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Chapter 1

Introduction and Notation

1.1 Introduction

Let g be a finite-dimensional complex Lie algebra and M a g-module. In the
1980’s, S. Fernando and V. Kac independently proved that the set of elements
g[M] of g having locally finite action on M is in fact a Lie subalgebra, which we
call Fernando-Kac subalgebra associated to M ([Kac85], [Fer90]).

Let [ be an arbitrary Lie subalgebra of g. A (g,[)-module is a module M
for which [ is a subset of g[M]. If the Jordan-Holder multiplicities of any finite-
dimensional irreducible [-module inside M are finite, we say that M is a (g, [)-
module of finite type. If | = g[M] we say that M is a strict (g, [)-module. We say
that a Lie subalgebra [ of g is a Fernando-Kac subalgebra of g if there exists an
irreducible strict (g, [)-module M. Furthermore, we say that [ is a Fernando-Kac
subalgebra of g of finite type if M can be chosen of finite type. Otherwise [ is a
Fernando-Kac subalgebra of infinite type.

In 2004, I. Penkov, V. Serganova and G. Zuckerman gave a construction of
irreducible (g, €)-modules of finite type, where ¢ is a reductive in g subalgebra.
For g = sl(n), this construction remarkably turned out to realize all possible
root Fernando-Kac subalgebras [ = £ n of finite type. Under a root subalgebra
we understand a subalgebra which contains a Cartan subalgebra of g. In 2007,
[. Penkov conjectured a necessary and sufficient condition for a root subalgebra
[ to be Fernando-Kac of finite type. More precisely, his conjecture was that a
combination of the already established in [PSZ04] combinatorial criterion for g ~
sl(n) (cone condition) and a second criterion related to results of S. Fernando,
[Fer90] (centralizer condition) is necessary and sufficient for [ to be Fernando-Kac
subalgebra of finite type.

The present study proves this conjecture for so(2n), so(2n + 1) and sp(2n),
and for the exceptional simple Lie algebras except Fs. We note that the result for



simple Lie algebras carries over directly to reductive Lie algebras.

It is important to note that the finite type of a module M over g[M] plays a
central role in this study, as the problem of classifying root Fernando-Kac sub-
algebras of possibly infinite type has already been solved. In fact, in [PS02], V.
Serganova and I. Penkov prove that all root subalgebras are Fernando-Kac. The
purpose of the present study is to decide which root subalgebras are Fernando-
Kac subalgebras of finite type, and which are Fernando-Kac subalgebras of infinite
type.

The proof of Penkov’s conjecture has three essential steps. The first step is
to show that for a prescribed root subalgebra [, the failure of the cone condition
implies that [ is a Fernando-Kac subalgebra of infinite type. This is the main
contribution of the present thesis, presented in chapters [ [5] and the appendix.
The second step is to verify that the failure of the centralizer condition implies that
[ is Fernando-Kac subalgebra of infinite type. This is a direct consequence of the
deep result of S. Fernando [Fer90]. If b is a Cartan subalgebra of g, S. Fernando’s
result states that a simple Lie algebra g admits irreducible strict (g, h)-modules of
finite type only if g is isomorphic to sl(n) or sp(2n).

The final step in the proof is to show that the cone and centralizer conditions
imply the existence of an irreducible strict (g, [)-module of finite type. This is an
application of a construction of I. Penkov, V. Serganova and G. Zuckerman given
in [PSZ04]. In chapter [3| we prove some technical statements needed to relate the
cone condition to the latter construction.

Chapter [2 presents definitions, examples and statements from the general the-
ory of (g,[)-modules, as well as some preliminary results needed in the proof of
Penkov’s conjecture. The appendix presents information on root subsystems that
could be of interest beyond the study of root Fernando-Kac subalgebras of finite

type.

1.2 Overview of some results on (g, ¢)-modules

Let g be a finite-dimensional Lie algebra and £ be any subalgebra. Classically,
(g, %)-modules have been studied for reductive Lie algebras g and very special
subalgebras €. The best known case is when € coincides with the fixed points
of an involution (Harish-Chandra modules). This is the celebrated classification
of Harish-Chandra modules by A. Beilinson - J.Bernstein [BB93|], A. Knapp -
G. Zuckerman [KZ76], R. Langlands [Lan73], Vogan [Vog81bl Vog81a]. Another
type of well-known (g, €)-modules are weight modules, where £ = § is a Cartan
subalgebra. Weight modules of finite type have been studied in the last 30 years,
and play a key role in the present study. One of the important results in this area



was given by the work of D. Britten and F. Lemire, [BL82]. Further important
results in the area followed in papers of G. Benkart, D. Britten, S. Fernando, V.
Futorny, F. Lemire and others. In 2000, O. Mathieu finished the classification of
(g, h)-modules of finite type, [Mat00)].

The present thesis uses two key results in the theory of (g, h)-modules of finite
type: the existence of strict (sl(n), h)- and (sp(2n), h)- modules of finite type (given
for example in [BL82]), and the fact that strict (g, h)-modules of finite type do not
exist for a simple Lie algebra g sl(n),sp(2n) (S. Fernando, [Fer90]). The latter
result in turn builds upon Duflo’s theorem (see [Dix74, Chapter 8]), as well as
results of W. Borho, A. Joseph, O. Gabber, H. Kraft and others ([BK76], [Gab&1],
[JosT6], [Jos74]).

In the late 1990’s, I. Penkov, V. Serganova and G. Zuckerman proposed a
program for the study and possible classification of all irreducible (g, )-modules
of finite type for a reductive Lie algebra g and a reductive in g subalgebra €.
In the recent past, they have made a substantial progress in both (g, £)-modules
classification and Fernando-Kac subalgebra classification. In the case when ¢ is
reductive in g, [PZ04] obtained classification results for (g, £)-modules of finite type
under additional assumptions for the modules. More precisely, [PZ04] described
all such modules with “generic” minimal (with respect to the Vogan norm) ¢-
type. When the minimal €-type of the irreducible (g, €)-module of finite type is
not generic, no general results are available beyond the case of Harish-Chandra
modules and the case € = . This is an active direction of current joint work of L.
Penkov and G. Zuckerman.

Under the additional assumption that the irreducible (g, €)-module M is bounded
(i.e. the multiplicities of all &-types in M are bounded by the same constant), in
[PSO7], I. Penkov and V. Serganova established combinatorial bounds on the possi-
bilities for g and €. They showed that if € ~ sl(2), there are only 5 possible semisim-
ple Lie algebras g admitting an infinite-dimensional bounded (g,sl(2))-module:
g = sl(2),sl(3),sl(2) @ sl(2),sp(4). 1. Penkov and V. Serganova also restricted
greatly the candidates for pairs (g,€) for which infinite-dimensional bounded ¢-
modules exist by proving an inequality relating g and €. Recently, A. Petukhov
described explicitly all bounded reductive subalgebras of g = sl(n), [Pet10].

In 2004, 1. Penkov, V. Serganova and G. Zuckerman obtained strong results
towards the classification of Fernando-Kac subalgebras of finite type. More pre-
cisely, they gave a general necessary and sufficient condition for a reductive in g
subalgebra to be the reductive part of a Fernando-Kac subalgebra of finite type -
in particular they showed that such a reductive part always exists. They further
proved that for a reductive subalgebra € to be the reductive part of a Fernando-
Kac subalgebra of finite type, it is necessary that the center of £ coincide with
its centralizer. Under the assumption that £ is a root subalgebra, both of these



statements are trivially satisfied. However, for a general £, these statements are
a first important step towards a possible future classification of all Fernando-Kac
subalgebras of finite type.

1.3 Notation

The base field is C unless stated otherwise and all algebras and Lie algebras are de-
fined over C. Unless specified otherwise, the symbol g denotes a finite-dimensional
reductive Lie algebra (“reductive” means that if an ideal of g is solvable then this
ideal must consist of central elements). [e, o] denotes the Lie bracket, and ad z
stands for the adjoint action of x: ad z(y) := [z,y]. We denote by U(g) the uni-
versal enveloping algebra of g. For a subalgebra s of g, Z(s) denotes the center of
s, N(s) - the normalizer of s in g (i.e. N(s) ={g € g [g,5] C s}), and C(s) - the
centralizer of s in g (i.e. C(s) ={g€ g [g,5] =0}).

We denote the action of a C-algebra on a module by - . The notation (a) - m
stands for spanc{m,a-m,a®-m,...}.

Let s be a Lie algebra and ¢,n C s be Lie subalgebras such that ¢nn = {0}, n
is an ideal in s, and s is the direct sum as a vector space of £ and n. Then s is the
semi-direct sum of £ and n and we write s = €3 n. The sign 3 is rounded towards
the ideal (if we write £ & n instead then both £ and n are ideals).

A subalgebra t is reductive in g if g is a semi-simple £-module under the adjoint
action of &. When g is reductive, the semisimple part g,s of g is canonically defined
and equals [g, g]. We will use the notation g,s only for reductive Lie algebras g.

Let [ C g be a Lie subalgebra. Let m be the unique maximal ideal of [ consisting
of elements that have nilpotent adjoint action on g, and set n := mnN[g,g]. If n
admits a complement subalgebra [,.; which is reductive in g, we call [,.4 a reductive
in g part of . We have [ = [, n.

In what follows we fix a Cartan subalgebra h of g. Under a root subalgebra
we understand a subalgebra of g containing fh. By [ we denote a variable root
subalgebra of g with nilradical n. The unique reductive part of [ which contains b
is denoted by £. The set of h-roots of [ is denoted by A(I) (each element of A(I)
is automatically a root of g) . We also put A(n) := A(I)\A(¥). There are vector
space decompositions

g=he EB g%, [=he EB g,

acA(g acA(l
t=ho @ o, n= P g

a€A(l): acA(l):

—aeA(l) —ag A(l)



We fix a Borel subalgebra b D h whose roots are by definition the positive roots;
we denote them by A*(g). We define the element p € h* to be the half-sum of
the positive roots. Given a set of roots I, we denote by Conez(I) (respectively,
Coneg([)) the Zso-span (respectively, Qxo-span) of I.

The form on h* induced by the Killing form is denoted by (e, e). The sign &
stands for strongly orthogonal; two roots «, B are defined to be strongly orthogonal
if neither o + 8 nor o« — f is a root or zero (which implies («, 5) = 0). We say
that a root « is linked to an arbitrary set of roots I if there is an element of [
that is not orthogonal to a. The Weyl group of g is denoted by W. By s, € W
we denote the reflection with respect to root . For two roots a, 8 € A(g) we say
that a < § if 8 — « is a non-negative linear combination of positive roots.

We fix the conventional expressions for the positive roots of the classical root
systems:

Apn>2 : AT(g)={ei—¢gli<jie{l,...,n+1}}

B,n>2 : AT(g)={e;iteli<je{l,...,n}}U{eglie{l,...n}}
Coyn>2 : A%(g)={e; teli<je{l,...,n}}\{0}

D,n>4 : A%(g)={e; teli<je{l,...,n}}.

It is possible to choose a representative g* from each root space g such that
there exist integers n,s with [g%, ¢°] = n.sg*™® whenever a + 3 is a root and with
(g%, g7%] = (ZL;V where h,, is the element for which (o, 8) = B(h,) for all 5. We
assume one such choice to be fixed; this choice is in general not unique and is
known as Chevalley basis. A detailed discussion of the subject can be found in
[Sam90l §2.8, 2.9]. The numbers n,s can be chosen to be equal to £ the number
(max{t|8 —ta € A(g)}) + 1.




Chapter 2

Preliminaries on (g, £)-modules

2.1 Fernando-Kac subalgebras

Definition 2.1.1 Let € be a finite-dimensional Lie algebra. Then a €-module M
is a locally finite (integrable) €-module if € acts locally finitely on M, i.e. the ¢
submodule generated by an arbitrary vector m € M 1is finite dimensional. In other
words, M is locally finite if

dimc U(8) -m < oo for all m € M,
where U (&) is the universal enveloping algebra of €.

Definition 2.1.2 Let g be a Lie algebra, and M a g-module. We define g[M] C g
to be the set of all elements of g which act locally finitely on M, i.e.

g[M] :={g € g | dimec((g) -m) < o0 ¥m € M}.

The set g[M] turns out to be a Lie algebra itself. This fact was noted by Bertram
Kostant in the 1960’s and informally communicated to a few of his colleagues. The
first published proof over C is due to V. Kac ([Kac85]); the statement was proved
independently a few years later by S. Fernando over an arbitrary algebraically
closed field of zero characteristic. Kac’s proof, presented below, uses an elementary
observation but is valid only over a field that is a complete metric space - for
example C or R.

Theorem 2.1.3 Let g be a finite-dimensional Lie algebra and M a g-module over
the field K=TR or C. Then g[M] is a Lie subalgebra of g.

Proof. (Kac). Let zy,...,2, € g[M] be a basis of spangg[M], the linear span of
g[M].

10



tad x T, ,—T

We claim that for any m € M and any t € K the equality e y-m = e*ye *-m
holds. Indeed, in U(g) we have that ad x = L, — R,, where L, stands for left
multiplication by x and R, - for right multiplication by x. The linear operators L,

n n—k
and R, commute Therefore e Tym =3 (Be = n,“” “yom = an#y-
m=> k, Zz l, y-m:e ye~* - m. Since tx,ty € g[M] for any t € K, we

have more generally e ®y.m = e®ye~ . m. Now (eZye )" = ey"e ' implies

that e 7y € g[M].
Consider the element

and set A := span ({y} U U, {F(t)}). The space A is finite dimensional (being
a subspace of g) hence it is spanned by y and finitely many elements of the form
efad ¢y Therefore A has a basis of elements lying in g[M]. In particular, [z,y] =
lim; 0 F(t) € A is a linear combination of zi, ..., z,.

The preceding discussion shows that spangg[M] is a Lie subalgebra. It remains
to show that g[M| = spangg[M]. This is equivalent to showing that a1z +. .. a,z2,
acts locally finitely for all a; € K. By the Poincare-Birkhoff-Witt theorem, for any
N, one can express an arbitrary element (a;2;+- - -+a,2,)" as a linear combination
of monomials in the form zll ...zl where I} + -+ + 1, < N. This makes it clear
that (a121 + - -+ + a,2,) acts locally finitely on M. Hence spangg[M]| = g[M]. O

Definition 2.1.4 Let £ be a subalgebra of g. We say that g[M] is the Fernando-
Kac subalgebra associated to the g-module M. Further, we define a subalgebra

[ C g to be a Fernando-Kac subalgebra g if there exists an irreducible g-module M
with g[M] = 1.

Definition 2.1.5 Let ¢ be a subalgebra of g. We say that the g-module M is a
(g, 8)-module if ¢ C g[M]. If € = g|[M] we say that M is a strict (g, €)-module.

Example[2.2]in section [2.2] (taken from [PS02]) shows that not all subalgebras of
a reductive Lie algebra g are Fernando-Kac subalgebras. In fact, the classification
of Fernando-Kac subalgebras is not known.

2.2 The functor I'g

In the following section we review some well known facts about the functor of finite
vectors.

11



Definition 2.2.1 Let g be a finite-dimensional Lie algebra and M a g-module.
Let S be any subset of g. Define I's(M) as

Fg(M):={me M| dim((s) -m) <oco VseS}. (2.1)
Lemma 2.2.2 I's(M) is a g-submodule.

Proof. Let s € S, g € g, m € I's(M). We have to show that dim((s)-g-m) < oc.
The Poincare-Birkhoff-Witt theorem implies ((s) - g-m) C g (s) - m. Since g is
finite dimensional and m is in ['¢(M ), we have dim((s) - g-m) < co. O

Proposition 2.2.3 Let g be a Lie algebra and let S C g. I's s a left exact functor.

In other words, if 0 — L 5 M % N is an ezact sequence of g-modules, then the
sequence

0 — Ds(L) & Tg(M) B Tg(N), (2.2)

where @r == Qrgy and Yr = PYirgarn), 15 well defined and is exact.

Proof. To prove that 'y is indeed a functor we must prove that if L 5 M is a
module homomorphism, then ¢ maps I's(L) to I's(M). That is clear: for [ € L,
dim((s) - I) < oo implies that dim((s) - ¢(1)) = dim p((s) - (1)) < 0.

The proof of the exactness of can be done by the following straightforward
diagram chasing argument.

e kerpr = 0: clear as ¢or = g z) and ker p = 0.
e Imyr C ker¢r: clear as ¢r and vYr are restrictions of ¢ and .

e kertypr C Imyr: m € kertr. Suppose on the contrary that there exists | ¢
I's(L) such that ¢(I) = m and 3s : dim((s) -1) = co. Then dim ¢((s)-1) < 0o
= ( is not injective, contradiction.

|

A quick way to show that I's is not right exact is to show that a finite-
dimensional module can be a quotient of an infinite-dimensional module M with
['s(M) = {0}. Here is one more example.

Example 2.4 Let g := C9,, M := 1C[i], N := M/(5C[3]) ~C, M BN 0,
where 1 is the projection map. Then I'gs,3(M) = {0}, T'g9,3(IN) = N (since N is
finite dimensional), and hence ¥r cannot be surjective.

Although we will not use the right derived functors of I'g in this thesis, we would
like to mention that the higher right derived functors of I'g are called Zuckerman
functors. These functors play a key role in the recent work on (g, £)-modules of I.
Penkov and G. Zuckerman, [PZ04], [PZ07].

The following observation will be used throughout this thesis.
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Lemma 2.2.5 Let g be a finite-dimensional Lie algebra. Let M be an irreducible
module and | := g[M] be its Fernando-Kac subalgebra. If x € g\l, then = acts
freely on any non-zero vector in M.

Proof. According to Proposition m, '3 (M) is a g-submodule, and by the
irreducibility of M either I'g;3 (M) = M or 'y (M) = {0}. The first case is not
possible since x ¢ [, hence I';3 (M) = {0}. This means that x acts freely on M.
O

Example 2.6 Let g = sl(n) and [ := @,_; 0% @ {h € b|(e1 — ;Z(ea + -+ +
en))(h) = 0} (in matrix form [ is the subalgebra of all upper trlangular matrices
with zero entry in the top left corner). Then [ is not a Fernando-Kac subalgebra
of g, i.e. for every irreducible (g, [)-module M we have g[M] D [.

Proof. Assume on the contrary there is an irreducible module M such that
g[M] = [. Let n denote the nilradical of [. Let {hq,...,h,_1} be an orthonormal
basis of h with respect to the trace form, such that hs,..., h,—1 € hN L. This
implies hy ¢ [. Set ¢5~% = E;;, where E;; is the elementary matrix (a;;) with

1 ' =4,§ = .
Qi = { 0 otheraise Then the Casimir element ¢ € U(g) has the form

c;:h +h2l+zgez sjgsj sz_i_ngJ —&; el g5

1<j i>]

We then compute

c = h% + hg 4+t hi_l + Zgai—ag‘g@'—ei + ngj_@igé‘i—gj

1<j 1>]
= h% + hg 4+t hi_l +2 ngj_aigé‘i—fj + Z[gfj_ii,g&‘i—fj]
1<J 1>]
= Wi+ hi+- bl 42> ¢TG4 (b, hy), (2.3)
1<J

where [ is some linear function without constant term. Since [ is a solvable Lie
algebra and g[M| = [, we can apply Lie’s Theorem to a finite-dimensional submod-
ule of M. Therefore there is a [-eigenvector m € M with n-m =0 and h;-m = \;m
for some numbers \; and 2 < ¢ < n — 1. Recall the infinite-dimensional version of
Schur’s Lemma ([Dix74l 2.6.8]), which states that ¢ acts on the irreducible module
M via a constant p. Thus implies that for some number o we have that m
is an eigenvector of h? + ahy. Therefore hy has a locally finite action on m € M,
which is impossible by Lemma Contradiction. O

13



2.3 t-multiplicities of (g, £)-modules

Definition 2.3.1 (Multiplicity in finite-dimensional modules) Let ¢ be a
Lie algebra, M be a finite-dimensional €-module, and N be an irreducible €-module.
Let My C My C --- C M be Jordan-Hélder series of M as a t-module. The -
multiplicity of N in M is defined as the number of irreducible finite-dimensional
t-modules M;/M;1 isomorphic to N.

Definition 2.3.2 (Multiplicity in locally finite modules) Let M be a ¢-
module such that € = g[M]|. Let N be a finite-dimensional irreducible €-module.
The €-multiplicity of N in M is defined as the supremum of the multiplicities of
N in all finite-dimensional €-submodules M’ C M.

An important subcategory of the category of all (g, £)-modules is the category
of t-semisimple (g, £)-modules, i.e. (g, )-modules M that admit a decomposition

M = M,, (2.4)

el

where M) are simple finite-dimensional ¢-modules of highest weight A (for some
Borel subalgebra of £) and [ is some indexing set (multiplicities greater than one
are allowed).

We can rewrite (2.4]) as

M~ P M, & M, (2.5)
A
where M* := Hom(M,, M). The simple £&-modules M, with M* # 0 are called
the €-types of M.

In the case when € C g is a semisimple Lie subalgebra and M is a (g, £)-module,
Weyl’s semisimplicity theorem ([Bou82, Ch. 1,86, Th. 2]) implies that M always
has a decomposition . If ¢ is reductive in g and M is simple, then M is also
necessarily £-semisimple. This follows from the fact that £ acts semisimply on
U(g), and hence on any quotient of U(g).

Definition 2.3.3 A (g, €)-module M is said to be of finite type if every irreducible
finite-dimensional €-module has finite €-multiplicity in M. A (g,¥)-module is said
to be of infinite type if the multiplicity of every finite-dimensional irreducible -
module is either infinite or zero.

In the case when g is semisimple, £ is reductive in g subalgebra, and M is an
irreducible (g, £)-module, Lemma 6 from [PS02] (see also the Erratum to [PS02])
proves that M is either of finite or of infinite type, i.e. that there are no irreducible
(g, €)-modules of “mixed type”.

14



Definition 2.3.4 A Lie subalgebra [ C g is Fernando-Kac subalgebra of finite type
if there exists an irreducible (g,€)-module M of finite type for which | = g[M]. If
is a Fernando-Kac subalgebra and | is not of finite type, we say that | is of infinite

type.

Definition 2.3.5 A t-module M is bounded if ¢ = €[M] and there ezists an integer
C' such that every irreducible €-module has multiplicity at most C'. A (g, €)-module
1s bounded if it is bounded as a t-module.

Definition 2.3.6 A Lie subalgebra | C g is a bounded Fernando-Kac subalgebra
if there exists a bounded irreducible (g,€)-module M for which | = g[M].

The present thesis focuses only on (g, £)-modules of finite type. Our main
interest lies in the study of the irreducible ones and the corresponding Fernando-
Kac subalgebras of finite type.

Before we concentrate on irreducible (g, £)-modules, let us note that there is
an obvious way to construct reducible strict (g,€)-modules. Indeed, if M is a
finite-dimensional £-module, then the induced module U(g) Quey Mo is a strict
(g,%)-module. Any quotient of the induced module is also a (g, £)-module. More-
over, all cyclic (and hence all irreducible) (g, #)-modules M arise as quotients of
U(g) ®u) Mo for some finite-dimensional My. Indeed, let M be a cyclic (g, £)-
module generated by the vector m € M. Since M is €-locally finite, £ generates
a finite-dimensional £-submodule My C M. Furthermore, there is a natural sur-
jective homomorphism from U(g) ®uey My to M, and hence M is the quotient
of U(g) ®uy Mo by the kernel of this homomorphism. However, for a fixed irre-
ducible My, it is not clear how to find all possible such kernels. In addition, it is
in general not clear how to compute the Fernando-Kac subalgebra associated to a
given quotient of U(g) Q) M.

2.4 Some known results on Fernando-Kac subal-
gebras of finite type and an existence theo-
rem

We start by recalling a general characterization of Fernando-Kac subalgebras of
finite type given by I. Penkov, V. Serganova and G. Zuckerman.

Theorem 2.4.1 [PSZ0J), Theorem 3.1(1),(3)] Let | C g be a Fernando-Kac
subalgebra of finite type.

(a) N(I) = L.
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(b) 1 has a well-defined reductive in g part € = l..q.

(c) Any irreducible (g,€)-module M of finite type over | has finite type over €
and € acts semi-simply on M.

Proof.

(a) Let M be an irreducible strict (g, [)-module and let My, C M be an irre-
ducible finite-dimensional [-submodule (to make sure such exists take an irreducible
submodule of any finite-dimensional [-submodule of M). Assume on the contrary

that N(I) # [, and pick x € N(I)\I. Set
Mn :M0+$M0++$HM0

We are proving that M, is [ invariant, using the fact that M, is [Hinvariant and
that commuting x with [ produces elements in I. Indeed, we proceed by induction
on n. Assume that M,_; is linvariant. Pick any [ € [. Then [ - M, =1- ((z" -
My) + M,_1) Cx-1-2" "My + [l,x] - 2" "My + M,,_;. But [l,z] € [ (z is in the
normalizer of [) and so by the induction hypothesis [I,z] - 2" 1My C M, _; and
l-2"'M, C M,_,. Therefore [ - M, C M,

We claim next that M, /M, 1 ~ M,. More precisely we claim that the epi-
morphism ¢ : My — M, /M, 1, m > z"-m/M, 1 is injective. Indeed, since M,
is an irreducible [-module, ¢ is injective unless ¢ = 0. However the latter would
imply M,, = M,,_; which in turn would imply that the action of x on M, is locally
finite. On the other hand, by Lemma [2.2.5] and by the assumption that = ¢ [, the
action of x on any vector in M is free. Contradiction. Hence ¢ is injective and
we have established that M, /M, 1 ~ M,.

Now the assumption N(I) # [ implies that the multiplicity of My ~ M, /M, 4
for all n is infinite in M. This is impossible as M has finite type of [. Contradiction.

(b) It is well known that a self-normalizing subalgebra over an algebraically
closed field has a well-defined reductive part. This follows, for example, from
Corollary 1 and Proposition 7 in [Bou82, Chapter 7,55].

(c) Since M is generated by any of its non-zero vectors (M is irreducible), we
have that M is a quotient of the induced module U(g) ®yqy My. By the Poincare-
Birkhoff-Witt Theorem, U(g); is a finite-dimensional ¢-module for all k, where
U(g)r denotes the subspace of U(g) generated by monomials of total degree less
than or equal to k.

It remains to prove that M has finite type over £. By [Bou82, Ch.1 par. 6.§]
we know that ny C n+ Z([), where n is the nilradical of [. This, together with
Schur’s Lemma (applied to the irreducible module Mj) implies that there exists
A € ng such that

x-m=\Nz)m Vzen,Vme M.
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The fact that n; has nilpotent action on g together with the equality (ad z)(g; ... gx) =
[z, g1)92 .. gk + -+ g1... gr_1]z, gx] imply that for any x € n;, = has nilpotent
adjoint action on U(g)g. Therefore x — A(z) acts nilpotently on any [-subquotient
of U(g) ®u ) Moy and hence acts by zero on any irreducible subquotient. Therefore
two irreducible [-subquotients of M are isomorphic if and only if they are isomor-
phic as ¢-modules. Since M has finite type over [, it necessarily has also finite type
over £. O

We recall next a key theorem from [PSZ04] which ensures the existence of
irreducible (g, )-modules of finite type with a certain prescribed Fernando-Kac
subalgebra. Let g be a reductive Lie algebra with Cartan subalgebra h and let
¢ D b be a reductive root subalgebra of g. Let h € h be an element such that
v(h) # 0 for all v € A(t) and let p := €D,;,)509” be a parabolic subalgebra of
g. Then preq = B, j)=0 9" and let the nilradical of p is n, 1= @, ;)5 97- Let L
be an irreducible (p,h N €)-module of finite type over h N € with trivial action of
Ny + (Z(Prea) NEss) and with p,.4 -central character ngd for some p,; N b-dominant
weight v € h*.

Theorem 2.4.2 ([PSZ04, Theorem 4.3]) Then there exists a module M for
such that

(a) M is an infinite-dimensional irreducible g-module;

(b) g[M] = tss ®my, where my, is the mazimal €s5-stable subspace in p[L]; more-
over g[M] is the unique mazimal subalgebra in p[L] + € which contains €;

(c) M is a (g,t)-module of finite type over €.

In [PSZ04] there is an explicit formula for the module M in terms of two additional
parameters. We do not present it as that would require extra notation which would
not be otherwise used in this thesis. The proof of the theorem uses the Beilinson-
Bernstein localization theorem and Kashiwara’s theorem ([Kas77], [BB93]).

We present some corollaries of Theorems [2.4.1] and [2.4.2]

Theorem 2.4.3 ([PSZ04]) Let ¢ be a reductive in g subalgebra for a semisimple
algebra g such that the centralizer C'(€) of € equals the center Z(€) of ¢. Then
there exists a Fernando-Kac subalgebra of finite type | C g such that l..q = €.

Conversely, if l is a Fernando-Kac subalgebra of finite type, then l,..q is well defined
and C(lyeq) = Z(Lreq)-

The necessity of the condition C'(l,eq) = Z(l1eq) is the much easier part of the the-
orem, as it uses only Theorem [2.4.1, Theorem reduces the classification of

17



Fernando-Kac subalgebras of finite type to the classification of all possible subalge-
bras n for a fixed reductive in g subalgebra £ = l..q C g with C(Leq) = Z(leq). In
the specific case of g = gl(n), the following two theorems characterize the reductive
in g Fernando-Kac subalgebras of finite type (here [ = ¢, n = {0}).

Theorem 2.4.4 ([PSZ04]) A reductive in gl(n) subalgebra | is a Fernando-Kac
subalgebra of finite type if and only if C(I) = Z(I).

Corollary 2.4.5 ([PSZ04]) A reductive in gl(n) subalgebra € is a Fernando-Kac
subalgebra of finite type if and only if the defining g-module is multiplicity free.

The problem of describing all nilpotent Lie algebras n so that £ n is Fernando-
Kac of finite type turns out to be much more complicated, and is still open. In
the present work we solve this problem under the assumption that € is a root
subalgebra of a simple Lie algebra g+ Fg.

The following theorem is the main motivation for Penkov’s conjecture. We note
that its formulation of the cone condition is slightly different from the one we give
in the next chapter.

Theorem 2.4.6 ([PSZ0J]]) A root subalgebra [ = (L,.q®n) C gl(n) is a Fernando-
Kac subalgebra of finite type if and only if Coneg(Singy~¢(g/l)) N Coneg(A(n)) =
{0}, where Singy(g/1) = {a € A)\A()a+6 ¢ Alg),¥6 € A(b) N A®)} (cf.
Definition below).

Theorem uses as input data an irreducible strict (p,eq, h)-module L of
finite type over b, where p is a parabolic subalgebra of g. Furthermore, determining
which values are allowed for p,.q[L] in an irreducible (p,cq, h)-module L of finite
type is a partial case of the problem studied here. In particular, it is important to
know whether the equality p,.q[L] = b is possible for a given p. A definitive answer
is given by S. Fernando, [Fer90, Theorem 5.2]: an irreducible strict (p,eq, h)-module
L of finite type exists if and onlyif p,.s has simple components of types A and C'
only.

In [Mat00], O. Mathieu classified the irreducible weight modules (i.e. the (g, h)-
modules of finite type). However, for our purposes, it suffices to present any con-
struction of strict irreducible (sl(n), h)- and (sp(2n), h)-modules of finite type. One
rather elementary way to obtain such a construction comes from the natural em-
beddings of sl(n) and sp(2n) in the Weyl algebra in n variables W,,. We recall that
W, is the algebra over C generated by letters x4, ..., z, and differential operators
Orys .-+, 0p, with the usual commutation relations. The construction we describe
below can be found, for example, in [BL82].

Let the natural module of gl(n) be V', let {dy,...d,} be an arbitrary basis of
V', and let {dj,...d}} be the corresponding dual basis of (V')*. Write gl(n) in

18



tensor notation as span{d; ® d;}. Let the natural module of sp(2n) be V" and let
B be the defining invariant symplectic form on V”. Let {e1,...e,, f1,... fu} be
a basis of V" such that B(e;,e;) = 0, Ble;, f;) = —B(fj, &) = { 3) f)thgrwise :
B(fi, f;) = 0. Let {ei,....et, fr,... fi} be its corresponding dual basis in V"*.
Write sp(2n) in tensor notation as spanJ; ;{e; @ €j — f; @ fi} U U {e ® f; —
e; @ fi Y UUig{fi @ € — f; ® €} }izj. We can embed gl(n) in sp(2n) via the map
0 : gl(n) — sp(2n) given by 0(d; @ d}) :==e; ® e} — f; ® f7.

We can embed gl(n) & W, via the map ¢(e; ® e;f) = 2;0,,. Set ¥ = Q).
Following [Mat00], we can write an embedding ¢ of sp(2n) in W, such that ¢ =
Ojsi(n) © . Indeed, we can set ¥(e; ® e; — fi® f7) = x;0,,, where i # j, e ® fi+
e; @ ff) = wyzy, where i = j is allowed, ¢(f; ® €] + f; ® €]) 1= —0,,0,,, where
i = j is allowed, and ¥(e; ® €f — f; ® fF) := 210,, + 5. Note that ¢ and ¢ have
the same action on #(sl(n)), but not on 6(gl(n)). The embedding ¢ is called the
Shale-Weil representation of sp(2n) in Clzy, ..., z,], [Mat00].

The embeddings of sl(n) and sp(2n) in W, give a natural way to construct strict
irreducible sl(n)- and sp(2n)-modules of finite type. Consider any formal monomial
7t a8 with not necessarily integral exponents a; € C. The realization of g :=
sl(n) in W, induces a natural action on the vector space M := spang {z;" ... a2
€ aft ... a2 Clay, ... xn, 272 | Y, a0 = Y0 Bi}. The explicit form of the
embeddings implies that the Cartan subalgebra of sl(n) acts locally finitely and
semisimply on M. If a; — «; is not an integer for all 4, j, then none of the root
spaces of sl(n) acts locally finitely. Furthermore, these conditions imply that the
module is irreducible. By Theorem we have that g[M] equals the Cartan
subalgebra b of sl(n). We call the sl(n)-modules constructed above Britten-Lemire
modules.

Similarly, the realization of g = sp(2n) in W,, induces a natural action on the
vector space M’ = x{" ... 2% Clzy,...,2n, 27", ..., 2, ]. The Cartan subalgebra
of g is a subalgebra of g[M’]. If none of the a; and none of the possible sums
a; £ a; # 0 is integral for all 4, j, then none of the root spaces of sp(n) acts locally
finitely. Furthermore, these conditions imply that M’ is irreducible. By theorem
we have that the Cartan subalgebra equals g[M’].

In both cases — sl(n) acting on M and sp(2n) acting on M’ — we see that for any
two monomials 20" . .. 2P € M (respectively, zi" ... xP» € M) and 2" . . e M

(respectively, xfi e xﬁé € M’) there is an element of the Cartan subalgebra having
different eigenvalues on the two monomials. This shows that, in addition, both
modules M and M’ are multiplicity-free as weight modules.
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Chapter 3

Fernando-Kac subalgebras arising
through a construction of Penkov,
Serganova and Zuckerman

3.1 Main result of the thesis

In this section we formulate Penkov’s conjecture for all simple Lie algebras. The
rest of the thesis is dedicated to proving this conjecture in all cases except Fg.
Recall that [ is a root subalgebra of g.

Definition 3.1.1 (I. Penkov)

(a) Cone condition. We say that | satisfies the cone condition if Coneg(A(n)) N

Coneg(Singye(g/1)) = {0}, where Singye(g/1) := {a € A(g\A(D]er +0 ¢
A(g),¥6 € A(b) N A(E)} are the weights of the b N E-singular vectors of the
t-module g/!.

(b) Centralizer condition. We say that | satisfies the centralizer condition if a
(equivalently any) Levi subalgebra of the Lie algebra C(¥s) NN (n) has simple
constituents of type A and C only.

Remark. The cone condition (a) holds as stated if and only if it holds with Q
replaced by Z.

Conjecture 3.1.2 (Penkov’s conjecture) Let [ = €D n be a root subalgebra of
a simple Lie algebra. Then | is a Fernando-Kac subalgebra of finite type if and
only if the cone condition and the centralizer condition are satisfied.

The main result of this thesis is the following.
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Theorem 3.1.3 If g Es, Penkov’s conjecture holds. If g ~ FEs, then [ is a
Fernando-Kac subalgebra of finite type whenever the centralizer and cone condi-
tions hold.

In the current chapter, we construct via the theorem of I. Penkov, V. Serganova
and G. Zuckerman (Theorem an irreducible (g, [)-module of finite type for
any subalgebra [ that satisfies the cone and centralizer conditions. This completes
one of the directions of the proof of Theorem [3.1.3|

The conjecture was formulated by I. Penkov for the classical Lie algebras. Due
to its root-system formulation, his conjecture directly applied to the exceptional
Lie algebras as well. At the time of writing of this thesis, Penkov’s conjecture
remains open for Fg due to the computational challenge posed by the root system
of Eg.

Note that the criterion of Theorem [3.1.3|is entirely combinatorial. This clearly
applies to the cone condition. Checking the centralizer condition under the as-
sumption that the cone condition holds is also an entirely combinatorial procedure.
Indeed, in this latter case Proposition below gives that C(t,) N N(n) =
C(tss) N N(C(kss) Nm), ie. C(kss) N N(n) is a parabolic subalgebra of C(f;).
Therefore checking the centralizer condition reduces to checking the type of the
root subsystem @ N —Q C A(g), where @ := {a € A(g) | a£ A(¥), such that for
all § € A(n) with g+ A(£), either a + f € A(n), or a + 3 is not a root }.

In the case when € = § (i.e. [ is solvable), the cone condition is equivalent to

the requirement that n be the nilradical of a parabolic subalgebra containing b
(see [PS02, Prop. 4] and also Lemma [£.2.8 below). Furthermore, using Corollary
5.5 and Theorem 5.8 from [PSZ04], it is not difficult to show that when g is of
type A, the cone condition holds if and only if n is the nilradical of a parabolic
subalgebra of g which contains €. This is not the case in type B, (', and D. Here
is an example for type C.
Example 1.4 g = sp(6), A() = {£2e1, £2e3}, A(n) = 269,69 +£1,60 — 1. A
computation shows that Sing,~.(g/l)) = {e3 + 2,61 +€3,63 — €2, —2 + €1, =262}
Thus the cone condition is satisfied, but there exists no parabolic subalgebra p
with n = n,. Indeed, assume the contrary. Then there exists a vector ¢ € h with
a(t) > 0 for all @ € A(n), and «a(t) < 0 for all other roots a of g. Therefore
e1(t) = e3(t) =0, e2(t) > 0, and t(e3 + £2) > 0. Contradiction.

To illustrate the cone condition in the non-solvable case, we present all non-
solvable root subalgebras that fail the cone condition in types Bz and C3 (Table
below). These subalgebras are, up to conjugation, all non-solvable root sub-
algebras of infinite type in types B3 and Cj. Indeed, the centralizer condition is
trivially satisfied in type Cs. In type Bs, the centralizer condition holds for [ b, as
the root system Bs is isomorphic to Cy. Up to conjugation, in so(7) (respectively,
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sp(6)), there are 11 (respectively, 16) non-solvable root subalgebras that fail the
cone condition, and 32 (respectively, 38) non-solvable root subalgebras that satisfy
it.

g~ so(7)

A(t) is of type Aj+A;
A+(E) = £1-€9, €11+€2
A(¥) is of type Aj;
AT(E) = e3

>

A(¥) is of type As;
AT(8) = e1-e9

P A A

(n)
(n)
(n)
(n)
(n)
(l’l) =€1+€9, £1-€3, €9-E3, -E2-E3, -€1-E3
(n)
(n)
(n)
(n)
(n)

n) =¢€1-€3, €2-€3, -€2-€3, -€1-€3
n) =¢€1-€3, €2-€3
g ~ sp(6)

=2¢1, 2e3, 269, £94€3

n) =24, -2e9, -263, -€9-€3

n) =eci1+€3, €1+€9, 263, 269, €9+€3
n) =e1+€3, €1+€2

:263, 282, €o9t¢€3

N) =€1-€9, £1-€3, -29, -2€3, -€9-€3
=€1-€2, €17€3

(n)

(n)

(n)
A(t) is of type Ay; (n)
(n)
(n)
(n)
(ﬂ) :—262, —263, -E9-€3
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)

AT (B) = -g2+¢€3

n) =-e9+4-€3, 263, -269, £1+€3, -€1+€3
-€9+€3, 23, €1+€3, -€1+€3

n :—€2+€3, 263

n) =-go+eg3

:252, 283, €1+52, -E1+E2

A(t) is of type Aj;
A+(E) = 251

2e9, 1469, -€1+€9
n :282

%Meﬂ!ﬁ

Non-solvable root subalgebras that fail the cone condition in types B3 and Cs.

P A A d A A
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3.2 Root subalgebra preliminaries

Lemma 3.2.1 Let ¢ C g be a reductive root subalgebra. Then C(tss) = b1
Dok ap 8% where by = {h e | v(h) =0,Yy € A(®)}.

Proof. Let z:=h+ 3, ca(q) @y € C(tss), where g € g*. For any v € A(t) we
have 0 = [z, g7 = 7(h)g" + D pen(y) UaCayg® ™7, where ¢ = 0 if o + 7 is not a
root and ¢, 7# 0 whenever a + 7y is a root. Therefore a, = 0 for all a which are
not strongly orthogonal to A(#) and (k) = 0. On the other hand, it is clear that
when «(h) = 0 for all v € A(), and a, are arbitrary, then A+ | A Gag” 1
an element of C(&). O

Proposition 3.2.2 Suppose that | satisfies the cone condition. Then C(¥s) N
N(C(tss) Nn) is a parabolic subalgebra of C(ss). Equivalently, in view of Lemma
there exists h € § such that

Cle)NN(Ce) ) =g =& P o (3.1)
a(h)>0
aze At)

where hy = {h € b | v(h) = 0 for all v € A(®)}. In addition, C(ts) N N(n) =
C(t) N N(C(ts) Nm).

Proof. Throughout the entire proof we use Lemma |3.2.1]

The equality Coneyz(Singp~¢(g/l)) NConez(A(n)) = {0} implies that there exists
h € b for which G(h) > 0,V € A(n) and a(h) < 0,Va € Sing,~(g/1). Let g5 be
defined as in (3.1)).

We claim first that q, D (C(ts) N N(C(€s5) Nn)) D (C(kss) N N(n)). Suppose

on the contrary that thereexists v := g +> | At )aaga € Cts) NN (C(ss)N
S~~~ 88

€h

n) for which there is a root v € A(C(&ss)) such that y(h) < 0 and a, # 0. Then
h C N(C(tss) Nn) implies that whenever a, # 0 we have g € N(C(ts5) Nn).
In particular g7 € N(C(tss) Nn). As C(t,) is reductive, —y € A(C(#s)), and
—v(h) > 0 implies —y € A(n). Therefore g=7 € C'(£s5) N n which contradicts the
inclusion g7 C N(C(ts) Nn).

We claim next that q, C C(tss) N N(C(tss) Nn). Fix a € A(C(¥s5)) for which
alh) > 0. If B € A(C(ts) Nn) and (a + B) is a root, then (o + 5)(h) > 0.
Therefore o + f € A(C(ts) Nn) as all roots in A(C(ts)) are b N E-singular.
Therefore g* € N(C(ts) Nn).

So far we have established that q, = C'(t5) NN (C(tss) Nn); we are left to prove
that q;, C C(&ss) N N(n). Suppose, on the contrary, that there is —a € A(C(y;))
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such that —a(h) = 0 and v := —a+ 8 € A(g)\A(n) for some g € A(n). Since
—a+ A(t), —a, o € Singy(g/l) and we have the relation

a+vy=p. (3.2)

Clearly v ¢ A(t). For the already fixed choice of «, assume that v € A(g)\A([)
is a root maximal with respect to the partial order defined by b N ¢, such that
there exists a relation as above. If 7 € Sing,~.(g/l), this would contradict
the cone condition; therefore there exists 6 € AT (€) such that § 4 is a root. The
requirement that v € A(C'(¥ss)) forces d to be strongly orthogonal to a.. Therefore
0 has the same scalar product with v as it does with , but at the same time § +
is a root and § + /3 isn’t (due to the maximality of 0). We will prove that these

requirements are contradictory. Let the simple component of g containing «,
and (8 be s.

Case 1 s is of type A, D, E or G5. The inequality (J,5) = (4,7) < 0 contradicts
the maximality of v because if it held, we could add § on both sides of
(3-2). The inequality (d,v) > 0 implies (4,7) = 0 (the sum of two roots
with positive scalar product is never a root). In turn, this contradicts the
condition that d + 7 is a root since in root systems of type A, D, E and G,
strong orthogonality is equivalent to orthogonality.

«

Case 2 s1is of type C'. Without loss of generality we can assume that (3.2) is ¢, + €5,

——

+(—¢j, + €j5) = €j, + €, where the indices ji, jo, j3 are not assumed to be
—_——— N

Y B
pairwise different. Then 6 = —e;, + & contradicts the maximality of

for all possible choices of the indices ji, jo, js,{. Furthermore, § = ¢, + ¢
contradicts o € A(C(,,)) for all possible choices of the indices 71, 72, 73, [.
Contradiction.

Case 3 s is of type B.
Case 3.1 « and ~ are both short. Without loss of generality 1' becomes &

+ &9 = &1 +¢e5. The maximality of v implies 6 = &; — e which
~— ——

gl B
contradicts a € A(C/()).

Case 3.2 « is short and v is long. Without loss of generality (3.2) becomes
e1 +(—e1+¢e2) = &y . The maximality of v implies § = g1 + ¢, for
—_ e =~

« v B
some index [, which contradicts a € A(C(&s5)).
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Case 3.3 «islong and 7 is short. Without loss of generality 1) becomes €1 + ¢
——

o

+(—e2) = €1 . Thus 6 = g9 +¢; for some index [ and a € A(C(&ss))
— =~

v B
implies § = €3 — (¢1). Then 5+ 5 40 = « yields a contradiction.

Case 3.4 Both « and 7 are long. Without loss of generality (3.2)) becomes e; — ¢
——

(07
+ &9+ e3 = €1 + 3. The assumption that ¢ is short contradicts either
~—_—— =

¥ B
a € A(C(%s)) or the maximality of the choice of . The fact that all
roots participating in (3.2)) together with the root § are long is contra-
dictory. Indeed, otherwise we could use the exact same data to obtain

a relation (3.2) in type D.

Case 4 s is of type Fy. Suppose on the contrary that there exist roots «, 3,7,0
for which holds and 0% o, d+ 3, § L . The same conditions would
continue to hold in the root subsystem A’ O [ generated by «,~,d. Since
A’ is of rank 3, setting A(n') := {f}, A(t.,) = {£d} we get data whose
existence we proved impossible in the preceding cases. Contradiction.

3.3 Sufficiency of cone and centralizer conditions
for finite type

Lemma 3.3.1 Let [ be a root subalgebra of the semisimple Lie algebra g such that
the cone conditions holds. Then | is a Fernando-Kac subalgebra of finite type if
and only if the centralizer condition holds.

Proof. Suppose Conez(Sing,~(g/)) NConez(A(n)) = {0} but [C(s) NN (n)] has
a Levi subalgebra that has a simple component of type B, D, or E. Let h € b be
such that y(h) > 0 for all v € Conez(A(n)) and y(h) < 0 for all v € Singy(g/1).
According to Proposition 3.2.2) [C(tss) N N(n)] = [C(ks) N N(C(ks) N n)] =
qn, where qp, is defined as in Lemma [3.2.2] Assume on the contrary that there
exists an irreducible (g, [)-module with g[M] = [. Pick an arbitrary b N [-singular
vector v and consider the q; N C()ss-module N generated by v. We have that
N is a strict (q, N C(Bss)ss, b N C(Ess)ss)-module (“torsion-free” according to the
terminology of [Fer90]). Then, according to [Fer90, Theorem 5.2], it cannot have
finite-dimensional h N C'(&s)ss-weight spaces. In particular there are infinitely
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many ug, - -- € U(C(¥ss)) such that uy -v,... are linearly independent and of same
h-weight. Then u; € U(C(ts)) implies uy - v,... are all b N €-singular, which
contradicts the fact that M is of finite type over ¢ ([PSZ04, Theorem 3.1]).

Suppose next Conegz(Singy~,(g/l)) N Conez(A(n)) = {0} and C'(ts5) N N(n) has
simple Levi components of type A and C' only. We will prove that [ is Fernando-
Kac subalgebra of finite type by the construction [PSZ04, Theorem 4.3]. Since the
cones do not intersect, there exists a hyperplane in h* given by an element h € h
such that A(n)) lies in the h-strictly positive half-space, and Conez(Sing,-¢(g/!))
lies in the A-non-positive half-space. Clearly we can assume h to have rational
action on h*.

We introduce now a “small perturbation” procedure for h to produce an element
h' such that v(h') # 0 for all v € A(¢). Suppose v € A(bNE) is a root with y(h) = 0.
Define g € h by the properties v(g) = 1, +/(¢g) = 0 for all 4/ L ~. Now choose t to be
a sufficiently small positive rational number (¢ < I mingea ) 3n)20 |8(R)| serves our
purpose). Set hy := h — tg. Then all h-positive (respectively h-negative) vectors
remain hj-positive (respectively hi-negative) vectors. The only roots a whose
positivity would be affected by the change are those with a(h) = 0, (a,v) # 0.
By the preceding remarks, A(n) lies in the hy-positive half-space. We show next
that Conez(Singy¢(g/l)) remains in the hi-non-positive half-space. Suppose on
the contrary we had a vector a € Sing,,(g/[) that now lies in the hy-positive half
space. By the preceding remarks a(h) = 0. Therefore a(g) = —1a(h1) < 0 which
implies (o, ) < 0 and thus a + v is a root. Contradiction.

If there is a root of € that still has zero action on the newly obtained h;, we
apply the above procedure again, and so on. The number of roots a € A(¢) for
which a(hy) = 0 is smaller than the corresponding number for h. Therefore after
finitely many iterations we will obtain an element, say h’, for which ~v(h') # 0 for

all v € A(#) and
a(h’) =0 for all a for which g* € C(t,;). (3.3)

Now define

= P o*0n= P o

a(h/)>0 a(h)>0

Then pred C (Pr),oq = b + qn, where g is the subalgebra defined in Lemma
3.2.2 By Lemma [3.2.2] we get q, = C(£,,) N N(n) and the latter is direct sum
of simple components of type A and C' by the centralizer condition. Thus p,.q
is a sum of root systems of type A and C' (since types A and C' contain root
subsystems of type A and C only). We can now pick a (P,eq, h)-module L for
which p,eq[L] = b (see [BL82], [Mat00, Sections 8,9]), and we can extend L to a
p-module by choosing trivial action of the nilradical of p. The choice of A’ allows
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us to apply [PSZ04, Theorem 4.3] to get a g-module M for which g[M] is the sum
of £ and the maximal £-stable subspace of p[L] = hD n,. The fact that at least
one weight of each irreducible direct summand of g/l (namely, its b N £-singular
weight) is outside of p[L] implies that the maximal €-stable subspace of p[L] is n.
This completes the proof. O

The preceding proof completes the existence part in the proof of Penkov’s
conjecture. The remainder of the thesis is dedicated to proving that the failure of
the cone condition implies that [ is Fernando-Kac subalgebra of infinite type.
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Chapter 4

Cone condition fails = [ is
Fernando-Kac subalgebra of
infinite type

Section gives a sufficient condition for a root subalgebra to be Fernando-Kac
subalgebra of infinite type. More precisely, we show that the existence of a certain
[-infinite weight implies that [ is Fernando-Kac subalgebra of infinite type. Section
4.2| proves that the failure of the cone condition is equivalent to the existence of
an l-infinite weight.

4.1 A sufficient condition for infinite type

Let [ = €D n be a root subalgebra, let M be a (g,[)-module. For every root
« € A(g) choose a non-zero vector g* € g* such that [¢%, g~%] = h®, where h® is
the element of b for which [, g°] = («, B)g° for all B € A(g).

By Lie’s theorem, there exists an b N [-singular vector v in M. Suppose that
there exist roots a; € Singy~(g/l) and 5; € A(n), as well as numbers a;,b; €
Z, such that the vectors of the form ((g=%) ... (g_ﬁk)bk)t ((g*)™ ... (g™)™)
-« for t € Z~o have the following three properties. First, these vectors have the
same h-weight; second, they are linearly independent; third, each of them projects
naturally to a b N [-singular vector in an appropriate [-subquotient of M. If all
three properties hold, then M is a (g, [)-module of infinite type as the irreducible
[-module with highest weight equal to the weight of v has infinite multiplicity in
M.

The above summarizes our approach for proving that the failure of the cone
condition implies [ is a Fernando-Kac subalgebra of infinite type. The present
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section establishes that the three properties in question hold under an additional
assumption.

Definition 4.1.1

o Let I be a set of roots and w be a weight. We say that w has a strongly
orthogonal decomposition with respect to I if there exist roots ; € I and
positive integers b; such that w = b1y + -+ -+ bpBk and B;&= B; for all i, .

o Fixl=tD2nC g withn Cb. Let w be a weight. We say that w is two-sided
with respect to [, or simply two-sided, if the following two conditions hold:

— w € Coney(Singy~¢(g/l)) N Conez(A(n))\{0}, i.e. there exist a; € Z~o,
a; € Singpe(g/1), bj € Z~o and p; € A(n) with

l k
i=1 i=1

— among all expressions for w of type , there exists one for which
[g“,n] Cn,... [g™,n] Cn

o Let w be a weight. If w is both two-sided and has a strongly orthogonal
decomposition with respect to A(n), we say that w is l-strictly infinite.

o [f for a given weight w there exists a root subalgebra t containing €, such that
w is I'-strictly infinite in t, where ' := [Nt =D (tNn), we say that w is
[-infinite.

Lemma 4.1.2 Given [ = D n C g, there exists h € b such that v(h) = 0 for all
v € A(E) and B(h) > 0 for all 5 € A(n).

Proof. Since hD n is a solvable Lie algebra, it lies in a maximal solvable (i.e.
Borel) subalgebra; assume without loss of generality that this Borel subalgebra is
b. Fix A’ € b such that y(h') > 0 for all v € A*(g). Let h” € b be defined by
v(W") :== ~(R') for all v € A(€) and «(h”) = 0 for all weights a € A(£)*. Set
h:=h —hn"

We claim that h has the properties stated in the lemma. Indeed, let n”’ C n be
a t-submodule of n. Since y(h) = 0 for all a € A(t), the value r := §(h) is the
same for all roots f € A(n'). Our statement is now equivalent to showing that
r > 0. Assume on the contrary that » < 0. Let the sum of the weights of A(n’)
be A, ie. A= 3 5 awyBi- Then A(h) = #(A(n'))r < 0. On the other hand,
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the sum of the weights of a finite-dimensional £,,-module always equals zero, i.e.
A € A(€)L. Therefore A(h) = A(W') + A(R") = A(W') > 0, contradiction. O

For an arbitrary weight p € b*, denote by L,(¢) (respectively, L,(g)) the
irreducible highest weight €-module (respectively, g-module) with b N £-highest
(respectively, b-highest) weight p.

Lemma 4.1.3 Let w be a weight that has a strongly orthogonal decomposition with
respect to A(n). Let X € h* be an arbitrary b N €-dominant and t-integral weight.
Then there exists a number ty such that, for any t > ty and any g-module M
that has a (b N €)D n-singular vector v of weight X\ + tw, it follows that M has a
t-subquotient in which there is a non-zero b N €-singular vector w of weight \.

Before we proceed with the proof we state the following.

Corollary 4.1.4 Let g, b, [ =t n, X\ and w be as above. Then there exists t
such that for any t > ty and any (g, €)-module that has a (b N€)D n-singular vector
v € M of weight A + tw, it follows that M has non-zero multiplicity of Ly(€). In
particular, the existence of a (g, €)-module with the required singular vector implies
that w is b N €-dominant.

Proof of Lemma [4.1.3]Let n~ be the subalgebra generated by the root spaces
opposite to the root spaces of n. Let b1 + -+ + bpfr = w be a strongly or-
thogonal decomposition of w with respect to A(n) (Definition [£.1.1)). Let u :=
(gP)or .. (g% )% € U(n) and @ := (g=P1)br ... (g P*)%.

Let A be the linear subspace of U(n~) generated by all possible monomials
g~ ...g 7% that have strictly higher weight than —tw, where —v; € A(n7), in
other words, A := span{g™"...g7%|y; € A(n),> 7 < w}. Denote by N the
t-module generated by the vectors {A-v}. To prove the lemma, we will show that
the &-module M /N has @ as a b N ¢-singular weight vector, where w is the image
in M/N of w:=1u"-v.

First, we will prove that w is b N €-singular: indeed, n™ is an ideal in the Lie
subalgebra €2 n~ and so g®u’ € (a'g™ + A) for all € AT (¥); this, together with
the fact that v is b N ¢-singular, proves our claim. Second, we will prove that if w
is non-zero, then w ¢ N and therefore w is non-zero. Indeed, the weight spaces of
N are a subset of the set

X = U (A + tw + v + span; A(€)).
~y€Conez(A(n™))
y-—tw

We claim that X does not contain A: indeed, choose [ € h such that y(I) = 0
for all v € A(¢) and f'(I) > 0 for all p/ € A(n) (Lemma [4.1.2). Therefore
—tw(l) ¢ {u(l)|pn € X} and our claim is established.
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To finish the proof of the lemma we are left to show that w = @' - v is non-zero,
and this is the first and only place we will use the strongly orthogonal decomposi-
tion of w. To do that we will prove by direct computation that the vector u'a’ - v
is a strictly positive multiple of v. For any n € Z-o we compute

3
,_.

(@) g0 = <ﬁz7 B+ A+ tB8) (g7 )

n(n —1)
2

<.
Il
o

nt*(B;, B) + nt{Bs, A) — <ﬂz‘,ﬁi>) (g7t

X
= (o (e = 22 4 ) e

Therefore
stcotnt oy — TT (15 a0 (ois— 2 E=RE—E=1)
(9")"(g™"™) k||0 ((6@,@ (bz(t k)t 5 )

+<5i,)\>>-v

Define ¢;(t,\) to be the above computed coefficient of v, in other words, set
ci(t, \)v == (g%~ (g=P)=* - v. Since b; > 0, using the explicit form of ¢;(¢, \), we
see that for a fixed A, ¢;(, \) > 0 for all large enough ¢. Using that g*% and g*%
commute whenever i # j, we get immediately that u'a’ - v = [], ¢;(¢, \)v, which
proves our claim that u'u! - v is a positive multiple of v. Therefore @' - v cannot be
zero, which completes the proof of the lemma. O

Example 1.5 Let us illustrate Lemma in the case when g ~ sl(3) and
M is an irreducible (g, [)-module of finite type. Consider first the case ¢ = . If
n = {0}, the statement of the Lemma is a tautology. If n # {0}, the lemma asserts
that a certain weight space of M is non-zero. As the h-characters of all simple
sl(3)-modules of finite type are known (see for instance, [Mat00, Section 7]), the
claim of the lemma is a direct corollary of this result.

The only other possibility for £ # g is € ~ sl(2) + h. Then there are 2 options
for [ [ =€ or [ =3 n, where dimn = 2. For [ = ¢ the lemma is a tautology as
n = {0}. Consider the case when [ = £ n with dimn = 2, i.e. the case when [ is
a parabolic subalgebra with Levi component isomorphic to sl(2). Here, there are
two options for M: dim M < oo, and dim M = co. In both cases ¢ acts semisimply
on M and the lemma asserts the existence of certain b N ¢ singular vector in M.
More precisely, let 71 := &1 — 2,72 := €2 — £3 be the positive simple basis of A(g)
with respect to b, and let A(f) = {£7;}. Then Lemma claims that if A is
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b N ¢-dominant and integral, then Ly,¢,(g) has a b N ¢-singular vector of weight
A for all large enough ¢. Up to multiplication by a positive integer, there are two
different options for picking the weight w - either w = v, + v3 or w = 5 + 3.

e Suppose w = 71 + 3. Let z(t) and y(t) be functions of ¢ and A, defined
by A + tw = %t)(%q + 72) %(% + 273). The requirement that A be
b N ¢-dominant forces ¢ < x(t). Then the lemma states that there exists
a constant ty, such that for all ty < t < x(t) we have that Ly,,(g) has a
b N ¢-singular vector of weight A. The reader can verify that for both infinite

and finite-dimensional M, that the constant £, can be chosen to be zero.

e Suppose w = 7. Then the lemma states that there exists a constant t,
such that for all ¢ > ¢y we have that Ly, (g) has a b N ¢-singular vector of
weight A. As the reader can verify, when dim M = oo, the statement of the
Lemma holds for £y = 0; in the case that M is finite-dimensional, one must
pick to > — (X, 72).

Lemma 4.1.6 Suppose there exists an [-strictly infinite weight w.

(a) Any (g,1)-module M for which any element in g\l acts freely is of infinite
type over [.

(b) l=¥tDn is a Fernando-Kac subalgebra of infinite type.

Proof. As any irreducible strict (g, [)-module satisfies the conditions of (a), (a)
implies (b); we will now show (a). Let vy be a (b N [)-singular vector.

Let g be the Lie subalgebra generated by € and g™%, where w := Zézl a;o; =
S bifi is one decomposition . Let u® := (¢g*)™...(¢g*)* € U(g). The
vector vy, = (u®)" - vy is non-zero by the conditions of (a). We claim that vy,
is b N [-singular. Indeed, first note that since all «; are € N b-singular, vy, is
b N E-singular. Second, let ¢° € g” C n. By the second requirement for being two-
sided we can commute ¢g” with u® to obtain that ¢°(u®)" € U(q)a, where a € U(n)
is an element with no constant term and q is the Lie subalgebra generated by
g, ..., g%. Since a- vy = 0, we get ¢° - vy, = 0, which proves our claim.

All vy,4, are linearly independent since they have pairwise non-coinciding
weights. Let M; be the g-submodule of M generated by vy, and let M’ be
the sum of the M,’s as t runs over the non-negative integers. Corollary shows
that the £-module L, (%) has non-zero multiplicity in M, for all large enough ft.
Consider the vectors @' - vy 1y, generating the £-subquotients isomorphic to Ly(#),
where 4 is defined as in the proof of Lemma[d.1.3] Let A; be the linear subspace of
U(n~) generated by all possible monomials ¢g=7"...¢g " that have strictly higher
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weight than —tw, where 7; € A(n). Let N be the t-submodule generated by the

vectors U At - Ui, Where ty is the number given by Lemma 4.1.3. Just as in

t>to
the proof of Lemma we see that each vector @' - vy,4, is not in N and is the
image of a b N ¢-singular vector in the quotient M’/N.

We will now prove that @' - vy 4, are linearly independent. Indeed, let u
be defined as in the proof of Lemma [4.1.3] Now take a linear dependence 0 =
Zf\il ciu' - Uyy4,, such that ¢y > ty,...,tx > tx_1 and apply u'V to both sides.
As the computations in the proof of Lemma [4.1.3] show, u'~ kills all but the last
summand; therefore the last summand has coefficient ¢y = 0. Arguing in a similar
fashion for the remaining summands, we conclude that the starting linear depen-
dence is trivial. This shows that the £-module L, (¢) has infinite multiplicity in
the £-module M’. We conclude that M has infinite type over &, hence, by [PSZ04,
Theorem 3.1], M has also infinite type over [. O

4.2 Existence of [-infinite weights

4.2.1 Existence of two-sided weights

Lemma 4.2.1 Let ay,...,ay, g1,y be vectors of a root system such that oy +
coo 4+ ag + age1 + 7y is a root different from vy or is equal to zero, and oy + 7y is
neither a root nor zero fori=1,..., k. Then as1 + 7y is a root or zero.

Proof. We will establish the lemma only for an irreducible root system; the case
of a reducible root system is an immediate corollary which we leave to the reader.
For G5 the statement is a straightforward check, so assume in addition that the
root system is not of type Gbs.

Assume the contrary to the statement of the lemma. Let

a1+t aptag+y=0. (4.2)

Then (8,7) > 0, {(a;,y) > 0. Apply (e,7) to both sides of (4.2). We get (aq,7) +
4 Ak, y) + (a1, ) + (1,7) = (0,7). If & = 0, we immediately get that
(7,;) < 0 for some i and the statement of the lemma holds as the sum of two
roots with negative scalar product is always a root. Therefore we can suppose
until the end of the proof that § # 0.
Since (o, 7y) > 0 and 6 # v, we must have (7, 1) = -+ = (7, ) = (V, Qgy1) =
0 and (v,~) = (d,7). Since d # ~ by the conditions of the lemma, the only way for
this to happen is to have that 7 is a short and ¢ is long, which gives the desired
contradiction in types A, D and E. Suppose now the given root system is of type
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C. Then without loss of generality we can assume that = 2e; and v = 1 + e».
But then there must be a summand on the left-hand side of which cancels
the +e5 term of 7. None of the «;’s have a —es term (since «; + v is not a root)
and therefore ay1 + 7y is a root, contradiction. Suppose next that the given root
system is of type B. Then without loss of generality 7 can be assumed to be ¢;
and 0 to be e; +¢e5. Clearly ay +- - -+ g + g1 +€1 = €1 + €2 wouldn’t be possible
if all o;’s and a1 were long. Therefore one of them is short, which implies that
this root plus v is a root, contradiction.

Suppose finally that the given root system is of type Fj. Pick a minimal
relation that contradicts the statement of the lemma, i.e. one with minimal
number of a;’s. This number must be at least 3, since otherwise this relation
would generate a root subsystem of rank 3 or less and this is impossible by the
preceding cases. We claim that for all ¢, j, o; := a; + ¢ is not a root or zero.
Indeed, assume the contrary. If o;; +7v = o; + ; +y is not a root or zero we could
replace a; + o by o;; in contradiction with the minimality of the initial relation.
Therefore a;; + = a; + a; +y is a root or zero, and since the three roots «;, o,y
generate a root subsystem of rank at most 3, the preceding cases imply that at
least one of a; 4+ v and o + 7 is a root, contradiction.

So far, for all 4, j, we established that a; + a; is not a root or zero; therefore
(o, a5) > 0 for all 4, j. Taking (ay, e) on each side of oy + -+ -+ ap + 1 +7 =19
we see that 2 < (ay,01) < (ay,0). Therefore § — oy is a root or zero, and
transferring «y to the right-hand side we get a shorter relation than the initial
one. Contradiction. O

Definition 4.2.2 For a relation we define the length of the relation to be
> ai. We define a relation to be minimal if its length is minimal, there are
no repeating summands on either side, and no two [3;’s sum up to a root.

Remark. Any relation of minimal length can be transformed to a minimal
relation by combining the repeating summands on both sides and by replacing the
Bi’s in that sum up to roots by their sums. If in addition the initial relation
of minimal length corresponds to a two-sided weight, Lemma implies that
the resulting minimal relation again corresponds to a two-sided weight.

Proposition 4.2.3 Let the cone condition fail. Then there exists a minimal rela-
tion correspoding to a two-sided weight w.

Proof. The failure of the cone condition is equivalent to the existence of a relation

(4.1). Pick a minimal such relation. Assume that the weight arising in this way is
not two-sided. Together with the minimality of the relation this implies that for
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one of the a;’s, say ay, there exist roots ' € A(n) and 6 € A(g)\A(n) such that
0= o1+ ﬁ/.

We claim that § ¢ A(I). Indeed, assume on the contrary that § € A(€). Then
B'— 4 is a root, and therefore lies in A(n). We get the relation (a3 —1)ay + asas +
s ap = b1B1 + -+ b Bk + (B — 6) which is shorter than the initial relation,
contradiction.

Now suppose that 0 is not b N €-singular. Therefore there exists v, € A™T(g)
such that d; := 0 + 77 is a root. If §; is not singular, continue picking in a similar
fashion roots 7, ..., € AT(€), such that &, = d + 7, + - -+ + v is a root for any
t < s. Since this process must be finite, d, is b N -singular for some s. As ay is
b N €-singular, oy + 71 is not a root. Apply now Lemma tody =1 +08 +m
to get that 8" := ' + v is a root. Therefore 5’ € A(n). Arguing in a similar
fashion, we obtain that 5" := " + 7 is a root of n, and so on. Finally, we obtain
BEFY = B 4y + -+, € A(n) and so we get a new relation (4.1)):

(a1 — D)oy 4 0 + agag + -+ + gy = By + -+ - + B + B, (4.3)

We can reduce so that no two f’s add to a root (replace any such pairs by
their sum) and so that if 6, = a; for some i then 0, + a;; is replaced by (a; + 1)a;.

This reduction of is a minimal relation. If this relation does not yield
a two-sided weight, one applies the procedure again and obtains a new minimal
relation, and so on. As this process adds vectors from A(n) to the right-hand
side of the relation, while the length of the left-hand side remains constant, the
process must be finite (cf. Lemmal[d.1.2)). Therefore there exists a minimal relation
corresponding to a two-sided weight. O

4.2.2 From two-sided to [-infinite weights

In the remainder of this section we prove that the failure of the cone condition
implies the existence of an [-infinite weight: our proof is mathematical for the
classical Lie algebras and G5 and uses a computer program for the exceptional Lie
algebras Fy, Fg and F;.

For the classical Lie algebras, our scheme of proof can be summarized as follows.
First, we classify all minimal relations . It turns out by direct observation that
whenever the cones intersect, the minimal relations are always of length 2, in
particular this minimal length does not depend on the rank of the root system. In
type A this was discovered in [PSZ04]. In types A, B and D, a direct inspection
of all minimal relations shows that each of them possesses a strongly orthogonal
decomposition with respect to A(n). Since at least one minimal relation must
be two-sided by Proposition [£.2.3] we obtain the existence of an l-strictly infinite
weight.
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In type C' we do not have that all minimal relations possess a strongly or-
thogonal decomposition. However, the “discrepancy” is small - there is only one
minimal relation without such a decomposition. In this particular case, we
exhibit a root subalgebra t containing £ such that t has an [ N t-strictly infinite
weight, i.e. there is an [-infinite weight.

The proof for the exceptional Lie algebras uses a mixture of combinatorics and
computer brute force. If C'(€s5) Nn is not the nilradical of a parabolic subalgebra of
C'(%ss), we prove in Lemma that an [-infinite weight always exists, involving
only roots of the root system of C(tys). Then, using our computer program, we
enumerate up to g-automorphisms all remaining cases - i.e. the root subalgebras
for which C'(£s5) Nn is the nilradical of a parabolic subalgebra of C'(&ss) containing
C'(tss)Nb. This direct computation shows the existence of [-strictly infinite weights
in types Eg and E;. In type Fj, our program fails to exhibit an [-strictly infinite
weight for only one (unique up to g-automorphism) choice of [; in this case we give
an argument similar to that in the special case in type C.

In order to enumerate all possible subalgebras £ we use the classification of
reductive root subalgebras given in the fundamental paper [Dyn72]. The list of
possible subalgebras ¢ is very short (it contains respectively 19, 45, 75 and 22
entries for Fy, Fg, E7 and Ejg, see section in the appendix). For a fixed ¢,
we use all automorphisms of A(g) which preserve A(bN¢) (see section in the
appendix) in order to generate only pairwise non-conjugate subalgebras [ and thus
further decrease the size of the computation.

We include tables of the cardinalities for each of those groups in the appendix.
An interesting side question arises: what is the structure of those groups? Since
they contain a subgroup isomorphic to the Weyl group of C'(£;), this question can
often be answered by mere inspection of the cardinalities of the groups listed in
Table[A.3] but not in all cases - for example, not for the group of order 168 of root
system automorphisms of E7; that permutes the positive roots of 7A; C Ex.

The following is an observation that is helpful in the proof of Lemma m (cf.
[PSZ04, Lemma 5.4]).

Lemma 4.2.4 Let the cone condition fail and let us have a minimal relation .
Then

(a) The relation has the form
a + ag = b,

or

(b) a; + o is not a root for all i, j.
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Proof. Pick a minimal relation . Suppose there exist indices 7, j such that
v = a; + a; is a root. We claim that v € A(n). Indeed, assume the contrary.
First, suppose v € A~ (). Then «; and a; would both fail to be b N £-singular.

Second, suppose v € AT(¢). We prove that ag + -+ =01+ -+ Bp —
is a shorter relation than (4.1). Indeed, p; 4+ -+ + Br — v is clearly non-zero
(positive linear combination of elements of A(n) cannot be in the span of the roots
of the semisimple part). By the b N ¢-singularity of the «;’s, (v, 51 + -+ + Br) =
(Va1 4+ -+ o) = (7,7) + (7,3 + - + a;) > 0 and therefore, for some index
i, {7, B8;) > 0. This shows that 8; — 7 is a root, which therefore belongs to A(n).
Contradiction.

Third, suppose v ¢ A(g)\A(l). Then 7 is bNé-singular - if Y+ = a3 +as+46
were a root for some ¢ € AT (¢), then Lemma would imply that oy + 0 is
also a root. Therefore we can shorten the relation by replacing a; + as by
v, and the obtained relation is non-trivial since the right-hand side is not zero.
Contradiction.

Therefore v € A(n), and our lemma is proved. O

4.2.3 Minimal relations (4.1) in the classical Lie algebras

The following lemma describes all minimal relations (4.1]) up to automorphisms of
Ag).

Lemma 4.2.5 Let g ~ so(2n),so(2n + 1),sp(2n). Suppose | = €D n does not
satisfy the cone condition.

e A minimal relation has length 2 (Definition [{.2.9).

e All possibilities for minimal relations , up to an automorphism of A(g),
are given in the following table.

Scalar products. All non-
listed scalar products are
zero. All roots, unless
stated otherwise, are as-
sumed long in types B, D
and short in type C.

The roots
from  the
relation
generate

g ~ so(2n)

<041,51> = <042,51> =1 A,

mto = A (on, a5) = —1
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Scalar products. All non-
listed scalar products are
zero. All roots, unless

w stated otherwise, are as- The - roots
. from  the
sumed long in types B, D lati
and short in type C. relation
generate
_ (a1, B1) = (a1, B2) = Az C Ay,
mto = fth (ag, 1) = (a9, B2) =1 n =95 15
(o1, ) = (a1, 1) =
a1+ oy = 61 + ﬂQ + ﬁg ég;’ gj; éal’ ggi z D4 4.6
<Oég,,83> 1
a Y a Y -
200 = Byt BatBat A Ay B Di (b7
a Y - a Y -
ap+ oy = ﬁl + 52 éa; gii _ éa; gj -1 Agl 4.8
g~so(2n+1)
all relations
listed for so(2n) i i
_ <Oél761> = <0527B1> - 17
mte =4 el = flosll = 1 S
_ (a1, a9) = =1, {ag, 1) =1,
mre T 4 o]l = 181 = 1 S
200 = B+ D5 loall =1, {01, B1) = {a1,52) =1 By 4.11
mtay = 265 181l = 1, {a1, B1) = (e, B1) = 1 By 4.12
_ (a1, Br) = (ag, B1) = (g, B2) = 1,
a1+ oy = 51 + 52 ||051H _ HB2|| -1 B3 4.13
(a1, a9) = (an, ) = (g, B1) = 1,
= 2 B 4.14
Mt = AR (o, o) = {an,Ba) = |6l = 1, :
200 = 201+ P2+ B ﬁ%ﬁfj 1: (o, B2) = (en, f3) = B 4.15
g ~ sp(2n)
By = (. 1) = 1
mtar = B o = A (16
= =2
(05} _'_ (6%) - /81 ‘<|%1,HB;>2 <a2,61> ’ CQ 4].7

! Table 9] uses the notation “Dj3” for such subalgebras.

D3 is defined as a root

subsystem of type Az of root system of type B or D, which cannot be extended to a root

subsystem of type Ajy.
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Scalar products. All non-
listed scalar products are
zero. All roots, unless

v stated otherwise, are as- fT(l)lf; mﬁﬁz
sumed long in types B, D relat'o
and short in type C. ;ene;a?e
_ <041>51> = (a2,51> =1
(05} —+ (%) = 261 HCY1H _ HO&QH _ 2 CQ 4].8
5 = 2a y = -1
(05} + 0%) - Bl |<|311”B1:> 2 <a2 a1> CQ 4].9
- <041,51> = <041,52> =
ator = bith <042a51> = <042a52> =1 As 20
(042751> = <C¥2752> =2,
. <0517ﬁ1> = <061751> =
e = Bl * 52 <051,52> =1, <ﬁ1752> =1, Cs 421
ozl = 2
<Oé1752> = <041,52> =2,
ag+oy = P+ B (o1, a9) = (a1, B1) = Cs 4.22
(g, B1) =1, || 52| =2

One possible way to realize the above data in e-notation follows. Equalities

(4.4)-(4.22) correspond to equalities (4.23))-(4.41]) in the same order.

(a) g ~ so(2n)

€1+ &9+ (—52 +€3)
S— ——

a1 a2

€1+ éEa+est ey
—— =

a1 a2

€1+ ¢&at+e1+ ¢4
—— =

aq a2

2 (51 + 62)
——

(631

€1+ &2+ (—62 +61)
N~ Y—

aq [e%))

€1 + €3,
——

B1

€1+ E3+¢E2+ &y,
—_—— =

B1 B2

€1+€3+€1—€3+€2+€4,
—— M= =

B1 B2 B3

€1+t E3+E1 — €3+ &2+ E4+E2 — €y,
e——— e N e~

B1 B2 B3 Ba

g1 +ez+er — €3,
—— =

B1 B2
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(4.23)
(4.24)
(4.25)
(4.26)

(4.27)



(b) g ~so(2n+1)

€1 + &9 =
~—
a1 s

&1 +(—€1+€2> =
~N ~—-—
aq a9
2 €1 =
~—~
a1
€1+€2+51—€2 =
~—— =
ai asg
g1 +é&y+ée3 =
~ -
ai asz
81+8j2+81+€3 =
—_——
a1 aq
2(81+62) =
N——

(63}

(c) g~ sp(2n)

€1+ &2+ (—62 +€3)
N~ —,

aq a9

€1 —E€3t+¢E3+ &9
~—— =

a1 g
251 + 252
~— =~
a1 oz

€1 —&2t+&2+¢€1
—— =

aq a2

€1textes3tey
—— =

ai g

1+ &2+ 263
— =

aq [e %

€1+ Ex+ €2+ €3
——

a1 a2

where «; € Sing,~,(g/1), B; € A(n).

€1 + €9,
——

B1
€2,
—~—
81
€1+ Ea+¢€1 — Eg,
—— =
B1 B2
2 €1,
~—
B1
1+ &+ €3 ,
—— =~
B1 B2
2 €1 +82+€3,
~— =
B1 B2
2 €1 +Eg+eE3+E9— €3,
~— ——— N —
B1 B2 B3

= €1+€37
~——
B1
- 51+€2a
~——
b1
= 2(e1 +e9),
~—
B1
= 2517
~—
B1
= & +83+€2+84,
B1 B2
= &1 +é&3+¢&9+ €3,
B1 B2
= &1 +e&3+ 252 ,
— =
B1 B2
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(4.28)
(4.29)
(4.30)
(4.31)
(4.32)
(4.33)

(4.34)

(4.35)
(4.36)
(4.37)
(4.38)
(4.39)
(4.40)

(4.41)



4.2.4 Relations (4.1) with minimal support

Before we proceed with the proof of Lemma |4.2.5] we present an algorithm for
determining relations with minimal support. The algorithm is based on the
main idea used in the proof of Lemma Nethertheless, the formal exposition
of the proof of Lemma is independent of the current section.

We define the a-support (respectively, the S-support) of a relation to
be the set of roots {a;} (respectively, {;}) participating in the relation. An a-
support (respectively S-support) is defined to be minimal if it is the support of a
minimal relation (4.1). Denote S := Singy~,(g/l). Let us have a not necessarily
minimal relation (4.1))

aoq + - Fagap+--=bfi 4+ +0xfr+ ..., (4.42)

where o; € S, B; € A(n), a;,b; > 0 and such that ajoq +---+apar # b1+ +
brBk. Suppose v 1= ¢y, + -+ qoy, — di By, — -+ — digf,, ¢i,d; > 0 is a root.
Then the following observations hold.

o Ifl>2 ¢ <a,d <bj and v € S we can shorten (4.42)) by transferring
the 3;,’s to the left hand side; k = 0 is allowed.

olf ve S, ¢ <a,d <0b, and k > 1 then v+ cioy, + - + qoy, =
di1Bj, + -+ + diBj, is shorter than (4.42)) unless [ = L and k = K and all
coefficient inequalities are equalities. The preceding equality has smaller
support unless [ = L and k = K independent of the inequalities ¢, < a;, ,
d, <bj,.

) If"}/ & A(n), Cr < a;,., dr < bjr then (o7 +"‘+Oéil = /le ++/Bjk+’)/ is
shorter than (4.42)) unless [ = L and k£ = K; note [ = 0 and k£ = 0 are both
allowed. The preceding equality has smaller support unless = L and k = K
independent of the inequalities ¢, < a;,, d, < b;,.

o Ifl>1 ¢ <a,d <bj and —y € A(n) then we can shorten (4.42) by

transferring the «;;’s to the right hand side; note k = 0 is allowed.

Using the preceding observation we will now formulate an algorithm for generating
a list of possible minimal a- and S-supports of the relations . We keep note
of four subsets A, B, A, B C A(g). The sets A and B parametrize respectively the
a-support and the S-support of a relation (4.1). The sets A and B parametrize
respectively the set of roots that do not belong to S and the set of roots that do
not belong to A(n). At the start of our algorithm, we set A := {«a;} and B := {5}
for two different roots with (ay, 3;) > 0; we set A and B to be the empty set.
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Step 1. If Coneg(A) and Coneg(B) have a non-zero intersection, record the sets A
and B respectively as possible a- and [-supports. Terminate the current
branch of the computation. If Coneg(A) and Coneg(B) do not intersect, go
to Step 2.

Step 2. Since the cones do not intersect, there exists a weight p such that (u, ) >0
for all @ € A, (u,a) <0 for all § € B and such that p has non-zero scalar
product with at least one of the .. Pick one such weight p.

Step 3. For each root o/ with (u,a’) < 0, add o’ to A, and go to Step 4. For each
root 3 with (u,a’) > 0 add 8 to B and go to Step 4. Here the computation
branches: in a computer program, Step 3 would correspond to two loops -
one for each possibility for o/ and one for each possibility for 3.

Step 4. For all possible subsets {a;,,...,q;} of A and {f;,,...,0;} of B check
whether v 1= «a;, +---+a;, — 8;, — - — Bj, is aroot. If that is the case, do
the following four operations, corresponding to the four cases of the preceding
observation. If [ > 2 add v to A; if (I,k) # (#A,#B) add — to A and 7 to
B; finally, if I > 1 add —v to B.

Step 5. If the sets A and A intersect, terminate the current branch of the computa-
tion. If the set of roots additively generated by B intersects B, terminate
the current branch of the computation. In any other case go to Step 6.

Step 6. Check whether the current sets A and B have been considered, up to an
automorphism of A(g), in any preceding branch of the computation. If that
is the case terminate the current branch of the computation.

Step 7. Go to Step 1.

4.2.5 Proof of Lemma [4.2.5|

Proof. Pick a minimal relation of the form w = ajaq + -+ + gy =
bif1 + - - - + by (see Definition [4.2.2)).

Throughout this proof, we will use the informal expression “+e; appears with
a positive (resp. non-positive) coefficient in the weight w” to describe the +e;-
coordinate of w in the basis {e1,...,6;1, 2, €01, ., En}-

g ~ so(2n)

Case 1. There exists an index 4, such that o; = +e;, + (£¢;,), 71 # Jj2 and both
+e;, and +¢j, appear with a positive coefficient in w. Without loss of generality
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we may assume ¢ = 1 and a; = €1 + 9. Therefore there exist 5; and (5, on the
right-hand side of the relation with 8y = 1 + (£ej,) and (2 = €2 + (£¢j,). The
minimality of the relation implies {1,2} N {js,ja} = 0. The latter allows us to
assume without loss of generality that 8, = €1 + e3.

€rt+ext---=¢c1+ezgteate,+. .
B
a1 1 B2

We will now prove j, # 3.

Assume on the contrary that 3 = j;. As the relation is minimal, the choice of +
sign must be such that e3 = 4¢;,. The minimality of the relation implies that there
can be no cancellation of the weight €3 on the right-hand side. Therefore on the
left-hand side there exists a root, say aq, such that as = €5 + (£e;,), js # 3. The
minimality of the relation implies that in addition j; # 1,2. Thus we can assume
without loss of generality that j5 = 5 and as = €3 + 5. So far, the assumption
that j, = 3 implies that the relation has the form

g1+éertes+es+... =e1+ezteatez+..., 4.43
1 2 TE3TEs ‘7, 1ﬁ 3 25 3 ‘5, ( )
[e %] a2 1 2

where v and § denote the omitted summands. Suppose at least one of the roots
£1 + €5 and g9 + €5 belongs to A(n). Without loss of generality we may assume
e1 + &5 € A(n). Then the relation oy + g = fy + €1 + &5 is shorter than (4.43]).
Contradiction. Suppose at least one of the roots €; + €5 and 5 + 5 belongs to
A(€). Without loss of generality we may assume 1 + e5 € A(€). Then e3 — 5 =
Bi1—(e14e5) € A(n) and the relation v = e3—£5+44 is shorter than (4.43). The latter
relation is non-trivial since the right-hand side is a positive linear combination of
roots of A(n). Contradiction.

So far we proved that £; + 5,9 + €5 do not belong to A(l). If &y + &5 were a
bNe-singular weight, we could replace o + g by €1 + €5 and remove €5 + €3 on the
right-hand side of , shortening the initial relation. Similarly, we reason that
€9 + €5 is not a b N €-singular weight. In order for £; + £5 not to be b N &-singular,
there must exist an index k and a choice of sign for which one of +¢, — ; and
+e5 — e5 is a positive root of €. Similarly, there exists an index [ and a choice of
sign for which one of +¢; —e9 and +¢; — 5 is a positive root of €. As oy and ay are
b N E-singular, a short consideration shows that the only possibility is ¢, = —¢&9
and +e¢; = e5. Therefore 3 := by — (65 — e5) € A(n). Finally, we obtain the
relation a; + as = (1 + B3 which is shorter than . Contradiction.

So far, we have proved that 3 # j;. Therefore we can assume without loss of
generality that fs = 5 + 4. We have now established that the relation has the
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form

E1+Eg+ =61+ €E3+E2+ €4+
~—— —_—  —— ~—~
al B1 B2 zero allowed

Case 1.1. e3 and g4 both appear with positive coefficients in w. We claim that
ay = e3+¢e4 € A(g)\A(I). Indeed, first, oy = (81 —ag)+ P2 implies that ay ¢ A(E).
Second, if iy € A(n), we could remove «; on the left-hand side of the relation and
substitute 81 + (2 by as to get a relation shorter than the initial one.

We will now prove that ay is b N E-singular.

Assume on the contrary that there exists 0 € A*(¢) such that as + J is a
root. Then ¢ is either of the form +e, — €3 or &, — e4; without loss of generality
we may assume that 06 = +ep — 3. The requirement that €3 and 4 appear
with positive coefficients in w implies that there exist as, ay € Singy~(g/[) such
that ag = tej, +e3, ay = e + €4, {J5.06F N {3,4} =0, 1 # j5, and 2 # jg.
Furthermore, the preceding assumptions imply that there are at least three distinct
roots on the left-hand side of the relation. Since a3 is bN¥-singular, we have j5 = k
and 6 = tey, —e3 = e, —e3. Then 1 + (£¢;;) = f1 + 0 € A(n) and therefore
k = js # 2. We can now assume without loss of generality that j5 = 5 and the
choice of + signs is such that ag = &5 + 3 and 0 = e5 — e3 € AT(£). So far, the
assumption that as is not b N ¢-singular implies that the relation has the form

€1+ eotegt+est+eq+ (Fei)+ =e1+e3+est+ 64+
—_— = M ~~ —— = ~—~
a1 as a zero allowed B1 Ba zero allowed

We have that 5 + 4 = as + 0 € A(g)\A(l). We claim that 5 4 ¢4 is not b N ¢-
singular: indeed, otherwise the relation ay +e5+¢4 = €1 + €5 +52 would be shorter
——
€A(n)
than the initial one. Therefore there is a root 6’ € AT (€) such that ' + &5 + 4 is
a root. The b N E-singularity of oy together with § = 5 — e3 € A1 (£) imply that
§' = +ej, — e4. Therefore 3 + (£e;,) € A(n) and if the weight €5 + (£¢j,) is a
root, it belongs to A(g)\A(l). We can write

q +55+(:|:€j6) =€&1+€E5+&9+ (:tgjes)' (444)

We will arrive at a contradiction for all possible choices of j5. Indeed, if 5 # jg, then
£5+(£ej,) is aroot. The fact that as, as € Singy~,(g/!) together with 9,6 € At (g)
imply that e5+ (%ej,) is bNE-singular. Thus is a relation of type (4.1) which
is shorter than the initial one. Contradiction. If j5 = 5 and the choice of the sign
+ is such that ay = €4 — €5, we get a contradiction as —e4 + €5 = &' € A(¥).
Finally, if €5 = *¢j,, then 0" := —6 + ¢ = ¢35 — ¢4 € A(¥). Then depending on
whether §” is positive or negative we get a contradiction with the b N ¢-singularity
of either oy or as.
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We have now ay € Singy~(g/l). Therefore the initial relation is oy + g =
B+ Ba, of type ([L.5)).
Case 1.2. One of €3, ¢4 appears with positive coefficient in w and the other with
non-positive. Without loss of generality we may assume that ¢, appears with
positive coefficient in w and €3 with non-positive. Then there exists a root on
the right-hand side, say (3, of the form 4&; — 3. The minimality of the relation
implies 3 = g1 — e3. So far the relation is

€1+€2+"':€1+€3+€1—€3+€2+€4+...
—— —— =\ M=
a1 B1 B3 B2

Now consider ay := €1 + ¢4. We claim, as in Case 1.1, that as € A(g)\A(T).
Indeed, first, if we had that ap € A(n), we could substitute 5y + B2 + f3 by as
on the right-hand side and remove a; on the left-hand side to obtain a shorter
relation than the initial one. Second, oy = ((81 — a2) + fB2) + B3 implies ap ¢ A(%).

Now, as in Case 1.1, we will show that as is b N E-singular. Indeed, assume the
contrary. The fact that €4 appears with positive coefficient in w implies that on the
left-hand side there is a b N &-singular weight, say ag, of the form az = +¢;; + €4,
where j5 # 2.

We claim next that j5 # 1.

Indeed, first, if +¢;, = —e1, the relation a; + a3 = B, is shorter than the initial
one. Contradiction. Second, £ej, = &; contradicts the b N €-singularity of .
Therefore j; # 1,2 and we can assume without loss of generality that j; = 5 and
a3 = €5 + €4. The assumption that as = €1 + €4 is not b N E-singular implies that
there exists some index [ for which at least one of v := +¢;, — ¢4 and § := +¢;, — &,
belongs to AT(¢). The choice 6 € A*(¢) contradicts the b N ¢-singularity of ay
unless 0 = €5 —e7. The latter yields a contradiction as well, as it implies a; € A(n).
The choice v € A1 () together with the b N €-singularity of a3 implies v = €5 — &4.
Then 8, = 3 + v € A(n) and the relation oy + ag = 51 + B3 + B4 is of type
and is shorter than the initial one. Contradiction.

So far we have proved that ap € Singy~(g/l). Therefore a; +as = 51+ 5+ 52
is the desired relation ({4.6)).

Case 1.3. 3 and ¢4 both appear with non-positive coefficients in w. As 3 and &4
are canceled on the right-hand side without contradicting the minimality of the
relation, we need to have 3 := €1 —e3 € A(n), By := g9 —e4 € A(n). Thus we
have the desired relation ([4.7)).

Case 2. There is no index 7 such that o; = %¢ej + (+e;,) and both +¢;, and
+e,, appear with positive coefficients in w. As w is non-trivial, it has at least one
non-zero coordinate. Without loss of generality we may assume this to coordinate
to be positive, corresponding to €. In addition, without loss of generality, assume
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that a; = €1 4+ 9. By our current assumption, €, appears in w with non-positive
coefficient. Then some «;, say s, is of the form as = —ey3 + (£e5,).

Case 2.1. j3 # 1. Without loss of generality we can assume that j3 = 3 and
ap = —e9 +e3. Then i := a; + a3 is a root and by Lemma we have the
desired relation (|4.4)).

Case 2.2. j3 = j; and ap = —&9 + €1. On the right-hand side, there is a root, say
B, of the form By = 1 + (%¢j,). A short consideration shows that j, # 1,2, and
so we assume without loss of generality that 8, := ¢; + £4. The relation so far has
the form

€1+€2+(—€2+51)+ =€ +€E4+....
e~ —— ~~ ~——
al as allowed to be zero B1

We will now prove that 4 appears with positive coefficient in w. Indeed, assume
the contrary. Therefore there exists a root on the left-hand side, say a3, of the
form oz = £44(%¢;,). By Lemma[d.2.4 we get that js # 1,2, and therefore we can
assume without loss of generality that j5 = 5 and a3 = £4+¢5. By the requirement
of Case 2, €5 appears with a non-positive coefficient in w, and therefore there exists
ay = —e5+(*ej,). By Lemma o4+ is not a root and therefore oy = £4—¢s.
Therefore we cannot have a shorter relation than

€y +ea+(—ea+e1)+es+eg+ (—eq+e3) =2(e1 +e3). (4.45)
—— —— Y — T
[e%1 a9 a3z (e 7} 1

We claim that the above expression cannot correspond to a minimal relation.
Consider § := 1 + &4. First, the possibility § € A(#) implies 8; € A(g)\A().
Contradiction. Second, the possibility § € A(g)\A(l) together with the b N ¢
singularity of ay, as, ag and ay imply § € Sing,~,(g/[). In turn this is contradictory
since § + ay = (3 is shorter than (4.45). We conclude § € A(n). Since in (4.45)),
the indices (1,4) are symmetric to (2,3), we conclude that ¢’ := g9 + 3 € A(n).
Finally, oy + a3 = § + ¢’ is a shorter relation than ([4.45). Contradiction.

So far, we have proved that €4 appears with a non-positive coefficient in w.
Therefore, on the right-hand side there is a root, say S, of the form [y = —eg4 +
(£ej;). The minimality of the relation implies #y = &1 — €4. Therefore we have
the desired relation oy + ag = 1 + P2 of type .

g~so(2n+1)

Case 1. The relation has a short root on the left-hand side, say «;. Without loss
of generality we may assume a; = ;. The b N €-singularity of «; implies that €
has no short roots.
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Case 1.1. g1 appears with a positive coefficient in w and therefore there is a root
on the right-hand side, say (i, of the form 8, = &1 + (ej,). Without loss of
generality we may assume (1 = g1 + €s.

Case 1.1.1. g, appears with a non-positive coefficient in w. As g5 must be canceled
out without contradicting the minimality of the relation, one of the roots on the
right-hand side, say (3., is of the form By = 1 — &5. It is now clear that we cannot
have a relation shorter than (4.11]).

Case 1.1.2. &5 appears with a positive coefficient in w. The weight ¢4 is not a root
of €. Therefore on the left-hand side of the relation there exists a root, say as, in
which ey appears with a positive coefficient.

Case 1.1.2.1. «m is short, i.e. ag = e9. The relation is .

Case 1.1.2.2. ag = €9 + (£ej,) is long. We claim that js # 1. Indeed otherwise we
would have ay = €5 — £1, then a; + a3 would be a root, and by Lemma the
relation would be a; + as = ;. This is impossible. Therefore j3 # 1, and without
loss of generality we can assume oy = €9 + £3. Consider 5 := €3; we claim that
B2 € A(n). Indeed, we immediately see that S ¢ A(£), as otherwise a; would not
be b N -singular. Second, assume [y € A(g)\A(n). If S5 were b N €-singular, we
could shorten the relation by removing 5, and replacing aq + ag by (. Therefore
there exists a root v € AT (¢) such that 5, + v is a root. The b N E-singularity of
a1 and s implies that v = g5 — e3. Therefore €5 € A(g)\A(1).

Now consider the relation e; + 9 = 1. If e, were not b N €-singular, there
would be a positive root v € € such that €5 4+ v is a root but e 4+ €3 + 7 is not a
root, which is impossible. Thus we have a minimal relation of length two of the
form e; + e5 = ;. Hence the initial relation g1 + (g2 +e3) + -+ = 1 + ... is also
of length two. Therefore the unknowns on the right-hand side sum up to €3, which
together with Lemma implies that €3 € A(n). Contradiction. Therefore the
relation is €1 + (€9 + €3) = (61 + £2) + €3 of type .

Case 1.2. 1 appears with a non-positive coefficient in w. Therefore there is a root,
say o, of the form oy = —&; + 5. Now Lemma implies o + s € A(n) and
we get the desired relation (4.10)).

Case 2. Among all minimal relations there is no relation with short roots on the
left-hand side.

Case 2.1. On the right-hand side there is a short root, say ;. Without loss of
generality we may assume (3 = €. As the relation is minimal, £; appears with a
positive coefficient in w. Therefore we can assume without loss of generality that
oy is of the form oy = &1 + &9.

Case 2.1.1. &9 appears with a non-positive coefficient in w. Then there is a root
on the left-hand side, say as, of the form ay = —e9 + (F£ej,). If ag # 9 + €1, we
can apply Lemma to get a shorter relation than the initial one. Therefore
g = —&9 + &1 and the relation is ay + ag = 20, of type .
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Case 2.1.2. &9 appears with a positive coefficient in w. Since €5 cannot be a root
of n (that would imply a; € A(n)), we have a root, say S € A(n), of the form
B2 = €9 + (£ej,). Since js # 1 we can assume without loss of generality that
52 = &9 + €3.

Case 2.1.2.1. 3 appears with a positive coefficient in w. Therefore there is a
root, say ag, of the from oy = €5 + (£e;,). We claim that j, = 1. Assume
the contrary. Since j, # 2, we can assume further without loss of generality that
ay = e3+e4. A short consideration of all possibilities shows that a4 (e3+e4)+- -+ =
e1+ (e2 4+ €3) + ... must be of length at least 3. Consider the root e3. If it were
in A(n) we could shorten the relation by removing a; and replacing 8, + [ by
e3. If e3 were in A(#), we would get ay € A(n), which is impossible. Therefore
g3 € A(g)\A(l). In a similar fashion, we conclude that ; +e5 € A(g)\A([). If at
one of the two roots e3 or £1+¢3 were bNE-singular, we would get a minimal relation
of length 2 - either a; +e3 = B + B2 or ay + €1 + e3 = 267 + [2. Contradiction.
Therefore both £3 and €, + €3 are not b N £-singular. This shows that there exists
v € AT (®) such that y+e1+e3 is aroot. Since e;—e; is not a root of A(€) and «s is
bNe-singular, we obtain that v = ¢4 —e3. Consider o := e1+e64 = v+e1+e3. One
checks that the b N ¢-singularity of a; and as implies that « is also b N ¢-singular.
Therefore we can shorten the relation by replacing a; + as by a and removing (3,
on the right-hand side. Contradiction.

So far we have established that j;, = 1. We have immediately a relation of length
two, either a1 +e3+¢e1 = 2614 (62 +€3) or a1 +e3 — &1 = €9+ €3, and so the initial
relation is also of length two. As there can be no two roots on either side that sum
up to a root (see Lemma , one quickly checks that the only possibility for the
minimal relation (up to A(g)-automorphism) is (e14e2)+(e14¢3) = 21+ (e2+¢3),
i.e. type (4.14).

Case 2.1.2.2. e3 appears with a non-positive coefficient in w. Therefore on the
right-hand side there is a root, say (3, of the form g3 = 9 —e3. We have a relation
of length two: 2(g1 + €2) = 2e1 + (g2 + €3) + (g2 — £3) of type (L.15). In view of
the already fixed data, one quickly checks that the only possibility for the initial
relation to be of length two is to coincide with this relation.

Case 2.2. There is no short root on either side of the minimal relation. Therefore
we can repeat verbatim the proof for the case g ~ so(2n) to obtain that we have
one of the relations described for this case.

g ~ sp(2n)
Case 1. o +a; ¢ A(g) for all 4, j.

Case 1.1 One of the roots «;, say a1, is short. Without loss of generality we may
assume oy = €1 + €5. Since oy + o ¢ A(g) for all j, both £, and e, appear with
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a positive coefficient in w. Therefore on the right side of the relation there are
roots, say (1 and [z, of the from fy =1 + (¢j,) and By = €3 + (£¢,,). Consider
the vector v := £e;, + (£¢;,). The minimality of the relation implies that v is
non-zero, and therefore that + is a root. If v € A(n) we could shorten the relation
by removing «; on the left-hand side and replacing 8; + 2 by 7. If v € A(€) then
a; = (1 — ) + B2 € A(n), which is impossible. Therefore v € A(g)\A(l).

As the relation is minimal, ¢, and +e;, appear with a positive coefficient in w.
Therefore ¢, (respectively, £¢;,) appears also in some root, say g (respectively,
ay4) on the left-hand side. If there existed a root § € A*(¢) for which v+ is a
root, § would have a negative coefficient in front of one of ¢;, or ¢;,. This would
contradict the b N ¢-singularity of either ag or ay. Therefore we have a minimal
relation oy + v = 1 + f2. Depending on whether j; = j4 and whether j;, = 2 our
relation is of type (4.20), (4.21) or (4.22)).

Case 1.2 All roots «; are long. Without loss of generality we may assume a; = 2¢;.
Since oy +a; ¢ A(g) for all j, the weight ¢, appears with a positive coefficient in w.
Therefore there is a root on the right-hand side, say i, of the form 5 = e;+(%£ej, ).
Without loss of generality we may assume 1 = 1 + 9. If e9 appeared with a
non-positive coefficient in w, there would be a cancellation in the right-hand side
of the relation. This is impossible. Thus 5 appears on the left-hand side and we
have the desired relation .

Case 2. For some o, a;, we have that a; + a; = v is a root. By Lemma [£.2.4
v € A(n) and we get one of the relations (4.16)), (4.17)), (4.18)), or (4.19). O

Corollary 4.2.6 Let g be classical simple and suppose that | does not satisfy the
cone condition. Then the following statements hold.

e [fg~sl(n),so(n), orso(2n), there exists an I-strictly infinite weight w.
o [fg~sp(2n) there exists an l-infinite weight w.

Proof. The statement for sl(n) follows from [PSZ04, Lemma 5.4], so let g ~
so(2n), so(2n + 1) or sp(2n). By Proposition |4.2.3, we can always pick a minimal
relation corresponding to a two-sided weight. By direct observation of all possibil-
ities for minimal relations given in Lemma [4.2.5| we see that all such relations have
a strongly orthogonal decomposition with respect to A(n) except when g ~ sp(2n)
and the two-sided weight is given by .

Suppose now g ~ sp(2n) and relation holds. According to the proof of
Lemma [£.2.5] we can assume the relation has the form

€1+ &9+ 283 —=€1+Ez3+€E9+€3.
—— T e

ai % B1 B2
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Consider the root 2e;. If 2¢; belonged to A(t), we would have the contradictory
ay = 1 —(2e1)+ 1 € A(n). Similarly, we get 2e5 ¢ A(#). If both 2e5,2¢1 € A(n),
we get the new relation 2ay = 2e1 + 2e5 which corresponds to a two-sided weight
(since the relation corresponds to a two-sided weight) and this new relation gives
an [-strictly infinite weight. If one of 25, 2¢1, say 2¢;, belongs to A(g/l), it is also
b N ¢-singular (otherwise a; would fail to be b N ¢-singular as well). Therefore we
have a new relation

(U/ = 281 -+ 253 = 261 (446)

We claim that ' is -infinite. Indeed, let t be the subalgebra generated by ¢,
gtP, g2 and gt%%. Let n’ := nNt. Since t contains the Cartan subalgebra b,
n' is a direct sum of root spaces and is therefore generated as a £-module by g’'.
Let s; be the simple component of £ whose roots are linked to 2¢;; in case there
is no such simple component, set s; := {0}. Define similarly s3 using 2¢3. Then
s1 N s3 = {0} as otherwise A(n) would contain —f,. In addition, each s; must be
of type A, (otherwise it would have a root 2¢;). It follows that w’ is two-sided with
respect to t, and therefore w’ is [-infinite. O

Lemma 4.2.7 Let g be a simple Lie algebra of rank 2 and | be a solvable root
subalgebra (i.e. € =h) which does not satisfy the cone condition. Then there exists
an [-strictly infinite weight.

Proof. We leave the proof of cases Ay, By and C5 to the reader. We note that in
case of type By all relations (4.9)-(4.12) appear; similarly, in case of type Cs, all
relations (4.16)-(4.19) appear.

Let now g ~ G5, and fix the scalar product in A(g) so that the length of the
long root is v/6. The following table exhibits one [-strictly infinite weight in each
possible case for A(n).
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g~ Gy

The roots
Scalar products. All non-listed from the
v scalar products are zero. relation
generate
(a1, 9) = <a1,ﬁ1> =
ar + oy = 36, (a2, B1) = 3, (az,a2) = Go

<Oé17061> =0, <51751> =2
(1, 0) = 1, (an, B1) =

ap +agy =B (a2, B1) = 3, (az,a0) = Go
<041,041> =2, <51751> 6
<041,51> = <041,52> = 3,

200 = 361 + B2 (Br,51) = 2, (a1, q) = G

(B2, P2) =6
<041,ﬁ1> = <042,51> = 3,

a4 = (a1, ) = =3, (a1, 1) = A
(g, ) = (B2, B2) = 6
(a1, B1) = (g, 51) = 1,

a4+ oy = fh (a1, ) = =3, (ag, ) = G
<ﬁ1,51> =2, <Oé17041> =6
<041,51<> = 3> (v, B1) =
-1, (aq, 09 = =3,

(0%} + Qo = ﬂl <Oé1, a1> — <OéQ, 042> — GQ
(B1,P1) =2

O

The statement of the following lemma is general, but we will make use of it
only for the exceptional Lie algebras.

Lemma 4.2.8 Suppose nNC(¥y,) is not the nilradical of a parabolic subalgebra in
C'(tss) containing h N C(tss). Then the following hold.

(a) The cone condition fails.

(b) There exists a relation of the form given by Lemma|4.2.4(a) for which
ay,ay and By all lie in A(C'(8ss)).

(c) There is a relation that is l-infinite.

Proof. (a) Suppose on the contrary the cone condition holds. Then there ex-
ists h € b such that h(8) > 0 for all 5 € A(n) and h(a) < 0 for all a €
Singpe(g/l) O A(C(tss). The element h defines a parabolic subalgebra (h N

C(tss)) + Bea(c.,) 87 of C(t) whose nilradical is n N C(&,), contradiction.
v(h)=0
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(b) Using similar arguments to (a), we see that the cone condition fails when
restricted to A(C'(€ss)), i.e. the cones Conez(A(C(tss))N Sing,~¢(g/l)) and Coney,
(A(n)N A(C(tss))) have non-zero intersection.

Take now a relation (4.1). Note that A(C(&s)) NSingyre (9/1) = A(C(Es,))
\A(n). Therefore when we add —/; to both sides of we still get a relation
of the type or zero; thus we can obtain a relation (4.1)) with only one term
[y on the right-hand side. If we have more than two terms on the left-hand side,
by Lemma {4.2.1 we get that the sum of two «;’s must be a root. If that root is
in A(n), we have found a relation of type given by Lemma [1.2.4(a); else we can
substitute the two roots with their sum and thus reduce the number of terms on
the left-hand side. In this fashion, we can reduce the number of summands on the
left-hand side to two, which gives the desired relation.

(c) Let ay,aq,B; be the roots obtained in (b) and let t be the subalgebra
generated by £ g¥*, g**2 and g**. Lemma implies that there exists an
[N t-strictly infinite weight in t, which is the desired [-infinite weight. O

4.2.6 Exceptional Lie algebras G,, Fy, EFs and E;
Exceptional Lie algebra G,

If €, = {0} the existence of an l-infinite weight is guaranteed by Lemma . If
s # {0} it is a straightforward check that, up to a g-automorphism, the only root
subalgebra [ = €3 n for which the cone condition fails is given by A(¢) = {£v},
A(n) = {7 + 372,271 + 372}, where 71,7, are positive simple roots of G5 such that
71 is long. For this subalgebra, (1 + 2v2) + (71 + 72) = 291 + 372 is the desired
[-(strictly) infinite weight.

Note that G5 is the only simple Lie algebra of rank 2 which admits a non-
solvable and non-reductive root Fernando-Kac subalgebra of infinite type (cf.
[PS02, Example 2]).

Exceptional Lie algebras Fj, Eg, E-

For a fixed exceptional Lie algebra g, Lemma [4.2.§| allows us to assume that n N
C'(%ss) is the nilradical of a parabolic subalgebra of C(&ss) containing C'(€s5) N bh.
The following two lemmas can be proved using a computer; the algorithm we used
is described in the next section.

Lemma 4.2.9 Let g ~ FEg or E; with a root subalgebra | = € n for which the
cone condition fails. Suppose in addition that wN C(8ss) is the nilradical of some
parabolic subalgebra in C(ts) containing h N C(tys). Then there exists an [-strictly
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infinite relation of one of the types listed for so(2n) in Lemma or of
the type

The
70015
Scalar products. from
w All  non-listed  scalar the re-
products are zero. lation
gener-
ate
g~ by, B
(a1, B2) = (o, B3) =
ai+astaz = B+ i+ 5 (ag, B1) = (a2, B5) = As.
(a3, 51) = (a3, B2) = 1

When g ~ Eg, the above relation occurs only when A(f) ~ Ay + Ay + A;.

For the next lemma, we need to define a special root subalgebra of g ~ F}.
Fix the scalar product of the root system of Fj so that the long roots have length
2. Let € be defined by the requirement that A(€y,) be of type A; + A; where
both A; roots are long (all such ¢ are conjugate, [Dyn72]). Then C(ty)ss is of
type Cy ~ Bs. Let v, and v, be the positive long roots of ¢ and 8, and Sy be
the positive long roots of C'(¥s5). Let Sy be the unique short root of A(C(s;))
which has positive scalar products with both g; and 5. The roots (i, 82,71 and
72 are linearly independent. Let (33 be given by the requirement (5, fs) = 0,
(B2, B3) = 2, (71,83) = 0, (72,03) = 2 and let B; be given by the requirement
(B1,B4) = 0, (B2, B4) = 2, (71,84) =2, (72,B84) = 0. Then g and g generate
two €-submodules of g, say n’ and n”, each of dimension 2. Define n as the linear
span of n’,n”, g?, g’ and g?. Then n is a nilpotent subalgebra of g, and is a
t-module. Further, dimn =242+ (14+1+1) =7 and C(£,,) Nn is the nilradical
of a parabolic subalgebra of C'(ts). Set [} ;== ¢ n.

Lemma 4.2.10 Let g ~ F,. Suppose in addition that n N C(¥ss) is the nilradical
of some parabolic subalgebra of C(tss) containing b N C'(ss).

(a) If Uis not conjugate to Iy, there exists an I-strictly infinite relation from
the list of Lemma [{.2.5. Moreover, all relations from Lemma except

do appear.

(b) If Uis conjugate to |y, there exists an I-(non-strictly) infinite relation ({4.1)).
This relation comes from an ' := [ N t-strictly infinite relation in t, where
t is one of the two semisimple subalgebras of type C3 + Ay generated by €,
C'(bss) and the conjugate of either W' Un'™ orn”Un”". The U'-strictly infinite
relation in t can be chosen to be isomorphic to relation .
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Combining Lemma with Lemmas [4.2.10 and [4.2.9] we get the following.

Corollary 4.2.11 The failure of the cone condition for a root subalgebra | of the
exceptional Lie algebras of type Fy, Eg, E7 implies the existence of an l-infinite
weight.
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Chapter 5

Combinatorics and algorithms
used for the exceptional Lie
algebras

This chapter describes the combinatorics and algorithms used in the proofs of the
lemmas in section [4.2.6] The combinatorial facts are presented in a mathematical
fashion. The algorithms are described without direct reference to the underlying
implementation and programming details, with the only exception of algorithm
modifications motivated by practical computer restrictions.

The main reference for this chapter is the fundamental paper of E. Dynkin
[Dyn72]. A more elementary discussion of root systems and their combinatorics
can be found in J. Humphrey’s book [Hum?72].

In this chapter, we use curly brackets {} for non-ordered sets and usual paren-
theses () for ordered sets.

5.1 Outline of the computation for exceptional
Lie algebras

In this section, we outline the computation used in the proofs of Lemmas and
[4.2.10] In the subsequent sections, we elaborate on each step of the computation.

We note that for the exceptional Lie algebras, checking the existence of an [-
infinite weight is a finite problem; the present chapter describes how to practically
solve it with a computer.

The algorithm has as input the Cartan matrix of a semisimple Lie algebra g.
For a given value of [, let S be the set of weights of Sing~,(g/l) for which [g*, n] Cn
(see Definition [4.1.1]). The output is the following.
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(1)

(i)

(iii)

A list of all possible (up to an automorphism of A(g)) sets of roots of subal-
gebras [ = €3 n, for which C'(£s5) Nn is the niradical of a parabolic subalgebra
of C'(&ss) containing h N C'(Ess).

A sublist of the list in (i) for which the corresponding subalgebras do not
satisfy the cone condition but there exists no [-strictly infinite weight of
length less than or equal to max{#.5,rkg}.

Remark. This sublist turns out to be empty for g ~ Fj, F7 and contains
one entry for g ~ Fj. This entry corresponds to subalgebras conjugate to [y,
where [; is the subalgebra defined in section [4.2.6]

A list complementary within (i) to the sublist (ii).

Remark. The actual list of [-strictly infinite weights we produced is more
detailed; it includes information about the simple direct summands of £ whose
roots are linked to the roots participating in the relation.

The algorithm follows. The actual tables printed out for g ~ Fy, Fs and E; are
included in the appendix.

Enumerate (up to a g-automorphism) all reductive root subalgebras ¢ con-
taining b, according to the classification in [Dyn72].

Fix ¢. Compute the £-module decomposition of A(g). Then n is given by a
set of £-submodules of g.

Compute A(C(tss)) (Lemma [3.2.1). Compute the group W’ of all root sys-
tem automorphisms of A(g) which preserve A(b N ¢). Note that W’/ =
W" x W" is the semidirect product of the Weyl group W" of C(&s) with
the group W” of graph automorphisms of (A(tss) ® A(C(€ss)) N A(b) which
preserve A(tg) and A(C(ts)) and extend to automorphisms of A(g). The
tables in Appendix list the cardinalities of the groups W”.

Introduce a total order < on the set of all sets of €-submodules of g in an
arbitrary fashion.

Enumerate all relevant possibilities for n:

— Discard all sets of submodules P for which there exists w € W’ with
wA(P) < A(P) (act element-wise).

— Discard all sets of submodules P whose union, intersected with C'(s;),
does not correspond to a nilradical of a parabolic subalgebra of C'(¥s;).

Fix n.
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e Intersect the two cones Coneg(A(n)) and Coneg(Singy~¢(g/l)) (by using the
simplex algorithm over QQ to solve the corresponding linear system of inequal-
ities). If the cones intersect, proceed with the remaining steps.

e Generate the set of weights S.

e Generate all possible couples a1,y € S (a1 = s is allowed) and compute
whether a; + as has a strongly orthogonal decomposition with respect to
A(n). If no such strongly orthogonal decomposition exists, proceed with all
triples, quadruples, ..., up to max{#.S5, rkg}-tuples, until reaching a weight
with a strongly orthogonal decomposition with respect to A(n). If such a
strongly orthogonal decomposition is found, add the found [-infinite weight
and A([) to the list (iii), else add it to the list (ii).

— We note that if w = bf + by + - -+ + b Sk is a strongly orthogonal
decomposition with respect to a set I then w—b8 = byS+---+bif is a
strongly orthogonal decomposition for w — b3 with respect to set S+N 1.
The so described relation yields a recursive procedure for computing
strongly orthogonal decompositions.

5.2 Computing Weyl groups and Weyl group or-
bits in h*

To generate a root system from a symmetric Cartan matrix, we have the following
short algorithm. Let the simple roots of A(g) be {ay,...a,}. The Weyl group
W of g is generated by simple reflections (i.e. the reflections s,, with respect
to the simple roots). All roots of the same length lie in the same orbit under
the action of the W (see for example [Hum72, §10.3, 10.4]). In other words,
A(g) = {Say ---Sa, ()} if the root system is of type A, D or E, and A(g) =
{804, -+ Say (@)} U {80y, - Sa, (B)} for the other types, where « is a long root, 3
is a short root, and Sq,, TUN over all possible simple reflections. This immediately
gives the following algorithm.

e Step 0. Let S be an ordered set of roots and set S := («) for root systems
with one root length and S := (a, 8) for root systems with two different root
lengths, where « is an arbitrary long and [ an arbitrary short root. Mark
the elements of S as “non-explored”.

e Step 1. If all elements of S are marked as “explored”, terminate the program.
Else pick the first element v € S that is marked as “non-explored”.

o7



e Step 2. Generate the n different reflection s, (7), ..., Sa, (7) images. Add to
S each of these elements that does not already belong to S. Mark the newly
added roots as “non-explored”.

e Step 3. Mark the weight v as “explored” and go to Step 1.

Step 2 of the above algorithm is executed only once for each root. If in Step 0
in the above algorithm, we set instead S := {u} for an arbitrary u € bh*, the
algorithm produces the orbit of y under the action of the Weyl group W. Since
W acts transitively and irreducibly on the simple bases, the stabilizer of p (=the
half sum of the positive roots) is the identity and the orbit of p enumerates all
elements of the Weyl group. If for each weight in the orbit of p we record the
sequence of reflections sending p onto it, we have written down expressions for all
elements of W. Furthermore, if in Step 2 we append each newly found element of
the orbit to the end of S, we get each element of W in reduced form (i.e. written
with minimal number of simple reflections). Indeed, this follows as the order of S
respects the partial order generated by the length function on the Weyl group.

5.3 Computing reductive root subalgebras

5.3.1 Computing the t-module decomposition

In this section we explain how to compute the &-module decomposition of g for a
given a reductive root subalgebra ¢ = ¢,.; D h. Such subalgebras are in one to one
correspondence with the root subsystems of A(g). In turn, the root subsystems of
A(g) are parametrized by their respective positive simple bases. Under a positive
simple basis we understand a simple basis consisting of positive roots of g. The
following algorithm determines the positive simple basis of a root system from a
given generating set of roots S.

e Step 0. If the set S contains negative roots, substitute them with their
opposite roots.

e Step 1. If there exists no couple a, 5 € S so that o — 3 is a root or zero,
terminate the program. Else pick any such couple a, .

e Step 2. If @ = B remove one of the two roots from S. Else, if y =a — [ is a
positive root, substitute a by . If v is a negative root, substitute 8 by —~.

e Step 3. Go to Step 1.
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Remark. We note that the notion of “positive root” is relative to a choice of a
regular element h of the Cartan subalgebra - i.e. a root « is positive if a(h) > 0.
In a computer realization however, all roots are already given in simple basis
coordinates with respect to a fixed simple basis of A(g), so a root « is positive if
and only if it has positive coordinates.

We now explain how to compute the £-module decomposition of g under the
adjoint action of €. Since ¢ contains a Cartan subalgebra, a #-submodule M of
g is parametrized by a set of root spaces. Whenever « + 7 is a root [¢%, ¢"] is a
non-zero multiple of g®*7. Therefore if g* is an element of M and v + « is a root
for some v € A(¥), then g**7 is also an element of M. We note that whenever
« + v is a root for some v € AT (£), then v can always be chosen to be an element
of the positive simple basis of €. This follows for example from Lemma [4.2.1]

The preceding discussion yields the following algorithm, which, given a starting
one-element set of roots S := {«a}, generates the set of h-weights of the £-module
generated by g¢.

e Step 0. Mark the initial element of S as “non-explored”.

e Step 1. If all elements of S are marked as “explored” terminate the program.
Else pick a root a € S marked as “non-explored”.

e Step 2. For all simple roots ~; of €, check whether o & ; is a root. If so,
check whether a & +; is already in S. If not, add a £ v; to S and mark it as
“non-explored”.

e Step 3. Go to Step 1.

To fully decompose g as a €-module, one repeats the preceding algorithm until all
roots outside of A(t) have been recorded as weights of some module M. To that
decomposition one adds h N C(&s) and the simple components of €. The simple
components of £ correspond to the irreducible parts of the root system A(¥).

5.3.2 Computing Dynkin diagrams of root subsystems

Given a root subalgebra via its simple basis (o, ..., a,) (ordered arbitrarily), we
can split the simple basis into pairwise strongly orthogonal subsets (corresponding
to irreducible root subsystems). Indeed, suppose we have already split the first &
roots into irreducible subsets. If a1 is orthogonal to all preceding roots, we put
it into a new subset; if it is non-orthogonal to exactly one of the already computed
subsets, we add it there. If a1 has non-zero scalar product with elements of two
or three (more than three is impossible) of the already computed subsets we merge
those subsets and add a1 there. We note that in the preceding discussion, we only
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need to consider whether ay. is orthogonal to a subset - strong orthogonality is

not needed. The latter is due to the requirement that the starting set {aq,...,a,}
be a simple basis of &.
Once we have a simple basis aq,...,a, such that the corresponding Dynkin

diagram is connected, finding its Dynkin diagram is straightforward. If the diagram
has no triple node (i.e. a root connected to three other roots), then it must
be of types A, B, C, F' or GG, and considering the number of roots of different
lengths (and the lengths themselves), we can determine the Dynkin diagram. If
the diagram has a triple node, then one counts the sizes of the three components
of the Dynkin diagram obtained by removing this triple node. The so obtained
sizes distinguish between types D and F.

5.3.3 Computing root subsystem isomorphisms

Proposition [5.3.1]below gives a necessary and sufficient criterion for the existence of
automorphism of A(g) which maps a root subsystem A; to another root subsystem
As. In this section we describe how to explicitly compute all such automorphisms.
Our algorithm is natural, however somewhat ad-hoc; there could exist a compu-
tationally more effective way of doing this.

We note that the computing the structure of the groups of automorphisms of
A(g) which preserve a fixed root subsystem appears to be an interesting compu-
tational exercise, outside of the scope of the present thesis.

Let A; and Ay be two root subsystems of A(g). Let ¢ be a an automorphism

of A(g) mapping A; to As. Then ¢ must also map Af_: onto A;J_: , hence the

Dynkin diagrams of A% and A;E (as well as the diagrams of A; and Ay) must
be isomorphic. This is in fact sufficient for such a ¢ to exist (Proposition m

below). Suppose now A% and Af , as well as Ay and Ay, have the same Dynkin
diagrams.

The map ¢ can be decomposed uniquely as the composition of a graph isomor-
phism between A; and A, and an inner automorphism of As. In turn, the graph
isomorphism mapping A; to Ay can be decomposed uniquely as the composition of
a permutation of isotypic components and a sequence of graph automorphisms for
each connected component of As. We note that a non-trivial graph automorphism
of irreducible root systems exist for types A, for n > 2, D, for n > 4 and Eg.

Similar considerations hold for the action of ¢ on A% .

In the present thesis, we do not present a sufficiency criterion for which graph
isomorphisms between two root subsystems A; and A, extend to an automorphism
of A(g); as the tables in the appendix show, not all such graph isomorphisms do.
Instead, for fixed data A;, Ay C A(g), we summon our computational power and
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try extending all possible graph isomorphisms. As the current chapter is aimed at
exceptional Lie algebras, the upper bound for the graph isomorphisms between two
root subsystems of Eg is only 8! = 40320 (corresponding to two root subsystems
of type 84; C Eg). Since this computation presents no challenge for a modern
computer, we have not made any attempts to optimize our procedure.

We will now describe how to check whether a given graph automorphism be-
tween two root subsytems extends to an automorphism of A(g). Let D' :=

A U Alé and R = Ay U A;IE . Suppose in addition we have a linear map
@ : spanR’ — spanD’ that maps D’ to R’ and corresponds to a graph isomorphism

between A; and A, and A% and Af I rk Ay + rkAIEIE = dim b*, the map ¢ is
determined as a linear map on the entire h* and is injective. In this case, ¢ is a
root system isomorphism of A(g) if and only if for all & € A(g) we have that p(«)
is a root.

The preceding discussion does not indicate what should be done in case rkA; +

rkAlgE < 1kA(g). Let D and R be linearly independent ordered sets of roots of
equal cardinality and let the map ppg : spanD — spanR be defined by the require-
ment that ¢ maps the i"* element of D to the i"* element of R. The algorithm

below returns “TRUE” whenever ¢pr can be extended to an automorphism of
A(g) and “FALSE” otherwise.

e Step 0. Input: an ordered set of roots D = («,...,ax) and an ordered set
of roots R := (f,...,0k)-

e Step 1. If rk D # rkR return “FALSE”.

o Step 2. If #D # rk(A(g)), proceed to Step 4. Otherwise, if #D # rk(A(g)),
then ¢pg is completely determined by linearity. If opgr(a) is a root for all
a € A(g), return “TRUE”, else return “FALSE”.

e Step 3. If the Dynkin diagram generated by D is isomorphic to the Dynkin
diagram generated by R proceed to Step 4; else return “FALSE”.

e Step 4. Let the root subalgebras generated by D and R be respectively £p
and £r. Compute the €p-module (respectively, €g-module) decomposition of
g. If the two decompositions are different return “FALSE”. Else fix a €p-
submodule M of g and a root that is a weight of M with the requirement
that « is linearly independent from D. For each €z-module M’ for which
dim M = dim M’ and for each root § that is a weight of M’ for which
f is linearly independent from R, check (by invoking recursion) whether
©pufa},Ruig) can be extended to an automorphism of A(g). Upon discovery
of a couple a, 8 for which such an extension exists, stop the current branch
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of the computation and return “TRUE”. If no such couple exists, return
“FALSE”. We note that in this step the algorithm branches and calls itself
recursively.

5.3.4 Root subsystems up to isomorphism

The fundamental paper [Dyn72] classifies all regular semisimple subalgebras of a
simple Lie algebra. Regular semisimple subalgebras are by definition subalgebras
whose Cartan subalgebra can be extended to a Cartan subalgebra b of the ambient
Lie algebra, such that the vector space generated by h and the starting subalge-
bra is closed under the Lie bracket. The regular subalgebras are conjugate to the
semisimple part £, of some reductive root Lie algebra €. The classification of regu-
lar semisimple Lie algebras therefore corresponds to the classification of reductive
root subalgebras and hence to the classification of root subsystems.

The classification of root subsystems of the irreducible root systems carries
over directly to a classification for an arbitrary root system. That is why, until the
end of this section, we fix A(g) to be an irreducible root system.

In order to classify the root subsystems of A(g), Dynkin first classifies the root
subsystems of maximal rank. It turns out that two maximal rank root subsystems
are conjugate by an automorphism of A(g) if and only if their Dynkin diagrams
are the same. For the classical Lie algebras the proofs are straightforward. Indeed,
one sees that a root system of type D; that lies inside a root system of type B,
or D, is of the form {£e, £ &pla,b € I C {1,...,n}} for some set I with #I = .
Similarly, a root system B; that lies inside B, is of the form {+e, £ g|a,b €
I c {1,...,n}U}{£e,]a € I}. Finally, a root system C; that lies inside C,, is
of the form {£e, £ epla,b € I C {1,...,n} U {£2¢,]a € I}}. Therefore, up to
an automorphism of A(g), the maximal root subsystems in types B,, C,, and D,,
are in a one to one correspondence with the partitions of n. Indeed, the reader
can easily verify that the root subsystems corresponding to the same partition
are indeed isomorphic via an automorphism of A(g) (the automorphism is not
necessarily inner in type D, [Dyn72]).

We note that Table 9 in [Dyn72] allows root subsystems of type By, C}, Ds
and D3. These have no meaning as abstract root systems, but only as root subsys-
tems. They can be defined in an invariant fashion as follows. Bj is a rank 1 root
subsystem whose positive root is short, and C is a rank 1 root subsystem whose
positive root is long. For A(g) of type D, or B, with n > 5, we can define D,
(respectively, D3) as the root subsystems of type A; + A; (respectively, A3) that
cannot be extended to a root subsystem of type As. We note that this definition
applies to the root subsystems of Dy, By, as well - as Ay € Dy, all root subsystems
of type Ay in Dy or By are also of type D, and all root subsystems of type As in
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D4 and By are also of type Ds.

We can now summarize the algorithm in [Dyn72] for enumerating all root
subsystems of a given root system. At the start, one initializes the list of root
subsystems with the Dynkin diagrams of the maximal rank root subsytems. In
addition, one labels the vertices of the diagrams with explicit root realizations. For
each Dynkin diagram one erases one point at a time, as well as the incident edges.
In case the newly obtained diagram is not already contained (up to relabeling of
the vertices) in the list, one adds it to the bottom of the list. If the diagram is
already contained up to relabeling of the vertices in the list, one checks whether
the labels correspond to root subsystems conjugate by an automorphism of A(g).
If that is not the case, one adds the newly obtained diagram to the bottom of the
list. Repeating the above procedure, one works “top-down” to exhaust all possible
root subsystems of the starting root system.

The algorithm from [Dyn72] is practical for a human, however we have chosen
a more computational approach based on section [5.3.3] Instead of working “top-
down”, we describe an intuitive “bottom-up” algorithm for generating all root
subsystems. In the algorithm that follows, A parametrizes the elements of a root
subsystem and R stands for the output list of root subalgebras.

e Step 0. Initialize A to be the empty set, and R to be the empty list.

e Step 1. For each root av in A(g)\A set A = AU {a}. Here the computation
branches (corresponding to a “for loop”).

e Step 2. Transform A to a simple basis (see section [5.3.1)).

e Step 3. Check whether A is isomorphic via an automorphism of A(g) to
one of the root subsystems already recorded in R (see section . If so,
terminate the current branch of the computation. Otherwise, add A to R
and go to Step 1.

We are now in a position to state the following necessary and sufficient condition
for two root subsystems to be conjugate by an automorphism of A(g).

Proposition 5.3.1 For two root subsystems A; and Ay to be conjugate via an
automorphism of A(g) it is necessary and sufficient that their Dynkin diagrams

and the Dynkin diagrams of Alflz and AfE be isomorphic.
Remark. This fact was not noted in [DynT72].
For the classical Lie algebras, the proof of this lemma is a straightforward check

using the explicit form of their root subsystems. For the exceptional Lie algebras,
using the preceding algorithm one can enumerate all root subsystems up to an
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automorphism of A(g) and check the statement. As this straightforward check
was already performed by our “vector partition” program, we see no need to write
down a detailed proof.

The above proposition allows us to substitute Step 3 in the preceding algorithm
by the simpler procedure of comparing the Dynkin diagram types of A and AE
The so modified algorithm has no speed disadvantage compared to the original
algorithm from [Dyn72], but is perhaps simpler to program.

5.4 Enumerating root subalgebras up to isomor-
phism

In this section we explain how to generate all possible nilradicals n such that € n
is a Lie subalgebra with reductive part the root subalgebra £. By section [5.3.1] we
can compute the &-module decomposition of g/¢ into irreducible submodules. Let
this decomposition be M = M; & - - - @ M. Thus the nilradical n is parametrized
by a subset of the set {Mj, ... My}. Denote by Weights(M;) the h-weights of the
module M;; the weights of M; are also roots of A(g).

We introduce the notions of opposite irreducible ¢-submodules of g/¢ and a
pairing table of irreducible ¢-submodules of g/€. We call M; and M; opposite
if Weights(M;) = —Weights(M;). A €-submodule can be opposite to itself - for
example that is always the case if g/¢ is irreducible. We say that M; and M; pair
to My, if there exist roots av € Weights(M;) and 8 € Weights(M;) such that oo+ S
is a root lying in Weights(M}). We make the following elementary observation.

Lemma 5.4.1 For two fized indices i,j (i = j allowed) there exists at most one
index k such that M; and M; pair to Mj,.

Proof. Suppose M; and M, pair to My, i.e. there are roots a; € Weights(;),
as € Weights(M;) and a3 € Weights(My) such that a; + as = a3. Let o) €
Weights(M;) and of, € Weights(M;) be two roots such that o + a4 =: o4 is a root.
Clearly there exist roots 7; € A(t) and §; € A(€) such that of = a1 +v1+--- 4+
and o) = g + 01 + - -+ + ;. Then we have that

0434—%—I—-~-+”n+(51+-~-+(5m:ag.

Applying Lemma consecutively, we see that the summands in the above ex-
pression can be reordered so that for any s > 1, the sum of the first s summands
yields a root (zero is not a possibility, as it would imply that o € A()). Further-
more, this reordering can be made so that ag remains in the first position. This
implies that o € Weights(M},), as desired. O
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We define a pairing table to be a k x k table of indices, such that on the i*" row
and j™ column we write the index k if M; and M; pair to My and 0 otherwise. A
subalgebra €D n is given by a subset A C {1,...,k} of indices with the following
two properties.

e A contains no two indices a, b such that M, and M, are opposite.

o If M, and M, pair to M., then ¢ € A (i.e. A is closed with respect to the
pairing table).

5.4.1 An algorithm enumerating all possible nilradicals

Before we present an algorithm for enumerating all possible nilradicals of [ for
a fixed value of £, we note that the actual implementation is essential as the
total number of subsets of {1,...,k} is 2¥. Therefore the most naive approach
for generating nilradicals - enumeration of all subsets of {1,...,k} and checking
the two conditions for being a valid nilradical parametrization - would not work
sufficiently fast enough for our purposes.

In the algorithm below, we parametrize a subset of A of {1,...,k} by a k-
tuple of 0’s and 1’s. In our parametrization, the value 1 on [** position implies
that [ € A, and the value 0 - that [ ¢ A. We obtain a total order > on the
subsets of {1,...,k} by setting A > B if the number, recorded in base two by
the parametrization of A is larger than the corresponding number for the set B.
This total order respects the partial order of subset inclusion. The order > on the
subsets of {1,...,k} induces an order on the nilradicals n; we denote it using the
same symbol >.

The following algorithm takes as input a number [ < k£ and an subset A of
{1,...,k}. The algorithm then enumerates all subsets A" C {1,...,k} such that
A C A, such that A’ is a valid nilradical parametrization, and such that A" N
{1,...,1} = An{1,...,l}. We note that setting as input [ = 0 makes the last
requirement trivial. We give larger values to [ in section below to make a
computational optimization related to Lemma 4.2.8|

e Step 1. Input: A k-tuple B = (fi,..., fx) of zeroes and ones and an index
0 <1 < k. The k-tuple B is required to be a valid nilradical parametrization.
More precisely, B must satisfy two conditions. First, for all pairs (a, b), where
a = b is allowed, if f, = f, = 1, then M, is not opposite to M,. Second, if
fo = fo = 1 and the modules M, and M, pair to M., then f.=1.

e Step 2.
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— If [ = k then B is a valid nilradical parametrization. We can perform a
computationﬂ using B. Terminate the current branch of the computa-
tion.

— If I < k, copy the value of B to a new k-tuple A = (eq,...,ex) and go
to the next step.

e Step 3. Branch the computation into two cases. First branch: mark the
index [+ 1 as “newly added”, set €47 = 1 and go to Step 4. Second branch:
set e;11 = 0 and go to Step 5.

e Step 4. Ensure that A is a valid nilradical parametrization and respects the
total order . More precisely, we transform A with the following subroutine.
Within the subroutine, we write “terminate the subroutine” to exit from the
subroutine and go to Step 5.

— Step 4.1. If there exists no index marked as “newly added”, termi-
nate the subroutine; otherwise pick the first index s marked as “newly

added”.

— Step 4.2. For each index 7 for which e; = 1, check whether M; and M,
have a non-zero pairing. If M; and M; pair to an index ¢, and ¢, = 0,
set e, = 1 and mark the index ¢ as “newly added”. Then apply the
following two rules.

x If t <[4 1, we have that A is larger with respect to > than the
starting value of A. Terminate the current branch of the computa-
tion.

x If ¢’ is the index of the module opposite to M; and ey = 1, A does
not correspond to a nilradical. Terminate the current branch of the
computation.

— Step 4.3. Go to Step 4.1.
e Step 5. Call Step 1 recursively with input B := A and [ :=1+ 1.

It can be proved that the algorithm requires at most O(k?( the size of the output))
operations, which is practically applicable for computations in exceptional Lie
algebra E; (and possibly also in Eg with the use of a powerful computer).

! In practice, for simple Lie algebras of higher rank, we do not have enough RAM memory to
store all values of B produced in this step; we have to discard the so generated values of B.
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5.4.2 Modification to get 1 element in each 1/'-orbit

Let W’ be the group of automorphisms of A(g) which preserve A(b N ¢). The
current section describes a modification of the algrorithm in section so that
it produces exactly one representative in each WW'-orbit of the nilradicals - namely,
the maximal element with respect to the order >.

As follows from section [5.3.3] W is generated by graph automorphisms of the
Dynkin diagram of A(b N ¢€) and by reflections with respect to a simple basis of
A(C(#ss)). Thus we can explicitly compute the elements of W’ as a sequence of
graph automorphisms and simple reflections. In this way, we can compute the
action of W’ on the set My, ..., M} and thus on the set of all nilradicals for a fixed
€. We note that this action is given by a subgroup of the symmetric group of &
elements.

In order to modify the algorithm in the preceding section, we need to do two
things. First, we must first require that the input B parametrize a set that is maxi-
mal with respect to > in its W’-orbit. Second, we must check when going from Step
4 to Step 5 that the value of A produced in Step 4 is maximal with respect to .
If not, we should terminate the branch of the computation. The so modified algo-
rithm can be proved to require at most O(max{k?, #W'}( the size of the output))
operations.

5.4.3 Generating parabolic subalgebras of C(¢,;)

Lemma [4.2.8| guarantees the existence of an [-prohibiting weight if nNC'(£,,) is not
the nilradical of a parabolic subalgebra of C'(ts). That is why, for the purpose of
searching for [-infinite weights, we can use the algorithm in section to enu-
merate only the nilradicals n for which n N C(£;;,) is the nilradical of a parabolic
subalgebra of C(t). In addition, we can request that the latter parabolic subal-
gebra contain b N C(,,).

In order to do enumerate the nilradicals as above, we do not need to make any
changes to the algorithm in section [5.4.1] Rather, we need to do two things. First,
we need to reorder the modules M; so that the one dimensional ones (corresponding
to the roots of C'(¥s)) come first, i.e. have indices 1,...,1, where [ := #A(C(&s)).
Second, we need to choose special values for the input data - the k-tuple B. Note
that a parabolic subalgebra of C'(£,s) containing b N C(¥,;) is uniquely determined
by the positive simple root spaces which lie in its nilradical. For each simple root
of b N C(k) we have two options and so we have a total of 2%4(C(t)) parabolic
subalgebras of C(&,s) containing b N C(£s). Thus each possible parabolic subalge-
bra of C'(ts,) containing b N C'(¢,s) determines initial values for the first [ elements
of the k-tuple B; we set the remaining elements of B to be zero. Thus we obtain
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the desired initial values for [ and B.

There can exist isomorphisms between the parabolic subalgebras of C'(£;) in-
duced by the group W’ defined in section [5.4.2] That is why, in order to make
the current optimization compatible with the one in section [5.4.2] we need to ad-
ditionally transform B by the action of W’ to ensure B is maximal with respect
to the order >.

5.5 Notes on the software implementation

The preceding sections covered computational tools specific to Lie theory. In this
section, we make a non-comprehensive list of some of the additional tools we
needed in order to perform the computation outlined in section [5.1] The tools
range from general computer science techniques to computer algebra specific al-
gorithms. All computational modules were written from scratch by the author in
the programming language C++. The resulting computer program was named
“vector partition” program.

e A library for making computations with large rational numbers. Whenever
the program multiplies two rational numbers so that the sizes of the nu-
merators/denominators exceed the allocated memory for the purpose, the
program dynamically allocates extra memory to fit the computation.

e Simplex algorithm. For computations up to Eg, we need to solve simplex
problems given by matrices of sizes no larger than 240x9. That is why we
did not need any special implementation; we have used standard Internet
sources
(http://en.wikipedia.org/wiki/Simplex_algorithm) for description of
the algorithm and have otherwise implemented it from scratch.

e Algorithms for efficiently manipulating and enumerating permutations, com-
binations, variations, subsets with and without multiplicities.

e Containers for matrices of elements of arbitrary type.

e Containers for data structures and RAM memory management. Those in-
clude hashed lists and arrays of elements of arbitrary type whose memory
use expands on demand.

e Routines for creating tables in KTEX and .html format. All tables in the
appendices are automatically generated.
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Information on the actual software tools

The “vector partition” program was compiled on two operational systems - Linux
(Ubuntu 10.04) and Windows (XP), with two different compilers - gcc and the
Microsoft C++ compiler. The source code was modified in two different C++ pro-
gramming environments - Microsoft Visual Studio Express 2008 and Code::Blocks
8.02. The web-server of the “vector partition” program
(http://vector-partition.jacobs-university.de/cgi-bin/vector_partition_
linux_cgi?rootSAs) currently runs on Apache 2.2.13 web server, running on
Linux OpenSUSE operational system, on machine provided by Jacobs University.
The installation and support of the Apache 2.2.13/ Linux OpenSUSE is courtesy
of the IT support of Jacobs University, and in particular of A. Gelessus and S.
Schmidt. The “vector partition” program is activated by the Apache server via
CGI (Common Gateway Interface).

The “vector partition” program also has a graphical user interface written with
the cross-platform tool wxWidgets, http://www.wxwidgets.org/. The tool runs
on Linux, Windows and Macintosh.

The program is licensed under the Library General Public License (LGPL)
3.0. This means that the program and its code can be freely downloaded, used
and modified by anyone. The code is hosted on the Open Source hosting site
http://sourceforge.net/. The project page of the vector partition function is
located at http://vectorpartition.sourceforge.net/. The large volume of
source code (approximately 35 000 lines of code at the time of writing of this
thesis) is handled via the Sub-VersioN (SVN) protocol and related Open Source
software tools. The SVN source code management allows reverting of source code
modifications, comparisons of different versions, and many other techniques used
in general software development. The SVN tool provides an excellent environment
for collaboration and would easily allow more developers to join the project and
coordinate efforts.
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Appendix A

Tables for the exceptional Lie
algebras

A.1 Note on table generation

All tables in the appendix are generated by computer. The tables are also available
in .html format from the author or from the web server of the “vector partition”
program.

A.2 Reductive root subalgebras of the exceptional
Lie algebras

The reductive root subalgebras of the exceptional Lie algebras are described and
tabulated in [Dyn72]. Our tables list in addition the type of C'(£4)ss and the inclu-
sions between the root subsystems parametrizing the reductive root subalgebras.

A.2.1 Fj

All diagrams that consist of short roots are labeled by ’. For example, A} has 6
short roots; in the notation C5 + Ay, the root system A; has long roots.

Fy
t,,:
Essi B4 ESSZ D4 ESSZ 03+A1 o
Az+ A
C(%ﬁs)ss: - C(Ess)ss: - C(Ess)ss: - C?E )1 .
g, lies in: g, lies in: g, lies in: ¢ lsisessi.n'
F47 B47 F47 F4, B4,
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Ess: BQ ~ B Ess: 4A1 Ess: Cg
Cao+24,4 27_{_14 C(Ess)ss: - C(Ess)ss:
C(ss)ss: - C’z({% )2 . £, lies in: Ay
£, lies in: g f;esssi'n B, ~ g, lies in:
Cg—i—Al, FS,S ) CQ+2A1, 03+A1,
B47 b D4> F47
t.s: By ~
Ess: Ag 02+A1 Essz
t..: Bs C(EES)SS: C(Ess)ss: A,2+A1
Cles)un: - Al A C(Bss)ss: -
) fisesssih' £, lies in: ¢, lies in: £, lies in:
Fs,j B4 ’ A3+A/1, BQ ~ F4,
’ ’ B47 D47 C2+2Ala C3+A17
Bs, Cs+Ay, Aj+Ay,
037 B47
Ess: ESSI 3A1
E..: b By ~
A A42A, C(8ss) st o 2
2! O(tgs)ss: - A 2
C(% ) . ( 55)88* 1 C E .
98/88° g, lies in: g, lies in: CORS
£,, lies in: 58 ' 5 ‘ 24,

F CS+A17 4A17 D47 : LI
4, At A B - t. lies in:
A —i—A/ 3+ 1 2 — B ~
ST B ~  (CytA 2 -

B 2 - 2T Co+A
4, C +2A B ~ 2 1,
A/ +A2 2 1 2 — B3 03
2 ' Bs, Co+2A;, T
g,
/
A1ty £ 24,
C(Esﬁ)ss: C(E ) .
ESSI A/Q Ess: AQ Al B f 2
C(Bss)ss: C(Bss)ss: g, lies in: ¢ 2 lTes 1211'
Ao A Al +2A,, fif—FZA '
£, lies in: £, lies in: B, ~ 3;1 Bh N
AL+-Ay, Ag+ Al Cot-A, o iA 2=
037 A37 B37 A,2+A17 2 >
A37 B2 =~
B37 C
Ag+ A, 2
037
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b Al E..: A
C(Eﬁ)ss: C(EES)SS: Ess: -
Ag 03 O(ﬁs)sé
., lies in: €., lies in: F
Al+A,, Al+A, ¢, lies in:
Al27 2A17 A27 Alla A17
BQ ~ Cg, B2 ~ CQ,
A.2.2 FE;
Eg
E . Ess: AS
o . 34 £ Ds C(Ess)ss:
Cegl . Clui- Clwi- A
» lﬁisesssiﬂ £, lies in: £, lies in: £, lies in:
ESS ' FEg, FEg, As+A,
69 EG,
,s: ,o: ;S;l A
Ayt A, A3+24, C(z ) b t.: Dy
C(&s)ss: - C(Eﬁs)ss: - Sess . C<E55)ss: -
e e t, lies in: e
., lies in: ., lies in: 5 t,, lies in:
Eg Dj > D;
) ) A +A , )
As+A, As+Ay, 3227 !
. e
b Ay é?:/)‘l_ By 24, Ay 24,
C(ﬂs)ss: A se/sst C(Ess)ss: C<Ess)ss: -
Ay LI Ay £, lies in:
. €., lies in: .
g, lies in: Aat2A g, lies in: 2A5+ A1,
Ag+Ay, D3 b 2A5+A,, Ay+A,,
D57 A57 > A5a D57
Aty Az+2A4,
A57
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Ess: ESSZ 3A1
. Ess: AS A2+A1 C(Ess)ss:
ECS«S(E 4;41, B O(Ess)ssz C(ﬁs)sé Al
; fisessih' 24, Ao g, lies in:
2:_2 A ' £, lies in: £, lies in: 4A;,
D3 b A3+A17 A2+2A17 A2+2A1)
4’ A47 D47 A3+A17 D47
2A27 A47 A3+A17
. ESSI 2A1
Ecs{s({% 14>2 . C(Ess)ss: Ess: Al Ess: -
se/ss A3 C(Ess)ss: C(Ess)ss:
2A5 .

. €., lies in: As Es
€t lies in: .. .
Aot A 3A1, £ lies in: E.. lies in:

2T Ast+Ay, 241, Ay, Ay,
A37
A37
A.2.3 [
Er
t.o A Ess: Ess: Ess:
Cle )7 . Detdy As+A, Dy+34,

5-5 Ss'. C(Eﬁs)ss: - C(Ess)ss: - C(Ess)ss: -
E.. lies in: A o D
5 £, lies in: ¢, lies in: ¢, lies in:

7 E;, B, D6+A1,
e, t: Ds
2A3+A1 ESSZ 7A1 ESSZ E6 C(Ess)ss:
C(Ess)ss: - C(Ess)ss: - C(Eﬁ)ss: - Al
g, lies in: g, lies in: t, lies in: t,, lies in:
Dg+Ay, Dy+3A,, FEr, Ds+Ay,
E77 E77

- t,,:

ESSZ 5 D4+2A1

ESSZ AG D5+A1 él,?;_/)h _ C(Ess)ss:
C(tss)sst - C(ts)ss: - ss) 55" A,

N I E,, lies in: ..
£, lies in: g, lies in: E t. lies in:
E:, A, Er, " Dy+34,

D6+A17 A —f-A D67
T Ds+Aq,
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Ess: Ess:
Essi ESSZ 2A3 A3+A2+A1 A3+3A1
Ay+Ay O(Ess)ssz C(ﬁs)sé - C(Ess)ss: -
Cbss)ss: - Ay ¢, lies in: g, lies in:
£, lies in: £, lies in: De+Aq, Ds+Ay,
E77 A77 2A3+A17 E77 D6+A17
A5+A27 D67 A77 A5+A27 D4+3A17
2A3+A1, 2A3+A1,
ESSI 6A1 . ESSI A5
£ 34 C(E55)553 ECS«S(E 1;5 . C(Ess)ss:
C(Ess)ss: - Al se/ss Al
R .. Ay ..
.. lies in: .. lies in: . £, lies in:
£, lies in:
A5+A27 7A17 D +A A5+A17
E67 D4+2A17 E5 DI’ A67 E67
Dy+34,, o Dg,
b B B
Ess: AB D4+A1 A4+A1 A3+A2
C(Ess)ss: - C(Ess)ss:
Clta)w:  Clta)u e
., lies in: Ay
As 24, .
.. lies in: .. lies in: B, £ lies in:
. ' i ' As+Aq, As+As+Ay,
As+Aq, Dy+2A;,
D D +A A67 A4+A27
o D5 b D5+ Ay, Ds, As,
o Ag+As, 243,
g,
A3—|—2A1 ESSZ .
C(%ﬁs)ss: 2A2+A1 Ess: ECS«S(E 5)141.
Ay C(fss)ss: - Ay+34, 24 sessst
£, lies in: £, lies in: C(kss)ss: - p 11. .
A3+3A1, A4+A2, ESS lies iIlI Gijl 168 11
Dy+2A,, As+Aq, As+3A,, b
Dy+2A,,
D67 E67 D5+A17 A +3A
As+A, As+As+Ay,  Ast+Ax+A, D3+A b
As+As+A,  3A,, AT
D5+A17
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L.
As+A;
b Ay C (Bss) s bos:
ESS: D4 88 55 )88+ A3_|_A1
C(Egs)ss: 2A1
C(Bss)ss: I C(Bss)ss:
Ay £, lies in:
3A1 . . AS
.. g, lies in: As+2A4, ..
g, lies in: At A D t,, lies in:
4 1 5
Dirde 4 by, A Ay, Ast24s,
D5, A D —f-A A57
5 A4 1 D4+A1,
59
A3+A27
g,
As+2A, _
Ess: 2142 C(Eﬁs)ss: ECS'S(E 4;41 Ess: A3
O(Ess)ss: Al 314 sessst C(Ess)ss:
Ay €., lies in: ¢ 11. - As+A;
£, lies in: Ay+3A4, 5‘9;1 108 1 ., lies in:
2A2+A17 2A2+A17 A _1'_,3A A3+A17
Az+As, A3z+2A4, ° b Az+A,
A57 A57 D57 A —|—2A A47 D47
Ay+A, ° b
Az+Ay,
e,
A2+A1 Essi 3A1
C(Ess)ss: C(Ess)ss: Ess: 3141 Ess: AQ
A3 44, C(Ess)ss: C<E55)ss:
., lies in: ., lies in: D, As
Ay+2A4, 4A, ¢, lies in: ¢, lies in:
Ay, As+2A4,, 44, As+A,,
As+Aq, As+Ay, Asz+Ay, As,
2A27 D47
As+Aq,
ESSI 2141
C(Eﬁs)ss: Ess: Al Ess: -
D4+A1 C(Ess)ss: O(Ess)ss:
., lies in: Dg E;
3A1, 3A4, €., lies in: ., lies in:
Ay+Ay, 244, As, Ay,
A37
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A.2.4 F

Eg
- L.
Ess: DS Ess: AS o A7+A1
E+A
O(E%)ss: - C(Ess)ss: - ! ! . C(Ess)ss: -
o, A Cbss)ss: - e
.. lies in: .. lies in: b lies in: E,, lies in:
E87 E87 ES15 . E7+Al7
85 E87
b L.
Ess: . Ess: A5+A2+A1
E6+A2 56(32_2)141 B D5—|—A3 C(Esﬁ)ssl -
Clys)ss: - °9/88" Clss)ss: - £, lies in:
e €., lies in: e
£, lies in: Fot A ¢, lies in: Eg+A,,
Ex, D7 b Eg, Dg, Er+A,
89
E87
P L.
Ess: 2D4 D4—|—4A1 ESSI 2144 211(124_)2141_
O(Em)ss: - C(E55)553 - C(ﬁs)sé - o9/ .
o, A A ¢, lies in:
£, lies in: £, lies in: ¢, lies in: FotA
7 1
DSa 55+2A17 E87 D6+2A1,
4’ Ds+As3,
Ess: E?
t..: 44, E..: 8A; C'(ss)ss: t.: Dy
C(Eﬁs)ss: - C(EES)SS: - Al C(Ess)ss: -
£, lies in: £, lies in: ¢, lies in: ¢, lies in:
Es+As, Dy+4A;, Er+A, Es, Ds,
E87
P E:
£ A; %8(8 f;7 ' Eg+A, g?:z;h
C(E55>Ss: _ 56 /88" C(Ess)ss: _ 55)ss-
. . A1 . . Al
E.. lies in: b lies in: .. lies in: e lies in:
E D SS . E A SS .
A8, 8 A7+A17 E7+ b D6+2A17
& D87 E77 ES;—A E7+Al7
0 2 E77 D87
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E . E . ESS: Ess:
Aot A, Dot Ay Ds+2A, As+Ay
. ) C(Ess)ss3 - C(E55)353
O(E%)ss' C(Ess)ss' B : :
N N g, lies in: Ay
£, lies in: £, lies in: .
E.+Aq, £, lies in:
E4A, Ex, Dy,
Dy, As+Ar+ A
FEg, As, FEe¢+As, ’
At A Dt A Dg+2A;, Eg+A,,
e o Ds+As, Ag, B,
E..: e
A5+2A1 ESSI D4+3A1 ESSZ
C(Ess)ss: - A4+A3
. . D4+A3 C(Esﬁ)ssi
£, lies in: CE) ot - A C(8ss)ss: -
Es+ A, o9/88 L g, lies in:
Fot A g, lies in: E,. lies in: D
’ b D87 D77 D4+4A17 8
D87 2D D +2A E87 A87
De+2A,, D iA D6+A b D5+ As,
A7+A1, b & 216) b 2A4a
As+Ar+A, v
g, .. . e
Ay+As+ A 2A5+ A, As+Ay+2A, 1534414
C(&s)ss: - C(Eﬁs)ss: C(Ess)ss: - C?E ) 1 _
g, lies in: Ay g, lies in: ¢ f.ﬁ =
B+ A, £, lies in: E7+Aq, 55 igilm'
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E6+A27 D5+A37 D5+A27 D5+A b
A+A, Dg+A;, Ds+As, D4+4Z’
24y, Es, As+As+ Ay, 22 _'_2;17
As+As+Ar,  Ar+A 2A3+2A,, K b
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sheidn g b By b Dy
C(Ess)ss: - A se/sst C(Ess)ss: O(Ess)ss:
¢, lies in: p ! lies in: Ay 24,
As+As+ Ay, 88;?1 ' g, lies in: £, lies in:
FEe+As, X Ee+Aq, Dg+Ay,
D4+3A17
E6—|—A1, E’?, E77 D77
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4A27
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A 98/88" Ay £, lies in: C(8ss)ss:
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L. e
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1 . . . .
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O(E§5>S$: C({? ) .
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A3+A2+A17 4 b D5v A57 D57
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Ay+2A4, Dit A
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Dy+A,,
e E:
Ast Ay As+2A,
O(Ess)ss: Ess: 4A1
O(E%)SSI ESSZ 2142
. A3 C(Ess)ss:
A3+A1 C(Ess)ss' : s
. ., lies in: 4A,
£t lies in: 24, A434 e lies in:
As3+2A,, £, lies in: 2 b ss H1O5 AL
Au+Aq, 5A;,
As+2A4, 2A5+ A,
As+2A, As+3A4,
AgtAq, As+A,,
Aat A A Az+Ay, Dy+A;,
¥ 2 > A3+2A17 A3+2A17
Dy+A,
A D D57
5y 59 2A2+A17
. Ess: Ess: 3A1
ECSrS(E 4;41 Ess: A3 A2+A1 C<Ess)ss:
D se/ss C(EES)SS: C(Ess)ss: D4+A1
4 L.
.. Dy As ¢, lies in:
., lies in: .. .
5 A €., lies in: ., lies in: 4A;, 4A4,
A }l—’QA As+Ay, Ax+24A,, Ax+2A4A,,
D3 b A47 D47 A3+A17 A3+A17
B 2A27 A47 D47

83



Es

. ESSI 2A1
Ecsvs(é 14)2 . C(EES)SS: Ess: Al Ess: -
E se/sst Ds C(Ess)ss: C(Ess)ss:
6. ., lies in: E- FEq
., lies in: .. .
Aot A 3A1, ¢, lies in: £, lies in:
2T Axt+Ay, 241, Ay, Ay,
A37
A37

A.3 Cardinalities of groups preserving A(bN¢)

Define W’ to be the group of root system automorphisms of A(g) that preserve
A(bNE). A(bNe) W =W" x W”" is the semidirect sum of the Weyl group W of
C'(tss) with the group W” of graph automorphisms of (A(¥s) & A(C(€ss)) NA(b)
that preserve A(ss) and A(C(tss) and extend to root system automorphisms of
Alg):
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Ess C(kss>ss #W// #W/// #(W”/ X W//)
F, 1 1 1
By 1 1 1
D, 6 1 6
Cs+A, 1 1 1
As+ A, 2 1 2
By = Cy+24, 2 1 2
Abt Ay 2 1 2
44, 24 1 24
Cy A 1 2 2
Bs 1 1 1
As Al 2 2 4
BQ - Cg—l-Al Al 1 2 2
Ayt Ay 2 1 2
Ayt A 2 1 2
Al+24, 2 1 2
3A, Ay 6 2 12
By =)y 24, 2 4 8
Al A, 2 6 12
A, Al 2 6 12
A+ A, A, 1 2 2
24, By =)y 2 8 16
Al As 2 24 48
A1 Cg 1 48 48

- F 1 1152 1152
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Ess C(kss> . #W” #W/// #(W/// >4 W//)
Es 2 1 2
As+A, 2 1 2
34, 12 1 12
Ds 2 1 2
As A 2 2 4
A+ A 2 1 2
As+24, 4 1 4
2A2+A1 4 1 4
D, 12 1 12
Ay A 2 2 4
As+ A, A 2 2 4
24, Ay 4 6 24
As+24, 4 1 4
4A, 48 1 48
As 24, 4 4 16
Ayt Ay A, 2 6 12
34, A 12 2 24
Ay 24, 4 36 144
24, As 4 24 96
A As 2 720 1440
; o 2 51840 103680
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Ess C(kss)ss #W” #W/// #(W”/ “ W//)
B, 1 1 1
A; 2 1 2
Dg+A4, 1 1 1
As+A, 2 1 2
D,+3A,; 6 1 6
2A5+4, 4 1 4
74, 168 1 168
Es 2 1 2
Dy A 1 2 2
Ag 2 1 2
D5t A, 2 1 2
As+A; 2 1 2
D4+2A1 Al 2 2 4
Agt+Ay 2 1 2
24, A 4 2 8
Azt Ayt A, 2 1 2
As+3A, 4 1 4
34, 12 1 12
64, A 24 2 48
Ds A 2 2 4
As A 2 2 4
As A, 2 6 12
Dy+A, 24, 2 4 8
Agt+A; 2 1 2
Azt+-Ay A 2 2 4
As42A4, A 2 2 4
245+ 4, 4 1 4
As+3A, 12 1 12
54, 24, 8 4 32
D, 34, 6 8 48
Ay A, 2 6 12
Azt A, 24, 2 4 8
As+A, As 2 24 48
24, Ay 4 6 24
Ay 24, A 4 2 8
4A, 34, 6 8 48
As As+A, 2 48 96
Ayt A, As 2 24 48
34, 4A, 6 16 96
34, D, 6 192 88 1152
A, As 2 720 1440
24, Dy+A, 2 384 768
A Dy 1 23040 23040
. E; 1 2903040 2903040



A.3.4 F

Ess C(kss)ss

As+As+A;

2D,

D4+4A1
24,

245+2A,
4A,
8A,;
E7 A1

Az A

As+A, Ay

Dy+34A, Ay
Ay+As
Ay+Ar+ A
245+ A A
As+As+2A,
Asz+4A;
3As+ A,
TA; Ay
E6 AQ
Dy 24,

#W//

1

NN DN

—_
(\]

0o = 2

W
(0.¢]

1344

—_

B RN NN O RN R DNDNDRFEDNDDNDNDND

#Wl/l
1

B ONFFEF FEF FEFDNNFE R DNRFRERREFDNDFERFERFEDNDFEDNF DN

#(W/// X Wl/)

NN DN~ =

=~ N
oo ® &~ X 0

1344

AN A RN NN DN RN DN DN

—
= 00 DN N,

[ —Y
N

336
12



Ess
Ag
D5—|—A1
As+Ay
As+Ay
Dy+A,
D4+2A1
Ay+Ay
Ay+2A,
2143
2A3
As+A+A
Asz+3A;
3142
64,
Ds
As
Dy+Aq
Ay+Ay
Asz+Ay
As+2A,
Asz+2A,
2A,+4,
As+3A;
5A;

#W//
2
2

—_
o NN

= DN 00 OO0 = DN >~

N o — B —
}h%mwwm%w.&y&%%wmwwmmmw

(N
I

NN NN

o
(]

#W///
2

B R ONDDN R RN RO N

= o
= o oo o

24

36
24
16
192
1920
720
384
51840
23040
2903040

#(W/// N W//)

s S o e e

32
8
4
8
72
8
48
192
48
24
48
12
16
96
16
24
24
192
1152
240
96
288
96
384
4608
3840
1440
2304
103680
46080
2903040



Ess O<kss)ss #W” #W/// #(W/// N W//)
- Ey 1 696729600 696729600

A.4 [-infinite weights for the exceptional Lie al-
gebras

This section lists all minimal [-infinite relations and the corresponding two-sided
weights under the assumption that C'(£s) N n is the nilradical of a parabolic sub-
algebra of C'(s) N'n containing C(ts) N b.

In the tables to follow, under each root o, (respectively, ;) we write the type
of the semisimple component of £ whose roots are linked to «; (respectively, 3;).
The 7 sign is used to distinguish different components of ¢ that have the same
Dynkin type. In type Fy, the sign '’/ stands for a component of £ whose roots
are short. For example, A} + A; represents the direct sum of two sl(2), one with
long and one with short roots, and A;+A;’ stands for two long-root sl(2)’s. For
example, if a root «; is linked to A;’, and a root f3; is linked to A;’, then a; and
a; are linked to the same component of A(£); similarly if a root ¢ is linked to
Ay, and a root §; is linked to A;’, then the two roots are linked to two different
components of A(¥).
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A.4.1 Fy

Number of different non-solvable subalgebras up to g-automorphism such that
n N C(&,s) is a nilradical of a parabolic subalgebra of £ containing C(£;5) N h: 503
Among them 234 satisfy the cone condition and 269 do not.

Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(e)
generate gener-
ates
t-semisimple type: As
2o = b B, = B (a1,B1) = 2, (a1,82) =
3 3 Cy 2,
t-semisimple type: Bg = Cao+Aq
2001 = B1+ B2 _ _ _
By = C2 By = C2+A; By = C2+A; gi = éal’ﬁﬁ =2 (o1, B2) =
¢-semisimple type: Ag+A7
203 = B1+ B2 _ _ _
Al At Al As gz = Fy (a1, B1) = 2, (a1,B2) =
t-semisimple type: A1+A1+A;
201 = B1+ B2
B - B =2 =
A Aj+ AL +Ap Aj+ AL +AL C; 4 éal,ﬁﬁ , (a1, B2)
t-semisimple type: By = Ca
ot o2 - 13261;02 Bgﬁi Co As By (a1, B81) = 2, (a1, B2) =
2, (a2,B1) = 2,
(g, B2) = 2,
a1+ o = B
_ - Az By (a1, az) = =2, (a1, B1) =
B2 =C2 Bz =C2 2, (az, 1) = 2,
200y = B1+ B2 _ _
By = Co By = Oy By = Oy g§ = Fy éahBl) = 2, (a1,B2) =
£-semisimple type: A'2
o1t a2 - BA/JF ij ?43/ Dy Fy (a1, 2) = 2, (a1,81) =
2 2 2 2,  A(a1,B2) = 2,
(a1, B3) = 2, (a2, p1) =
2,  (az,B2) = 2,
(a2, B3) = 2,
aAl/JF 2 B /qu/ Az Fy (a1, a2) = =2, (a1, B1) =
2 2 2, (a2, B1) = 2,
ok e = iy P As Fy (a1, 1) = 2, (o1, B2) =
2 2 2 2, (a2,B1) = 2,
(g, B2) = 2,
t-semisimple type: Ag
Zeny - At Pz By = By (a1, B1) = 2, (o1, B2) =
Ag Ag
Co 2,
20 = B+ B2 _ _ _
Ay Ay As g; = Bs éal,[ﬁ) = 2, (a1,B2) =
aj+ o2 - il By = B4 (a1, @) = =2, (a1, 81) =
2 2
Ca 2,
a1+ o = 281 _ _ _
As Ay As g; = By éal,ﬁﬁ = 2, (a2, p1) =
aj+ 2 - il By = B4 (a1, B1) = 2, (a2, B1) =
2 2 s 2,
aj+ “2 - /,341 Ap Fy (a1, a2) = —1, (a1, B1) =
2 2 1, (@2,B1) =1,
¢-semisimple type: A'1+A1
[e3 «@ =
Al/+ 2 ilz By = C3+4 (a1, az) = =2, (a2, 81) =
1 1 Ca 2,
a1+ g = 261
B = F s =2, , =
A4 Ay A A4 A, C; Pl (?‘1 B1) (a2, B1)
aj+ o2 - il Az Az+Aq (a1, ap) = =2, (a1, 1) =
! ! 2, (a2, 1) = 2,
« « =
fi;‘r AZ/ ’ilz By = C3+A; (a1, B1) = 2, (a2, B1) =
1 1 Co ;
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Relation / linked €-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
al+ g B1+ B2 _ —
Ay Al Al4+A; Al B3 Fy ;a%a§1?82;72a2<0¢17ﬁ2) =
A A Bs Fy (o1, 01) = 2 (o1, B2) =
2, {az, 1) =2,
a1+ o 281+ B2
/ 7 B3 Fy (a1, a2) = 2, (a1,B1) =
A1 A Al A1 2, (a1, B2) = 2,
§0¢2,ﬂ1; = 2,
g, B2) =2,
2
A?_l‘_: 2 ﬁj-'- j’,z B3 Fy (a1, a2) = 2, (a1,B1) =
1AL ! 1 2, (o1, B2) = 2,
(a2, B1) = 2,
(a2, B2) =2,
2
aAl/j_ 2 fji By = C3+4 (a1,B81) = 2, (az,p1) =
Cs 2,
+ 2
CXJ'_ ZZ/ ﬁj ﬁ? B Fy (a1, a2) = 2, (a1,B1) =
L 1 ! 1 2, (a1, B2) = 2,
(2, B1) = 2,
(ag, B2) = 2,
a1+ @
1;1 A2’1 A’fviAl g; = F4 éO‘lv‘)‘Z) = -2, (a1,p1) =
201 B1+ B2
B = F, = 2 =
AL+ A Al A, A C; 4 éoq 1) s (a1, B2)
2a +
A’i A?}#Al izl g; = I ;oq 1) = 2, (o1, B2) =
a1+ o B1
B = F, = 2 =
Al+ar Al Al+A; o : Sor iy =2 ez By
2
z/i 'BA;F Bz Bz = C3+A; (a1, B1) = 2, (a1, B2) =
Ca )
2 2 E
0t A’B-:-X %TL Pa B3 Fy (a1, B1) = 2, (a1,B2) =
! 15, B 1 2, (a1, B3) =2,
a1+ «
1“11 A?}l A’I-&l-Al Ag By éa%;}zzgj :22, (a1, B1) =
a1+ a9 B1+ B2
7 ’ 7 B3 Fy (a1, 81) = 2, (a1,B2) =
= A1 Al A1 2, {az, 1) = 2,
a1+ o B1+ B2
A B (a1, B81) = 2, (a1,B2) =
A A A+ A A+ A 3 4 1,P1 ) )
! ! 1A 1A ?, (a>27,31> = ;
ag, B2) =2,
2 + 2
o:;;r X? ﬁjl 2? Cs Fy (O¢§752> T 2, (az,pB1) =
2, (a2,B2) =1,
t-semisimple type: A1+Aq
a1+ @
1‘11 A21’ AllilAl’ g; = By ;al7ﬂl> = 2, (a2,p1) =
2a +
! AfiAl’ AffAl’ g; = Bg éal7ﬁl> = 2, (a1,B2) =
arooe o AL CstAr  (an,a) = —1, (o1, 1) =
5 5 1, {ag,B1) =1,
201 1+ 2 _ _ _
A A tAL At AL gi = By éal’ﬁ1> = 2, (a1,P2) =
+
A?Jerl7 2 AIBJ:A17 Az Dy éa?;x(w)ﬂi) *22 (a1, B1) =
2,B1) =
a1+ ag B1+ B2
, , Cs Fy (a1, a2) = 1, {a1,B1) =
A A A1+A
E ! 141 2, (a1,B2) = 1,
EOto ; = 2,
az,B2) =1,
£-semisimple type: A'1
ot a2 oy As Bs (a1,81) = 2, (a1,62) =
1 1 2,  (az,B1) = 2,
(a2, B2) =2,
ajf o2 ilz By = C3 (a1, a2) = =2, (a2, 1) =
1 1 Co 2,
2
aj/j o2 fi By = C3 (a1, B1) = 2, (a2, B1) =
Ca 2,
aAl/+ Z?} 'ilz B = C3 (a1, B1) = 2, (az,B1) =
1 1 1 Ca 2,



Relation / linked €-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
ajf 2 - 'ilz Az B3 (a1, a2) = =2, (a1, B1) =
1 1 2, (a2, B1) = 2,
aAl/Jr ?‘42/ = ﬁjfr :5;2/ Bg Fy (a1, B1) = 2, (a2, B1) =
1 1 1 1 2, (a2, B2) = 2,
a1t o2 = ﬁl/+ 2[3/2 B3 Fy (a1, a2) = 2, (a1,B1) =
A4 A4 A1 A1 2, (o1, B2) = 2,
(a2, B1) = 2,
(a2, B2) =2,
ot a2 = ﬁj/"— 2ﬁl2 B3 Fy (a1, a2) = 2, (a1,B1) =
1 1 2, (o1, B2) = 2,
(a2, B1) = 2,
(a2, B2) =2,
2311 = ﬁj/"— Pz By = C3 (a1, B81) = 2, (a1,B2) =
1 1 Co 2,
o1t o2 = ﬁ1/+ Pz Cs Fy (a1, a2) = 1, (a1,B1) =
A4 A4 A1 2, (a1, B2) = 1,
(2, B1) = 2,
(ag,B2) =1,
t-semisimple type:
o1t a2 - A Ba = Bs (a1, B1) = 2, (a2, p1) =
Al Al Co 2
02+ @2 - /il Az Az (a1, az) = *2 (a17/31> =
1 1 2, (az,B1) =
20 = B1+ B2 _ _ _
A, A, A gi = Bs éalyﬁl> = 2, (alyﬁ2> =
a1+ ag = B1+ B2
A D, = 2, N =
Ay A Ay Ay 3 4 éal <a>2 o (Ot1:,32>
(a2, B2) =2,
ar+  az = B1 _ _ _
A A gi = Bs éal yag) = =2, (a1, B1) =
o+ o = 261 _ _ _
Ay A Ay g§ = Bs éal 1) = 2, {az,B1) =
Zen - Bt Ba By = Bs (a1, 81) = 2, (a1,B2) =
Ay A, o S
o+ az = B+ B2
C F, 5 1, , =
Aq Aq Aq Aq 3 4 éal 0221 B2) <a1:£1> 1
(2, B1) = 2,
(ag, B2) =1,
ajj_ o2 - ill Ab Cs3 (a1, a2) = =1, (a1, B1) =
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F, two-sided weights without a strongly orthogonal decomposition

This section lists the only case up to Fj-automorphism in F4 for which no two-sided weight with strongly orthogonal decomposition
exists. The second table gives one [-(non-strictly) infinite weight in this case.

Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s ¢ gener-
generate ates
t-semisimple type: Aj+A;
Af_,'l_jl’ o2 ﬁAlj— ﬁ? C3 Fy (B1,B2) = 1, {o1,B1) =

2, (a1, B2) = 2,
(2, B1) = 1,
(a2, B2) =1,

e-form relative to the subalgebra generated by £ and the relation

(2e1) + (+eateg)=(e1+e3) + (e1+e2)

Corresponding [-(non-strongly) infinite weight.

Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s ¢t gener-
generate ates
t-semisimple type: Aj+Aq
&jj 2 ill C3+4; C3+4, (a1, az) = —1, (a1, B1) =

1, {a2,B1) =1,
e-form relative to the subalgebra generated by ¢ and the relation

(e1-€2) + (+eates)=(e1+e3)

A.4.2 Fj4: l-strictly infinite weights and corresponding re-
lations

Number of different non-solvable subalgebras up to g-automorphism such that
n N () is a nilradical of a parabolic subalgebra of ¢ containing C'(¥s5) N'h: 2044

Among them 706 satisfy the cone condition and 1338 do not.

Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
t-semisimple type: Ay
ajJr o2 - il Az Eg (a1, a2) = —1, (a1, 1) =
4 4 1, {ag, 1) =1,
D;%Jr o2 - BAjL 6‘2 Ag Eg (a1, 1) = 1, (a1, B2) =
4 4 4 1, (az2,B1) = 1,
(g, B2) =1,
t-semisimple type: Az+A;
aj+ 2 - {341 Ag As+A; (a1, 2) = =1, (a1, B1) =
8 3 1, (a2, B1) =1,
a1+ ag = B1+ B2
A E =1 =
As As Ag+A; Ag+A, 3 6 iahﬁ(la)g By, (a1:,ﬁ2) :
(og,B2) =1,
t-semisimple type: Ao+ Ag
ar+  az = B1+ B2+ B3 _ _
Apt Ay’ At Ay’ Apt Ay Dy Eg ialyozi)l 752;1 <a2B1> N
(a1, B3) = 1, (a2, B1) =
1, (a2,B2) = ;
(az, Bg) =1,
a1+ %) = B1
) s A E , =-1, , =
Ag+As Az+As 2 6 f‘%:ﬁgl) ZL (e )
a1+ ag = B1+ B2
) ) , A E 5 =1, s =
AztAs Ap+As Ag+As 3 6 {er 6@2 1) (e, Ba) =
(g, B2) =1,
t-semisimple type: Ao+A;+Aq
a1+ a9 = B1
A E = -1 =
AstAr  Ap Ap+A1+Ar° 2 o P Rl
a1+ [P = B1+ B2 _ —
AxtAr A AstAIHAr AstAl+AY As P R ey
(ag, B2) = 1,
a1+ o = B1
A As+A az) = -1, (a1, B1) =
A, Ag Ast Ay 2 5+A1 iazajﬂﬁﬂ - (a1, B1)
a1+ g = B1+ B2
) , A E ) =1, ) =
Ay Ay As+Ay As+A; 3 6 ial /3<;>2 o) <a1:52)
(ag, B2) = 1,
o+ o = B1+ B2
) , A E , =1, , =
Ay A Ao+ Ai+A; Ay 3 6 ial 3(;)2 o <061162>
(a2, B2) =1,

t-semisimple type: Ag

95



ag =
Az Ds (a1,B1) = 1, (a1,B2) =
As As 1, (az,B1) = ,
(ag, B2) = 1,
DXJF o2 = il Aa As (a1, a2) = =1, (a1, f1) =
3 3 1, {ag, 1) =1,
D;%JF o2 - ﬁAjL [22 Ag E¢ (a1, B1) = 1, (o1, B2) =
3 3 3 1,  (a2,B1) = )
(a2, B2) =1,
Q/FL 2 - il Az Ds (a1, ag) = *1 (a1, B81) =
3 p 3 5 1, {az,B1) =1,
a1+ az = 1+ 2
A E, =1 =
As As Ag A 3 6 §a1,3<1a>2 51>7 <Q1:»32)
(g, B2) =1,
t-semisimple type: Ag+Aq
a1+ g = B1
A D = -1, =
Az+A1 Az+Ay 2 5 ia?(’xzzzh) _ (a1, B1)
a1+ az = B+ B2 _ _
Az Az+Ay Az+Aq As Ps iahﬁ(gg _/31;’ <a1:,62) 1,
(az, B2) =1,
a1+ ag = B1+ B2
A E =1 =
Agt+A, Ay Ag+Aq As 3 6 iahﬁ;gz s <061:,52> :
(ag, B2) = 1,
OXJF o2 - il Az Ag+Aq (a1, a2) = =1, (a1, B1) =
2 2 1, (a2,B1) =1,
ar+  az = B1+ B2+ B3
D. E =1 =
Ag+Ay Ag+Aq Ao 4 6 §a1,022a>1 oy <a11,61> :
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
5 5 5 (az, B3) = 1,
a1+ az = 1+ 2+ 3
D E 1 =
Ay Ag Agt A, Agt+ Ay A 4 6 Yll D22a>1 52), <C¥1,ﬁ1) B
(a1,B3) = 1, (ﬁ‘27ﬁ1> =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ a9 = B1+ B2
A E =1 =
A, Agt A, Ao 3 6 §a17[3<;)2 PRy (a1:,ﬁ2>
(a, B2) =1,
a1+ a9 = B1
A A = -1, =
A Ay Az+Ay 2 ° §a?£2>61> L {en By
a1+ as = B1+ B2
A E =1 =
Az+A1 Az+Ay Ao 3 6 ial’ﬁéxé B1>’ <a1:’ﬁ2>
(az, B2) =1,
o+ oz = B1+ B2 ) _ _
AptAL A AxtAr AxtA s o for Pl Sy P o
5 5 (ag, B2) =1,
a1+ g = 1+ 2
A E, =1 =
As As As+Ay As+A; 3 6 %al,ﬁzg s <a1:,52)
(g, B2) =1,
t-semisimple type: A1+A;+A;
aj+ o2 - il Az Az+24, (a1, @) = =1, (a1, 81) =
! ! 1, (a2, B1) =1,
a1+ oo = B1
A Ag+A = -1 =
A Ay A1+Ay 2 at+Ar §a?at:2331) Y (a1, B1)
o1+ g = B1+ B2
A E =1 =
Aj+A7H+A;” A Ai+Apr A A 3 6 ﬁal’%)g 1) (s, B2)
(a2, B2) =1,
a1+ oy = B1+ B2
A E =1 =
Ay Ay Al + Ay A7+ A, 3 6 §al7ﬁ<;)2 /31>’ <01;ﬁ2>
(ag, B2) = 1,
a1+ oy = B1+ B2 _ _
Ay A Ay A Az As+A; ialyﬁé}g _61;’ <0é1:»52> =
(a2, B2) =1,
a1+ as = B1+ B2
s s A As+A s =1, s =
Aj4A, Ay Ay 3 5+A1 §a1 B(gz o) <oc1:62>
5 5 5 (ag, B2) = 1,
a1+ asg = 1+ 2+ 3
D E =1 =
A4 Ay Ar” Ay Ay Ay 4 6 iaboéi)l 52>7 <a251) B
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
5 5 5 (a2, B3) =1,
a1+ az = 1+ 2+ 3
D. E =1 =
Aj+AL AL A, Ay Ay 4 6 §a1»022a)1 52>, <C¥1:w31) B
(a1,B83) = 1, (az,B1) =
1, (az,B2) = 1,
(a2, B3) =1,
ai+ ag = B1+ B2+ B3 D E — 1 _
A, Ay A +Ap AP+ AL A" A, 4 6 §01,0<ti)1 732), (&1:,51) N
(a1,B83) = 1, (ag,B1) =
1, (az,B2) = L,
(a2, B3) =1,
a1+ a9 = B1+ B2
A E =1, =
AL Ap Ar+Ar Al+Ay 8 o A R
(az, B2) =1,
al+ ag = B1 _ _
A +Ay A Aj+ A AL Az Ds (O¢1,0¢2>—71 (ar, B1) =
1, {ag,B1) =1,
a1+ ag = B1+ B2 _ _
Ay A Ay AL+ AL? Ayt A4 AL As Ds ia <a>2 761;’ <061:,B2> =
(ag, B2) =1,
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a1+ (o) B1+ B2
A E = =
A1+Ar AP Ay Al+AU+HAT Ay 8 6 ﬁo‘l’ﬁéjg 1) ta, fa) =
(a2, B2) =1,
al+ oz B1+ B2 _ _
A1+Ay’ Ay A1+A1+A” A1+Ay’ As Ee io‘lvﬁéjz _131;’ <0‘1:»52> 1—
(az, B2) =1,
a1+ as B1+ B2
, , A As+A , =1, (a1, -
Ay Ay Ap+Ay 3 5+A1 §a1 ,5;22 ) <a1:52> :
5 5 (az, B2) =1,
a1+ ag 1+ 2
A , A E Bl = 1, (a1, B2) =
Ay Ay A1+A+Ar Ay 3 6 ial B(gz B <a1:52> h
5 5 (az, B2) =1,
a1+ ag 1+ 2
A E, =1 =
Ay Ay Aj+ A A A 3 6 §a1»3<11>2 B1>7 <061:»32) h
s 5 s 5 (ag, B2) =1,
20 1+ 2+ 3+ 4
D. E =1 =
Aq A1 +AL A7 AL A7 Ay 4 6 %alyﬁ&)}l B3>7 <041:»32) B
s 5 5 (a1, B4) =1,
ar+ ag 1+ 2+ 3
D. E =1 =
A1 Ap Aj+Apr Aj+AY 4 6 Y’l"’(i)l Ba) (o1, ) =
(a1,B3) = 1, (az,B1) =
1, (az,B2) = s
(a2, B3) =1,
al+ o+ ag B1+ B2+ B3 A B -1 _
Ay Ay Ay A, Ay Ay 5 6 iahﬂzza)Q Xy (04127133) N
(a2, B83) = 1, (ag,B1) =
1, (a3,B2) =1,
t-semisimple type: Ag
ot ez BAJr [22 Az Ds (a1,B1) = 1, (a1,B2) =
2 2 1, (a2,B1) = 1,
(a2, B2) =1,
a/%+ oz il Az Agq (a1, a2) = —1, (a1, B1) =
2 2 1, {az,B1) =1,
a1+ o B1+ B2
A D =1 =
Ao Ao Ao Ao 3 5 §0‘1»B<;>2 51>7 <111:»32> I
(ag, B2) =1,
ot e %4— EZJF ?43 Dy Eg (a1, a2) = 1, (a1,B1) =
2 2 2 1, (a1, B2) = 1,
(1,B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(a2, B3) =1,
ar+ a2 Bi+ B2t B3 D B —1 —
Ao Ao Ao Ag Ag 4 6 §0117022a>1 _62)’ <041:n81> 1—
(1,B3) = 1, (az,B1) =
1,  (az,B2) = 1,
(g, B3) = 1,
e ar % As Ds (a1,81) = 1, (a1,B2) =
2 2 2 1,  (az,B1) = 1,
(a2, B2) =1,
t-semisimple type: Aj+A;
art+  az Bt B2
A D =1 =
Ai1+Ar Aj+Ap 3 4 §ﬂt1»ﬁ<1a>2 s <a1:»B2> :
(a2, B2) =1,
024,- 2 ?41 Ag Az+Ay (a1, @z) = =1, (a1, 81) =
! ! 1, (a2, B1) =1,
a1+ az B1+ B2
A D =1 =
Ay A1+Ay’ Ay’ 3 5 §0¢17ﬁ<1a)2 51), (a1:,ﬁ2) :
(az, B2) =1,
ai+ o B1+ B2
A A =1 =
Ay Ay’ Aq AL 3 5 §0tl713<g)2 PR (a1:7ﬁ2> :
(a2, B2) =1,
al+ ag B1+ B2+ B3 D E —1 _
Ay Ay A1+Ar A’ Ay 4 6 iahozza)l 732>, <041:u51> 1—
(a1,B3) = 1, (az,B1) =
1,  (az,B2) = 1,
5 5 5 (a2, B3) =1,
a1+ az 1+ 2+ 3
, | D E , =1, , =
A1+Aq Aq Ay 4 6 ial 022031 B2) <041:51> 1
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
s (a2, B3) =1,
ar+ az 1
A A =—1 =
Ay Ay Aj+Ap 2 4 YIZXZZZﬁ) -4 (a1, B1)
a1+ ) B1+ B2
A A =1 =
A +Ap A, Ay 3 5 ﬁalyﬁ&ll 51>7 <111:»32) B
(ag, B2) =1,
o1+ %) B1
A D = -1 =
Aj+Ay’ Aj+Ay 2 4 ﬁ‘l?&‘:Z%l) - (a1, B1)
a1+ az B1+ B2
A D =1 =
Ay A1+Ay’ A1 3 5 §0¢17ﬁ<1a)2 51)’ (Oqz,ﬁz) :
(a2, B2) =1,
a1+ o B1+ B2
A Dsy =1 =
Ai+Ay Ay’ A1+Ay Ay’ 3 5 §a1,ﬁ<g>2 PR (a1:,ﬁ2> :
(a2, B2) =1,
a1+ oz B1+ B2
A D =1 =
A1+Ay A A1+Ay Ay 3 5 ial,ﬁéx)g /31>’ <051:,[32> :
(az, B2) =1,
art+ a2 B1+ B2 _ _
Ay Ax A1+Ay? A1+Ar Az Ds io‘lvﬁéxé _131;’ <0‘1:»52> 1—
(

97

az, B2) =1,



a1+ o = B1+ B2+ B3 _ _
A +Ap A+ Ay Ay +Ap Ay A Dy Eg (o1, ) = 1, <01:51) =
1, (a1, B2) = 1,
(a1, B3) = 1, (a2, B1) =
1, (az,B2) = 1,
5 5 (g, B3) = 1,
a1+ ao = 1+ 2
; ; As As (a1, B1) = 1, (a1, B2) =
o 5 A 5y o T
(g, B2) =1,
t-semisimple type: Ap
ar+ = B1+ B2 A D (a1,81) = 1, (a1,B2) =
A1 A1 ° ! 1,1 (;27/31) e 1,
5 (a2, B2) =1,
a1+ ag = 1 A A I -
2 3 (a1, az) = =1, (a1, 1) =
A1 A1 1, (a2, B1) =1,
a1+ a2 = B1+ B2 A D _ _
3 4 (a1, B1) = 1, (a1, B2) =
A1 A1 A1 A1 1, (a2, B1) = ,
(az, B2) =1,
A.4.3 FE;: l-strictly infinite weights and corresponding re-
lations
Number of different non-solvable subalgebras up to g-automorphism such that
nNC () is a nilradical of a parabolic subalgebra of € containing C'(¥s5) Nh: 73834
Among them 7427 satisfy the cone condition and 66407 do not.
Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(E)
generate gener-
ates
t-semisimple type: As+As
2o = Afizs’ Afit\s’ Afizs’ AngAg’ Dy Er (a1, B1) = 1, <041;B2> =
1, (a1,B3) = 1,
(o1, B4) =1,
t-semisimple type: Djg
aj+ oz = B1 A E _ _
_ 2 7 (a1, a2) = =1, (a1, B1) =
D5 ﬂDa , 1, {az,B1) =1,
o1+ ag = 1+ 2 A E _ _
3 7 (a1,B81) = 1, (a1,B2) =
Ds Ds Ds 1, (a2, B1) = 1,
(g, B2) =1,
t-semisimple type: Ag
a1+ [e2) = B1
A Az (a1, a2) = =1, (a1, B1) =
As As 2 1, ?O&Q,QB1> =1, ne
ai+ ag = B1+ B2 A E _ _
7 (a1, B1) = 1, (a1, B2) =
e o A s ’ 1,1 (112,51> . 1,
(ag,B2) =1,
t-semisimple type: Ap
ar+  az = B1+ B2t B3 D E (a1,a0) = 1, (a1,B1) =
As 4s 4s ! ’ 1,1 (21752> . 1,
(1,B3) = 1, (a2, B1) =
1, (az,B2) = 1,
5 (a2, B3) =1,
a1+ az = 1 A E _ _
: 2 7 (a1, a2) = =1, (a1, B1) =
As As 1, (a2, p1) =1,
ajj «2 - ﬁA:L ?42, A3 Er (a1, B1) = 1, (a1, 82) =
° ° ° 1,  (a2,B1) = ,
(a2, B2) =1,
t-semisimple type: Dy+Aq
aq+ ag = B1+ B2 A Dg+A (a1, B1) = 1, (a1, B2) =
Da Da ° o 1,1 (112750 i ,
5 (az, B2) =1,
a1+  as = 1 A Dg+A (a1, a2) = =1, (a1, 1)
Dy Dy i o 1, %0427250 =1, o
t-semisimple type: Ag+Aq
a1t a2 = A1 A E (a1, as) = —1, (a1, B1) =
A1 Ag Aatay ’ ! L lag By =1,
a1+ az = B1+ B2 A E — —
3 7 (a1, B81) = 1, (a1, B2) =
Ag+A; Ay Ag+Ay Ag+Ay 1,  (az,B1) = 1,
(az, B2) =1,
ajj ?424 - A4ﬁ}:41 Af‘iAl Ag Ez7 (a1, B1) = 1, (a1, B2) =
1, (a2,B1) = ,
5 5 (ag, B2) =1,
ar o - 1 2 A By (a1,B1) = 1, (a1,B2) =
Ay Ag Ag+Aq Ay 2 1, ' (112,50 . )
5 (ag, B2) =1,
ar o - ! A Az (a1,02) = =1, (a1, B1) =
A Ad Adtd ’ 1, ?0427231> =1, v
t-semisimple type: Az+Ag
IS s = B1 A E (a1, a2) = —1, (a1, B81) =
As+az As+Az ’ ! L Gaar By =1,
aj: @2 = {3413 Ag As+Ag (a1, a2) = =1, (a1, B1) =
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Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
a1+ g = B+ B2 -~ -~
Az+Az Az+Az Az+Ag Az Eq §a1»6<g>2 —Bl;, o1, B2) =
(az, B2) =1,
ait  az = B1+ B2 _ _
Ag Az+As As Az 24 §a1»6<1a>2 i o1, 82) =
s s (az, B2) =1,
a1+ az = 1+ 2 -~ -~
Az+Az Az Az+As Az+Ag A3 E7 (a1,B1) = 1, <061452) =
1, (032751) = 1,
az, B2) =1,
2o = B1+ B2+ Bs+ Ba _ _
Az+As Az+As Az+As As Dy By Yxl'B(L)l Sy <a1:,52) =
s s s 5 (a1, B4) =1,
201 = 1+ 2+ 3+ 4 _ _
Ag AstAz  AstAz  AgtAs  Ag Da Br fon 0 = )t =
(a1, B4) =1,
a1+ %) = Bi+ B2+ B3 _ _
As As Az+Az Az+Az Az+Az Dy E7 %Mmzz)l 732;, (a1_,ﬁ1) =
(1,B3) = 1, (az,B1) =
1,  (az,B2) = 1,
(a2, B3) =1,
ar+  az = Bi+ B2+ Bs _ -~
As Az+As Az+Ag Az+Az Dy E7 §a1,oz(zx>l 732;’ <a1:,/31> -
(a1,B3) = 1, (az,B1) =
1,  (az,B2) = 1,
(a2, B3) =1,
a1+ ag = b1
A A = -1 =
Az Ag Az+Az 2 7 ia?z;?)ﬁl) L (a1, B1)
201 = B+ B2+ Bs+ Ba _ _
Az Ag+Az Az+Az Az+As Dy Er ial»B&l)l 7631’ <041:»52) -
8 8 (a1, B4) =1,
a1+ az = 1+ 2 -~ _
Az Az Az+Az Az+As Az E7 §a1,6<11>2 751;, <a1:,@2> =
(a3, B2) = 1,
t-semisimple type: Az+A;+A;
a1+ o = B1
A Dg+A = —1 =
Az+Aq Az+A; 2 6+A1 §a?a;«2331> - 1,7<a1,ﬂ1>
a1+ a2 = B1+ B2
A E =1 =
Ag+ A, Ay Ag+A1+Ay° As+A1+Ap 3 7 §’a1,l3<;>2751>, <a1:,ﬁ2> "
(ag, B2) = 1,
ajj az = ,?’411 As 2A3+ A4 §a%,a233:> _11, (a1, B1) =
, (a2, B1) =1,
a1+ oy = B+ B2
A E =1 =
Az+Ay Ar’ Az+Ay Ar’ 3 7 :<10¢115<L>2 s <a1:,Bz> :
(az, B2) =1,
a1+ az = B1+ B2
’ s A: E s =1, R =
Az+A; A1 Az+A1+A As 3 7 ial B&l)2 o) <a1:Bz> :
(az, B2) =1,
a1+ ag = B1+ B2+ B3 _ _
Ay Ay Ag+Ai+Ay Az+A;+Ay As D4 Eq ial'ozzai b <a1:,B1> =
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
s s s (a2, B3) =1,
a1+ az = 1+ 2+ 3 _ _
Az+A; Az+Aq Az+A; Ay’ Dy E7 Yll»Dzz)l 752;’ <0<1:7B1> =
(a1,83) = 1, (az,81) =
1, (az,B2) = 1,
(a2, B3) =1,
aj: o - Af-lﬁ-tll Af—f—Al As De+A1 §a1,ﬁ<tl)2 251;7 (a1, B2) N
(a2, B2) =1,
ai+ ag = Bi1+ B2+ B3 _ _
Ay Az Az+A1 Az+A; Ay’ Dy Er iahc&)l _52;’ (o1, 81) =
(a1, B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ oy = B1 _ -~
Az+Aq Ay’ Az+Al+A Ao Er ;a?;;;g)ﬁl: ;11, (g, B1) =
2o = B1+ B2+ Bs+  Ba _ _
A Az+A1+Ar° Az+A1+AY As Dy Er io‘lvﬁé)‘)l _55;’ <0¢1:’52) N
s (a1, B4) =1,
a1+ az = 1
A Dg+A =-1 =
Ay Az Az+Aq 2 6+A1 ia?(gz)ﬁl) -t (a1, B1)
a1+ az = B1+ B2 o -~
Az+Ay Ay’ Asz+A; Az+Ay’ Az E7 (a1,B1) = 1, <O‘17162> =
}, (032751) = 1,
az, B2) =1,
ail+  az = B1+ B2 _ _
Ay Aq Az+A; Az+Ay As De+A1 Y)‘lvﬁé)é)z 761;7 <a1:,52> =
(63, B2) = 1, 7
t-semisimple type: As+A1+A;
20 = B1+ B2+ B3+ Ba D = _ 1 —
Azt+Ay Az+Ar Az+Ar Az+Ar 4 7 §a1,ﬁ<g>l iy <a1:,ﬁz> N
(a1, Ba) =1,
o1+ o = B+ B2 _ _
A1+Ayp Ag+Aq Az+Ay Az Er ial»ﬁ(& _/31;’ <a1:,Bz> =
(a2, B2) =1,
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Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
o+ o B+ B2 — -
Ag+A1  AgtAp Az+A;  AgtAp As Br §a1»5<2>2 _/31;’ (a1, f2) =
(a2, B2) =1
20 B+ B2+ Bs+ Ba _ _
As Az+Aq Az+Aq Az+Ar’ Az+Ay’ D4 Er ial'ﬁé)é)l 753;, (a1, B2) 1
(@1,B4) =1,
t-semisimple type: Ag+Ag+Aq
a1+ o B1
A E = -1, =
Ag+Aq Ao’ AgtAg'+A, 2 7 §a%;¥222§1> - (o1, B1)
a1+ a2 B1
A As+A = -1 =
A, Ao AgtA; 2 5+A2 ﬁﬂ%&t;z)m) - (a1, B1)
a1+ o B1+ B2
A Dg+A =1 =
Ay Ay’ Aot Ao’ Aot Ay’ 3 6+A1 §a1,ﬁ<;)2 51), <01:,/32> T
(a2, B2) =1,
a1+ o Bi1+ B2
A E =1 =
Ao Aoy’ Ao+Aq Ag'+Aq 3 7 §Ofl»ﬁ<la>2 ,81>, <0¢1:,ﬂ2> I
(ag, B2) =1,
a1+ a2 B1+ B2
A =1 =
Az+Ay Ag Az+Az’'+Aq Az+Az+A; 3 Er ;amﬁ(& s (a1, B2)
(a2, B2) =1,
201 Bi1+ Ba+ Bs+ Ba
) ) ) D E ) =1, » =
Ay Ag+Ay A+ Ay A+ Az A+ A 4 7 ial B(;)l o) <a1:Bz> :
(a1, Ba) =1,
a1+ az B+ B2
, , A E , =1, , =
Ag+Az Ay Ax+Ay Az+Az 2 ! ial 6(11)2 B1) <0¢1752> 1
(a2, B2) =1,
20 B1+ B2+ Bs+ Ba _ _
Ay Ast+Ay Ay Ay Ay’ +Ag Ag'+Ag Da Er §°‘1»5<L>1 *33;7 (a1, B2) =
(a1, B4) =1,
a1+ az B1+ B2+ B3
D E =1 =
Ay Ao Ag+Aq Ag+Ag’ Ag+Ay 4 7 §oc1,02(21>1 oy <a1:,/:?1> :
(a1, B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(a2, B3) =1,
o+ o B1+ B2+ B3
D E =1 =
As+Ay Az’ A +Az’ Ag+Ay’ A 4 7 §ﬂ1702i>1 /32), (041:,51) :
(1,B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
(a2, B3) =1,
o1+ o B1+ B2
A E =1 =
AptAr Ayt A AxtAx+A1  AgtArtA 8 7 AR e
(a2, B2) =1
o+ oz B1+ B2 _ _
Az+Aq Ag Ag+Ag+A; Ag+Ay’ As Eq §a1»5<11>2 —Bl;, (@1, 62) -
(a2, B2) =1,
a1+ 2P B1+ B2
) ) A E s =1, ) =
Az Az Ag+Ax’+A; Aq N ! ial B(zt)z B1) <0¢1752> 1
(a2, B2) =1,
t-semisimple type: Ao+A;+A;+A
o+ a2 B1
A Dg+A = -1 =
A1+Ay° Aoy Az+A1+Ay’ 2 ot §a?&22231> - e, A1)
o+ o B1+ B2
A E =1 =
A1+Ay’ A1+Ar” Az+A1+Ay Ag+A1+Ar” 3 7 §a17ﬁ<22 51>7 <&1:’ﬁ2> 1
(a2, B2) =1,
a1+ a2 B1+ B2
A Dg+A =1 =
Ag Ag Ao+ Aj+Ay Ao+ A1+Ay 3 6+AL iahﬁ(;)Q B1>, <041:,ﬁ2> :
(a2, B2) =1,
a1+ a2 B1+ B2
A E =1, =
Ap+A; Ag Ag+Aj+Ap Ayt Ap” 3 7 §0‘11ﬁ<82 ool <0t1:,/32) :
(a2, B2) =1,
t-semisimple type: Aj+A;+A]+A1+A;
2a1 B1+ B2+ Ba+ Ba _
Aj+Ay A1+ Ay A b Ay A7+ Ag Dy De+A1 Yllyﬁzg)l 753; <0‘1_v/82> N
(a1, Ba) =1,
art+  az B1+ B2
, , A D4+3A -1, i -
A1+Aq A1+A; 3 1+3A1 Yll <a>2 o <a1:ﬁ2) -
(a2, B2) =1,
o+ %} B1
s s A Dy+3A s = -1, s =
A1+Ay Ar+A; 2 4+3A1 §a?a2221> - (a1, B1)
o+ o B1+ B2
A E =1 =
Aj+Ap AL AL A+ A7 AL AL+ A LAY 3 7 §a1,ﬁ<1a)2 P <0<1:,ﬁ2> :
(a2, B2) =1,
o+ o B1+ B2
A Dg+A =1 =
Aj+Ay Apr A A +Ap A7 f AL 3 6+A1 iahﬁ(t; 51), <041:,/5‘2> T
(a2, B2) =1,
a1+ as B1+ B2+ B3
D E =1 =
A +Ap Ayt AL AL +AL+AL” Ay AT AL 4 7 §0‘1102(21>1 ,62>’ (01:,/31) :
(a1,B3) = 1, (az,B1) =
1, (02,/32) = 1,
(a2, B3) =1,
t-semisimple type: Dy
ot o2 ﬁ5+ %2 Az D¢ (a1, B1) = 1, (o1, B2) =
4 4 1,  (a2,B1) = 1,
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Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
a1+ g = B1+ B2
Az E7 (a1, B1) = 1, (a1, B2)
P Pa o Da L as sy =,
(az, B2) =1,
OtDlJr o2 - %1 A2 Dg (a1, a2) = =1, (a1, B1) =
* 4 1, (a2, B1) =1,
ait a2 = B1+ B2 _ _
A E , =1, (a1, =
Dy Dy Dy Dy 3 7 Y,XI :3&1)2’51) <061:32> ’
(ag,B2) =1,
t-semisimple type: Ay
aj+ o - ?41 Az Eg (a1, a2) = =1, (a1, B1) =
* * 1, (a2, B1) =1,
aAl+ o - ﬁ,i-’— [,342 A3 Eg (a1,81) = 1, (a1, B2) =
* * * 1, (a2, B1) = s
(a2, B2) =1,
a1+ oz = B1+ B2
A E =1, , -
Ay Ay Ay Ay 3 7 §’0¢17ﬁ<1a>2751> <a1:l32> o
(ag, B2) =1,
Uro - a As Ag (ar,a2) = —L (a1, 1) =
: * 1, (az, B1) =1,
A - abn As B (a1,81) = 1, (a1, B2) =
* ‘ ‘ 1, (a2.81) = 1,
(a2, B2) =1,
al+ ag = BA+ Bj+ ?43 Dy o (a1, a9) = 1, (a1, 1) =
* * * 1, (a1,82) = 1,
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
(az,B3) =1,
a1+ az = B1+ B2+ B3 _ _
D E , =1, (a1, -
Ay Ay Ay Ay Ay 4 7 Y"l 02?1”32) <0<1:['31> L
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
(ag,B3) =1,
t-semisimple type: As+A;
a1+ o = B1+ B2
A E , =1, , -
Az+A; Az+A; As 3 7 ;al ﬂ(;)Q ) <a1:[32) :
(a2, B2) =1,
a1+ ao = B1+ B2
A E =1, (a1, -
Ay Az+Ay Az 3 7 io‘ (a>2,ﬁ1> <0<1:52> L
(ag, B2) =1,
A - o A 245 (a1, a2) = —L (a1, 1) =
! ! 1, (a2, B1) =1,
ai+ ag = Bi1+ B2 -~ _
A A =1, (a1, -
Az+Ay Ay Az 3 7 i‘l <a>2751> <061:32> L
(ag, B2) =1,
at ez - ﬁ,ijL [,342 Ag De+A1 (a1, B1) = 1, (o1, B2) =
3 3 1, (042751> = 1,
(a2, B2) =1,
&/FL . - il Ao As+Aq (a1, a2) = —1, (a1, B1) =
: y 1, (a2, B1) = 1,
a1+ ag = B1
A D , =1, (a1, 81) =
Az+A; Az+Aq 2 6 Yl?af;zgl) - 7(041 B1)
a1+ a2 = B1+ B2
A Dg+A =1, (a1, B2) =
Az Az Az A3z 3 6+A1 §?‘17ﬁ(227ﬁ1> <0<1:ﬁ2) L
(a2, B2) =1,
a1+ ag = Bi1+ B2
A E , =1, , =
As+Aq Az Az+A; As 3 7 §a1 ﬁ<1a>2751> <a1:ﬁz> -
(a2, B2) =1,
a1+ a2 = B1+ B2
A A , =1, , -
Ay Az Ay Az 3 7 ial ﬁ(gz,/h) <a1:l32> o
(a2, B2) =1,
o1+ oz = B+ B2
A E =1 , -
Az+A; Ay Ag+Aq Agz+A; 3 7 Yfl»ﬁ(& s <a1:Bz> ;
(az, B2) =1,
a1+ ag = Bi1+ B2
A E , =1, (a1, =
Aq As As+A; As 3 7 ial B(;)Q’B1> <a1:Bz> "
(az, B2) =1,
a1+ o = b1 . _
A A Jas) = —1, (a1, B1) =
Ay Az Az+Aq 2 6 if?az’zgm - 1,<a1 B1)
ar+  az o B1+ B2 _ _
A D , =1, (a1, =
Az Az+A; Az+A; 3 6 ial Bél)z o <oc1:62> :
(a2, B2) =1,
02+ o - ﬁ,i+ [,342 Az Dg+A1 (a1, B1) = 1, (o1, B2) =
3 3 3 1,  (a2,B1) = 1,
(ag, B2) =1,
20 = B1+ B2+ B3+ Ba
D E , =1, ; =
Az+A; Az+Aq Az Az 4 7 Yll B(;)l 5a) <041:ﬁ2> :
(a1, B4) =1,
20 = Bi1+ B2+ B3+ Ba
D E =1 =
Az Az+Aq Az+A; Az Az 4 7 §a1,ﬁ<1a>l 53>7 <a1:,ﬂz> -
(a1, B4) =1,
a1+ as = B1+ B2+ B3 D E =1 =
Az Az Az+Aq Az+A Az 4 7 Y’n,a(?b%), (alz,m) -
(a1,B83) = 1, (ag,B1) =
1, (az,B2) = 1,
(a2, B3) =1,
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Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
a1+ az = B1+ Ba+ B3
D E , =1, (a1, =
Aq Az Aq Az Az 4 7 §061 0221 Ba) <041:,31> I
(a1,B3) = 1, (az,p1) =
1,  (az,pB2) = 1,
s s 8 (az,B3) =1,
a+ ag = 1+ 2+ 3
D E =1 =
Az+A; A1 Az As 4 7 §061»022a)1 52>, (DA1:,B1) :
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
s s s (a2, B3) =1,
ag+ aso = 1+ 2+ 3
D E =1 =
Ay Ay Az+A; Az+A; Az 4 7 Y’Ll»ﬂzz)l 52>s <a1:,ﬁ1) :
(a1,B83) = 1, (az,p1) =
1,  (az,B2) = 1,
(a2, B3) =1,
a1+ ag = B1+ B2
A E =1 =
Ag As Az+A; Az+A; 3 7 Y’n,ﬁél)%ﬂl), <a1:,ﬁ2> -
(a2, B2) =1,
a1+ oz = B1+ B2+ B3 D B _ _
Az+A; Ag Ay Ag As 4 7 §’0‘17021>17TB2>, <a1:,/31> o
(a1,B3) = 1, (az,B1) =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ ag = Bi1+ B2
A: E, =1 =
As Az Az+Ay Az+Ay 3 6 §a1,6<;>2 s <a1:,Bz> :
s (az, B2) =1,
a1+ az = 1
A D = —1 =
Aq As Az+A; 2 6 ia?t;;z)ﬁﬁ —L (a1, B1)
a1+ ag = B1+ B2
A D =1 =
Aq Aq Az+A; Az+A; 3 6 Ymﬁ(;}z A <a1:,32> :
s s (a2, B2) =1,
a1+ ag = 1+ 2
A A =1 =
Ay Az Az+A; 3 7 Yn»ﬁ(;}z 51)7 <0‘1:1B2> h
s s s 5 (a2, B2) =1,
20y = 1+ 2+ 3+ 4
D E =1 =
A AgtAr Ag+A; A 4 7 R S e
(a1, B4) =1,
al+ as = B1+ Ba+ B3
D E =1 =
Aq As Az+A; As 4 7 1&1’0221,!?2)’ (a1:,ﬁ1) -
(1,B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(a2, B3) =1,
ar+ o = Bi1+ B2+ B3 D B —1 _
As As+A, As+A, As 4 7 if“’(?ii,?m’ (a1:,,81> 1—
(1,B3) = 1, (az,B1) =
1, (az,B2) = 1,
(a2, B3) =1,
201 = Bi1+ B2+ B3+ Ba
D. E =1 =
Az Az+A Az+A1 Az 4 7 io‘lvB&l)l 63): <0¢1:152) T
P 5 5 (a1, B4) =1,
a+ ag = 1+ 2+ 3
D E =1 =
As As Az+A; Az+A; 4 7 ial,ozzai 62>’ <a1:,B1> h
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
(a2,B3) =1,
t-semisimple type: Az+Aq
a1+ az = Bi1+ B2+ B3 D E —1 _
Az+A; Az+Aq Az 4 7 i’ahozi)b—ﬁw, (a1:,/31> o
(a1, B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(a2, B3) =1,
e - ok As Ds+A1  (a1.81) = 1, (a1, B82) =
: 2 L {az,f1) = 1,
(az, B2) =1,
a,iJr oz - il Az Ds+Aq (ay,a2) = =1, (a1, B1) =
3 3 1, {az,81) =1,
£-semisimple type: Ao+ Ag
a1+ a2 = B1+ B2t B3
D E =1 =
AptAy AgtAy AxtAy 4 6 Y”’Ezz)l 5a)’ e, A1) =
(a1,B83) = 1, (a2, p1) =
1,  (az,B2) = 1,
(a2, B3) =1,
a/%+ o - /,341 A2 Agt+Az (a1, 2) = =1, (a1, B1) =
2 2 1, (a2, p1) =1,
o1+ o = B1+ B2
A E =1 =
Az+A2’ Ag+Ag’ Ao 3 7 ial’ﬁ(lo}g Bl>, <0tl:,132> h
(ag, B2) =1,
20 = B1+ B2+ B3+ Ba D B _ 1 _
Az Ax+Ay Ax+Ay Ay’ Ao 4 7 §01¢§;)1 —/33>, <0tl:,[32> =
(a1, B4) =1,
201 = B1+ B2+ B3+ Ba _ _
Agt Ay’ Agt Ay’ Ay’ As Dy Ex galyﬁél)l —Bd;, <0é1:,32) c
(a1, B4) =1,
a1+ ag = B1 _ _
Ay Ay’ Ao+As Az Ag (a1, ) = —1, (a1, 81) =
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Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
a1+ oy B1+ B2
=1 , =
As Ay Ay Ay Az Ar gahB(g)Z s <a1:52) :
(az, B2) =1,
ai+ ag B1+ B2+ B3 _ _
» » D E , =1, , =
Ao Ag Ax+Az Ao Az * ’ ial 0231 B2) <D‘1:51> 1,
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
(a2, B3) =1,
o+ [P B1t+ B2 _ _
A D B1) = 1, {a1,8) =
Ay Ay Ax+Ay  AxtAy 3 6 {1 6&32 1) fon, B2) =
(a2, B2) =1,
ar+  az B1t+ B2+ B3
D E ) =1, ) =
At Ay Ay’ Ay 4 7 §a1 Da)l o <041:ﬁ1> ”
(a1,B83) = 1, (az,p1) =
1, (az,B2) = 1,
(a2, B3) =1,
ar+ a2 B1+ B2+ B3 D E - _
Ay A Agt Ay’ Agt Ay Apt Ay’ 1 7 §041,Ozi)1 /32), (a1:,/31) :
(a1, B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(o, B3) = 1,
a1+ [e2) B1+ B2
A E , =1, , =
Ao Ax+Ag’ Ag 3 T ;:ll [3(132 B1) <a1:B2> 1
(az, B2) =1,
ar+ oz B1+ B2+ B3
, , ) D E , =1, , =
Ao Ax+Ag Ag+Ag Ay 4 7 ial ozz;>1 o) <a1:B1> :
(a1,B3) = 1, (a2, p1) =
1, (az,B2) = 1,
(a2, B3) =1,
a+ a2 B1t+ B2 _ _
A E , =1, s =
Ay At Ay Ay’ 3 7 Y?q 62)2750 <061:52) y
(a2, B2) =1,
a1+ g B1+ B2
, , Az Az (a1,B81) = 1, (a1,B2) =
Ag+As Az Ao 1, (a2,B1) = 1,
(ag, B2) =1,
ar+ az B1
, , A Eg (a1, az) = =1, (a1, 81) =
Az+Az AztAz 1, {a2,B1) =1,
o+ %) B1+ B2
s , , Az E7 (a1,B81) = 1, (a1,B2) =
Az+Az AztAz Az 1,  (a2,B1) = 1,
(a2, B2) =1,
o+ o B1+ B2
) ) ) s A3z E7 (1,B1) = 1, (a1, B2) =
Az+A2 Az Ag+As Az 1,  (az,pB1) = 1,
(a2, B2) =1,
a1+ ag B1+ B2
A E =1 =
Ax+Ag’ Ao Ax+Ag’ Ax+Ag’ 3 7 ial’ﬁzlag /31>, <a1:’ﬂ2> 1,
(ag, B2) =1,
a1+ (o) B1+ B2
A E s =1, s =
Ax+Ag’ Ax+Ay’ Ax+Ag’ 3 6 ;al [2282 81) <a1:B2> 1
(ag, B2) =1,
a1+ asg B1+ B2
, , A: E , =1, , =
Ax+Az’ Az’ Azx+Az Az+A2 3 7 ial 5(11)2 B1) <a1:B2> 1
(ag, B2) =1,
a1+ az B1+ B2 _ _
, , Az Eq (a1, 1) = 1, (a1, B2) =
Az Az Az+Az Az+Az 1, {as,B1) _ 1,
(a2, B2) =1,
o+ az B1+ B2 _ _
, , Az Er (a1, B1) = 1, (o1, B2) =
Az+Az Az Az+Az Az 1, {as,B1) _ 1,
(a2, B2) =1,
o+ [P B1+ B2
, , Az A7 (a1, B1) = 1, (o1, B2) =
Az A2 AztAs 1,  (a2,B1) = 1,
(a2, B2) =1,
2001 B1t+ B2t B3+ Ba
D. E N =1, s =
Ax+Ay As+Ay  Ax¥Ay A A 4 7 {o ﬁéfl Ba) (o, Ba) =
(a1, B4) =1,
a1+ as B1+ B2+ B3 D E -1 -
Agt Ay’ Ag AgtAg’ Agt Ay A 1 7 §01,Czi)l /32), (041:,51) B
(1,B3) = 1, (az,B1) =
1,  (ag,B2) = 1,
(o, B3) = 1,
20 B1+ B2+ B3+ Ba D E — _
Asy Apt Ay’ Apt Ay’ Apt Ay’ 4 7 §05115<21 iy <0t1:,[32) :
(a1, Ba) = 1,
a1+ oy B1+ B2+ B3
D E N =1, s =
As Ag’ Ag+Ag’ Ag+Ag’ 4 v §o¢1 0221 B2) <a1:,81) 1
(a1, B3) = 1, (a2, p1) =
1, (az,B2) = 1,
(a2, B3) =1,
t-semisimple type: Ag+A;+Aq
20 Bi+ Ba+ Bs+ Ba
D. E =1 =
As+A1  As¥Ar A Ay 4 7 Y’l’ﬁéfl Bs)’ (o1, Ba) =
(a1, B4) =1,
art+ oz Bi+ B2
A D A =1 =
Ao Ao+ A, Agt+A; 3 5+A1 §01,ﬁ<1a)2 51>, <0t1:,ﬁ2> L
(a2, B2) =1,
aj;r o2 {3411 Az Az+As+Ay (a1, az) = =1, (a1, 1) =
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1, (a2, B1) =1,



ai+ az
Ag+Aq
ay+ a2
Ag+A1+Ar°
aj+ az
Ag
ar+ az
A1+Ayr’
aj+ as
A1+Ay° Az
201
Ay
ag+ agz
Ay
a1+ g
Ay Az
a1+ a2
Ag+Aq
ai+ [e2)
Ax+Aq Ay’
a1+ az
Agx+Aq Ax+Ayp’
ai+ as
Ax+Aq Ay
a1+ az
A1+Ay Ag
al+ agz
Ay Ay’
a1+ [eP]
Az+Ay Ay’
a1+ g
Ay Az
ai+ [e3)
Ay Az
ar+ az
A1+Ar’
201
a1+ ag
Ax+A1+A
21
A
a1+ (o]
Aq
ai+ az
Ay Ay’
ai+ [e3)
A1+Ay° Az
aj+ asz
Ap+Ay° Ay
ai+ asz
Ay Az

Relation / linked £-components

Ag+Aq
= B1+
Az+Ay

= Bi1+
Az+Ay

= B1+
Az+A;

= B1+
Az+A;

= B1+
Az+A;

Az+A;

Az+Ay

Az+Ay

= B1+

Az+A1+Ar°

= B1+

Az+A1+Ar°

= B1+
Az+A;

= B1+ B2
Aq Ay’

= Bi+
Az+Aq

= B1+
Ag+Aq

Az+Ay

= B1+ B2

Ay Ay

= B1+
As+Ay

= B1+
Az+A;

= Bi1+
Az+Ay

Az+Aq

= B1
A1+Ay’

= B1+

Az+A1+Ar°

= B1+

Az+A1+Ar°

B1
Az+A1+Ar°

B2
Az+Ay’

B2
Ay’

B2+
Ag+Ay’

Ba+
Ag+Ar’

B2+
Ag+Aq

B1
Az+A1+Ar°

B2
Ag

B3+
Ay

B3

B3

B2
A1 +Ay°

B2+ B3

Ay’ Ao

B2
Ay’

B2+ B3

Aq Ay’

B2+
Ag+Aq

B2+
Ag+Aq

B2
Ag+Ay’

B2+
Az+Aq

B2+
Ao+Aq

B2
Ag+Aq

B2
A

B3
Ay’

Bs+

Agx+Ayr’

Bs+

Az+Ar’

B3

Az+Ay’

Ba
Ay’

Ba

Aq’

Ba

Ay’
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a;’s,
Bi’s

generate

Az

Az

A3

As

As

Dy

Dy

Az

Az

Az

Az

Az

Az

Dy

Az

Dy

A3z

Dy

Dy

Az

Az

Az

As

adding
A(®)
gener-
ates

Ds+A;

E7

De+A1

E7

Az

Er

E7

As+A;

As+As

Er

Er

As+Az

E7

E7

Er

Er

Agt+Ag
Dg

E7

E7

Non-zero scalar products

= =

-

=

-

e =

-

-

= =

-

[

(a1, a2) = —1, (a1, B1)
1, {ag,B1) =1,

(a1, B1) = 1, (a1, B2)
1, (a2,B1) =
(az, B2) =1,

(a1, B1) = 1, (a1, B2)
1, (az2,B1) =
(ag, B2) =1,

(a1,B81) = 1, (a1, B2)
1, (e2,B1) =
(az, B2) =1,

(a1,B81) = 1, (a1, B2)
1,  (a2,B1) =
(az, B2) =1,

(a1,B81) = 1, (a1, B2)
1,  (a1,B3) =
(a1, B4) =1,

(a1, a2) = 1, (a1, B1)
1, (ar,B2) =
(a1,B3) = 1, <0tz,l31>
1, (a2,B2) =
(ag, B3) = 1,

(a1, az) = =1, (a1, B1)
1, {a2,B1) =1,

(a1, az) = 1, (a1, B1)
1, (a1, B2) =
(a1, 83) = 1, (az, 1)
1, (az,B2) =
(ag, B3) =1,

(o1, g) = *11 (a1, B1)
1, {ag, 1) =1,

(a1, 81) = 1, (a1, B2)
1, (ez2,B1) =
(ag, B2) =1,

(a1,B81) = 1, (a1, B2)
1,  (a2,B1) =
(az, B2) =1,

(a1, 2) = 1, (a1,B1)
1,  (a1,B2) =
(a1,B3) = 1, (a2, B1)
1,  (az,B2) =
(a2, B3) =1,

(a1, B1) = 1, (a1, B2)
1, (az,B1) =
(a2, B2) =1,

(a1,B81) = 1, (a1, B2)
1, (a2,B1) =
(a2, B2) =1,

(a1, @2) = 1, (a1,B1)
1, (o1,B2) =
(a1, B3) = 1, (a2, B1)
1, (a2,B2) =
(az, B3) =1,

(a1, 2) = 1, (a1,B1) =
1, (o1, B2) = 1,
(a1,B83) = 1, (az,p1) =
1, (az,B2) =
(a2, B3) =1,

(a1,B81) = 1, (a1,B2) =
1,  (a2,B1) = 1
(a2, B2) =1,

(

ay, f1) = 1, (a1,B2) =

=l

= b

-

1,  (a1,B3) 1
(a1, B4) =1,

(a1,B81) = 1, (a1,B2) =
1, (a2, B1) = 1
(a2, B2) =1,

(a1,B81) = 1, (a1, B2)

1, (o1,B3) =

(a1, B4) =1,

(a1, @2) = 1, (a1,B1)

1, (017/32) =

(a1, B3) = 1, (a2, B1)
1, (a2,l32> =

(ag, B3) = 1,

(a1, a2) = —1, (a1, B1) =
1, {ag, 1) =1,

(a1, a2) = —1, (a1, B1) =
1, {a2,B1) =1,

(a1, B1) = 1, (a1, B2) =
1, (ez2,B1) = 1
(a2, B2) =1,

(a1, B1) = 1, (o1, B2) =
1,  (a2,B1) = 1,
(a2, B2) =1,



ai+ az
Ag+Aq
a1+ a2
Ag+Aq Ax+A7p’
a1+ az
Az+Ay Az
a1+ az
Az+Ay Ay
ai+ ag
Ax+Aq Ay’
a1+ asz
Az+Aq A
a1+ as
Az+A1+AY Az
a1+ [e%]
Ay Ao
ai+ az
Az Az
a1+ az
Ay Az
a1+ as
Az+A1+Ay’ Ag
a1+ ag
Ay Ag
a1+ g
A1+Ay’ Ay’
al+ g
Ay Ay’
a1+ az
Aq Ay’
a1+ (o)
Aq Ag
a1+ az
Az Az
201
Az
201
Az+Ay
a1+ az
Az+Ay Az
al+ ag
Az+Aq Ay’
al+ ag
Az+Aq Ao+Aq
a1+ a2
Ay Ay
2aq
A1+Ar°
a1+ az
A1+Ar’ Ag+Aq

Relation / linked £-components

= Bi1+ Ba+ B3
Az+Ay A Ar’

= B1+ B2
Ax+Ay Agx+Ar’

= B1+ B2
Az+A1+Ar° Ax+Ap’

= B1+ B2
Ao+ A, A,

= B+ B2
Az+A1+Ar Ag

= B1+ B2
Az+A1+AY Az+A1+Ay’

= Bi1+ B2+ B3
Ag+Aq Ay’ Az

= Bi1+ B2
Az+Ay Az

= B1+ B2
Az+A1+Ay Az+A1+ALY

= B1+ B2
Az+A1+Ar° Ay’

= B1+ B2
Ax+A; Az+Ayr’

= B1t+ B2
A1+Ay’ Az+Ayp’

= B+ B2
Ax+A1+Ay Ag+Ayr’

= Bi1+ B2
Az+Ay Az+Ar’

= B1+ B2
As+A1+AY Az

= B1+ B2
A1+Ay’ Az+Ay

= Bi1+ B2
Az+Ay Ag+Aq

= B1+ B2+ Ba+
Az+Ay Az+Aq Ag+Ayr’

= B+ B2+ Bs+
Az+A; Ax+A; Ax+Ayp’

= B+ B2+ B3
As+Ay Az+Aq Ag+Ay’

= B1+ B2
Ar1+Ay’ Az

= B1+ B2+
Ax+A1+Ay’ Az+A1+Ay’

= Bi1+ B2+
Az+A1+Ar° Ag+A1+Ar

= B1+ B2+ B3+
Az+Ay Az+Ar’ Ay

= B1+ B2+ B3
Ax+Ay Ay’ Ay

B3
Ag

Az

Ba
Ay

B4
Ay’

Ba
A’
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a;’s,
Bi’s

generate

Dy

Az

Az

Az

Az

Az

Dy

Az

Az

Az

Az

Az

Dy

Dy

Az

Dy

Dy

Dy

adding
A(®)
gener-
ates

E7

E7

Dg+A1

Er

Eg

Er

Dg+Ay

De+A1

E7

E7

E7

Az

Er

E7

E7

Non-zero scalar products

(a1, a2) = 1,
1, (o, B2)
(a1, B3) = 1,
1,  (az2,B2)
(az,B3) =1,
(a1,B1) = 1,
1, (ez2,B1)
(ag, B2) =1,
(a1,B81) = 1,
1,  (a2,B1)
(a2, B2) =1,
(a1,B81) = 1,
1,  (az,B1)
(az, B2) =1,
(a1,81) = 1,
1,  (a2,B1)
(a2, B2) =1,
(1,B1) = 1,
1, (az,B1)
(ag, B2) =1,
(a1, @2) = 1,
1, (o1,B2)
(a1, B3) = 1,
1,  (az,B2)
(ag, B3) =1,
(a1,B1) = 1,
1, (a2, B1)
(ag, B2) =1,
(a1,B1) = 1,
1, (a2,B1)
(ag, B2) = 1,
(a1,B81) = 1,
1, (e2,B1)
(a2, B2) =1,
(a1,81) = 1,
1,  (a2,B1)
(a2, B2) =1,
(a1,B81) = 1,
1,  (a2,B1)
(az, B2) =1,
(a1,B1) = 1,
1, (a2, B1)
(a2, B2) =1,
(1,B1) = 1,
1, (a2,B1)
(ag, B2) =1,
(a1,B1) = 1,
1, (a2, B1)
(a2, B2) =1,
(a1,B1) = 1,
1,  (az,B1)
(az, B2) =1,
(a1, B1) = 1,
1, (a2,B1)
(ag, B2) =1,
(a1, B1) = 1,
1, (o1,B3)
(a1, Ba) =1,
(a1,B81) = 1,
1,  (a1,B3)
(a1, B4) =1,
(a1, a2) =1,
1,  (a1,B2)
(a1,B3) = 1,
1, (az,B2)
(a2, B3) =1,
(a1,81) = 1,
1, (a2, B1)
(a2, B2) =1,
(a1, ) = 1,
1, (o1,B2)
(a1, B3) = 1,
1, (az,B2)
(a2, B3) =1,
(a1, a2) = 1,
1, (a1, B2)
(a1,B3) = 1,
1, (az2,B2)
(az, B3) =1,
(a1,B81) = 1,
1, (e1,B3)
(a1, B4) =1,
(a1, az) =1,
1,  (a1,B2)
(a1,B3) = 1,
1, (az,pB2)
(a2, B3) =1,

(a1, B1)
<0627,51)

<061452)

(a1, B2)
(a1, B2)

(a1, B2)

(a1, B2)

(a1, B1)
(a2, B1)

(a1, B2)

<O‘17vBZ>

<061452)

<a1:qﬁz>
<&1:,ﬁ2>
<&1:,ﬁ2)
<0‘1:,15‘2>
<0¢1:,l32)
<a1:,52)

(a1, B2)

<061452)

(a1, B2)

(a1, B1)
(a2, B1)

(a1, B2)

(a1, B81)
(a2, B1)

(a1, B1)
<Oé27161>

(a1, B2)

(1, B1)
(a2, B1)

=

=

Jun

=

=

-

=

e

Jun

-

[

-

=

= =

=

[



a1+ az
A1+Ay? Ay’
ai+ az
Ax+Aq Ay’
201
2a1
Ay
ai+ az
A Az
21
Az
a+ az
Ax+Aq Az
201
Ay
ai+ asz
Ay Ay’
ai+ ag
Ay Ay
a1+ az
Az+Ay Ay’
a1+ a
Ar1+Ay’ Aga+Ayr’
a1+ a2
A1+Ar’ Az+Aq
ai+ asz
Ax+Aq Az
ai+ [e3)
Ag+A1+Ay’ Ay
ar+ as
Ax+Aq Az
ai+ ag
Ax+Aq Ay’
a1+ o
Ag+Aq Az +Ay’
ai+ o+ asg
Ag+Aq Ay’ Az
a1+ [eP]
Az+Aq Ay’
2a1
Ag+Aq
201
Ay
ar+ az
Ax+Aq Ay
201
Ag+Aq

Relation / linked £-components

Ag+Aq

Az+Aq

Az+A;
= Bit+
A1+Ay’

Ar1+Ay’

Az+Aq

A1+Ay’

Az+A;

Az+A;

= B1+

Az+Ay

= Bi+
Az+Ay

= B1+

As+A1+AY

= B1+

Ag+A1+Aq°

= B1+

Az+A1+Ar°

= B1+
A1+Ay’

= B1+
Az+A;

= B1+
Az+A;

= Bi+
Az+A;

= Bi+
Az+Ay

= B1+

Ag+A1+Aq7

= B1+

Az+A1+Ar°

= B1+

Az+A1+Ar°

= B1+

Az+A1+Ar°

= Bi1t+
A1+Ay’

B2+ B3
Ag+Ar’ Aq
B2+ B3
Ay’ Ao
B2+ Bs+ Ba
Ag+Ay’ Az+Ay’ Ay
B2+ Bs+ Ba
Az+Ay’ As+Ay Az
B2+ B3
Ag+Ay’ Az
B2+ Bs+ Ba
Ag+Ay’ Ag+Ar’ Aq
B2+ B3
Ax+Ay’ Az
B2+ Bs+ Ba
Ax+Ay’ Agx+Ayr’ Ay
B2+ B3
Ax+Ayr’ Az
B2
Ag+Aq
B2
Ay’
B2
Ay’
B2
Az+Aq
B2
Ag+Aq
B2
Az+Ay
B2
Ag
B2
Ax+Ayr’
B2+ B3
Ay’ Ao
B2+ B3
A’ Ag
B2
B2+ Bs+ Ba
Ag+A1+Ar Az
B2+ B3+  Ba
Ag+A1+Ar Az
B2+ B3
Ag+A1+Ay
B2+ Bs+ Ba
Az+Ay’ As+Ay Az
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a;’s,
Bi’s

generate

Dy

Dy

Dy

Dy

Dy

Dy

Az

As

Az

Az

Dy

As

Az

Dy

Dy

Dy

adding
A(®)
gener-
ates

E7

E7

Er

E7

E7

E7

Dg+A1

E7

De+A1

E7

E7

Er

E7

E7

E7

E7

Non-zero scalar products

(a1, az) = 1, (a1, B1)
1, (o1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(az,B3) =1,

(a1, a2) = 1, (a1, B1)
1, (o1, B2) =
(a1,B83) = 1, (a2, B1)
1,  (az,B2) =
(a2, B3) =1,

(a1, B1) = 1, (a1, B2)
1,  (a1,B3) =
(a1, B4) =1,

(a1,B81) = 1, (a1, B2)
1,  (a1,B3) =
(a1, B4) =1,

(a1, a2) = 1, (a1, B1)
1, (ar,B2) =
(a1,B83) = 1, (a2, B1)
1, (a27/32> =
(g, Bg) =1,

(a1, B1) = 1, (a1, B2)
1, (01,133) =
(a1, Bg) =1,

(a1, a2) = 1, {a1,B1)
1, (a1,B2> =
(a1, B3) = 1, (a2, B1)
1, (042’52> =
(a2, B3) =1,

(a1, B1) = 1, (a1, B2)
1, (‘341753) =
(a1, Ba) =1,

(a1, @z) = 1, (a1, B1)
1, (a1, B2) =
(a1,B83) = 1, (a2, B1)
1,  (az,B2) =
(a2, B3) =1,

(a1,B81) = 1, (a1, B2)
1, (a2, B1) =
(a2, B2) =1,

(a1,B81) = 1, (a1, B2)
1, (az,pB1) =
(a2, B2) =1,

(a1, B1) = 1, (a1, B2)
1, (a2, B1) =
(ag, B2) = 1,

(a1, B81) = 1, (a1, B2)
1, (a2,B1) =
(a2, B2) =1,

(a1, B1) = 1, (a1, B2)
1, (az,B1) =
(az, B2) =1,

(a1, B1) = 1, (a1, B2)
1, (e2,B1) =
(az, B2) =1,

(a1,81) = 1, (a1, B2)
1,  (a2,B1) =
(az, B2) =1,

(a1, B1) = 1, (a1, B2)
1,  (a2,B1) =
(a2, B2) =1,

(a1, @2) = 1, (a1,B1)
1,  (a1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(a2, B3) =1,

(a1,B81) = 1, (a1, B3)
1, (az,B2) =
(a2, B3) = 1, (a3, B1)
1, (a3, B2) =1,

(a1, B1) = 1, (a1, B2)
1, (a2,B1) =
(a2, B2) =1,

(a1, B81) = 1, (a1, B2)
1, (o1,B3) =
(a1, B4) =1,

(a1, B1) = 1, (a1, B2)
1, (o1,B3 =
(a1, Ba) =1,

(a1, 2) = 1, (a1, 81)
1, (o1, B2 =
(a1,B83) = 1, (a2, B1)
1,  (az,B2) =
(a2, B3) =1,

(a1,B81) = 1, (a1, B2)
1,  (a1,B3) =
(a1, B4) =1,

=

=

[

= = =

= = Eall It

= =

=

[

-

=

[ Eall I

=

([

[

Jun



Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
a1+ ag B1+ B2+ B3 _ _
Az+Aq A Ar1+Ay’ Az+Ay’ Az+Ay Da B §a1’023>1 732;’ <a1:,,81) 1_
(a1, B3) = 1, (a2, p1) =
1, (az,B2) = 1,
5 5 5 (ag, B3) = 1,
a1+ ag 1+ 2+ 3 _ _
Ax+A1  AxtAp Ax+Ar  AxtAr Ag Da Fr §°‘1‘°22a>1 ’521’ lo1, B) =
(a1, B3) = 1, (a2, B1) =
1,  (o2,B2 = 1,
5 5 (a2, B3) =1,
ai+ ag 1+ 2
A As+A =1 =
A, Ay A+ Ap 3 5+A2 Y’Ll»ﬁ&l)z o ) <041:qﬁ2) h
(a2, B2) =1,
o+ o B1+ B2+ B3 _ _
Agt+ Ay Ay A+ Ay Ay Dy E7 %al,ﬁzz)l 7321, (a1z,ﬁ1) N
(1,B3) = 1, (az,B1) =
1, (az,B2) = 1,
(a2, B3) =1,
al+ ag B1+ B2+ B3 D B —1 _
Ay Ayr’ Az+A1+Ay’ Az 4 i ial,ozi)l 732>’ (a1:,,81) 1_
(a1, B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(g, B3) =1,
t-semisimple type: A1+ A;+A]+A;
a1+ g B1+ B2
A Dg+A =1 =
A1+ AL AL A +Ap Ay 3 6+A1 Yn»ﬁ(g}z B1>7 <a1:qﬁz) B
5 5 5 (ag, B2) =1,
a1+ ag 1+ 2+ 3 _ _
AL+AL+AL” Al+Ar AVTAY A Da B {ovez) = b fenio =
(a1,B83) = 1, (a2, p1) =
1, (az,B2) = 1,
(a2, B3) =1,
aj+ @2 {341 Ag Az+3A; (a1, a2) = =1, (a1, B1) =
! ! 1, (a2, B1) =1,
ar+ o B1+ B2+ B3 D Dt A —1 _
A, Al +Ay Al +Ay Ay” 4 6+A1 ial,ozi)l 732>, (041:,,31) N
(a1, Bz) = 1, (a2, B1) =
1,  (az,B2) = 1,
(ag, B3) =1,
a1+ ag B1+ 2 _ _
A4 Ay Ay4Ay APt Ay Az Dg+Ay iahB(L)Q _61;’ <041:,B2) =
5 5 5 (ag, B2) =1,
al+ ag 1+ 2+ 3
» » 2 "y D E , =1, , =
A1+Ar Ap Ar+Ay Ay AL Ay 4 7 {e 022(1)1 B2) low, B) =
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
5 5 5 5 (a2, B3) =1,
20 1+ o+ 3+ 4
D Dg+A =1 =
Aj+Ay Aj+Ap Ay Ay 4 6+A1 Yn»ﬁ(g}l 53>7 <a1:qﬁz) B
(a1, B4) =1,
ot oz %4— '[if As D4+3A1  (a1,B1) = 1, (a1, p82) =
! ! 1, (az,B1) = 1,
(a2, B2) =1,
o+ az B1+ B2
A Dy+2A =1 =
Al t+Ap A1+ Ay 3 4+2A, §a1,ﬁ<1a)2 PRy <0<1:,ﬁ2) h
(a2, B2) =1,
a1+ 3] B1
A D. 2A = —1 =
Aj+Ap Al +Ap 2 4+2A1 iah’xzz?ﬁ):f (a1, B1)
a1+ a9 B1+ B2
A D A =1 =
Ay+Ay Ai+Apr AjFAY 8 oA i‘“’ﬁ(gz 1) {ot, B2) =
(ag, B2) =1,
a1+ as B1+ B2
A D A =1 =
A Ay A, Ay 3 1+34A1 ;mﬁ(;}Q /31>’ <0t1:,[32) :
(ag, B2) =1,
al+ g B1+ B2 _ _
A4 Ay Ar” A4Ay Ay Az Dg+Ay iahB(L)Q _61;’ <0<1:,B2) =
5 5 5 5 (ag, B2) =1,
20 1+ o+ 3+ 4
, , F . D De+A B1) = 1, {a1.82) =
Ay A +A; A1 +A; A Ay 7 6+A1 im 6(21 e <a1:52) h
5 (a1, Ba) =1,
al+ ag 1
A Ds+A = -1 =
Ayt Ar Arr Aj+A1+AL 2 5+A1 Yx?t;:ﬁﬂﬂ -4 (a1, B1)
o+ o B1+ B2+ B3 _ _
Aj+A7+AL Ay bAg A1+Ay Ay +Ay” A Dy E7 Yllyoéza)l 752;’ <0<1:7B1> N
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
(a2, B3) =1,
o1+ %} B1+ B2
A Dg+A =1 =
Aj+Ay A+ Ap A7+ Ay 3 6+A1 §ﬂ1,ﬁ<1a)2 o ) <0<1:,ﬁ'2) B
(a2, B2) =1,
a1+ a9 B1+ B2
A E =1 =
Aj+Ap Ap” Aj A HAL” A7 A 3 7 Yll,ﬁ(;)Q 51>, <0t1:,ﬁ2> T
(a2, B2) =1,
o1+ a2 B1+ B2
A Ds+A =1 =
Ay Ay AL+AUHAY AHADHAL 8 s i‘“’ﬁ(gz 1) {at, B2) =
(ag, B2) =1,
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Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
a1+ o = B1+ B2+ B3 _ _
At AL+AL” AyP AL Aj+Ap Ay7 Ay Ay Dy E7 §041»023>1 732;, <a1:,ﬂ1> "
(a1, B3) = 1, (a2, p1) =
1, (az,B2) = 1,
(ag, B3) = 1,
a1+ g = B1+ B2+ B3 _ _
A1+ AL +AL” Aj+Ay Ay +Ay” Ay Dy E §0¢1»022a)1 752>1 (Dt1:,51) N
(a1, B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ Qg = B1+ B2
A E =1 =
Aj+AL AL Ayt AL” Aj+ A A A;7 4 AL 3 7 Y’Ll»ﬁ&l)z 51>7 <041:,ﬁ2) h
(a2, B2) =1,
o1+ a9 = B1+ B2
A Dg+A =1 =
Aj+Ap Ap+AL” A+ Ay AL+ A7 3 6+A1 §a1713<1a)2 B1>7 <0<1:,ﬁ2) B
(a2, B2) =1,
o1+ a9 = B1+ B2
A E =1 =
Aj+Ap Aj+AL” Aj4+AL+AL” Ap4AL+ AL 3 7 §a1,ﬁ<;)2 51), <041:,ﬁz> :
(a2, B2) =1,
a1+ o = B1+ B2
A E =1 =
Ar+Ar A Al+AU+HAT AUHA 8 T i‘“’ﬁ(gg 1) e, B2) =
(ag, B2) =1,
a1+ ao = B1+ B2
=1 =
Aj+A AL A Al +A+AL” Aj+AL A Az E7 ;aLﬁ(;)Q B1>’ <0t1:,[5’2) :
(ag, B2) = 1,
a1+ ag = B1+ B2
) » ) » A: Dg+A , =1, ) =
Ar+A4q Ay Ar+A1+A; 3 otdr e B&JQ 1) te, Ba) =
(az, B2) =1,
al+ o = B1+ B2 _ _
Ayt Ay Ay Ay AL+ AL Ayt AL? Az E7 ialyﬁél)z %1;, <a1:162> N
(a2, B2) =1,
al+ o = B1+ B2+ B3 _ _
Ai1+Ayp° Ar” A1+A1+AY” ApH+A s r YXI‘O&A 752;, <a1:”81> ;
(a1,B83) = 1, (az,p1) =
1,  (az,B2) = 1,
(a2, B3) =1,
a1+ g = B1+ B2+ B3
D. E =1 =
AltAl AjtAp ALHATHA A+ALCHA AUTAp 4 v {ovez) = b fenfo
(a1,B83) = 1, (a2, p1) =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ o = Bi1t+ B2+ B3
D. E =1 =
Aj+Ap Ap” Al +Ap Aj+Aq” AL 4 7 ioq,ozi)l /32>, (041:,/31) T
(a1, B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(a2, B3) = 1,
a1+ ag = B1+ B2+ B3 _ _
A A Aj+Al AL A+ AL AL Dy Dg+Ay gaho@)l 732;; <C¥1:u81> N
(a1, B3) = 1, (a2, p1) =
1, (az,B2) = 1,
(az, B3) = 1,
o1+ ag = B1+ B2 _ _
Ayt AL AL A Ay AL+ AL A+ ALT AL Az Er iahﬁ(gg 751>7 <a1:162> N
(a2, B2) =1,
a1+ o = B1t+ B2 _ _
Ar+Ar A HA AL+ADUHTAY ApFAL ALY A3 e §°‘1‘B<fl>2 ’51;’ (a1, B2} =
(ag, B2) =1,
a1+ g = B1+ B2
A E =1 =
A +Ap Ap” Aj+ A AL A;7 4 Ay 3 7 Yn»ﬁ(;}z [31)7 <041:1ﬁ2) h
(a2, B2) =1,
2aq = B1+ B2+ Ba+ Ba
D. E =1 =
Ap+Ay Aj+AUHA A+ A A APTRAYY 4 7 Y"l’ﬁéfl Bs)’ (o, Ba) =
(a1, B4) =1,
o+ o = Bi1+ B2+ B3
D. E =1 =
Aj+Ap A7+ A, Ap A HAL” AL4+AL7 AL 4 7 Yn&zi)l /32), (0<1:,/31) T
(a1,B83) = 1, (ag,B1) =
1, (az,B2) = 1,
(g, B3) =1,
a1+ o = B1+ B2+ B3
D E =1 =
A +Ap Ar” AL +AL+AL” AL ALY 4 7 §a11021>1 /32>’ (01:”31) :
(a1, B3) = 1, (a2, B1) =
1, (a2,B2) = 1,
(ag, B3) =1,
a1+ ag = B1+ B2 _ _
Ayt AL AL A Ay AL+ AL AL+ ALT AL As Er7 ialyﬁ(t}zi&)! <a1:162> N
(ag, B2) =1,
20 = B1+ B2+ B3+  Ba _ _
Ay A +A1+AL Aj+ AT+ AL” Dy Dg+Ay Yllyﬁzg)l 753;7 <0‘1:1/82> N
(o1,B4) =1,
t-semisimple type: A1 +A1+A1+Aq
2a1 = B1+ B2+ B3+ Ba
D D =1 -
Aj+Ap A Ay A7 4 AL Ay7 AL 4 6 iahﬁ(gl B3>, <041:,/5‘2> T
(a1, Ba) =1,
2aq = B1+ Ba+ Bs+ Ba
D E =1 =
A+Ap Ay +Ap A7+ A, A7 AL Ay 4 AL 4 7 §0tl7/3<;>1 /33>’ <0t1:,/32) :
(a1, Ba) = 1,
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Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
a1+ o = B1+ B2+ B3 _ _
Ap+Ap Ai+Ar A+AY Ap7HAY D4 B §°‘1’°Z§>1 732;’ (e, 1) L
(a1, B3) = 1, (a2, p1) =
1, (az,B2) = 1,
5 5 5 (ag, B3) = 1,
a1+ ag = 1+ 2+ 3
D. E =1 =
Aj+Ap Aj+Ay A Ap Ayt AL” 4 7 §061»022a)1 Bz)ﬁ (Dt1:,51) h
(a1, B3) = 1, (a2, B1) =
1, (az,B2) = 1,
5 5 (a2, B3) =1,
a1+ o = 1+ 2
A A =1 =
Aj+Ap Ay b Ay A+ Ap A7 f Ay 3 7 Y’Ll»ﬁ&l)z 51>7 <041:,ﬁ2) h
(a2, B2) =1,
o1+ a9 = B1+ B2
A D =1 =
Aj+Ay Ay b AL A+ Ay A7 f AL 3 6 §a1713<1a)2 B1>7 <0<1:,ﬁ2) B
(a2, B2) =1,
20 = B1+ B2+ Bs+ Ba D E -1 _
A +Ap A +Ap Aj4A” A7 AL A7 AL 4 7 §a1’ﬁ(;>1_53), <041:,ﬁz> N
(a1, Ba) = 1,
a1+ o = B1+ B2+ B3 D B — 1 _
A +Ap A +Ap” Ay +Ap Ay Ap A LAy 4 7 iOtl’Ozi)l?b), (041:,/31) N
(a1, B3) = 1, (a2, B1) =
1, (a2,B2) = 1,
(a2, B3) =1,
a1+ g = B1+ Ba+ B3
, 220 : S D B Laz) = 1, (a1, 81) =
A1+Aq Ay +A A1+4Aq A17+A 4 7 ial 0221 B2) <a1:’81> 1
(a1, B3) = 1, (a2, p1) =
1, (az,B2) = 1,
5 5 (a2, B3) =1,
ar+ asz = 1+ 2
A Dg+A =1 =
A4 Ay Ayt Ay Ay +Ap A"+ AL 3 6+A1 §061»ﬁ21)2 Py <0‘1:1/82> h
5 5 5 (a2, B2) =1,
a1+ asz = 1+ 2+ 3 _ _
A4 Ay A7t Ay Aj+Ay A +Ay” Ay AL Dy E7 Yll»ozz)l 752;, <a1:7ﬁ1> N
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
(o, B3) =1
t-semisimple type: As
et ez - ijr éf Az Dg (a1, B81) = 1, (a1, B2) =
3 3 1, (a2,B1) = 1,
(ag, B2) =1,
OXJr o2 - il As As (a1, o) = *1; (a1, B1) =
3 3 1, (a2, B1) =
O;%Jr o2 - BAjL '?f Az E¢ (a1, 1) = 1, (a1, B2) =
3 3 3 1, (a2,B1) = 1,
(a2, B2) =1,
ot o2 - BAjL 6j+ ?43 Dy E7 (a1, a2) = 1, (a1,B1) =
3 3 3 1, (a1, B2) = 1,
(a1, B3) = 1, (a2, B1) =
1,  (az,B2) = 1,
(az, B3) =1,
D;%Jr o2 - %4— '6A2 As D¢ (a1, B81) = 1, (a1, fB2) =
3 3 3 1, (az,B1) = ,
(a2, B2) =1,
e = ﬁj-,— ﬂj+ Bj+ Dy E7 (a1,B81) = 1, (a1, B2) =
3 8 8 1, (a1,B3) = 1,
(a1, B4) =1,
it e - ﬂj-'— {342 Az Ds (a1, 1) = 1, (a1, B2) =
3 3 1, (a2, B1) = 1,
(a2, B2) =1,
a1+ oz = B1+ B2
Az Deg (a1, B1) = 1, (a1, B2) =
A3 As A3 As 1, (a2,B1) = 1,
(a2, B2) =1,
ar e = A As Ds (a1, 02) = 1. {1, 01) =
3 3 1, {a2,B1) =1,
a1+ ag = Bi1+ B2
As Ee (a1, B1) = 1, (a1, B2) =
As As As As 1, (a2,61> = 1,
5 5 5 (ag, B2) =1,
al+ asg = 1+ 2+ 3 _ _
Aq As Aq As Aq Dy E7 ia Ozza>l Sy (041:,B1> N
(a1, B3) = 1, (a2, B1) =
1, (042752> = 1,
5 5 5 (az, B3) =1,
20 = 1+ 2+ 3+
D E =1 =
As As As As 4 7 Yx (a)l Bay’ <0‘1:1B2> B
5 5 5 (a1, Ba) =1,
o1+ ag = 1+ 2+ 3
D. E =1 =
As As As Az * ! Yl 02321 52>, <O‘1:’ﬁ1> 1
(a1,B83) = 1, (a2, p1) =
1, (az,B2) = 1,
(a2, B3) =1,
2a1 = B1+ B2+ B3+ D E -1 _
As Ag A As 4 7 i’oq,ﬁ(;)l’—/%), <041:,/32> —7
(a1, Bs4) =1,
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Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
a1+ az = B1+ Ba+ B3
D. E s =1, R =
As As As As 4 7 §a1 0221,62) <a1:ﬂ1> "
(a1,B3) = 1, (az,p1) =
1,  (az,pB2) = 1,
(a2, B3) =1,
t-semisimple type: Ag+A;
a1+ g = B1
A D = -1 =
Az+Ay Az+Ay 2 5 fﬂi;;zgﬁ - 1,7(111”31)
ar+  az = Bi+ B2
A D =1 =
Ao AotA; Agt Ay 3 5 §01,ﬁ<g)2 51)7 <0t1:,ﬁ2) B
(a2, B2) =1,
o1+ a2 = Bi1+ B2
A E =1 =
Ao+Aq As Ag+Ay As 3 6 iahB(;)Q PR <a1_,132> -
(a2, B2) =1,
ar+ oz = Bi1+ B2
A E =1, =
Aq Ag+A, Ay 3 6 %a <a>2 i <a1:,/32> n
(a2, B2) =1,
afi+ o - 611 A2 Ag+Aq (a1, a2) = =1, (a1, B1) =
: : 1, (az, B1) = 1,
afiJr o - il A Ag+Az (a1, a2) = =1, (a1, B1) =
' ! 1, (a2, B1) =1,
ai+ ag = B+ B2+ B3 _ _
D E s =1, ) =
Az Az Ax+A; Ax+A Ao 4 6 ial 022(1)1 ooy <a1:51> :
(a1, B3) = 1, (a2, B1) =
1, (042752> = 1,
(a2, B3) =1,
a1+ g = B+ B2 _ B
A Ds+A =1 , -
Az Az Az A 3 5+A1 Y" <a>2 Wy <0¢1:52) -
(g, B2) = 1
a1+ o = B+ B2
A A -1 , =
Ay Ao Aq Ao 3 6 Yl (032,51)7 <041:ﬁ2> L
(a, B2) =1,
a1+ ag = B1+ B2
A D, 1 =
Az Az+Aq Aq 3 6 10‘ §;>27B1>7 <0<1:,ﬁ2) ”
(a2, B2) =1,
20 = Bi1+ B2+ Bz+ Ba D B -1 _
Ao Ao+ Ay Ay Ao Ao 4 7 ﬁal,igl ey’ <a1:,ﬁ2> -
(a1, B4) =1,
a1+ as = Bi1+ Ba+ B3 D E =1 -
A2 Az Az+Ay Aq As 4 7 §a1,ozi>l ,82>’ <a1:,ﬂ1> B
(a1,B3) = 1, (az,B1) =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ ag = Bi1+ B2
A D , =1, i -
Ag+Aq Ay Ag+A; Ay 3 6 ial B&l)2 o) <a1:Bz> "
(az, B2) =1,
a1+ az = B+ B2 -~ B
A D s =1, ) =
Ax Ay Ax+A; Ao 3 6 ial B<L>2,51> <oc1:/32> =
(a2, B2) =1,
OL/%Jr o - B,ijL iz Az Ds+Ay (a1, B1) = 1, (o1, B2) =
2 2 2 1,  (a2,B1) = 1,
(a2, B2) =1,
a1+ ag = B1+ B2+ B3
D E , =1, (o1,51) =
Az+A, Az Ag+Aq Ag Ag 4 7 Yll 02?1 i <a1:ﬁ1> y
(a1,B83) = 1, (az,p1) =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ az = Bi+ B2+ B3 D B _
Ay A Az+Aq Aq Ao 1 7 ﬁahozi)l 52) (a1:,51) "
(1,B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(a2, B3) =1,
e N BX,— 6342 Az Ds+Ay (a1, B1) = 1, (a1,B2) =
2 2 1, (027/31> = 1,
(a2, B2) =1,
a1+ g = B1+ B2
A A -1, (a1, -
Ax+Ay Ay As 3 6 §a <a>2 o) <a1:Bz> :
(g, B2) =1,
201 = B1+ B2+ B3+ B4
D E =1, , -
Ag+Ay Ay Ao Ao 4 7 ia <(1)1 ey <Oc1:52> "
(a1,B4) =1,
a1+ o = B1 _ B
A A , = -1, , =
o SR R
a1+ ag = B1+ B2 ~ _
A D -1 , -
Ao Ao Ax+Ay Ax+A; 3 6 §oc <a>2 s <a1:62) n
(az, B2) =1,
a1+ az = B1+ B2+ B3
D E =1 =
Ay A Ao+Ay Ax+Aq Ag 4 7 Y" 02?1 52>, (041:7ﬁ1> :
(a1,B83) = 1, (az,B1) =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ as = B1+ B2+ B3 D E =1 =
Az+Aq Ag+Aq Ao 4 6 §a17022>1 B2), (041=,51> I
(1,B3) = 1, (az,B1) =
1, (az,B2) = 1,
(a2, B3) =1,
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2
Ax
ar+ az
A1
a1+ az
ai+ ag
Ay Ag
a1+ (o]
Az+Ay
a1+ g
Az2+Ay Ay
a1+ az
Az+Ay Az
ai+ az
Az+Ay
a1+ az
Ag Az
ag+ ag
Az
al+ ag
Az+Ay Ag+Aq
2a1
Ag+Aq
ar+ az
Az+Ay Ay
a1+ az
Ag Az
ai+ az
Ay Ay
aj+ ag
Ay Ao
21
Ax
a1+ asz
Aq Ag
2a7
Az+Ay
a1+ az
Az+Ay Ay
a1+ az
Ag+Aq Ag

Relation / linked £-components

= Bi1+
Ag+Aq

= B1+
Az+Ay

= B1+
Az+A;

= B1+ B2+
A Ao

= B1+ B2+
Aq Ag

Az+Ay

= B1+
Az+Ay

= B1+
Az+Ay

= B1+
Ax+Ay

Az+A;

= Bi+
Az+Ay

Ag+Aq

Az+Ay

Azx+Ay

Az+A;

= Bi+
Az+Ay

= Bi1+
Az+Ay

Az+Ay

Az+Ay

Az+A;

Az+A;

B2+ Bs+ Ba

Al Az Az
B2+ B3
Az Az
B2+ B3
Ay Ao

B3

Az

B3

A2z

B2
Az+Ay
B2
Az
B2
Az
B2

Az+A;
B2+ B3
A, Ao
B2+ B3
Ay Az

B2+ Bs+ Ba
Aq Ao Ag

B2+ B3
Ay Az

B2+ B3
Ax+Aq Az

Ag+Aq

B2

B2+ B3+ Ba
Az+Aq Ag

B2t B3
Az

B2+ B3+  Ba
Aot Ay A

B2+ B3

Az+Aq

B2+ B3
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a;’s,
Bi’s
generate

Dy

Dy

Dy

Dy

Az

Az

Az

Az

Dy

Dy

Dy

Az

Az

Dy

Dy

Dy

E7

E7

Eg

Dg

Eg

Eg

Er

E7

E7

Dg

Ag

Er

E7

Er

Non-zero scalar products

(a1,B1) = 1,
1, (a1, Bs)
(a1, B4) =1,
(a1, az) = 1,
1, (a1,B2)
(a1, B3) = 1,
1,  (a2,B2)
(az, B3) =1,
(a1, a2) = 1,
1,  (a1,B2)
(a1,B3) = 1,
1, (az,B2)
(a2, B3) =1,
(a1, @2) = 1,
1,  (a1,B2)
(a1,B3) = 1,
1, (az,B2)
(a2, B3) =1,
(a1, @2) = 1,
1, (a1, B2)
(a1,B3) = 1,
1, (az,B2)
(ag, B3) =1,
(a1,B1) = 1,
1,  (az,B1)
(ag, B2) =1,
(a1,B1) = 1,
1, (a2,B1)
(ag, B2) = 1,
(a1,B81) = 1,
1,  (a2,B1)
(a2, B2) =1,
(a1,B81) = 1,
1,  (a2,B1)
(a2, B2) =1,
(a1, @2) = 1,
1,  (a1,B2)
(a1,B3) = 1,
1, (az,B2)
(a2, B3) =1,
(a1, a2) = 1,
1, (ar,B2)
(a1,B3) = 1,
1, (027/32>
(a2, B3) =1,
(a1,B81) = 1,
1, (al,ﬁz’.)
(a1, Bg) =1,
(ay,a2) = 1,
1, (a1,62>
(a1, B3) = 1,
1, (042752>
(az, B3) =1,

(ag,a2) = 1,
1, (041752>
(a1,B3) = 1,
1, (042752>
(az, Bg) =1,

(a1, B1) = 1,
1, (0427!31)
(a2, B2) =1,
(a1,B1) = 1,
1, (a2, B1)
(a2, B2) =1,
(a1,B81) = 1,
1,  (a1,B3)
(a1, B4) =1,
(a1, @2) = 1,
1, (o, B2)
(a1,B3) = 1,
1, (az,B2)
(a2, B3) =1,
(a1,B1) = 1,
1, ({a1,B3)
(a1, Ba) = 1,
(a1, a2) = 1,
1,  (a1,B2)
(a1,B3) = 1,
1,  (az,B2)
(a2, B3) =1,
(a1, a2) = 1,
1,  (a1,B2)
(a1,B3) = 1,
1, (az,B2)
(a2, B3) =1,

(a1, B2)

(a1, B1)
<062131)

(a1, B1)
(a2, B1)

(a1, 81)
(a2, B1)

(a1, B81)
(a2, B1)

(a1, B2)

(a1, B2)

(1, B2)

(a1, B2)

(a1, 81)
(a2, B1)

(a1, B1)
(a2, B1)

(a1, B2)

(a1, B1)
<Oé27161>

(a1, B1)
(a2, B1)

(a1, B2)

(a1, B2)

(a1, B2)

(a1, B81)
(a2, B1)

(a1, B2)

<0<1;B1>
(a2, B1)

(a1, 81)
(a2, B1)

=
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Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
o+ oz = B1+ B2+ B3
D E N =1, s =
Az+Aq Ap Ay Ay A 4 7 §a1 023>1 ooy <a1:ﬂ1> :
(a1, B3) = 1, (a2, p1) =
1, (az,B2) = 1,
(az, B3) = 1,
201 = B1+ B2+ B3+
D. E N =1, s =
A Az+Ay Ax+Aq Ag 4 7 §°‘1 3@1 Bs) <°‘1:52> N
(a1, B4) =1,
a1+ o = B+ B2+ B3 _ _
D E , =1, , =
Ay A Ax+Ar  AxtAg 4 i {o "2?1 B2) fo1, A) N
(a1, B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ %) = Bi+ B2+ B3
D. E =1 =
As+Ay Az+Ay As+Ay Az+Aq Az 4 7 %al,ﬂzz)l B2>, (Oq:,l‘h) 1
(1,B3) = 1, (az,B1) =
1, (az,B2) = 1,
(2,B3) =1,
t-semisimple type: A14+A;+A
20 = B1+ B2+ B3+ Ba
» » , » D E , =1, » =
A1+Ay A7 +Aq Ay Ay 4 7 ial B(gl o) <a1:/32) :
(a1, B4) =1,
201 = B1+ B2+ Bs+ Ba
D. E ) =1, s =
Ay Ai+Ap AU +AL Ap Ay 4 i {o '%31 B3) (o1, Ba) =
(a1, B4) =1,
a+ a2 = B1+ B2
A Ds+A , =1, ) =
Ay A+Ay Ap 3 5+A1 Yn 6&)32751> <a1:B2> -
(a2, B2) =1,
a1+ ag = B1
A Ag+A s = -1, s =
A, Ay A+ Ap 2 a+A1 S?az,zz?l) - 17(0t1 B1)
al+ az = B1+ B2+ B3
D. D =1 =
Ay Aj+Ar AitAr Ay 4 6 ﬁ‘“"’(f}l 5a) (e, ) =
(1,B3) = 1, (a2, B1) =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ a9 = B1+ B2
A D =1 -
Aj+AL AL Aj+Ay A7 3 6 imﬁ(gz PRy <0t1:,l32> o
(a2, B2) =1,
crt o2 - EAJr %’ Ag Dy+2A1  (a1,B1) = 1, {(a1,B2) =
! ! 1, (a2,/31> = 1,
(ag, B2) =1,
a1+ Qs = B1+ B2
; ) Ag As+A; (a1, B1) = 1, (a1, B2) =
A1 A1 A1 A1 0 1, (a2,B1> = 1,
(ag, B2) =1,
O;%Jr o2 - il A Az+241 (a1, a2) = =1, (a1, B1) =
! ! 1, (g, 1) =1,
201 = B1+ B2+ B3+ Ba
D D, = 1, (a1, B2) =
Ay+Ag Ayt Ar e Ay” 4 6 ia <a>1 e <061:32> h
(a1, Ba) =1,
o+ [P = B1+ B2 _ _
A E -1 ; =
Ay AY Ar+A; A7+ 4, 3 6 Y" <a>2 1) fon, 92) N
(az, B2) =1,
a1+ az = B1+ B2
A As+A =1, (a1, B2) =
Aj+Ap A, Ay 3 5+A1 Yl (()32751) <041:ﬁ2) L
(az, B2) =1,
a+ az = B1+ B2
A Dy+A =1 =
A+ Ap Ai+ Ay 3 1+A1 §ﬂ1713<1a)2 B1>7 <0<1:,ﬁ2) :
(a2, B2) =1,
a1+ a9 = B1+ B2
A D =1 =
Aj+Ay A +Ap Aj4 A 3 6 §a1,ﬁ<;)2 51), <0‘1:152> L
(a2, B2) =1,
art+ oz = B1+ B2
A D5+ A =1 =
A, Ay +Ap Ay 3 5+A1 i?(l’ﬁ(gg,m), <0tl:,l32> o
(ag, B2) =1,
a1+ az = B1+ B2+ B3 D E - _
Aj+ Ay Aj+ A A, AL” 4 7 §a1¢%1)1 /32>’ <a1:,,@1) :
(a1, B3) = 1, (a2, p1) =
1, (a2,62> = 1,
(g, B3) =1,
o+ oz = B1+ B2+ B3 _ _
, . » D E =1, (a1,B1) =
Ar+Ar A Ar+Ay Ay HAL Ay 4 7 io‘ 022(1)1 B2) law, B) =
(a1, B3) = 1, (a2, B1) =
1, (042752> = 1,
(a2, B3) =1,
200y = B1+ B2+ Bs+ Ba
D E =1 ) =
Ay+Ar’ AytAy Ay A, Ay Ay” 4 7 Yx (a)l ey’ <a1:52) :
(a1, Ba) =1,
20 = B1+ B2+ Bs+ Ba
D E =1 =
Ay t+Ap Aj+Ag” Ay Ay 4 7 Yl (a>1 PhY <041:,ﬁ2) h
(a1, B4) =1,
o1+ o = B1+ B2+ B3
D. E =1 =
Ap+Ap Al +Ap Ap” ne 4 7 §a1,ﬁzi)l 52), (041:,51) L
(1,B3) = 1, (az,B1) =
1, (az,B2) = 1,
(a2, B3) =1,
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a1+
A1+Ar

al+
Ay

a1+
A1+Ar

ai+

ai+
A1+Ay’

ar+
Ay
aj+

A1+Ay’

a1+
Ar1+Ar’

a1+
A1+AL+A”

a1+
Ay
a1+

A +A+A”

ar+
Ay

ai+
A1 +A+AL”

a1+
A1+Ay

a1+
A1+AL+AL”

a2
Ay’

2
Ar”

ag
Ay

az
Ay

a3z
Ay’

o
Aq

B1+
A1+Ay?

B1+
A1+Ay’

B1+
A1+Ayr’

B1t+
A1+Ay’

Bi1t+
Ar1+Ay’

B1+
A1+Ay

B1+ Ba+
Ay A

B1+
A1+Ayr’

B1+ B2+
Ay A

Bi1t+
A1+Ay’

B1+ Ba+
Aq Ay’

B1+ B2+
Aq Aq

B1+
A1+Ay’

B1+
A1+Ayr’

B1+
A1+Ay’

Bi1t+
A1+Ay’

B1+ Ba+

Aq Ay’

B1+
A1+Ay

B1+
A1+Ay’

B1+
A1+Ayr’

Bit+
A1+Ay’

Relation / linked £-components

2
A1"+AY

B2+ Bs+
A1+Ay” Ay’

B2+ B3
A" +A Ar”

B2+ B3
Ay Ay

B2
A"+ AL
B2+ B3
Aq” Aq

B3

B2
Ap”

B3

B2
A" +A
B3

Ay

Bs+ Ba
Ay’ A’

B2
A1+Ay”

B2+
A" +Ar?

B2
A" +A

B2
A1+Ay”

B3
Ay

B2+ B3
A1+Ay” Ay’

B2+ B3
A" +A Ay’

B2+ B3

B2+ B3
Ap” Aq

Aq”

3
A1"+Ay
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a;’s,
Bi’s

generate

Az

Dy

Az

Dy

Az

Dy

Dy

Az

Dy

Az

Az

Dy

Dy

Dy

adding
A(®)
gener-
ates

D¢

E7

Eg

Er

Dg+Ay

Ag

Dg+A1

Dg+A1

Eg

Eg

E7

E7

E7

Non-zero scalar products

(a1,B1) = 1,
1,  (az,B1)
(ag, B2) =1,
(a1,B1) = 1,
1, ({a1,B3)
(a1, B4) =1,
(a1, a2) = 1,
1,  (a1,B2)
(a1,B3) = 1,
1, (az,B2)
(a2, B3) =1,
(a1, a2) = 1,
1,  (a1,B2)
(a1,B3) = 1,
1,  (az,B2)
(a2, B3) =1,
(1,B1) = 1,
1, (a2, B1)
(a2, B2) =1,
(a1, @2) = 1,
1, (a1, B2)
(a1,B3) = 1,
1, (az,B2)
(g, B3) = 1,
(a1, a2) = 1,
1, (a1, B2)
(a1,B3) = 1,
1, (az2,B2)
(az, B3) =1,
(a1,81) = 1,
1,  (a2,B1)
(a2, B2) =1,
(a1, a2) = 1,
1,  (a1,B2)
(a1,B3) = 1,
1,  (az,B2)
(a2, B3) =1,
(a1,B1) = 1,
1, (a2, B1)
(a2, B2) =1,
(a1, a2) = 1,
1, (ai,B2)
(a1,B3) = 1,
1,  (az,B2)
(a2, B3) =1,
(a1,B1) = 1,
1, (a1, Bs3)
(a1, B4) =1,
(a1,B1) = 1,
1,  (az,B1)
(az, B2) =1,
(a1, a2) = 1,
1,  (a1,B2)
(a1,B3) = 1,
1,  (az,B2)
(a2, B3) =1,
(a1,B81) = 1,
1,  (a2,B1)
(a2, B2) =1,
(a1,B81) = 1,
1,  (az,B1)
(a2, B2) =1,
(a1, a2) = 1,
1, (a,B2)
(a1,B3) = 1,
1, (az,B2)
(a2, B3) =1,
(a1, @2) = 1,
1, (o, B2)
(a1,B3) = 1,
1, (a2, B2)
(az,B3) =1,
(a1, a2) = 1,
1, ({a1,B2)
(a1,B3) = 1,
1,  (az,B2)
(a2, B3) =1,
(a1, a2) = 1,
1,  (a1,B2)
(a1,B3) = 1,
1, (az,B2)
(a2, B3) =1,
(a1, a2) = 1,
1, (ar,B2)
(a1,B3) = 1,
1,  (az,B2)
(a2, B3) =1,

(a1, B2)

(a1, B2)

<a1;51)
(a2, B1)

(a1, B1)
(a2, B1)

(a1, B2)

(a1, B81)
(a2, B1)

(a1, B1)
<Oé27161>

(a1, B2)

(a1, B1)
(a2, B1)

(a1, B2)

(a1, B1)
(a2, B1)

(a1, B2)

(a1, B2)

<D‘1;B1>
(a2, B1)

(a1, B2)
(a1, B2)

(a1, B1)
(a2, B1)

(a1, B81)
(a2, B1)

(041;&)
<062451)

(a1, B1)
(a2, B1)

(a1, B1)
(a2, B1)

= =

=

[

e

-

-

= bl (I

= =

=
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-

=

= = =
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= b
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-
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-

[

[

=

[

=
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a1+ (o]
A1+Ay? Ay’
ai+ az
A1+A+AL” Ar”
ar+ az
A1+Ar

ai+ az
A1+Ay Ar”
ai+ az
Ay Ay
ag+ az
A1+Ay’ Ay
a1+ g
A A

21
Ar1+Ayr’
a1+ az
A1+Ay’ Ay’

a1+ [e3)
A1+Ay’ A1+Ar”
201
Ay
al+ ag
Ay Ay’
a1+ ag
Ar1+Ay’ Ar’
a1+ az
A1+Ayr’ Ar”?
20
Ay
ai+ asz
Ay Ay

ai+ o2
A1+A1+AY” A1+Ay°
al+ az
A1+Ayr’ Ay
ai+ az
Aq Ay’

ai+ az
Aj+Ay A1 +Ar
a1+ az
A1+Ay° Ay’

ai+ asz
A1+A+AL” Ar’+A”

Relation / linked £-components

A1+Ay?

A1+Ar°
= B1

A1+Ar°
= B1+

A1+Ar°

= B1+ B2
A, A

= Bi1t+
A1+Ay’

= B1+
A1+Ar’

= B1+
A1+Ay

= B1+ B2+
Aq Aq

Ar+Ay’

= B1+ B2+
Ay Ay

= Bi1t+
A1+Ay’

Ar1+Ay’

= B1+

A1+Ay

A1+Ay’

Ar+Ay’

A1+Ay’

Ar1+Ay’

A1+Ay?

Ar+Ay’

Ar+Ay’

A1+Ay’

B2+ B3
A" +A, Ar’
B2
A" +Ar?
B2
Ay
B2
Ay
B2
A1+Ar
B2+ Bs+ Ba
A" +AY Ay Ar”
B3
A’
B2+ B3
Aq” Aq
Bs+ Ba
Ay’ Ay’
B2
B2+ B3
A" +Ay? Ay
B2+ B3
A7
B2+ B3+ Ba
A" +Ay? Ay Ag”
B2+ B3
Ap” A
B2+ B3
A" +A Ar”
B2+ B3
AyP AL A7
B2+ B3
Aq A7
B2
A" +Ar?
B2+ B3
A7+ Ay Ay
Ba+ B3
A" +Ar? Ay

114

a;’s,
Bi’s

generate

Dy

As

Az

Az

Az

A3z

Az

Dy

Dy

Dy

As

Dy

Dy

Dy

Dy

Dy

A3z

Dy

Dy

adding
A(®)
gener-
ates

Eg

Dy+Aq

Dg

Dy+2A;

Ds+A1

Ds+A1

Er

Dg+A1

E7

Dg+A1

As+Aq

E7

E7

E7

Er

Dg

E7

E7

Non-zero scalar products

(a1, az) = 1, (a1, B1)
1, (o1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(az, B3) = 1,

(a1, B1) = 1, (a1, B2)
1, (e2,B1) =
(az, B2) =1,

(a1, az) = —1, (a1, B1)
1, {az,B1) =1,

(a1, B1) = 1, (a1, B2)
1, (az,B1) =
(az, B2) =1,

(a1,B81) = 1, (a1, B2)
1,  (a2,B1) =
(a2, B2) =1,

(a1, B1) = 1, (a1, B2)
1, (a2, B1) =
(a2, B2) =1,

(1, B1) = 1, (a1, B2)
1, (a2,B1) =
(ag, B2) =1,

(a1, B1) = 1, (a1, B2)
1, (o1,B3) =
(a1, Ba) =1,

(a1, az) = 1, (a1, B1)
1, (o1,B2) =
(a1,B83) = 1, (a2, B1)
1, (az,B2) =
(ag, B3) = 1,

(a1, 2) = 1, (a1, B1)
1, (o1, B2) =
(a1,B83) = 1, (a2, B1)
1,  (az,B2) =
(a2, B3) =1,

(a1,B81) = 1, (a1, B2)
1,  (a1,B3) =
(a1, B4) =1,

(a1,B81) = 1, (a1, B2)
1, (az,B1) =
(a2, B2) =1,

(a1, a2) = 1, (a1, B1)
1, (ai,B2) =
(a1, Bz) = 1, (a2, B1)
1, (a2,B2) =
(a2, B3) =1,

(a1, @2) = 1, (a1,B1)
1, (o1,B2) =
(a1, Bg) = 1, (a2, B1)
1, (a2,B2) =
(az,B3) =1,

(a1, B1) = 1, (a1, B2)
1, (o1,B3) =
(a1, Ba) =1,

(a1, 2) = 1, (a1, 81)
1, (e, B2) =
(a1,B83) = 1, (a2, B1)
1,  (az,B2) =
(a2, B3) =1,

(a1, @z) = 1, (a1, 1)
1, (a1, B2) =

(a1,B3) = 1, <0<27,ﬁ1)

1, (az,B2) =
(a2, B3) =1,

(a1, a2) = 1, (a1, B1)
1, (ar,B2) =
(a1, Bz) = 1, (a2, B1)
1,  (az,B2) =
(ag, B3) =1,

(a1, az) = 1, (a1, B1)
1, (a1, B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(az, B3) =1,

(a1, 1) = 1, (a1, B2)
1, (a2,B1) =
(a2, B2) =1,

(a1, 2) = 1, (a1, 81)
1,  (a1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(a2, B3) =1,

(a1, @2) = 1, (a1, B1)
1,  (a1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(a2, B3) =1,

=

=

=
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=
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= = =
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=
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=

=
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a1+ a2
Aq Aq
2aq
A1+Ar°
aj+ as
A1+Ay° Ay
ag+ ag
Ay
a1+ g
A1+Ar A" +Aq
2
A
20
Ay
ai+ [e3)
Ay Ay
a1+ asz
A1+Ay° Ay’
ai+ a2
A1+Ay’ Ar”
ag+ g
Ay Ay’
al+ agz
Ax
a1+ a2
A1+Ay° Ay
a1+ asg
A1+Ay° A" +Ar
2aq
A1+AL+AL”
ai+ asz
Ay Ay’
ai+ ag
Ay Ay’
ag+ g
A
al+ ag
A1+Aq’ Aq
a1+ [eP]
Aq Ay’
a1+ az
A1+A1+AL” Ay’
ai+ as
Ay Ay
al+ ag
Ay Ay

Relation / linked £-components

B1+ B2+ B3

A1+Ay?

A1+Ay°

B1+ B2+ Bs+ Ba

Ay Ay Ay’ Ay’
B1+ B2+ B3
Ay Ay’ Ay’
B1+ Ba+ B3
A1+Ay’ A7 +AY Ay
B1+ B2+ B3
A1+Ay’ Ay Ar”
B1+ B2+ Bs+
A1+Ay° A" +AY A"+ A
B1+ B2+ B3+ Ba
A1+Ay° A1+Ay° Ay Ag”
B1+ B2
A1+A1L+AY A1+A1+AY
B1+ B2
A1+AL+AY” A1+Ar”
B1
A1+AL+AL”
Bit+ B2+ B3
A1+Ay’ A" +A
B1+ B2+ B3
A1+Ay’ A1+Ar” Ay
B1+ B2
A1+AL+A” A1+Ar”
B1+ B2
A1+AL+AL” Ay’
B1+ B2+ Bs+ Ba
A1+Ay° A1+Ay” Ay’ Ag”
B1+ B2
A1+AL+AY Ay
B1+ B2
A1+AL+AL” Ay’
B1+ Ba+ B3
A1+Ay’ A7 +AY Ar”
B1+ B2
A1+A1+HAY” A1+Aq
B1+ B2
A1+AT+HAL” Ar”
B1+ B2+ B3
A1+Ay° Ag” Ay’
B1+ B2+ B3
A1+A+AL” A1+Ar° Ar”
Bi1t+ B2+ B3
A1+Ay’ A1 +Ay”
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a;’s,
Bi’s

generate

Dy

Dy

Dy

Dy

Dy

Asz

As

Az

Dy

Az

A3

As

As

Az

Az

Dy

Dy

adding
A(®)
gener-
ates

Dg+Ay

De+A1

Dg+A1

E7

Eg

Dg

Ds

Eg

Ds

Er

Eg

E¢

E7

Eg

Non-zero scalar products

(a1, az) = 1, (a1, B1)
1, (o1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(ag, B3) = 1,

(a1, B81) = 1, (a1, B2)
1, (e1,B3) =
(a1, Ba) =1,

(a1, 2) = 1, (a1, B1)
1,  (a1,B2) =
(a1,83) = 1, (a2, B1)
1, (az,B2) =
(a2, B3) =1,

(a1, @2) = 1, (a1,81)
1,  (a1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(a2, B3) =1,

(a1, @2) = 1, {(a1,B1)
1, (a,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(g, Bg) =1,

(a1, B1) = 1, (a1, B2)
1, (o1,B3) =
(a1, Ba) =1,

(a1,B81) = 1, (a1, B2)
1, (o1,B3) =
(a1, Ba) =1,

(a1, 81) = 1, (a1, B2)
1, (e2,B1) =
(a2, B2) =1,

(a1,81) = 1, (a1, B2)
1,  (a2,B1) =
(az, B2) =1,

(a1, az) = —1, (a1, B1)
1, (a2, B1) =1,

(a1, @2) = 1, (a1,B1)
1,  (a1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(ag, B3) =1,

(a1, @2) = 1, (a1,B1)
1, (017/32> =
(a1, B3) = 1, (a2, B1)
1, (02,B2> =
(g, Bg) =1,
(a1,B81) = 1, (a1, B2)
1, (02,61> =
(a2, B2) =1,

(a1, B1) = 1, (a1, B2)
1, (042,51> =
(a2, B2) =1,

(a1, 81) = 1, (a1, B2)
1, (‘341753) =
(a1, Ba) =1,

(a1,81) = 1, (a1, B2)
1, (042751> =
(ag, B2) =1,

(a1, B1) = 1, (a1, B2)
1, (a2751> =
(a2, B2) =1,

(a1, a2) = 1, (a1, B1)
1, (a1752) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(a2, B3) =1,

(a1, B1) = 1, (a1, B2)
1, (az,B1) =
(ag, B2) = 1,

(a1, B1) = 1, (a1, B2)
1, (a2,B1) =
(a2, B2) =1,

(a1, a2) = 1, (a1, B1)
1, (o1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(az, B3) =1,

(a1, a2) = 1, {a1,B1)
1,  (a1,B2) =
(a1,B83) = 1, (a2, B1)
1,  (az,B2) =
(a2, B3) =1,

(a1, @2) = 1, (a1,B1)
1,  (a1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(a2, B3) =1,
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a1+ (o]
A Ay’
ai+ a2
Ay Ay

ai+ asz
A1 +Ay A" +Ap
al+ ag
A1+Ar’ Ay
al+ ag
Aq A

a1+ az
A1+Ay’ A1+Ayr’
20

2a7

A1+A+AL”
a1+ asz
A1+Ay° Ay’
ar+ asz
A1 +A+A” Ay’
al+ ag
Ay Ay
21
Aq
a1+ az
Ar+Ay° Ay’
aj+ az
A1+A+AL” Ar”
ag+ g
Ay Ay’

ay+ g
A1+Ar A1+Ar”

21
A1+Ar°

a1+ [e3)
Ar+Ay° A" +A
201
Ay
a1+ asz
A1+Ay’ Ay’

a1+ o
Ai1+Ay’ A1+A”

Relation / linked £-components

= B1+ Ba+ B3
A1+Ay? A1"+AY

= B1+ B2+ B3
A1+AL+AL” Ap’+Ar” Ay

= B1+ B2
A1+AL+AYY Ar”

= B1+ B2
A1+AL+AL”

= B1+ B2+ B3
A1+AL+AL” A1+AT+AL”

= B1+ B2+ B3
A1+ApP+AY” A1+Ar” Ay’

= B1+ B2+ Bs+ Ba
A1+Ay° A" +A Ay’ Ag”

= B1+ B2+ Bs+ Ba
A1+Ay° A" +A Ay’ Aqg”

= B1+ B2
A1+AL+AYY Ap+Ay”

= B1t+ B2+ B3
A1+Ay’ Ay Ar”

= B1+ B2+ B3
Ar1+Ay’

= B1+ Ba+ Bs+ Ba
A1+A7+AL” A1'+AY” Ay

= B1+ B2+ B3
A1+AL+AL” Ap’+Ay”

= B1+ B2+ B3
A1+Ay Ay’ Ar”

= Bi1t+ B2+ B3
A1+AL+ AL Ay

= B1+ B2+ B3
A1+A1’+ ALY Ax

= B1+ B2+ B3+ Ba
A1+AL+A” A1+Ay” Ay’

= B1+ B2+ B3
A1+AL+A” Ay’

= B1+ B2+ Bs+
A1+AL+AY A1+A+AL”

= B1+ B2+ B3
Ar1+A1r+AL” A1+Ay”

= B1+ B2
A1+A1’+AY” Ax

Ba
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a;’s,
Bi’s

generate

Dy

Az

Az

Dy

Dy

Dy

As

Dy

Dy

Dy

Dy

Dy

Dy

Dy

adding
A(®)
gener-
ates

E7

Eg

Dg

Dg

E7

E7

Eg

E7

Dg+A1

E7

E7

E7

Eq

Dg

Ey

Non-zero scalar products

(a1, az) = 1, (a1, B1)
1, (o1,B2) =
(a1, B3) = 1, (a2, B1)
1, (az,B2) =
(ag, B3) = 1,

(a1, 2) = 1, (a1, 81)
1, (o1, B2) =
(a1,B83) = 1, (a2, B1)
1, (az,B2) =
(a2, B3) =1,

(a1,B81) = 1, (a1, B2)
1,  (a2,B1) =
(a2, B2) =1,

(a1, B1) = 1, (a1, B2)
1,  (az,B1) =
(a2, B2) =1,

(a1, a2) = 1, (a1, B1)
1, (ar,B2) =
(a1, B3) = 1, (a2, B1)
1, (a2,B2) =
(a, B3) =1

(a1, az) = 1, (a1, B1)
1, (o1,B2) =
(a1, B3) = 1, (a2, B1)
1, (a2,B2) =
(az, B3) =1,

(a1, B1) = 1, (a1, B2)
1, (o1,B3) =
(a1, Ba) =1,

(a1,81) = 1, (a1, B2)
1, (e1,B3) =
(a1, B4) =1,

(a1,B81) = 1, (a1, B2)
1,  (a2,B1) =
(a2, B2) =1,

(a1, @z) = 1, (a1, B1)
1, (a1,B2) =

(a1,B3) = 1, <0t27,ﬁ1)
1, (ag,B2) =
(a2, B3) =1,

(a1, a2) = 1, (a1, B1)
1, (ai,B2) =
a1, B3) = 1, (a2, B1)
(027/32> =
2,B3) =1,

ay, B1) = 1, (a1, B2)
(al,ﬁz’.) =
a1, Ba) =1,

(

1,

(o

(

1,

(o

(a1, a2) = 1, (a1,81)
1, (a1,62> =
(a1, B3) = 1, (a2, B1)
1, (‘342752) =
(az, B3) =1,
(a1, a2) = 1, {a1,B1)
1, (041752> =
(a1, B3) = 1, (a2, B1)
1, (042752> =
(az, Bg) =1,
(a,a) =1
1,  (a1,B2)
(a1,B3) = 1,
1, (az,B2)
(a2, B3) =1,

(a1, a2) = 1,
1, (ai,B2) =
ar,Bz) = 1, (a2, B1)
(azy/h) =
az,B3) =1,

ay,B1) = 1, (a,B2)
(a1,63> =

(a1, B1)
(a2, B1)

(a1, B1)

a1, Ba) =1,

(

1,

(o

(

1,

(o

(a1, a2) = 1, {a1,B1)
1, (al,52> =
(a1,B83) = 1, (a2, B1)
1, (‘342752) =
(a2, B3) =1,

(
1,
(a
(
1,
(

a1, B1) = 1, (a1, B2)
(041753> =
ai, Ba) =1,
ay,az) = 1, (a1, B1)
(a1, B2) =
a17ﬁ3> =1, (a2, B1)
1, (az,B2) =
(a2, B3) =1,
(1, B1) = 1, (a1, B2)
1, (az,B1) =
(ag, B2) =1,

=

=

=

= = =
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Relation / linked £-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
201 = B1+ B2+ B3+  Ba
) ) D. Dg+A , =1, ) =
Ay A1+Aq A1+Aq 4 6+A1 §o¢1 Bél)l B3) <a1:B2>
(a1, B4) =1,
al+ ag = B1+ B2+ B3 _ _
Ayt Ay Ay Ay AL+ AL Ayt Ay Dy Er iahOZi}l 762& (041:;&) N
(a1, B3) = 1, (a2, B1) =
1,  (a2,B2) = 1,
(a2, B3) =1,
20 = B1+ B2+ B3+ Ba _ _
A+Ar 477 Ar+Ar AUFAC AL Ay Pa o Y"l‘%}l ’53;’ (1, B2} =
(a1, B4) =1,
a1+ asz = B1t+ B2+ B3
D E =1 =
Al+ALHAY AptAYT Aj+Ar ApHAy Ay 4 7 Y‘”Zi}l 5a)’ (1, A1) -
(a1,B83) = 1, (az,p1) =
1, (az,B2) = 1,
(a2, B3) =1,
2a1 = B1+ B2+ B3+ Ba
D E =1 =
Ay A1+A1+AY” A1+Ar” Ay’ 4 ’ ﬁal’ﬁ(gl 53>, <0‘1:’132> 1
(a1, B4) =1,
a1+ o = B1+ B2+ B3
D E =1 =
Ay A AL+ADU+HAY Ap 4 T i‘“’“(i)l 5a) e, A1) =
(a1, B3) = 1, (2, B1) =
1,  (az,B2) = 1,
(ag, B3) =1,
al+ g = B1+ B2+ B3 _ _
A1+Ar’ A1+Ayr’ A1+AL+A” A1+Ay’ Ar” Da b ioq,ozzo‘)l _52;’ <a1:”81> 1,
(a1, B3) = 1, (a2, p1) =
1, (az,B2) = 1,
(a2, B3) =1,
a1+ o+ a3 = B1+ B2+ B3
! , ; , A E , =1, (aj, -
Aq Aq Ay Aq Ay Aq ° ¢ Y"l 6534)2 B1) <0‘1:B3> 1
(az, B3) = 1, (a3, B1) =
1, {a3,B2) =1,
t-semisimple type: A1 +A1+Aq
a1+ ag = B1+ B2
A D, =1 =
A1+AL A" +Aq A1 +AY A"+ A 3 ¢ §a1’ﬁ<2>2 /31>, <a1:’ﬂ2> 1
(ag, B2) =1,
a1+ o = B1+ B2+ B3
D E =1 =
Aj+Ap A1+Aq° Aj+Ap A" A A7+ A 4 7 ;al,ozigl /32>’ <a1:,,81> :
(a1, B3) = 1, (a2, B1) =
1, (a2,B2) = 1,
(ag, B3) =1,
o1+ ) = B1+ B2 _ _
A1+Ar A1+Ar” A1+Ar° A1+Ay” A3 o ial,ﬁ(t?g 761;’ <a1;62> 1,
(a2, B2) =1,
Relation / linked ¢-components a;’s, adding Non-zero scalar products
Bi’s A(Y)
generate gener-
ates
t-semisimple type: Ao
ot 2 = ﬁ‘i+ {342 As Ds (a1,B1) = 1, (a1, B2) =
2 2 1, (az,B1) = )
(ag, B2) =1,
CYAH_ @2 - gl Az Ag (a1, a2) = =1, (a1, B81) =
2 2 1, (a2, p1) =1,
o1+ g = B1+ B2
A D -1 -
Ay Ag Ay Ay 3 5 iahﬂ(gz PRy (a1=,/32)
(ag, B2) =1,
ot ez - %Jr Bj+ {343 Dy Eg (a1, a2) = 1, (a1,B1) =
2 2 2 1, (ar,B2) = 1,
(a1,B3) = 1, (a2, B1) =
1, (az,fB2) = )
(a2, B3) =1,
a[;+ 2 - BA+ ?42 Ag Ds (a1,B1) = 1, (a1, B2) =
2 2 2 1L Aaz,p1) = 1,
(ag, B2) =1,
a1+ o = B1+ B2+ B3
D E s =1, s =
As As As As Ao 4 6 §a1 OEZ>1 o) <a1:51> -
(a1,B3) = 1, (a2, p1) =
1, (o2,B2) = 1,
(a2,B3) =1,
t-semisimple type: A1+Aq
S - ﬂj+ {342 Az Dy+Aq (1,B1) = 1, {a1,B2) =
! ! 1, (a2, p1) = ,
(a2, B2) =1,
art+  ag = B1+ B2+ Bs
D D =1 =
A, A, A, Ay 4 6 §051,023)1 /32>, (a1:,/31) :
(a1,B3) = 1, (a2, B1) =
1, (a2,B2) = 1,
(az, B3) =1,
DXJF 2 - BAI Az Az+Ar (a1, a2) = =1, (a1, 1) =
! ' L (a2, 61) =1,
a1+ o = B1+ B2
s , A A ) =1, ) =
A, A, A, AL 3 5 ial 5&1)2 o) <041:52) :
(az, B2) =1,
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a1+ a2
Ax Al
ai+ az
Ay
a1+ az
al+ ag
Ay
2c1
al+ ag
Ax
a1+ az
Ay Ay’
a1+ az
A1+Ay’
a1+ az
a1+ az
A1+Ay’
ai+ asz
A1+Ay° Ay
ar+ asz
Ay Ay
a1+ o
A1+Ay’ Ay’
201
Ay
a1+ a
Aq Ay’
a1+ a2
Aq Aq
a1+ g
A1+Ar’ Ay’
ai+ az
A1+Ay’ A1+Ay’
ar+ asz
Ay Ay
2c1
Ay
a1+ az
Aq Ay’
201
A1 +Ar°
ai+ az
A1+Ar° Ay

Relation / linked £-components

A1+Aq’

Ar1+Ay’

Ar1+Ay’

A1+Ay’

= Bi1+
Ax

B2+
Ax

= Bi1+
Aq

B2+
Ay’

= B1
A1+Ay°

= B1+ B2
A Ay’

= B1+
A1+Ay’

= B1
A1+Ar°

= B1+
A1+Ar°

= B1+
A1+Ay’

= Bi1t+
A1+Ay’

= B1+ B2+
Aq Ay

= B1+
A1+Ar

= B1+ B2
Aq Aq

= B1+ B2+
A A1

= B1+
A1+Ay’

= Bi1t+
A1+Ay’

A1+Ay’

A1+Ay’

= B1+ B2t

Ay A1

= B1+
Ay

B2+
Ay

B2+ B3

B2
Ap’

B2+ B3

B2
Aq

B3+ Ba
Ay’

B3
Ay’

B2
A1+Ay’

B2
Ay

B2
A1+Ay’

B2
Ay’

B3+ Ba
Ay Ay’

B2

Bs
Ay’

B2+ B3
Ap’ Ay

B2+ B3
A1+Ay’

B2+
A1+Ay’

B3+

B2+ B3

B3+ Ba
Ay’ Ap’

B3
Ay’

Ba

a;’s,
Bi’s

generate

Dy

As

Dy

Az

Dy

Dy

Az

As

Ag

Az

Az

Az

Dy

Dy

Dy

adding
A()
gener-
ates

Ds

Eg

Ds
Dg

Dg

As
Dy

Dy

Dy+Aq

Dg

Eg

Dg

Dg
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Non-zero scalar products

(a1, a2) = 1, (a1, B1)
1, (o1,B2) =
(a1, B3) = 1, (a2, B1)
1, (a2,B2) =
(az, B3) =1,

(a1,B81) = 1, (a1, B2)
1, (o2,B1) =
(a2, B2) =1,

(a1, 2) = 1, (a1,B1)
1,  (a1,B2) =
(a1,B3) = 1, (a2, B1)
1,  (az,pB2) =
(a2, B3) =1,

(a1, B1) = 1, (a1, B2)
1, (az,B1) =
(a2, B2) =1,

(1,B1) = 1, {a1,B2) =
1, (o1,B3) =
(a1, B4) =1,

(a1, a2) = 1, (a1, B1)
1, (o1, B2) =
(a1,B3) = 1, (a2, B1)
1, (o2,B2) =
(az, B3) =1,

(a1, az) = —1, (a1, f1)
1, (az,B1) =1,

(a1, 1) = 1, (a1, B2)
1, (a2,B1) =
(az, B2) =1,

(a1,81) = 1, (a1, B2)
1, (a2,B1) =
(a2, B2) =1,

(a1, 2) = —1, (a1, B1)
1, (a2, B1) =1,
(a1,B81) = 1, (a1, B2)
1,  (az,pB1) =
(ag, B2) =1,

(a1,B81) = 1, (a1, B2)
1,  (az,B1) =
(ag, B2) =1,

(a1,B81) = 1, (a1, B2)
1, (a2, B1) =
(a2, B2) =1,

(a1, B1) = 1, (a1, B2)
1, (o1,B3) =
(a1, Bs4) =1,

(a1, B1) = 1, (a1, B2) =
1, (a2,B1) =
(ag, B2) =1,

(a1, B1) = 1, (a1,B2) =
1, (a2,B1) =
(ag, B2) =1,

(a1, a2) = 1, (a1, B1)
1, (o1, B2) =
(a1, B3) = 1, (a2, B1)
1, (o2,B2) =
(az, B3) =1,

(a1, 2) = 1, (a1,B1)
1,  (a1,B2) =
(a1,B3) = 1, (a2, B1)
1, (az,pB2) =
(a2, B3) =1,

(a1, @z) = 1, (a1, B1)
1, (a1,B2) =
(a1,B3) = 1, (az, B1)
1, (az,B2) =
(az,B3) =1,

(a1, B1) = 1, (a1, B2)
1, (o1,B3) =
(a1, B4) =1,

(a1, a2) = 1, (o1, B1)
L, (a1, pB2) =
(a1, 83) = 1, (a2, 1)
1, (a2,B2) =
(ag, B3) =1,

(a1, B1) = 1, (a1, B2)
1, (o1,B3) =
(@1, B4) =1,

(a1, 2) = 1, (a1,B1)
1, (o1, B2) =
(a1,B3) = 1, (a2, B1)
1, (az,pB2) =
(a2, B3) =1,

=
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e

= —

=

-



Relation / linked &-components a;’s, adding Non-zero scalar products

Bi’s A(E)
generate gener-
ates
t-semisimple type: Aj
a1+ g = BAJr i2 As Dy (a1,B1) = 1, {(a1,B2) =
! ! L (az,61) =
(az,B2) =1,
OEJF 2 - ?41 Ag Asz (a1,a3) = —1, (a1, B1) =
' ! 1, (a2, B1) =1,

art+  az = B1+ B2

A D =1, (a1, =
Aq Aq Ay Aq 3 4 i"‘lvﬁdjz o) (a1:ﬂ2> -

(az,B2) =1,
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