity in (3.17), and therefore ν = ν ′. Hence ν = (q − 1)µ1 + µq,

and since ν1 − νni
≤ d < (pN+i+1)

lN+i+1 − 1 = q − 1, we immediately get that µ1

is the zero weight. Then the only multiset [µ1, . . . , µq] making cλµ1...µq
non-zero has

q − 1 zero weights. One can check that this is only possible if λ is either of the

form (c+ 1, c, . . . , c, c) or (c, c, . . . , c, c+ 1). Thus, all non-zero highest weights from

Hi+1 are either those of the natural or of the conatural representation. This means

precisely that all homomorphisms θi are diagonal.

Corollary 3.1.9. Let s1 = X1(T1) and s2 = X2(T2) be non-sparse Lie algebras,

neither of them finitary. Set Si = Stz(Si), S = GCD(S1, S2), and Ri = ÷(Si, S) for

i = 1, 2. Assume that S is not divisible by an infinite power of any prime number,

and that both R1 and R2 are finite. An injective homomorphism of s1 into s2 is

necessary diagonal.

Proof. Set δi = δ(Ti), i = 1, 2. Denote s′1 = sl(÷(S1, R
′
1)), where R′

1 > 2δ1 is some

finite divisor of S1, and s′2 = sl(S2R
′
2), where R′

2 is finite and R′
2 >

2
δ2

. Then, by

Lemma 3.1.2 (i) and Lemma 3.1.3 (i), (ii), s′1 admits an injective homomorphism

into s1 and s2 admits an injective homomorphism into s′2. Then there exists an

injective homomorphism of s′1 into s′2 through the chain s′1 ⊂ s1 ⊂ s2 ⊂ s′2 and

this homomorphism is diagonal because the Lie algebras s′1 and s′2 satisfy the condi-

tions of Proposition 3.1.8. Finally, it follows from Corollary 2.2.7 that the injective

homomorphism of s1 into s2 has to be diagonal as well.

Lemma 3.1.10. Let s1 = X1(T1) and s2 = X(T2) be non-sparse Lie algebras, neither

of them finitary. Set Si = Stz(Si), S = GCD(S1, S2), Ri = ÷(Si, S), δi = δ(Ti),
Ci = Stz(Ci), C = GCD(C1, C2), Bi = ÷(Ci, C), and σi = σ(Ti) for i = 1, 2.

Assume that S is not divisible by an infinite power of any prime, and both R1 and

R2 are finite. If s1 admits a diagonal injective homomorphism into s2, then the
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following holds.

(i) R1

δ1
≤ R2

δ2
. The inequality is strict if s1 is pure and s2 is dense.

(ii) 2R1

δ1
≤ R2

δ2
when one of the following additional hypotheses holds:

– (X1, X2) = (A,C), (A,O), (O,C), or (C,O);

– (X1, X2) = (A,A), B1 is infinite;

– (X1, X2) = (A,A), B1 is finite, s1 is two-sided weakly non-symmetric, s2

is either one-sided or two-sided strongly non-symmetric;

– (X1, X2) = (A,A), both B1 and B2 are finite, C is not divisible by an

infinite power of a prime number, both s1, s2 are two-sided strongly non-

symmetric, and R1σ1

B1
< R2σ2

B2
.

Again the inequality is strict if s1 is pure and s2 is dense.

Proof. (i) Assume that (X1, X2) = (A,A) (the other cases are analogous). Let s1

be exhausted as sl(n0) ⊂ sl(n1) ⊂ · · · , each inclusion sl(ni) → sl(ni+1) being of

signature (li, ri, zi), i ≥ 0 and s2 as sl(m0) ⊂ sl(m1) ⊂ · · · with sl(mi) → sl(mi+1)

being of signature (l′i, r
′
i, z

′
i), i ≥ 0. Moreover, we choose n0 to be divisible by R1

and m0 to be divisible by R2.

There is a commutative diagram

sl(n0)

θ0
��

// sl(n1)

θ1
��

// . . . // sl(ni)

θi

��

// . . .

sl(mk0) // sl(mk1) // . . . // sl(mki
) // . . . ,

(3.18)

where each injective homomorphism θi is diagonal of signature (xi, yi,mki
− (xi +

yi)ni). Denote qi = xi + yi. Then, using Corollary 2.5 [BZ], we get

qis
′
ki
· · · s′kj−1 = si · · · sj−1qj for all j > i ≥ 0. (3.19)

Hence sisi+1 · · · divides qis
′
ki
s′ki+1 · · · for i ≥ 0, so S1m0s

′
0 · · · s′ki−1 divides qiS2n0s0 · · · si−1.

Since S is not divisible by an infinite power of a prime number, the Steinitz num-

ber ÷(S1m0s
′
0 · · · s′ki−1, S) divides ÷(qiS2n0s0 · · · si−1, S). Therefore we have that

÷(qiR2n0s0 · · · si−1, R1m0s
′
0 · · · s′ki−1) is a Steinitz number which is moreover finite,

and thus it is a positive integer. So
m0s′0···s′ki−1

R2mki
≤ n0s0···si−1

R1ni
. Taking the limit of both

sides for i → ∞ we get δ2
R2

≤ δ1
R1

. Moreover, if s1 is pure and s2 is dense, then
m0s′0···s′ki−1

R2mki
≤ δ1

R1
for large enough i. Since the non-increasing sequence

m0s′0···s′ki−1

mki

does not stabilize, we obtain the strict inequality δ2
R2
< δ1

R1
.
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(ii) We keep the notations from (i). The injective homomorphism of s1 into s2

is given again by (3.18). If the pair (X1, X2) is one of (A,C), (A,O), (O,C), and

(C,O), then, by Proposition 2.3 [BZ], for any diagonal injective homomorphism of a

type X1 algebra into a type X2 algebra of signature (l, r, z) the integer l+ r is even.

Therefore qj is divisible by 2 for any j and it follows from (3.19) that qis
′
ki
s′ki+1 · · ·

is divisible by 2sisi+1 · · · . The rest of the proof is analogous to (i).

In the other three cases both s1 and s2 are of type A. Notice that neither s1

nor s2 is two-sided symmetric (otherwise S would be divisible by 2∞). Thus we can

assume that ci > 0 and c′i > 0 for all i ≥ 0. Denote ti = xi − yi. It is enough to

prove that ti = 0 for infinitely many i ( because then qi is even for infinitely many i

and the statement can be proven similarly to the first case). Assume the contrary,

i.e. let ti > 0 for i ≥ i0. Without loss of generality we can assume that ti > 0 for all

i ≥ 0. Let us show that this contradicts the assumptions of the lemma in all three

cases.

Let B1 be infinite. By Corollary 2.5 in [BZ],

t0c
′
k0
· · · c′ki−1 = c0 · · · ci−1ti for i ≥ 1. (3.20)

Then clearly c0c1 · · · divides t0c
′
k0
c′k0+1 · · · , and therefore B1 divides n0t0. This

contradicts B1 being infinite.

For the next case, combining (3.19) and (3.20), we obtain t0
q0
·
c′k0

···c′ki−1

s′k0
···s′ki−1

= ti
qi
·

c0···ci−1

s0···si−1
. By definition σ1 = lim

i→∞

c0 · · · ci
s0 · · · si

, and since s1 is two-sided weakly non-

symmetric we have lim
i→∞

ti
qi

c0 · · · ci
s0 · · · si

= 0. But lim
i→∞

t0
q0
·
c′k0 · · · c

′
ki−1

s′k0 · · · s
′
ki−1

= uσ2, where

u =
t0s′0···s′k0−1

q0c′0···c′k0−1
> 0. So σ2 = 0, contradicting s2 being not two-sided weakly non-

symmetric.

Finally, let both s1 and s2 be two-sided strongly non-symmetric. Since ti ≤ qi

for i ≥ 0, we have t0
q0
·
c′k0

···c′ki−1

s′k0
···s′ki−1

≤ c0···ci−1

s0···si−1
. Taking the limit we obtain

t0
q0
·
s′0 · · · s′k0−1

c′0 · · · c′k0−1

σ2 ≤ σ1. (3.21)

Let us go back to (3.19). We know that q0s
′
k0
· · · s′ki−1 = s0 · · · si−1qi. If qi is divisible

by some prime number p for infinitely many i, then by an argument similar to that

in (i) one derives the inequality pR1

δ1
≤ R2

δ2
, from which the statement follows. So we

can assume that every p divides at most finitely many qi. Then it is easy to see that

the Steinitz numbers q0s
′
k0
s′k0+1 · · · and s0s1 · · · have equal values at every prime p,
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so they coincide. Hence,
R2

R1

=
m0s

′
0 · · · s′k0−1

q0n0

. (3.22)

From (3.20) c0c1 · · · divides t0c
′
k0
c′k0+1 · · · , and therefore B2

B1
≥

m0c′0···c′k0−1

t0n0
. Combining

the latter inequality with (3.21) and (3.22) we obtain σ1

σ2
≥ R2B1

R1B2
, which contradicts

an assumption in the statement of the lemma.

We are now able to prove the main result of the thesis.

Theorem 3.1.11. a) The three finitary Lie algebras sl(∞), so(∞), sp(∞) admit

an injective homomorphism into any infinite-dimensional diagonal locally sim-

ple Lie algebra. An infinite-dimensional non-finitary diagonal locally simple

Lie algebra admits no injective homomorphism into sl(∞), so(∞), sp(∞).

b) Let s1 = X1(T1), s2 = X2(T2) be infinite-dimensional non-finitary diagonal

locally simple Lie algebras. Set Si = Stz(Si), S = GCD(S1, S2), Ri = ÷(Si, S),

δi = δ(Ti), Ci = Stz(Ci), C = GCD(C1, C2), Bi = ÷(Ci, C), and σi = σ(Ti) for

i = 1, 2. Then s1 admits an injective homomorphism into s2 if and only if the

following conditions hold.

1) R1 is finite.

2) s2 is sparse if s1 is sparse.

3) If s1 and s2 are non-sparse, both R1 and R2 are finite, and S is not divisible

by an infinite power of any prime number, then εR1

δ1
≤ R2

δ2
for ε as specified

below. The inequality is strict if s1 is pure and s2 is dense. We have ε = 2,

except in the cases listed below, in which ε = 1:

3.1) (X1, X2) = (C,C), (O,O), (C,A), (O,A), and (X1, X2) = (A,A) with

both s1 and s2 being one-sided;

3.2) (X1, X2) = (A,A), B1 is finite, either s1 is one-sided and s2 is two-

sided non-symmetric or s2 is two-sided weakly non-symmetric and s1 is

two-sided non-symmetric;

3.3) (X1, X2) = (A,A), B1 is finite, both s1 and s2 are two-sided strongly

non-symmetric, either B2 is infinite or C is divisible by an infinite

power of any prime number;

3.4) (X1, X2) = (A,A), both B1 and B2 are finite, both s1 and s2 are two-

sided strongly non-symmetric, C is not divisible by an infinite power of

any prime number, and R1σ1

B1
≥ R2σ2

B2
.
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Proof. a) The statement follows directly from Corollary 3.1.4 and Proposition 3.1.5.

b) The sufficiency of the conditions follows directly from Lemma 3.1.2 and

Lemma 3.1.3.

The necessity of conditions 1 and 2 follows from Proposition 3.1.5 and Corol-

lary 3.1.7 respectively. Let us prove the necessity of condition 3. Note that the

assumptions of this condition satisfy Corollary 3.1.9. Hence in this case an injective

homomorphism of s1 into s2, if it exists, has to be diagonal. Therefore we can apply

Lemma 3.1.10 and this lemma implies the necessity of condition 3 (it is easy to check

that under corresponding assumptions the cases which are not listed in 3.1−3.4 are

exactly the cases listed in Lemma 3.1.10 (ii)).

3.2 Equivalence classes of diagonal locally simple Lie alge-

bras

We now introduce a notion of equivalence of infinite-dimensional Lie algebras. We

say that g1 is equivalent to g2 (g1 ∼ g2) if there exist injective homomorphisms

g1 → g2 and g2 → g1. For finite-dimensional Lie algebras, equivalence is the same

as isomorphism, but this is no longer true for infinite-dimensional Lie algebras.

The following corollary gives a description of the so defined equivalence classes

of diagonal locally simple Lie algebras.

Corollary 3.2.1. a) The three finitary Lie algebras sl(∞), so(∞), and sp(∞) are

pairwise equivalent. None of them is equivalent to any non-finitary diagonal

locally simple Lie algebra.

b) Let s1 = X1(T1) and s2 = X2(T2) be infinite-dimensional non-finitary diagonal

locally simple Lie algebras. Set Si = Stz(Si), S = GCD(S1, S2), Ri = ÷(Si, S),

δi = δ(Ti), Ci = Stz(Ci), C = GCD(C1, C2), Bi = ÷(Ci, C), and σi = σ(Ti) for

i = 1, 2. Then s1 is equivalent to s2 if and only if the following conditions hold.

1) S1
Q∼ S2.

2) Both s1 and s2 are either sparse or non-sparse.

3) If s1 and s2 are non-sparse and S is not divisible by an infinite power of

any prime number, then:

3.1) R1

δ1
= R2

δ2
;

3.2) s1 and s2 have the same density type;

3.3) s1 and s2 are of the same type (X1 = X2);
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3.4) s1 and s2 have the same symmetry type;

3.5) C1
Q∼ C2 if s1 and s2 are two-sided non-symmetric;

3.6) R1σ1

B1
= R2σ2

B2
if s1 and s2 are two-sided strongly non-symmetric and C

is not divisible by an infinite power of any prime number.

Proof. a) The statement follows directly from Theorem 3.1.11 a).

b) To prove sufficiency it is easy to check case by case that all the conditions of

Theorem 3.1.11 b) are satisfied for both pairs s1 ⊂ s2 and s2 ⊂ s1.

Let us prove necessity. Assume that there exist injective homomorphisms s1 →
s2 and s2 → s1. Conditions 1 and 2 are obviously satisfied. Suppose that s1 and s2

are both non-sparse and S is not divisible by an infinite power of any prime number.

Then ε1
R1

δ1
≤ R2

δ2
and ε2

R2

δ2
≤ R1

δ1
by Theorem 3.1.11 b). Clearly, this is only possible

if ε1 = ε2 = 1 and R1

δ1
= R2

δ2
. Then s1 and s2 have the same density type (otherwise

one of the inequalities would be strict). Conditions 3.3−3.6 follow from conditions

3.1−3.4 of Theorem 3.1.11 b) for both pairs (s1, s2) and (s2, s1).

Remark. Isomorphic Lie algebras are clearly equivalent. If two Lie algebras

satisfy Theorem 2.2.1 (or Theorem 2.2.2), then they satisfy also Corollary 3.2.1.

One can check that conditions A3 and B3 of Theorem 2.2.1 correspond respectively

to conditions 3.1 and 3.6 of Corollary 3.2.1.

Let D denote the set of equivalence classes of infinite-dimensional diagonal lo-

cally simple Lie algebras. If we write s1 → s2 in case there exists an injective

homomorphism from s1 into s2, then the relation → induces a partial order on D. It

follows from Theorem 3.1.11 a) that D has a unique minimal element (which also is

the least element) with respect to the partial order →: this is the equivalence class

consisting of the three finitary Lie algebras sl(∞), so(∞), sp(∞). The following

statement shows that there exists precisely one maximal element of D (which also

is the greatest element) and describes the corresponding equivalence class.

Corollary 3.2.2. Let s = X(T ) be a diagonal locally simple Lie algebra. The

following are equivalent.

1) Any diagonal locally simple Lie algebra admits an injective homomorphism

into s.

2) s is sparse and Stz(S) = p∞1 p
∞
2 · · · , where p1, p2, . . . is the increasing se-

quence of all prime numbers.

Proof. 1)⇒2): Consider a Lie algebra s′ = A(T ′), where T ′ is sparse and Stz(S ′) =
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p∞1 p
∞
2 · · · . Since s′ admits an injective homomorphism into s, the Steinitz number

÷(p∞1 p
∞
2 · · · , S) is finite and s is sparse by Theorem 3.1.11 b). Then clearly S =

p∞1 p
∞
2 · · · .

2)⇒1): This follows immediately from Theorem 3.1.11.

The equivalence class corresponding to the maximal element of D consists of

infinitely many pairwise non-isomorphic Lie algebras. Indeed, by Theorem 2.2.1

there is only one, up to isomorphism, sparse one-sided Lie algebra of type A satis-

fying property 2 of Corollary 3.2.2, but there are infinitely many sparse two-sided

Lie algebras of type A with this property. In addition, by Theorem 2.2.2, any Lie

algebra of type other than A satisfying property 2 of Corollary 3.2.2 is isomorphic

to the sparse two-sided symmetric Lie algebra of type A with Stz(S) = p∞1 p
∞
2 · · · .



Chapter 4

Homomorphisms of diagonal Lie

algebras

This chapter is joint work with Ivan Penkov. It contains some ideas and partial

results on injective homomorphisms of diagonal locally simple Lie algebras.

4.1 Diagonal and non-diagonal homomorphisms

Let s and g be two diagonal Lie algebras admitting an injective homomorphism

θ : s → g. Then θ is given by a commutative diagram

s1

θ1
��

ϕ1 // . . . ϕn−1 // sn

θn

��

ϕn // . . .

g1
ψ1 // . . . ψn−1 // gn

ψn // . . .

(4.1)

for some exhaustions s1
ϕ1→ s2

ϕ2→ . . . and g1
ψ1→ g2

ψ2→ . . . of s and g respectively. Di-

agonal homomorphisms (i.e. homomorphisms for which all θn can be chosen diagonal

for large enough n) seem to be easier to study. Indeed, a diagonal homomorphism

θ can be studied in terms of the signatures (pn, qn, un) of the respective θn; only

elementary methods are required to determine necessary and sufficient conditions

on sequences {pn}, {qn}, {un} so that they define a homomorphism θ : s → g.

Moreover, we believe that for a homomorphism given by a fixed set of signatures

(pn, qn, un), a study similar to the study of homomorphisms in [DP3] can be carried

out (in particular, it follows from [DP3] that all homomorphisms of finitary Lie al-

gebras are necessarily diagonal). This is why it is natural to ask when there is a

diagonal homomorphism s → g and when there is a non-diagonal homomorphism

41
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s → g. The following proposition partly answers this question.

Proposition 4.1.1. Let (s, g) be a pair of diagonal Lie algebras such that s admits

an injective homomorphism into g.

(a) If both s and g are finitary, then there exists an injective diagonal homomor-

phism s → g and there is no non-zero non-diagonal homomorphisms s → g.

(b) If s is finitary and g is non-finitary, then there exists an injective non-diagonal

homomorphism s → g. Moreover, there exists an injective diagonal homomor-

phism s → g if and only if g is sparse.

(c) If both s = X1(T1) and g = X2(T2) are non-finitary, set Si = Stz(Si), and let Ai

be the set of all prime divisors p of Si for which p∞ does not divide Si, i = 1, 2.

There exists an injective diagonal homomorphism s → g. Moreover, there exists

an injective non-diagonal homomorphism s → g if at least one of the sets A1,

A2 is finite, and there exists no non-zero non-diagonal homomorphism s → g

if ÷(S2,GCS(S1, S2)) is finite and all prime divisors of S2 are contained in A2.

Proof. (a) The statement follows from the results of [DP3].

(b) The existence of an injective non-diagonal homomorphism in this case is

proven in Corollary 3.1.4. If g is sparse, one can prove the existence of a diagonal

homomorphism similarly to the proof of Lemma 3.1.2 (iv). Let now g be pure or

dense and let us prove that there is no non-zero diagonal homomorphisms s → g.

Assume the contrary. By Lemma 3.1.3 (i), (ii), g admits a diagonal homomorphism

into some pure Lie algebra of type A. Since sl(∞) can be mapped into s by a

diagonal homomorphism, we have a diagonal homomorphism of sl(∞) into a pure

Lie algebra of type A. Then we have a commutative diagram

. . . // sl(k)

θk

��

// sl(k + 1)

θk+1

��

// . . .

. . . // sl(n1 · · ·nk) // sl(n1 · · ·nknk+1) // . . .

(4.2)

for some integers n1, n2, . . . , where θk are diagonal homomorphisms of signatures

(pk, qk, uk) for all k ∈ N and the lower row consists of homomorphisms of signatures

(nk, 0, 0). Therefore n1 · · ·nm = (pm + qm)m + um ≥ (pm + qm)m for m ≥ 1. By

Proposition 2.1.1 (ii) and Corollary 2.2.4 we also have pm+qm = (pk+qk)nk+1 · · ·nm
for m > k. Hence, pk + qk ≤ n1···nk

m
for m > k. The latter inequality implies

pk + qk = 0 since m can be chosen arbitrary large. This contradicts the fact that
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θk is a homomorphism. Therefore there is no diagonal embeddings of sl(∞) into a

pure Lie algebra of type A, and the statement follows.

(c) All the injective homomorphisms of diagonal non-finitary Lie algebras con-

structed in Section 3.1 are diagonal, therefore there always exists an injective di-

agonal homomorphism s → g. Corollary 3.1.9 proves the last statement of (c). It

is left to prove that if at least one of the sets A1, A2 is finite, then there exists a

non-diagonal injective homomorphism of s into g.

Suppose that the set A1 is finite. Then, since the Steinitz number S1 is infinite,

there exists at least one prime p for which p∞ divides S1. Hence S1 = kS ′1, where k

is finite and, for any prime divisor p of S ′1, p
∞ divides S ′1. Then by Lemma 3.1.3 (iii)

there exist injective homomorphisms s → sl(S ′1) and sl(S ′1) → g. Therefore to show

the existence of an injective non-diagonal homomorphism of s into g it is enough to

show that there is an injective non-diagonal homomorphism of sl(S ′1) into itself. Let

us prove the latter fact.

Let S ′1 = n1n2 · · · , where ni are integers. From the definition of S ′1 it is clear

that (S ′1)
2 = S ′1. We now construct an injective homomorphism of sl(n1n2 · · · ) into

sl((n1)
2(n2)

2 · · · ). Fix an injective homomorphism θk of sl(n1 · · ·nk) into sl((n1)
2 · · · (nk)2)

such that the natural sl((n1)
2 · · · (nk)2)-module decomposes as an sl(n1 · · ·nk)-module

as the second tensor power of the natural sl(n1 · · ·nk)-module. One checks that it

is possible to define θk+1 by a similar procedure so that the following diagram is

commutative:

sl(n1)

θ1
��

// . . . // sl(n1 · · ·nk)
θn

��

// sl(n1 · · ·nknk+1)

θn+1

��

// . . .

sl((n1)
2) // . . . // sl((n1)

2 · · · (nk)2)) // sl((n1)
2 · · · (nk)2(nk+1)

2)) // . . . .

(4.3)

Here the upper row consists of homomorphisms of signatures (nk, 0, 0), and the

lower rows consist of homomorphisms of signatures ((nk)
2, 0, 0) respectively. By

defining such homomorphisms θk for every k we obtain an injective homomorphism

sl(S ′1) → sl(S ′1), and this homomorphism is clearly not diagonal.

In case A2 is infinite we prove the statement in a similar way, only now we

construct an injective non-diagonal homomorphism of sl(S ′2) into itself, where S2 =

kS ′2 for finite k.
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4.2 Natural representations of diagonal Lie algebras

In [DP3] the s-module structures of the natural and conatural g-modules are studied

as natural invariants of an injective homomorphism of finitary Lie algebras s → g.

In order to generalize the results of [DP3] to diagonal Lie algebras, we should first

define natural and conatural modules over a diagonal Lie algebra. Let g be a diagonal

Lie algebra and let g1 ⊂ g2 ⊂ · · · be an exhaustion of g. By definition, a natural

g-module (respectively, conatural g-module) is any non-zero g-module which can be

constructed as a direct limit V = lim−→Vn (respectively, V∗ = lim−→V ∗
n ), where Vn is the

natural gn-module. One can check that this definition agrees with the definition

given in Section 2.2 for g ∼= sl(∞), so(∞), and sp(∞). However, a natural g-module

is not uniquely defined if g is non-finitary, and moreover there exists an infinite family

of non-isomorphic natural representations of g in this case. Consider for example

the simplest case of a non-finitary diagonal Lie algebra: set g = sl(2∞) = lim−→(gn =

sl(2n)), where each injective homomorphism sl(2n) → sl(2n+1) is of signature (2, 0, 0).

Notice that for each choice of nested Cartan subalgebras hn ⊂ gn, hn ⊂ hn+1, there

exists a natural g-module Vh which is an h-weight module (i.e. Vh equals the sum of

its h-eigenspaces; h = ∪nhn). On the other hand, there clearly exists a direct limit

Ṽ = lim−→Vn such that h does not act on Ṽ via weight spaces: to obtain such a direct

limit it suffices to fix a decomposition of gn-modules Vn+1 = Vn⊕ Vn such that each

hn+1-weight space of Vn+1 lies in one of the two copies of Vn, then map Vn diagonally

into Vn+1, and after that pass to the direct limit. As Vh is an h-weight module, while

Ṽ is not, there is no g-isomorphism between Vh and Ṽ . This construction produces

two non-isomorphic natural representations of g, but it is easy to see that in fact

there are infinitely many isomorphism classes of such representations. In a similar

way one shows that there are infinitely many non-isomorphic conatural g-modules

of g = sl(2∞).

Let us go back to the study of homomorphisms s → g. Following the ideas

of [DP3], we investigate the socle filtrations of natural representations of g as s-

modules. Consider an injective homomorphism θ : s → g of non-finitary diagonal

Lie algebras. Then we have the following.

Proposition 4.2.1. Let g be one-sided, and let θ be an injective diagonal homo-

morphism given by a commutative diagram

s1

θ1
��

// . . . // sn

θn

��

// sn+1

θn+1

��

// . . . s

θ
��

g1 // . . . // gn // gn+1 // . . . g,

(4.4)
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where θn is of signature (1, 0, zn) (respectively, (1, 1, zn)) for all n. Then any natural

g-module V , considered as an s-module, has a non-zero socle V ′ which is isomorphic

to a direct sum of a natural (resp., a natural and a conatural) s-module and possibly

a trivial s-module. Moreover, V/V ′ is a trivial s-module.

Proof. Let V = lim−→Vn where Vn is the natural gn-module. Consider first the case

when θn is of signature (1, 0, zn) for all n. Then we have Vn ↓ sn = Fn⊕ znTn, where

Fn is the natural sn-module and Tn is the trivial one-dimensional sn-module. Let

v ∈ V be any element on which s acts non-trivially. We have v ∈ Vn for some n. By

acting by sn on v we obtain Fn, the only non-trivial submodule of Vn ↓ sn. Applying

the same argument to the image of v in Vn+1, Vn+2, etc. we conclude that a natural

s-module F = lim−→Fn is a submodule of V and moreover V/F is a trivial module, so

the statement follows.

It remains to notice that in the case when θn is of signature (1, 1, zn) for all

n, the homomorphism of Vn into Vn+1 induced by the diagram in (4.4) maps the

sn-submodule Fn (respectively, F ∗
n) into Fn+1 (resp., F ∗

n+1). This is a consequence

of the fact that g is one-sided. Then as above we can show that the simple direct

summands of the socle of V ↓ s are a natural s-module F = lim−→Fn and a conatural

s-module F∗ = lim−→F ∗
n , and that the module V/(F ⊕ F∗) is trivial.

Consider now a non-diagonal homomorphism s → g. In contrast with the case

of diagonal homomorphisms, the socle filtration of the module V ↓ s may not be an

adequate tool to study the structure of this module. For instance, if s = sl(∞) is

mapped into g = sl(2∞) by the injective homomorphism constructed in the beginning

of Section 3.1, then V ↓ s has zero socle. Moreover, the following statement holds.

Proposition 4.2.2. If s is diagonal finitary and g is one-sided non-finitary with the

property Stz(g) = 2∞, then for any injective homomorphism s → g constructed in

Section 3.1, the socle of any natural representation of g considered as an s-module

is a trivial s-module.

Proof. Consider first the case s = sl(∞) and g = sl(2∞). An injective homomor-

phism θ : sl(∞) → sl(2∞) is constructed explicitly in the beginning of Section 3.1

and is given by the commutative diagram

sl(2)

θ2
��

// . . . // sl(n)

θn

��

// sl(n+ 1)

θn+1

��

// . . . sl(∞)

θ
��

sl(22) // . . . // sl(2n)
ϕn // sl(2n+1) // . . . sl(2∞),

(4.5)
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where ϕn is a diagonal injective homomorphism of signature (2, 0, 0) for all n. More-

over, each θn is chosen so that

Vn ↓ sl(n) ∼=
0∧

(Fn)⊕
1∧

(Fn)⊕ · · · ⊕
n∧

(Fn). (4.6)

Here Fn stands for the natural sl(n)-module and Vn is the natural sl(2n)-module.

For the sake of contradiction assume that a natural representation V = lim−→Vn

of g considered as an s-module has non-trivial socle. Then there is a simple s-

submodule V ′ ⊂ V ↓ s. Consider a non-zero element v ∈ V ′. We have v ∈
Vn ↓ sl(n) for some n ∈ Z≥2, and hence sl(n) · v ⊂ V ′. Therefore, since in (4.6)

the decomposition of Vn ↓ sl(n) into direct sum of simple sl(n)-modules is given

explicitly, we obtain
∧k(Fn) ⊂ V ′ for some k, 1 ≤ k ≤ n−1. We know that under the

homomorphism of sl(n)-modules Vn → Vn+1 induced by ϕn,
∧k(Fn) is being mapped

into the direct sum
∧k(Fn+1) ⊕

∧k+1(Fn+1). However, by our construction, the

image of this map is not contained in
∧k(Fn+1) or

∧k+1(Fn+1), and hence generates∧k(Fn+1) ⊕
∧k+1(Fn+1) when acted upon by sl(n + 1). Therefore,

∧k(Fn+1) ⊕∧k+1(Fn+1) ⊂ V ′. Continuing this procedure we get
⋃
m≥n

( ⊕
k≤i≤m−n+k

i∧
(Fm)

)
⊂

V ′. One can check that
⋃

m≥n+1

( ⊕
k+1≤i≤m−n+k

i∧
(Fm)

)
is a proper s-submodule of

V ′, which contradicts with the assumption that V ′ is a simple s-module. One can

prove in a similar way that the same holds for any conatural g-module V ∗, so the

socle of V ∗ ↓ s (if non-zero) must be a trivial s-module.

Let now s be an arbitrary finitary Lie algebra and g be a one-sided non-finitary

Lie algebra with Stz(g) = 2∞. Note that s admits an injective homomorphism

into sl(∞). According to Lemma 3.1.2 and Lemma 3.1.3, there exists an injective

homomorphism sl(2∞) ∼= g′ → g. Moreover, this homomorphism is given by a

commutative diagram

. . . // g′n

θn

��

// g′n+1

θn+1

��

// . . .

. . . // gn // gn+1 // . . . ,

(4.7)

where the diagonal homomorphisms θn are of signatures (1, 0, zn) for g of type A,

and (1, 1, zn) otherwise. Let V be again a natural module of g. Then by Proposition

4.2.1 we get that the socle of V ↓ g′ is isomorphic to a direct sum of a natural

g′-module and possibly a trivial module for g of type A, and to the direct sum of
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a natural g′-module, a conatural g′-module, and possibly a trivial module for g of

type O or C. According to Corollary 3.1.4, a homomorphism of s into g is given by

the following chain of inclusions: s → sl(∞) → g′ → g. We thus obtain that the

socle of V ↓ sl(∞) is necessarily a trivial sl(∞)-module, and therefore the socle of

V ↓ s is a trivial s-module.

We complete this section by the remark that, in addition to the socle filtration

of V ↓ s, the radical filtration of V ↓ s provides also essential information about the

homomorphism s → g. Note that for the injective homomorphism sl(∞) → sl(2∞)

constructed via the diagram in (4.5), the socle of V ↓ s is a trivial module, but the

radical filtration of V ↓ s can easily be checked to be exhaustive.

4.3 The level of a homomorphism

In Propositions 3.1.6 and 3.1.8 we used a certain invariant of an injective homomor-

phism s → g. We now recall this invariant and define it in greater generality.

Let s1, s2 be finite-dimensional classical simple Lie algebras of type A, and

ψ : s1 → s2 be an injective homomorphism. Consider the decomposition

V2 ↓ s1
∼=
⊕

λ∈H(ψ)

V λ
1 ⊕ · · · ⊕ V λ

1︸ ︷︷ ︸
tλ

,

where V2 is the natural s2-module, V λ
1 is an s1-module with highest weight λ, H(ψ)

is the set of all weights appearing in this decomposition. Since all the weights

considered are dominant, for each λ = (λ1, . . . , λn), λ1−λn is a non-negative integer.

Set d(ψ) = max
λ∈H(ψ)

(λ1 − λn).

Let now the homomorphism θ : s → g be given by the diagram in (4.1). It

was shown in the proof of Proposition 3.1.6, that if s is a sparse one-sided Lie

algebra of type A and g is a pure one-sided Lie algebra of type A, then the sequence

{dn = d(θn)} is non-increasing. One can check that the same argument works under

the assumption that both s and g are diagonal Lie algebras of type A, and the

sequence {dn = d(θn)} is again non-increasing. We call lim
n→∞

dn the level of the

homomorphism θ. In this way the level of an injective homomorphism s → g of

diagonal Lie algebras of type A is defined. A similar invariant exists most likely

when s and/or g are of arbitrary types, and this question needs to be studied in the

future.

The level of an injective homomorphism is a positive integer. Diagonal homo-
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morphisms are of level 1. The homomorphism given in (4.5) is non-diagonal, but it

is also of level 1. The diagram in (4.3) gives an example of a non-diagonal homomor-

phism of level 2. Non-diagonal homomorphisms in general can be of any positive

integer level. Moreover, the following stronger statement holds.

Proposition 4.3.1. If s = sl(∞) and g is any diagonal Lie algebra of type A, then

there exist homomorphisms of s into g of any positive integer level.

Proof. In the proof of Proposition 3.1.1, which was later generalized to Corollary

3.1.4, it was shown that there exists a non-diagonal homomorphism of s into g of

level 1. Denote this homomorphism by θ and consider the composition s
θ′→ s

θ→ g,

where θ′ maps any sl(n) into sl(nl) diagonally of signature (l, 0, 0) for a fixed l > 0.

One can check that this composition is a homomorphism of level l.

Note that the same result would hold for any diagonal Lie algebra s of type

A with n∞|Stz(s) for some n, under the condition that there exists a non-diagonal

homomorphism of s into g of level 1. Indeed, it would be enough to consider an

endomorphism θ′ of s which maps any sl(x) into sl(nkx) diagonally of signature

(l, 0, (nk − l)x) (k is chosen large enough so that nk > l).

It seems reasonable to study separately non-diagonal homomorphisms of differ-

ent levels. The hope is that the study of general non-diagonal homomorphism will

be reduced to the study of homomorphisms of level 1, which appears to be a much

simpler problem.
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