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Abstract. We provide a review of results on two-sided ideals in the enveloping algebra
U(g(c0)) of a locally simple Lie algebra g(co). We pay special attention to the case when
g(00) is one of the finitary Lie algebras sl(c0), 0(c0), sp(c0). The main results include a
description of all integrable ideals in U(g(o0)), as well as a criterion for the annihilator
of an arbitrary (not necessarily integrable) simple highest weight module to be nonzero.
This criterion is new for g(oo) = 0(c0),sp(00). All annihilators of simple highest weight
modules are integrable ideals for g(co) = sl(c0), 0(c0). Finally, we prove that the lattices
of ideals in U(o(00)) and U(sp(co)) are isomorphic.
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1. Introduction and outline of results

The purpose of this paper is to provide a review of results on two-sided ideals in the
enveloping algebra U(g(co)) of an infinite-dimensional Lie algebra g(co) obtained as
the inductive limit of an arbitrary chain of embeddings of simple finite-dimensional
Lie algebras

g(1) = g(2) = ... = g(n) — ... (1)
with nlgrolo dimg(n) = co. We mostly focus on the simple finitary complex Lie
algebras

g(00) = sl(00), 0(c0), 5p(0)

for which we establish some new results, so this article is a combination of a review
and a research article.

A simplest motivation for the study of the Lie algebras sl(c0), 0(c0), sp(oc) and
their representations is the necessity to study stabilization effects in the representa-
tion theory of the classical simple finite-dimensional Lie algebras sl(n), o(n), sp(2n)
when n — oco. At a deeper level, the challenge is to develop a representation theory
of g(oo) = sl(00), 0(c0), sp(00) which does not refer to n as in sl(n), o(n) or sp(2n).

There have been some first successes in this direction, for example the discovery
of the category of tensor modules Ty(o) [DPS]; this category can be considered
as “the common core” of the categories of finite-dimensional representations of all
classical finite-dimensional Lie algebras of given type sl, 0 or sp.

The study of ideals in U(g(o0)), especially primitive ideals, is another topic
in which there are interesting results. The reason for studying primitive ideals is
clear: Dixmier’s observation that classifying primitive ideals in U(g) is a potentially
manageable task while classifying all irreducible representations of a Lie algebra g
is unrealistic, applies with full strength to the case of g(co) = sl(00), 0(00), sp(00).
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Despite the fact that we do not have yet the classification of primitive ideals of
U(g(c0)), we hope that we are close to such a classification, and that it will be
useful to have a single source for the results achieved so far'.

The main effect which distinguishes the case of U(g(oc)) from the case of U(g)
for a finite-dimensional Lie algebra g is that U(g(oco)) has “fewer” ideals than
U(g): we conjecture that U(g(co)) has only countably many ideals. This latter
statement is partially supported by the fact that the annihilator in U(g(o0)) of a
generic simple highest weight g(co)-module equals zero.

We now describe the contents of the paper. The ground field is algebraically
closed of characteristic 0. We start with results concerning the associated pro-
variety of a proper two-sided ideal I in U(g(oc)) for an arbitrary locally simple
Lie algebra g(o0) = hﬂg(n) It turns out that I can have a proper associated
pro-variety (i.e. an associated pro-variety different from 0 or from the coadjoint
representation g(co)* := lim g(n)*) only when g(oo) is finitary, i.e. is isomorphic to
one of the three infinite-dimensional Lie algebras sl(c0), 0(00), sp(c0), see A. Bara-
nov’s classification of simple finitary Lie algebras [Ba2]. This is one of the main
results of our paper [PP1] and we do not reproduce the proof here. This result
leads relatively quickly to a proof of Baranov’s conjecture that U(g(oo)) admits
proper two-sided ideals different from the augmentation ideals if and only if g(oo)
is diagonal.

Diagonal locally simple Lie algebras are a very interesting generalization of the
three finitary Lie algebras sl(c0), 0(00),sp(00): a classification of diagonal locally
simple Lie algebras has been given by A. Baranov and A. Zhilinskii [BZh]. For a
diagonal Lie algebra g(oo), nonisomorphic to sl(c0), 0(c0),sp(c0), a classification
of two-sided ideals of U(g(co)) follows from the work of A. Zhilinskii [Zh3], see
Section 4.

The case g(oo) = sl(00), 0(00),sp(00) is the most interesting case and it plays
a distinguished role in this review. Let g(oo) = sl(00), 0(00), sp(c0). We start our
study of ideals I C U(g(oo)) by describing all possible associated pro-varieties of
such ideals. The result is surprisingly simple and quite different from the case of
a finite-dimensional g: these pro-varieties depend just on one integer (rank) r and
form a chain

<r

0 C g(oo)St € g(00)S? C ... € g(00)S" C ... C g(00)*.

The next step is to describe explicitly all primitive ideals with a given associated
pro-variety. This is where the results under review are not yet complete, i.e. such
a description is known only for a certain class of primitive ideals.

Recall that a g(co)-module M is integrable, if any element g € g(oo) acts
locally finitely on M. An ideal is integrable if it is the annihilator of an integrable
g(oco)-module. The study of integrable ideals was initiated by A. Zhilinskii in
the 1990’s. Zhilinskii introduced the concept of a coherent local system of finite-
dimensional g(n)-modules: a set {M,} of finite-dimensional g(n)-modules such

IRecently we have shown that all primitive ideals of U(sl(co)) are integrable [PP3]. This,
together with Proposition 4.8 of the present paper, yields a classification of primitive ideals of
U(sl(c0)). As a consequence, Problem c¢) below is now also answered in the affirmative for sl(co)
via Theorem 5.4.
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that the isomorphism classes of {M,} and {M,|4(,,/} coincide for n" < n. The
main breakthrough of Zhilinskii was the classification of all coherent local systems
of finite-dimensional g(n)-modules [Zh1, Zh2, Zh3]. This leads to a description of
integrable primitive ideals: the final result concerning a correspondence between
integrable primitive ideals in U(g(oc0)) and simple coherent local systems of g(n)-
modules is stated in [PP1].

Another natural approach to primitive ideals is to compute the annihilators of
simple highest weight g(oo)-modules and to compare the resulting set of primitive
ideals with primitive ideals constructed by any other means. In particular, in
analogy with Duflo’s theorem one may ask whether any primitive ideal in U(g(c0))
is the annihilator of a simple highest weight module.

It is well known that splitting Borel subalgebras b of g(co) are not conjugate
under the group Aut(g(co)), and form infinitely many isomorphism classes. This
leads to an enormous “variety” of simple highest weight g(oco)-modules Ly (A). Our
first result is that for g(co) = sl(c0), 0(oc0) all ideals of the form Anny(g(ao)) Ls(A)
are integrable.

For g(oo) = sp(o0), the situation is slightly different. Here we see the first
example of a nonintegrable primitive ideal: this is the annihilator of a highest
weight Shale-Weil (oscillator) representation of sp(co).

In all three cases we provide an explicit criterion on a pair (b, \) for the ideal
Annyg(s0)) Le(A) to be nonzero. This result is new for g(oo) = 0(00),sp(co) (for
g(o0) = sl(o0) the analogous result is presented in our recent paper [PP2]) and its
proof constitutes the most technical part of the present paper. In particular, we
rely on an algorithm which computes the partition corresponding to the nilpotent
orbit whose closure is the associated variety of a given highest weight module over
a classical simple finite-dimensional Lie algebra. This algorithm is extracted from
the existing literature [Jo, Lu, BV], and is presented in Subsection 6.6.

Here are some corollaries of our results for g(co) = sl(c0), 0(00), sp(c0):

e any prime integrable ideal is primitive;

e a pair (b, \) has a simple numerical invariant, the rank of Annyg(sc)) Ls(A)
(an explicit formula is yet to be written);

e a primitive ideal is the annihilator of a unique (up to isomorphism) simple
module if and only if I is the annihilator of a simple object in the category Tg(oc)-

Some open problems are:

a) Are all ideals of U(sl(c0)) and U(o(c0)) integrable?

b) Is the lattice of two-sided ideals of U(g(oc0)) nétherian?

¢) Is any primitive ideal the annihilator of a simple highest weight module?

d) Is it true that I = I? for any (integrable) ideal?

Finally, we prove that the lattices of two-sided ideals in U(0(c0)) and U(sp(o0))
are isomorphic. The isomorphism is provided by the osp-duality functor con-
structed by V. Serganova in [S].
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2. Locally simple Lie algebras

We fix an algebraically closed field F of characteristic zero. All vector spaces
(including Lie algebras) are assumed to be defined over F. If V is a vector space,
V* stands for the dual space Homp(V,F). All varieties we consider are algebraic
varieties over F (with Zariski topology). An ideal in a noncommutative ring always
means a two-sided ideal.

By a locally simple Lie algebra we understand the inductive limit hglg(n) of
a chain (1) of simple finite-dimensional Lie algebras. The sign C denotes not
necessarily strict inclusion. By definition, a natural representation (or a natu-
ral module) of a classical simple finite-dimensional Lie algebra is a simple non-
trivial finite-dimensional representation of minimal dimension. When considering
locally finite Lie algebras or their enveloping algebras we assume that any given
chain (1) consists of inclusions, so we can freely interchange liin g(n) with Upg(n),

and li_r>n U(g(n)) with U, U(g(n)), where U(:) stands for enveloping algebra.

The most basic examples of locally simple Lie algebras are the three simple Lie
algebras sl(c0), 0(c0) and sp(cco). These Lie algebras can be defined as respective
unions of classical finite-dimensional Lie algebras of a fixed type s, 0, or sp under
the inclusions which arise from extending a natural representation by 1-dimensional
increments for sl and o, and by 2-dimensional increments for sp. An important
result, see [Bal] or [BS], states that, up to isomorphism, these three Lie algebras
are the only locally simple finitary Lie algebras, i.e. locally simple Lie algebras
which admit a countable-dimensional faithful module with a basis such that the
endomorphism arising from each element of the Lie algebra is given by a matrix
with finitely many nonzero entries. In Appendix A we give a precise definition of
the Lie algebras sl(00), 0(00), sp(c0), and write down explicit bases for them.

A very interesting class of locally finite locally simple Lie algebras are the diago-
nal locally finite Lie algebras introduced by Y. Bahturin and H. Strade in [BhS]. We
recall that an inclusion g(i) C g(j) of simple classical Lie algebras of the same type
sl,0,5p, is diagonal if the restriction V'(j)|q¢;) of a natural representation V' (j) of
9(7) to g(7) is isomorphic to a direct sum of copies of a natural g(i)-representation
V(3), of its dual V(¢)*, and of the trivial 1-dimensional g(i)-representation. In
this paper, by a diagonal Lie algebra g(co) we mean an infinite-dimensional Lie
algebra obtained as the union U,g(n) of classical simple Lie algebras g(i) under
diagonal inclusions g(n) C g(n + 1). In [BZh] A. Baranov and A. Zhilinskii have
provided a rather complicated but explicit classification of isomorphism classes of
diagonal locally simple Lie algebras. The three finitary locally simple Lie algebras
are of course diagonal. An example of a diagonal nonfinitary Lie algebra is the
Lie algebra s1(2°°): by definition, s[(2*°) = li_n>qs[(2") for the chain of inclusions

sl(27) C sl(27H),
A 0
A ( 0 A ) .
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3. Associated pro-varieties of ideals

Let g(co) be a locally simple Lie algebra. We think of g(co) as a direct limit of
a fixed chain of Lie algebras (1). We consider ideals I in the enveloping algebra
U(g(o0)). We say that I has locally finite codimension if the ideals U(g(n)) NI
have finite codimension in U(g(n)) for all n > 0.

In this section we outline our approach to the proof of the following theorem.

Theorem 3.1 ([PP1]). Let g(oo) be a locally simple Lie algebra. If U(g(oo))
admits a nonzero ideal of locally infinite codimension, then g(oo) = sl(00), 0(c0),

5p(00).

We provide a sketch of proof of Theorem 3.1 in Subsection 3.2. Theorem 3.1 is
closely connected to the following result, previously conjectured by A. Baranov.

Theorem 3.2 ([PP1]). If g(c0) is not (isomorphic to) a diagonal Lie algebra, then
the augmentation ideal is the only nonzero proper ideal of U(g(oc0)).

Theorem 3.2 is implied by Theorem 3.1 by use of the following result proved
by A. Zhilinskii.

Theorem 3.3 ([Zh2]). If, for a locally simple Lie algebra g(co), the algebra
U(g(o0)) admits an ideal I of locally finite codimension, then g(oo) is diagonal.

Zhilinskii’s proof is based on a notion of coherent local systems of modules for
g(c0) which we review in Section 4.

3.1. Associated varieties and Poisson ideals. Let g be a (finite- or infinite-
dimensional) Lie algebra and I C U(g) be an ideal in the enveloping algebra U(g)
of g. The degree filtration {U(g)=%}4ez., on U(g) defines the filtration

{rn U(Q)Sd}dezzo

on I. The associated graded object gr I := @4((I NU(g)=%) /(I NU(g)=¢71)) is an
ideal of gr(U(g)) = S'(g). We denote the set of zeros of gr I in g* by Var(I) C g*.
The variety is called the associated variety of I. We denote by rad(gr I') the radical
of grI and consider S'(g)/rad(grI) as “the algebra of polynomial functions on
Var(I)”.

The symmetric algebra S'(g) carries a natural adjoint action of g, and any
ideal which is stable under this action is called Poisson (if J is such an ideal then
S'(g)/J also carries a natural Poisson structure). It is clear that grI is Poisson.
If g is a finite-dimensional Lie algebra or a locally simple Lie algebra, it is clear
that rad(gr I) is Poisson. This Poisson structure on S'(g) is a powerful tool in the
study of ideals of U(g).

If g = g(oo) is a locally simple Lie algebra, then Var(l) is a pro-variety,
i.e. a projective limit of algebraic varieties. Indeed, fix a sequence (1) and let
Pry(n) Var(l) C gy, be the closure of the image of Var(/) under the natural pro-

jection pr g(00)* — g(n)*; by definition, prgy(,) Var(l) C g(n)* is the set of

g(n) *
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zeros of (grl) N S'(g(n)) in g(n)*. The space g(co)* equals the projective limit
@g(n)*, and therefore Var(I) C g(oco)* is the projective limit of the algebraic

varieties pry, Var(l).

3.2. On the proof of Theorem 3.1. Ifanideal I C U(g(c0)) is of locally infinite
codimension, then the ideal grl C S'(g(00)) is also of locally infinite codimension.
Therefore Theorem 3.1 follows from Theorem 3.4 below.

Theorem 3.4. Let g(oo) be any locally simple Lie algebra. If S'(g(o0)) admits a
nonzero Poisson ideal of locally infinite codimension, then g(oco) = sl(00), 0(c0),

5p(00).

This theorem is one of the main results of our work [PP1]. The following
proposition is a key step in the proof.

Proposition 3.5. Let g be a finite-dimensional classical simple Lie algebra, V be
a natural g-module, and g’ C g be a simple Lie subalgebra of g. If there exists an
adjoint orbit O C g* such that its image in g'* is not dense, then

dim(g’' - V) < 2(dim g’ — rkg’)(rkg’ + 1) or 2dimg’ +2 > dim V,
where g’ -V is the sum of non-trivial simple g’'-submodules of V.

The proof of Proposition 3.5 is somewhat lengthy and we refer the reader
directly to [PP1]. Here we sketch the proof of the fact that Proposition 3.5 implies
Theorem 3.4.

Sketch of proof of Theorem 3.4. Denote by G(n) the adjoint group of Lie algebra
g(n) for all n > 1. Let J C S'(g(c0)) be a nonzero Poisson ideal of locally infinite
codimension. Set J, := J NS (g(n)) for any n > 1. Without loss of generality we
can assume that J is radical, as the radical of a Poisson ideal of locally infinite
codimension in S'(g(c0)) is again Poisson and of locally infinite codimension.

Fix n so that S'(g(n)) N J is nonzero and of infinite codimension in S'(g(n)).
Then the image of any G(m+n)-orbit under the morphism Var(J(m+n)) — g(n)*
is not dense in g(n)* since it lies in the proper closed subvariety Var(J(n)) C g(n)*.
Therefore Proposition 3.5 implies that dim(g(n) - V(m + n)) is bounded by some
function which depends on n only. Hence the number of nontrivial simple g(n)-
constituents in V(m + n) and their dimensions are simultaneously bounded as m
grows. This shows that the Dynkin index of the injections g(n') — g(n’+1) equals
1 for large enough n', which implies that g(oo) is isomorphic to sl(c0), 0(c0) or
5p(00), see [PP1, proof of Theorem 3.1]. O

3.3. Associated pro-varieties of ideals in U(sl(00)), U(0(o0)), U(sp(c0)).

Fix now a Lie algebra g(oo) = sl(00), 0(c0), sp(c0) together with a chain (1) such

that limg(n) = g(co). Without loss of generality we assume that for n > 3 all
—

g(n) are simple and of the same type A, B,C, or D, and that rkg(n) = n. By

V(n) we denote a natural representation of g(n) (for g(n) of type A there are two
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choices for V'(n) up to isomorphism). We further assume that, for n > 3, V(n+1)
considered as a g(n)-module is isomorphic to V' (n) plus a trivial module.
Set

g(n)=" :={X € g(n) | there exists A € F such that rk(X — Mdy(,)) <7}, (2)

where X is considered as a linear operator on V(n). Note that g(n)<" is an al-
gebraic subvariety of g(n) for a fixed r and large enough n, see [PP1]. Choosing
compatible identifications g,, & g7, we can assume that g(n)<" C g(n)*. Further-
more, for g(oo) 2 sl(c0),0(c0),sp(c0) one can check directly that the projection
g(n+1)* — g(n)* maps g(n + 1)=" surjectively to g(n)=". In this way we obtain
a well-defined projective limit of algebraic varieties g(oo)<" := @g(n)gr.

The radical ideals J=" of S'(g(n)), with respective zero-sets g(n)<" C g, form
a chain whose union we denote by J=". The ideal J<" is a radical Poisson ideal of
S'(g(o0)). Moreover, the following result strengthens Theorem 3.4 by describing
all radical Poison ideals in S™(g(c0)).

Theorem 3.6 ( [PP1, Theorem 3.3]). Let g(oo) = sl(00),0(c0),sp(c0) and J C
S'(g(c0)) be a nonzero radical Poisson ideal. Then J = J<" for some r € Z>o.

Corollary 3.7. Let g(co) = sl(00),0(00),sp(c0) and I C U(g(co)) be an ideal.
Then Var(I) = g(00)=" for some r € Zxg.

Proof. By Theorem 3.6, we have rad(grl) = J<" for some r € Z>o. Hence
Var(I) = g(00)=".

We say that an ideal I C U(g(00)) has rank r € Z>q if Var(I) = g(c0)=".

4. Coherent local systems and integrable ideals

In this section we review the concept of c.l.s. (introduced by A. Zhilinskii) and
show how this concept is related to two-sided ideals of U(g(0)).

We consider a fixed locally simple Lie algebra g(oo) = lim g(n), and denote by
Irr g(n) the set of isomorphism classes of simple finite-dimensional g(n)-modules.

Definition 4.1. A coherent local system of g(n)-modules (further shortened as
c.l.s.) for g(oo) = h_r)ng(n) is a collection of sets

{Qn}n6221 - HnEZZl II‘I‘g(’ﬂ)

such that for any n < m the following conditions hold:
e for any simple finite-dimensional module M whose isomorphism class belongs
to Qu, the isomorphism classes of all simple constituents of M|y, belong to Qn,
e for any simple finite-dimensional g(n)-module N whose isomorphism class
belongs to Q, there exists a simple finite-dimensional g(m)-module M whose iso-
morphism class belongs to Q., and such that N is isomorphic to a simple con-
stituent of M|g(p)-
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The c.Ls. for locally simple Lie algebras are classified by A. Zhilinskii [Zh3]. A
remarkable corollary of this classification is that, if g(oco) has a non-trivial c.l.s.,
then g(o0) is diagonal. This fact had led Baranov to his conjecture, see Theorem 3.2
above.

Note that the c.l.s. for a given Lie algebra form a lattice with respect to the
inclusion order (join equals union and meet equals intersection).

4.1. Integrable ideals. C.l.s. for g(co) are related in a natural way to a special
class of ideals of U(g(co)) which we describe next.

Definition 4.2. (1) A g(oo)-module M is integrable if, for any finitely generated
subalgebra U' C U(g(o0)) and any m € M, we have dim(U’ - m) < oo.

(2) An ideal I C U(g(00)) is integrable if it is the annihilator of an integrable
U(g(00))-module.

This definition makes sense also for a finite-dimensional semisimple Lie algebra
g. In that case integrable ideals are the annihilators of arbitrary sums of finite-
dimensional g-modules, and form a very special class of ideals. In the case of g(oo)
integrable ideals play a much more prominent role.

To a cl.s. @ for g(oco) we attach the ideal

[(Q) = Un Nveq, (Annygmy) V).

Lemma 4.3. An ideal I C U(g(c0)) is integrable if and only if I =1(Q) for some
c.l.s. Q.

Proof. If an ideal I is integrable, it is the annihilator of some integrable g(oo)-
module M. It is clear that M determines a c.l.s. Qy,

(Qas)n := {isomorphism classes of simple direct summands of M|y},

and that T =I(Qum).

Conversely, let I = I(Q) for some c.l.s. @ for g(oo). For any n > 1, let V,, be
the direct sum of representatives of the isomorphism classes in @,,. The definition
of c.l.s. guarantees that for any n > 1 there exists an embedding V,, — V41
of g(n)-modules. Clearly, the direct limit of such embeddings is an integrable
g(oco)-module, and I is the annihilator of this integrable module. O

A c.ls. is called irreducible if it is not a union of proper sub-c.l.s.. Any c.l.s. is
a finite union of irreducible c.l.s. [Zh1, Zh3]. Moreover, the following holds.

Proposition 4.4. a) If Q is an irreducible c.l.s. then 1(Q) is a primitive ideal.
b) An integrable ideal I of U(g(o0)) is prime if and only if it is primitive.

Proof. a) This result should be attributed to A. Zhilinskii as it follows from [Zh1,
Lemma 1.1.2].
b) This is proved in [PP1, Proposition 7.8]. O
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Next, to any ideal I of U(g(co)) we attach the c.l.s. Q(I) which is the largest
c.ls. such that I C I(Q(I)). The maps

Q—1Q) and I Q) (2)

are not injective in general but they induce antiisomorphisms between interesting
sublattices of the lattice of c.l.s. and of the lattice of integrable ideals.

Proposition 4.5. The maps (2) induce antiisomorphisms between the following
lattices:

a) the lattice of c.l.s. of finite type (i.e., c.l.s. Q such that all sets Q, are
finite) and the lattice of ideals of U(g(co)) of locally finite codimension, for any
locally simple Lie algebra g(o0),

b) the lattice of c.l.s. and the lattice of ideals in U(g(cx)), for g(oco) diagonal
and nonisomorphic to sl(c0), 0(00), sp(00),

¢) the lattice of c.l.s. and the lattice of integrable ideals in U(g(c0)), for g(oco) =
0(00), sp(c0).

Proof. Part a) is an easy corollary of the following well-known fact: for any
semisimple finite-dimensional Lie algebra g, there is a natural bijection between
the lattice of ideals of finite codimension in U(g) and the lattice of finite sets of
isomorphism classes of finite-dimensional g-modules.

Part b) is implied by part a) and the followings two facts:

e according to [Zh3], if g(oo) is diagonal and g(oo) 2 sl(00), 06(00), sp(00), then
any c.l.s. of g(co) is of finite type,

e under the same assumptions, any ideal of U(g(c0)) is of locally finite codi-
mension, see Theorem 3.1.

Part ¢) is a restatement of [PP1, Theorem 7.9b)], see the proof there. O

Remark 4.6. For integrable ideals, the map I — Q(I) is always injective. For
5l(00), the map I — Q(I) is not bijective. Theorem 7.9 a) in [PP1] describes a
set of irreducible c.l.s., called left c.l.s., such that the map Q — 1(Q) induces a
bijection between left c.l.s. for sl(c0) and integrable ideals of U(sl(c0)). However,
it is easy to see that this bijection cannot be extended to an antiisomorphism of
lattices, see [PP1]. We skip the definition of left c.l.s. in this paper, and refer the
reader to [PP1].

Remark 4.7. It seems plausible that all ideals of U(sl(co)) and U(o(oc0)) are
integrable. If this is so, then U(sl(o0)) and U(o(oco)) will have countable many
ideals. In addition, U(sp(o0)) will also have countable many ideals by Theorem 4.9
below.

4.2. Classification of prime integrable ideals for finitary Lie algebras. In
the rest of this paper g(co) = sl(00), 0(c0) or sp(c0). Any c.l.s. is a union of finitely
many irreducible c.l.s., and thus any integrable ideal is an intersection of finitely
many primitive or, equivalently, prime integrable ideals. Therefore, a description
of prime integrable ideals is a basis for a description of all integrable ideals. In this
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subsection we assume that g(co) = sl(c0), 0(c0) or sp(c0), and describe the prime
integrable ideals of U(g(co)) as annihilators of certain integrable g(oco)-modules.

We define a natural g(oo)-module V(o0) as a direct limit lim V(n) of natural
g(n)-modules. Such a limit is unique (up to isomorphism) for g(co) = 0(00), sp(00),
while for g(co) = sl(c0) (up to isomorphism) there are two natural modules: V' (co)
and V' (0o),. These are twists of each other by the Cartan involution of sl(co). We
set also

AP = AP(V(0)), SP:=8SP(V(x0)), A=A
AL = AP(V.(00)), SP:=8P(Vi(o0)), A, :=A(

S'(V(0)),

(3)
where p € Z>¢, and A" stands for exterior algebra. In addition, for g(co) = o(c0)
we let Spin to be a fixed simple 0(co)-module which is an inductive limit of simple
spinor modules of 0(2n + 1) for n — oo. Such a module is not unique up to
isomorphism.

Zhilinskii has introduced the notion of basic irreducible c.l.s.: in our language
these are the c.l.s. of the modules (3) and the cl.s. of the o(co)-module Spin.
Zhilinskii proves that any irreducible c.l.s. can be represented canonically in terms
of a certain product of basic c.l.s., which he calls Cartan product [Zh1]. The notion
of Cartan product and Zhilinskii’s decomposition of an arbitrary c.l.s. are recalled
in our paper [PP1, Section 7.1-7.2].

Furthermore, for any Young diagram Y (possibly empty) whose column lengths
form a sequence I; > ls > ... > I, > 0, we define the g(co)-module VY as the
direct limit lim VY (n) where VY (n) denotes the simple finite-dimensional g(n)-

\% S :
Vi(o0)), S, :

module with highest weight lye; + ... + [ s&, (the vectors €1, ..., £, are introduced in
Appendix A; for Y = () the highest weight of V¥ (n) equals 0). The g(n)-module
VY (n) is isomorphic to a simple direct summand of the tensor product

Sh(V(n)) @82 (V(n)) @ ... ® S (V(n)),

and the above direct limit is clearly well defined up to isomorphism. Similarly, for
g(00) = sl(c0), we define V.Y’ as the direct limit lign%(\/y(n))*.

The following classification of prime integrable ideals is closely related to Zhilin-
skii’s classification of irreducible c.l.s. (the classification of all integrable ideals is
a little bit more involved, see [PP1, Theorem 7.9]).

Proposition 4.8. a) Any nonzero prime integrable ideal I C U(g(oo)) is the
annihilator of a unique g(oo)-module of the form

VYR (AP (S)®Ye V)Y for g(oo) = sl(00),
Vi (M) e (8)E for g(c0) = sp(00),
Vi (M) (S)ew

or for g(o0) = o(00),
Vi (A)® ® (S)®" ® Spin

where v,w € Z>o, and Y}, Y, are arbitrary Young diagrams.
b) If I is the annihilator of the respective module in a), then the rank of I equals
w for g(oo) = sl(00), and 2w for g(oo) = 0(00), sp(c0).



On ideals in U(sl(c0)), U(o(c0)), U(sp(c0)) 11

Proof. As the c.l.s. of the modules in the statement of Proposition 4.8 can be
computed explicitly, see [PSt, Theorem 2.3], it is relatively straightforward to
compare the statement of Proposition 4.8 with Zhilinskii’s description of irreducible
c.lis. [Zh1]. This, together with Proposition 4.5¢) and Remark 4.6, implies a).
Part b) follows from [PP1, Section 7, formula (9)]. O

4.3. (S —A)—involution and osp-duality. In the paper [DPS] (and indepen-
dently in [SSn]) a category Tg(oo) of tensor modules has been introduced for
g(o0) = sl(00), 0(00), sp(00). This category is analogous to the category of finite-
dimensional modules over a finite-dimensional Lie algebra, and is proven to be
Koszul but not semisimple. Moreover, there is an equivalence of the tensor cat-
egories To(o) and Ty o0y [DPS, SSn, S|, and we refer to this equivalence as osp-
duality. This duality identifies the natural modules V' (c0) for both Lie algebras but
sends the symmetric powers S¥(V (00)) for one Lie algebra to the exterior powers
A¥(V(00)) for the other (in particular, it identifies the adjoint representations for
0(00) and sp(c0)).

There exists a similarly defined involutive tensor functor on the category of
tensor modules Ty(), and it also interchanges S¥(V(00)) and A*(V (o)) [S].

In Appendix B we prove the following version of osp-duality.

Theorem 4.9. There is an isomorphism between the lattices of ideals in U(o(o0))
and in U(sp(00)).

If Y is a Young diagram, by Y’ we denote the conjugate Young diagram, i.e. the
Young diagram whose column lengths equal the row lengths of Y. The isomorphism
from Theorem 4.9 identifies the annihilators of the modules

VY @ (A% @ (8)7 and VY @ (M) @ (3)7,

where one module is an o(co)-module and the other is an sp(oo)-module. Under the
isomorphism of Theorem 4.9, the annihilator of Spin (this annihilator is the kernel
of the canonical homomorphism from U(o(c0)) to the Clifford algebra of V(00))
goes to the annihilator of a Shale-Weil module (this annihilator is the kernel of the
canonical homomorphism from U(sp(c0)) to the Weyl algebra of V(c0)).

For sl(c0), the corresponding involutive tensor functor identifies the annihila-
tors of the sl(co)-modules

Ve [(A)® e (8)* e v
and

VY @ [(A)PY @ (82 @ V.

5. Annihilators of highest weight g(oco)-modules

We now present some results on the annihilators of simple highest weight modules
of g(oo) = sl(00),0(00),sp(c0). The notion of highest weight module is based
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on the notion of a splitting Borel subalgebra of g(oo), and in Appendix A we
have collected the necessary preliminaries. Very roughly, our main result in this
direction is that most simple highest weight modules have trivial annihilator, and
that the few ones that have a nontrivial annihilator are either integrable or very
similar to integrable.

5.1. Splitting Borel and Cartan subalgebras. First we fix the chain (1) to
be of the form:

Alsl(2) — sI(3) — — slln+1) —
Bl oB) — obH) — — o(2n+3) —
C|sp(2) — spd) — = sp(2n) —
D | o(6) — o8 — — o(2n+4) —

Clearly, the chain A corresponds to Lie algebra sl(co), the chains B and D corre-
spond to 0(c0), and the chain C' corresponds to sp(co).

One can pick Cartan subalgebras h(n) C g(n) in such a way that the image
of h(n) under the map g(n) — g(n + 1) lies in h(n + 1). Then we have a well-
defined inductive limit h := lim h(n). The Lie algebra b is a maximal commutative
subalgebra of g(co0), and is a splitting Cartan subalgebra of g(oo) [DPSn]. It is
known that in sl(co) and sp(oo) a splitting Cartan subalgebra is unique up to
conjugation via the group Aut(g(co)) [DPSn]. In o(co) there are two conjugacy
classes of splitting Cartan subalgebras, see [DPSn] or Appendix A. In the rest of
this paper we fix splitting Cartan subalgebras b4 C sl(c0), h¢ C sp(c0), B, hP C
0(00). The latter two subalgebras belong to different conjugacy classes and arise
respectively from the above sequences B and D.

Any maximal locally solvable subalgebra b C g(co) which contains a splitting
Cartan subalgebra is called a splitting Borel subalgebra. We can assume that b
contains b4, hZ, h¢ or hP. Any linear order < on Zq defines a splitting Borel
subalgebra b(<) (b D §4/B/C/P): this is explained in Appendix A. Moreover, any
conjugacy class of pairs (splitting Borel subalgebra, splitting Cartan subalgebra)
contains a pair (b(<),h4/B/C/P) defined by a suitable order <. Thus, from now
on, we fix a linear order < on Z~ and pick a Borel subalgebra

b:=b(=<), b D/ B/C/D,

corresponding to this order.
Let Z~o = S1 U ... U S; be a finite partition of Z~y. We say that this partition
is compatible with the order < if, for any i # j <,

1< j =1 <Jo
for all ioESi,j()ESj.

Definition 5.1. We call a splitting Borel subalgebra b D> hA/B/C/P of g ideal if it
satisfies the following conditions

A-case: there exists a partition Z~g = S1 U Se U S3, compatible with the order <
defined by b, such that
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e Sy is countable, and < restricted to S1 is isomorphic to the standard order
on Z~g-.

e S5 is countable, and < restricted to Ss is isomorphic to the standard order
on Zi<g.
B/C/D-cases: there exists a partition Z>o = S1US2, compatible with the order <
defined by b, such that

e S is countable, and < restricted to Sy is isomorphic to the standard order
on Z~g-.

5.2. Almost integral and almost half-integral weights. Let FZ>0 denote
the set of functions from Z~¢ to F. For f € FZ>0 by |f| we denote the cardinality
of the image of f. There is a morphism from FZ>° to h* :

e Aplei—i) = fi); (4)

here e; _; is some explicitly given basis element of hB/C/D see Appendix A. This

map is surjective in all cases and is an isomorphism in the B/C/D-cases.

Definition 5.2. A-case: A function f € FZ>0 is integral if f(i) — f(j) € Z for all
i,j € Z=o, and is almost integral if (i) — f(j) € Z for all i,j € Z~o\F for some
finite set F C Z~g.

B/C/D-cases: A function f € FZ>°0 is integral (respectively, half-integral) if
f@) € Z (respectively, f(i) € Z + %) for alli € S, and is almost integral (respec-
tively, almost half-integral) if f(i) € Z (respectively, f(i) € Z—&-%) foralli € Zso\F
for some finite subset F' C Z~y.

Finally, we say that f € FZ>° is locally constant with respect to < if there exists
a compatible partition Z~o = S; U ... U S; such that f is constant on S; for any
1 < t.

5.3. Main results. Let h C g(oco) = sl(00),0(00),sp(c0) be a splitting Cartan
subalgebra as in Subsection 5.1, and b be a splitting Borel subalgebra. The map
h — b/[b,b] is an isomorphism, hence any weight A € h* defines a character
A: b — F or, equivalently, a 1-dimensional b-module Fy. We denote by Lg(\) the
unique simple quotient of the Verma module My ()) := U(g(c0)) ®u(e) Fa. Put
Lo(f) := Lo(Ar), Mo (f) := Me(Ay).

In the A-case, the following results have appeared in [PP2].

Theorem 5.3. Let < be some order on Z~g, b D b be the respective splitting Borel
subalgebra of g(c0), and f € FZ>0. Then

Annyg(e0)) Le(f) #0

if and only if

(1) f is almost integral in the A-case and f is almost integral or almost half-
integral in the B/C/D-cases,

(2) f is locally constant with respect to <.
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Theorem 5.4 (A/B/D-cases). The following conditions on a nonzero ideal I of
U(g(c0)) are equivalent:

— I = Annyg(e0)) Le(f) for some splitting Borel subalgebra b O b and some
function f € FZ>o;

— I is a prime integrable ideal of U(g(c0));

— I = Anny(g(eo)) Leo (%) for some fO € F%>0, where b° is any fized ideal
Borel subalgebra.

Proposition 5.5. If b is a nonideal Borel subalgebra then there exists a prime
integrable ideal I which does not arise as the annihilator of a simple b-highest
weight g(oo)-module.

The proofs of Theorems 5.3, 5.4 and Proposition 5.5 for the B/C/D-cases are
given in Section 6 below.

5.4. The annihilators of simple integrable highest weight modules. We
should point out that Theorems 5.3-5.4 come short of an explicit computation
of the annihilator Iy(f) of a given simple highest weight module Ly(f). In this
subsection we present an explicit formula for Iy(f) under the assumption that the
g(oo)-module Ly (f) is integrable.

Set Iy (f) := Anny(g(so)) Le(f). The following lemma is straightforward.

Lemma 5.6. Let f € FZ>0 be a function and b be a splitting Borel subalgebra of
g(oc0) such that b D hA/B/CID - The following conditions are equivalent:

o Ly(f) is an integrable g(oo)-module,

o [ is b-dominant (see Appendiz A for the definition).

We pick a linear order < on Z~g, and thus a Borel subalgebra b C g(oo) such
that b > §A/B/C/D_ We also pick a b-dominant function f € F%>0. Theorem 5.3
implies that if |f| = oo then Ix(f) = 0. Thus, from now on, we assume that
|f] < oo

The equivalent conditions from Lemma 5.6 imply that in the C-case f is inte-
gral, and that in the A-case we can assume without loss of generality f has integer
values. In the B/D-cases we can assume that the values of f are positive. Here
we have to consider two different subcases: f is integral, f is half-integral. In all
cases the maximal and minimal value of f are well defined: we denote them by a
and b respectively. For any ¢ € ZU (Z + %) we let

| < c| be the cardinality of the subset of f=1([b,¢]) C Zso,

p be the smallest integer or half-integer such that | < p| = 400,

| > | be the cardinality of the subset of f~!([c,a]) C Zso,

q be the largest integer of half-integer such that | > ¢g| = 4o0.

By Y. (f) we denote the Young diagram whose sequence of row lenghts equals the
sequence

[<p-D|>]<(p-2)>..>|<b>0
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if | < b| € Zso; in case | < b = oo, we set Y,.(f) := 0. Finally, let Y;(f) be the
Young diagram whose sequence of row lenghts equals the sequence

|>(@+1)[>]>2¢/>...2][>a]>0
for | > a| € Z~g; in case | > a| = oo, we set Yi(f) := 0.

Proposition 5.7. a) Fiz a b-dominant function f € FZ>0 with |f| < co. We have

T (f) = Anng(green (VY @ (A)09) g 120 (5)

in the A-case,
Ib(f) = AnnU(g(oo))(VYl(f) Y (A)®q) (6)

in the B/C/D-cases whenever f is integral, and

Io(f) = Anng(gieoy (V) © (A)®47F @ Spin)? (7)

in the B/D-cases whenever f is half-integral.

b) A c.l.s. from (5) is of finite type.

c) Let b° be a fized ideal Borel subalgebra of g(o0). Then any irreducible c.l.s. of
finite type equals to QLbo(fO)) for an appropriate b°-dominant function f° € FZ>o,

Proof. The proof is entirely similar to the proof of [PP2, Proposition 2.10]. O

Corollary 5.8. The set of annihilators of simple integrable highest weight modules
coincides with the set of two-sided ideals of locally finite codimension in U(g(co)).

5.5. Simple modules which are determined up to isomorphism by their
annihilators. It is well known that if g is finite dimensional and semisimple, then
a simple g-module M is determined up to isomorphism by its annihilator in U(g)
if and only if M is finite dimensional. We now provide an analogue of this fact for
8(00) = s1(0), 0(s0), 5p(00).

Recall that a simple object of the category Ty is a simple g(oco)-submodule
of the tensor algebra T (V(o0) & V(00).) for g(oo) = sl(c0), and of the tensor
algebra T"(V(00)) for g(oo) = o(c0),sp(c0) [DPS, PS]. It is easy to check that,
for any fixed ideal Borel subalgebra b°, the simple modules in the category Ty(0)
are precisely the highest weight modules Lyo(f) for which f can be chosen to be
integral and constant except at finitely many points (recall that the isomorphism
class of a module Lgo(f) recovers f in the B/C/D-cases, and recovers f up to
an additive constant in the A-case). We refer to these modules as simple tensor
modules.

Proposition 5.9. Let M be a simple sl(c0)-module which is determined up to
isomorphism by its annihilator I = Anny(g(ee)) M. If I is integrable, then M is
isomorphic to a simple tensor module.

2Taking into account the equality Anny(y(co))(Spin® Spin) = Anny(y(ee))(A’), and thus
thinking of Spin as (A')%, one sees the analogy between formulas (6) and (7).
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Proof. If I is not of locally finite codimension, then a straightforward analogue
of [PP2, Lemma 6.8] implies that there exist f;, fo € FZ>0 such that

Anny (g(oc)) Lo (f1) = Annu(g(o)) oo (f2) =
but Lgo(f1) 2 Lpo(f2)-

Assume now that I has locally finite codimension. Then I = I(Q) for an
irreducible c.l.s. of finite type @, and by Proposition 5.7 ¢) M is isomorphic
to Lpo(f°) for some ideal Borel subalgebra bY and some b°-dominant function
f9. Moreover, as I is clearly fixed under the group G := {g € Autg V(o) |
9" (V(00)s) = V(00)4} considered as a group of automorphisms of U(sl(c0)), it
follows that M is invariant under G. Now Theorems 3.4 and 4.2 in [DPS] imply
that Le(f) is a simple tensor module.

It remains to show that a simple tensor g(co)-module M is determined up to
isomorphism by its annihilator Anny(geeyy M. If M’ is a simple g(oo)-module
with Anny(g(eey) M = Anny(g(e)) M = I, then the fact that I has locally finite
codimension implies that M’ is integrable and that the c.l.s. of M’ coincides with
the clis. of I, ie.,, Qu = Q. A further consideration (carried out in detail
in A. Sava’s master’s thesis [Sa]) shows that M’ is a highest weight g(oo)-module
with respect to the some ideal Borel subalgebra, and that the highest weight of M
equals the highest weight of M’. This implies M’ = M. O

Remark 5.10. Any ideal I C U(g(oo)) as in Proposition 5.9 has locally finite
codimension. This follows from Corollary 5.8 but also from the observation that
the c.l.s. Qur of a simple tensor module M is of finite type. However, not every in-
tegrable highest weight module is a tensor module: this applies, for instance, to the
integrable s51(co)-module Lyo (f) where b° is an ideal Borel subalgebra corresponding
to a partition

Z~o =51 U855 US3,

and fls, =1, fls, = flss = 0. Consequently, not every prime integrable ideal of
locally finite codimension is the annihilator of a tensor module.

6. Proofs of the results of Subsection 5.3

In the present section g(oo) = 0(c0), sp(00). In Subsection 6.2 we prove a proposi-
tion which is an essential part of Theorem 5.3. The rest of the proofs we present in
Subsection 6.8. They are relatively short but involve a lot of preliminary material
from Subsections 6.1, 6.3-6.7.

6.1. S-notation. We use the notation of Appendix A. Let S be a subset of Z~.
Put

Span{{eiivij}i,jesﬂ {650, 652-}1‘65} in the B-case,
9(5) = Span{{egi,ij}i,jeS} in the C-case,
Span{{e%,ij Yijes} in the D-case.
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We have g(Z~) = g(c0).

Set hs := hNg(S), and observe that hs = span{e; _;}ics in the B/C/D-cases.
Note that

e if S is finite, then g(S) is isomorphic to sl(n) in the A-case, to 0(2n + 1) in
the B-case, to sp(2n) in the C-case, and to 0(2n), in the D-case, where n = |S| is
the cardinality of S; in addition, g is a Cartan subalgebra of g(5);

e if S is infinite, then g(.5) is isomorphic to g(oo), and hg is a splitting Cartan
subalgebra of g(.5).
Put also bg := g(5) N b for the fixed splitting Borel subalgebra b of g(oo). Clearly,

e if S is finite, then bg is a Borel subalgebra of g(.5),

e if S is infinite, then bg is a splitting Borel subalgebra of g(5).

Let F¥ denote the set of functions from S to F. Then F® is a vector space of
dimension |S] if S is finite. When S = {1,...,n} we write simply F™ instead of
F{l-n} There is an isomorphism F¥ = b% if |S| > 1

f=Ap Aples—i) = f(0). (8)
Next, we set

Me, (f) :== U(g(5)) ®u(ps) Fr

for all f € F¥, where F; is the 1-dimensional bg-module assigned to f as in
Subsection 5.3. By Le,(f) we denote the unique simple quotient of Mg, (f).

6.2. Application of S-notation. In this subsection we use S-notation to prove
the following proposition. This proof is taken almost verbatim from the proof
of [PP2, Proposition 4.1].

Proposition 6.1. Let f € FZ>0. IfI(f) # 0, then |f] < cc.

In the rest of this subsection we omit the superscripts 2/¢/P

a(00), g(S), g(n) instead of

and write simply

gB/9/0 (), gB/CIP(5), gB/C/P({1, ... n}).

The radical ideals of the center ZU(g(n)) of U(g(n)) are in one-to-one corre-
spondence with &,,-invariant closed subvarieties of b}, where b, ;== hNg(n) is a
fixed Cartan subalgebra of g(n) and &,, is the respective Weyl group. Let I be an
ideal of U(g(n)). Then ZVar(I) denotes the subvariety of ¥ corresponding to the
radical of the ideal I NZU(g(n)) of ZU(g(n)). If {I;} is any collection of ideals in
U(g(n)), then

ZVar(ﬂtIt) = U ZVar(It), (9)

where, as in Subsection 3.1, bar indicates Zariski closure.
Let ¢ : {1,....,n} — Zs( be an injective map. Slightly abusing notation, we
denote by ¢ the induced homomorphism

¢ U(g(n)) — U(g(c0)).
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By inj(n) we denote the set of injective maps from {1, ...,n} to Zs¢, and by injo(n)
the set of order preserving maps from {1, ...,n} to Z¢ with respect to the standard
order on {1,...,n} and the order < on Zsy.

For any f € F#> and ¢ € inj(n) we set f, := fo¢. Then M(fy) :== My, ,(fs)
and L(fg) := Ly, , (fs) are well defined bjy, g-highest weight g(¢)-modules. If f is
b-dominant and ¢ € injy(n), then fy4 is bim ¢-dominant.

Let ¢ € injy(n). By g(¢) we denote g(im ¢) C g(oo). Let 1\7I(f) be any quotient
of M(f). It is well known that

ZVar(AnnU(g(¢)) M(f¢)) = ZV&I‘(AHHU(g(¢)) M(f¢)) = ZVar(AnnU(g(¢)) L(f¢)) =
=&, (pn + )‘qu)a

where p,, € b} is the half-sum of positive roots.
Let g be a Lie algebra. The adjoint group of g is the subgroup of Aut g generated
by the exponents of all nilpotent elements of g. We denote this group by Adjg.

Lemma 6.2. Let ¢1 : € — g and ¢o : € — g be two Adj g-conjugate morphisms of
Lie algebras. Let I be a two-sided ideal of U(g). Then

o1 (1) = o3 (D).

Proof. The adjoint action of g on U(g) extends uniquely to an action of Adjg on
U(g). The ideal I is g-stable and thus is Adj g-stable. Let g € Adjg be such that

¢1 = g o ¢a. Then
¢1 ' (9(1) = 931 (D)
for any ¢ € I. Hence,
¢7 (1) = ¢35 ' (I).
O

Proof of Proposition 6.1. Let I(f) # 0. Assume to the contrary that there exist
i1y eeeslsy ... € Zsq such that

Fi1)y oy £ (i), .

are pairwise distinct elements of F. As I(f) # 0, there exists a positive integer n
and an injective map ¢ : {1,...,n} — Z~( such that

Iy :==1(f) N U(g(¢)) # 0,
or equivalently
U(g(n)) 2 ¢~ (I(f)) = 67" (1y) # 0. (10)
Let ¢ € inj(n) be another map. Since ¢ and 1 are conjugate via the adjoint
group of g(oo), we have

¢~ (I(f) =~ A(f)) # 0. (11)
This means that ¢~(I(f)) depends on n and f but not on ¢, and we set

I = ¢~ (I(f)).
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Assume now that ¢ € injp(n). Then the highest weight space of the g(oo)-
module Ly (f) generates a highest weight g(¢)-submodule L(f;). Clearly,

Anny(g(g)) Lo (f) C Anny(g(g)) L(fs)-
Therefore,
In C Ngeinjo(n) ANNU(g(n)) L(fs)
and
L, N ZU(g(n)) C Nyeinjo(n) (Annuy(gny) L(fo) N ZU(g(n))).
Hence, according to (9) we have
U¢€inj0(n)®n(pn + )\f¢) = Q5n(pn + U¢€injo(n))\f¢) C ZVar(In)
We claim that

6”(U¢€injo(”)/\f¢) = bjw

and thus that
ZVar(l,) = b . (12)

Our claim is equivalent to the equality

G (Useinjo(mAfy) = (UpeinjmAss) = by
which is implied by the following equality:
(Ugeinj(n) fp) = F". (13)

We now prove (13) by induction. The inclusion {1, ...,n—j} C {1,...,n} induces
a restriction map 4
res:F" — F"77.

Denote by fy* the preimage of f,, under res for ¢ € inj(n —j). We will show that
fux C Upeiim) fo (14)

for any j < n and any map ¢ € inj(n — j). This holds trivially for j = 0. Assume
that it also holds for j. Fix ¢ € inj(n — j — 1) and set

kawwz{W”i“S”‘f‘F

ik ifl=n—j
It is clear that there exists s € Z>q such that
(6 x k) € inj(n — j)
for any k € Z>s. Moreover, fyxk, # fyxk, for any ki # ks. Therefore

Ukezs, fuxk* = fy*,
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which yields (14).
For j = n, (14) yields F" C Ugcinj(n)fo, consequently (13) holds. Then (12)
holds also, hence

I, NZU(g(n)) = 0.

It is a well known fact that an ideal of U(g(n)) whose intersection with ZU(g(n))
equals zero is the zero ideal [Dix, Proposition 4.2.2]. Therefore, we have a contra-
diction with (10), and the proof is complete. O

6.3. Combinatorics of partitions.

6.3.1. Partitions. In this paper, by a partition p we understand a nondecreasing
sequence

p(0) <p(1) < ... < p(m)

of positive integers. We set |p| := p(0) +p(1) +... +p(m) and #p := m+ 1. Clearly,
any finite sequence of nonnegative integers p(0), ..., p(m) defines a unique partition
via reordering and deleting possible zeros.

For a partition p = {p(0),...,p(m)}, put p(z) := [{j | p; > i}|. Let p be
the conjugate partition, i.e. the partition defined by the sequence p(1),p(2), ....
Two partitions p’ and p” can be combined into the partition p’ + p” obtained
by reordering the sequence p’(0),p'(1),...,p" (0),p"(1),.... We set also p'Fp” := §
where g =p +p".

Given a partition p = {p(0), ..., p(m)}, consider the sequence

p*(0),...,p"(m — 1),p"(m), ..., p"(2m)

where
p*(0) = ... =p"(m —1) =0,p*(m) = p(0), ...,p" (2m) = p(m).

and p° be the partition corresponding to the sequence p*(1) < ... < p*(2m — 1)
(“e” and “0” stand for “even” and “odd”).

Let p® be the partition corresponding to the sequence p*(0) < p*(2) < ... < p*(2m),
)

6.3.2. Lusztig sequences. Let Z,, denote the set of subsets of nonnegative
integers with m + 1 elements. An element z € Z,, is represented by a sequence
0<2 <2 <...<zp. We assign to such a sequence z € Z,, the sequence

p(2)(i) ==z — i,

and denote by p(z) the partition corresponding to this sequence. Conversely, to a
partition p with #p < m+1 we attach the sequence z(p) € Z,, such that p(z(p)) = p.
We say that two sequences z € Z,,, and 2’ € Z,,,» are equivalent if they correspond
to the same partition.
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For z € Zs,, we denote by 2¢V¢" the subsequence of z which consists of even
elements; we put also z°% := 2\ 2°U¢". We renumber the subsequences z¢V*" and

2°44 in the obvious way, and set
ZLe _ Zieven ZLO _ ZiOdd -1
e 5 T
(“L” stands for Lusztig). In addition, for a partition p we set
P = p(2(p)"*), ™ := p(z(p)").

In the rest of this subsection we will frequently work with another nonnegative
integer m’. We put
Am:=m—m'.

Next, we define a partial inverse to the map p — (p*¢,p=?). For z € Z,,, 2’ € Zy
we set p := p(z),p = p(z’). Let

(z,2"Yam = {220y .., 22m F U {22 + 1, ..., 22, + 1}.

Clearly (z,2')anm is a subset of positive integers with m +m’ + 2 elements and
thus (2, 2" Am € Zm+m/+1. Define

<pap/>Am = P(<Z,2/>Am)-
It is easy to see that

/

(0, 0) Ko = p and (p,p) &5, =1'.
We say that p is a BV-partition if p = (p*¢, p*°); (“BV” stands for Barbasch and
Vogan).

6.3.3. Barbasch-Vogan functions. Consider two partitions p’, p”. Given (unique)
2 € Zpm, 2" € Zpy such that p’ = p(2’) and p” = p(2”), we can consider 2z’ and 2"
as partitions. This allows us to define (z' 4+ 2”)¢ and (2’ 4 2”)°. It is clear that all
elements of (2’ +2")¢ are distinct, and thus (' 4 2")¢ € Z,,, where m, := (%’”']
([-] stands for ceiling). Similarly (2’ + 2")° € Z,,, for m, = L%mlj (|-] stands
for floor). We put

P *am 0 =p((z+2)°), prAn P =p((z+2)°).

The following functions play a significant role in what follows:

B(p1,p2,p3) == ((p1® #5 p°)F (0¥ *7 py°) D5, (T *5 p1°)F(p5° +§ p5°)Fp5)_, -
C(p1,p2.p3) = ((pl® 5 pL2)F (5 G pE°)Fp5, (P17 1) F (5 *§ PE*)Fp3), »

D(p1,p2,p3) := ((T° %6 p1°)F(05° % D5 °) D5, (D1€ %6 p1°)+ (05 %6 P5°)+D5),, -
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6.3.4. Equalities. We have p = (p™¢, p¥°) o, for some integer Am. It is known
that |p] = |p| and p = p. We have

fp = max(24p© — 1, 2p°)
#(p, ') Am = max(2fp — Am, 28p’ + Am — 1)
max(fip, ip’ + Am) = max(ip +&,, P’ + [2F], B0 x4, P/ + [5])
f(p'+p") := max(tp’, fip")

=W

6.3.5. Inequalities. Assume that a,b, Aa, Ab are integers. Then we have

| max(a + Aa, b+ Ab) — max(a, b)| < max(|Aal,|Ab|).
This implies

Label | Inequality
1 | [gp — max(2p°, 2p°)| < 1
2 | #{p, ") am — max(2fip, 2p’)| < max(|Am — 1], |Am|)
3.1 | max(ﬁp7 ﬁp/ + Am) — max(]ip7 ﬁp/)‘ < |Am|
|ma‘X(ﬁp*eAmp/+ I_Aznljﬁﬁp*oAmp/—i_ [ATm—D_ Am Am
i — max(p *q, Py 10 %A 2| < maxLSHLITSAD

Under the assumption that p,p; and ps are Barbasch-Vogan partitions, and ps3 is
an arbitrary partition, we obtain

Label Inequality

BC1 R — 2max(fp ) p"O fpm 4T pt)] < 14141
D1 |&p —  2max(fp”® «§ p"° fp™ 45 p™°) < 14040
B2 | [4B(p1,p2,p3) — max(fp1, ip2, ip3)| < 342
C2 | [iC(p1,p2,p3) — max(#p1, fp2, §p3)] < 3+1
D2 | [4D(p1,p2,p3) — max(fip1, ip2, 1p3)] < 141

6.4. The associated variety of a simple g-highest weight module. Let
g be a finite-dimensional semisimple Lie algebra with Borel subalgebra b C g
and Cartan subalgebra h C b. Let A C h* be the root system of g, W be the
corresponding Weyl group and A* be the set of positive and negative roots. By p
we denote the half-sum of all positive roots, and for any A € h* we denote by L(\)
the simple g-module with b-highest weight .

According to Duflo’s Theorem, any primitive ideal of U(g) is the annihilator of
L(X) for some A € h*. The associated variety of Annyg) L()) is the closure of a
certain nilpotent coadjoint orbit O(\) of g* = g [Jo].

From now on we fix A. The goal of this and the next two subsections is to
provide an explicit way for computing O(\) when g is a simple classical Lie algebra
or a direct sum of simple classical Lie algebras. We first consider the case of regular
integral weight A and then explain how to handle the general case modulo some
computation in the category of finite groups which is carried out in [Lu].
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Assume first that g is simple. Fix an invariant nondegenerate scalar product
(,) on g. The restriction of (-,-) on b is also nondegenerate and hence defines a
scalar product (-,-) on h*. We recall that a weight p is regular if (u, ) # 0 for all
a € A, and that p is integral if % € Z for any « € A.

Assume that A + p is regular and integral. Then there exists a unique w € W
such that w=(\ + p) — p is dominant. It is well known that in this case

O(\) = O(wp — p).
Thus we have a “commutative diagram”
A O(A)

Il
w > O(wp—p)

The map w — O(wp — p) is described in [BV] for all classical simple Lie algebras.
Assume that A is regular but not necessarily integral. We set

2(a, A)
(@, )

It is clear that A(\) is a root system and thus corresponds to a Lie algebra
g(A\) (which is not necessarily a subalgebra of g). If g is classical, then A()) is
a direct sum of simple root systems of classical type. We denote by W(\) the
reflection subgroup of W generated by A()), and refer to it as the integral Weyl
group of A (note that if X is integral then W(A) = W). As in the previous case,
there exists a unique w € W () such that w=!(A+p) —p is dominant, i.e. such that
w™ (A4 p) —w' (A + p) is a sum of negative roots from A(N) for any w’ € W(A). It
is well known that in general O(A) # O(wp — p), but nevertheless one can compute
O(A) for a given triple (w, W(\), W).

To proceed further we need the notion of Springer correspondence. Namely, one
can attach to a nilpotent coadjoint orbit of O C g* a simple module Spr(OQ) over
the Weyl group W of g [CM, Section 10.1]. This correspondence is injective [CM,
Section 10.1], and for a simple module E of W we denote by O(E) the nilpotent
coadjoint orbit O C g* for which Spr(Q) = E. Note that O(E) may not exist. We
set

AN ={ac Al

€ Z}.

Spra (w) == Spr(O(wp — p))
where the subscript A keeps track of the Weyl group of which w is an element.
The map w — Spru (w) is essentially a combinatorial object, and one should be
able to provide a combinatorial description of this map. In the case when g is a
classical finite-dimensional Lie algebra, this is done in [BV].
We will use the following notation

Irr (W), Tere(W(A)), Ier (W), Tee (W (M), a, b, iy (2 (B)

of [Lu] (note that W () is always a parahoric subgroup of W and that this fact is
needed to properly define j‘YVV()\)(E)).
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The equality O(\) = O(jVVI‘;(A)(SprA()\) (w))) is a consequence of results of [Jo],
see also [LO, Subection 7.6].

Here is how to reduce the case of nonregular A + p to the regular case. Namely,
assume that A + p is not regular. We say that ' + p is a regularization of \ + p if
A + p is regular and

1) if (A4 p, ) € Zsg then (N + p, ) € Zg for all a € AT,

2) if (A + p, ) € Z<o then (N + p,a) € Z for all a € AT,

3)if A+ p,a) € Z then (N + p,a) ¢ Z for all « € AT.

If X 4 p is a regularization of A + p, then O(X) = O(X). Such a regularization
always exists. For example if N >> 0 then

N+p:=NA+p) +p

is a regularization of A + p.

Finally, we reduce the case of semisimple Lie algebra g to the case of simple
Lie algebra g. Namely, we fix a decomposition g = ®;g; for simple ideals g;. Then
O(N) = ®;0(\;), where )\; is the orthogonal projection of A to (h N g;)*.

6.5. Discussion of the algorithm. In the next subsection we provide an explicit
combinatorial algorithm which computes O(\) for any weight A of a simple classical
Lie algebra. We use the notation of Subsection 6.4 and set

OB/C/P () .= 0()\y)

for the Lie algebras so(2n + 1),sp(2n), s0(2n) respectively. In these cases one can
attach to any nilpotent coadjoint orbit a partition formed by the sizes of Jordan
blocks of any element z in the orbit, where x is considered as a linear operator,
see [CM]. More precisely, given OB/C/P(f) c gB/¢/P(n) we denote the above
partition by pB/C/P(f). Clearly, [p?(f)| = 2n + 1 and |[p©/P(f)| = 2n.

The simple modules of W = WE/C/P(n) are parametrized by pairs of parti-
tions [BV]. In [Ca] one can find a description of the Springer correspondence at
the level of partitions, see also [BV]. In our notation this correspondence can be
written in the following way:

Spr(f) & (PP(f)°,pP(f)¢) in the B-case,
Spr(f) < (p(f)%p°(f)°) in the C-case,
Spr(f) <  (PP(£)°,pP(f)¢) in the D-case,

see [BV, p. 165]. Moreover, if Spr(f) < (a, ) then

PP(f) = (B,a)-1,
pc(f): <Oé7ﬂ>1a
pP(f)= (B, a).

We set A(f) := A(Ap), W(f) := W(As). The following should be considered
as the scheme of the algorithm we aim at.
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Find W (f) and decompose it as the direct product W7 x W x ... of Weyl groups
of simple root systems. Fix a regularization A’ of A¢. Find the unique element
w € W(f) such that

wH N+ p) = w' (X + p)

is a sum of negative roots from A(f) for any w’ € W(f). Record w as
(wl,wg, ) S W1 X W2 X

Attach to w; the Wi-module Spry, (w;). Compute

E(f) = ]‘V/I[//(f)(Etrbt(f))7

where Ei(f) := ®;Spra,(w;). Then O(f) = O(E(f)). Denote the partition

assigned to O(f) by RSf/C/D(f).

This scheme translates into the following mnemonic algorithm.

Step 1(mnemonic). Add p to Ay.

Step 2(mnemonic). Determine the factors Wy, Wa, ... of W (f) arising from the
simple components of the root system A(f).

Step 3(mnemonic). Find a regularization A’ 4+ p of Ay + p and the element
w = (w1, ws,...) € W(f) corresponding to \'.

Step 4(mnemonic). To each w;, assign a partition (in the A-case) or a pair of
partitions (in the B/C/D-cases) as it is done in [BV, Proposition 17].

Step 5(mnemonic). Note that the datum assigned to w; in Step 4 corresponds
naturally to the simple W;-module E; := Spry, (w;). Then, using [Lu], compute
the pair of partitions corresponding to the W-module E(f) := j“/’VV(f) (Eint(f))-

B/C/D(f) = O(E(f)) using the Springer correspondence.

Finally, compute RS
6.6. The algorithm for gB/¢/P (n). We now describe the precise algorithm
which computes p/€/P(f). This is a compilation of several works [Jo, Lu, BV].
Let f € F™.

Step 1. Set

fre=M+22 1)+ 253, f(n) + 3) for the B-case,
=00+ n,f(2) +(n=1),...,f(n)+1) for the C-case,
=00 +mn-1),f2) +”n-2),..,f(n)+0) for the D-case.

Define the function f*:{+1,...,4n} — F by setting f*(—i) := —fT (i) for
ie{l,..,n}.

Step 2. Consider the set {1,...,n, —n, ..., —1} with linear order

1<2<3<..<(n—-1)<n<-n<—-(n-1)<.<-3<-2=<-1. (15)

Put f(—i) :== —f(i) for i € {1,...,n}, and introduce an equivalence relation ~ on
{#£1,...,£n}:

i ~ j if and only if f(i) — f(j) € Z.
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Denote the equivalence classes by [~];, and let —[~]; be the class with all signs
reversed. Next, relabel the equivalence classes [~]; so that [~]; = {i | f(i) € Z},
[~2 = {i| f(i) € Z+ 3}, and the equality [~]2;4+1 = —[~]2i12 holds for i > 1. Let
n; be cardinality of the equivalence class [~];3.

Step 3. For every i we introduce the following linear order > on [~];. For
m <k € [~];, we set

(1) m> k if and only if f*(m) — f+(k) € Z>o,

(2) k>m if and only if f*(m) — f*(k) € Z<o.

If we are in the C-case and i = 2 or we are in the D-case and 7 = 1,2, we
further modify the order > as follows. Consider the smallest possible value v of
|f*] on [~];, together with its preimage

[fH7 ) = {z € [~ | [f 7 (2)] = v}

in [~];. For the <-maximal element m of this preimage define m > —m. One can
check that this yields a well-defined linear order on > on the equivalence class [~];.
Step 4. Consider each equivalence class [~]; as a subsequence of (15) together
with the linear order > from Step 4, and apply the Robinson-Schensted algorithm
to [~];. The output is a pair of semistandard tableaux of the same shape, and this
shape determines a partition p; of n; (i <t).
Step 5. Set RSP/Y/P(f) := (B/C/D)(p1,pa, p>3), where

P>3 = Patpet--+pi-
Proposition 6.3. Let f € F* be a function. Then pB/C/P(f) = RSE/C/P(f).

Proof. The left-hand side of our asserted equality is computed by the mnemonic
algorithm described above. The right-hand side is computed by the combinatorial
algorithm following the mnemonic algorithm. Therefore it is enough to compare
the two algorithms. To start, we need an explicit description of the Weyl group
WB/C/D (). Namely, we identify W := WB/C/P () with a subgroup of the group
Perm({+£e1, £ea, ..., £en }) of permutations of {£e1, +¢o, ..., &, }. More precisely,
WB(n) and WY (n) are identified with the subgroup

{w € Perm({%eu, ..., xe,}) | ViTj : w{e;, —&;} = {€;, —¢,}},
and WP (n) is identified with the subgroup of even permutations in
WC(n) =W-(n).

Next we describe the integral Weyl group W (f) of A in terms of the equivalence
classes [~]; of Step 2. Namely, we have

WE(F) = WB(2) x WE(2) X Sy, X Spyers X S
WO(f) 2 WO (L) x WP(22) x Sy, X Spge X Sy
WP(f) =2 WP(%L) x WP(22) x S, X Spgeoo X Sy,

3Note that n1,n2 might be equal to 0, and that ¢ is necessarily even.
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where

e the first factor is the subgroup of WP5/C/P(n) which keeps [~]; pointwise
fixed for ¢ # 1,

e the second factor is the subgroup [of even permutations in the C-case| of
WEB/C/P(n) which keeps [~]; pointwise fixed for i # 2,

e the i-th factor (i > 3) is the subgroup of W5/¢/P(n) which keeps [~];
pointwise fixed for j # 2i + 1, 2i + 2.

Since the integers ni,ns, ... are computed in Step 2 of the combinatorial algorithm,
we see that Step 1 and Step 2 of both algorithms match each other.

According to the mnemonic algorithm, next we have to find a regularization
(M 4 p) of (A +p), and then find elements w; of the i-th factor of W(f). It is easy
to check that the w;-s are determined by the scalar products (o, Ay) for o € A(Ay),
and that these scalar products are in turn determined by the order > introduced
in Step 3 of the combinatorial algorithm. Thus the order > encodes the elements
w; .-

To compare Step 4 of the two algorithms, we have to ensure that Step 4 of the
combinatorial algorithm implements correctly Step 4 of the mnemonic algorithm.
This is accomplished by a careful reading of [BV, Section: The Robinson-Schensted
Algorithm for Classical Groups].

It remains to compare Steps 5 of the two algorithms. The pair of partitions
attached to the W-module j“/’VV( f)(Ein £(f)) is the pair of partitions in the respec-
tive formula for the B/C/D-functions. This follows from [Lu]. The fact that
the functions B/C/D compute correctly the partition attached to the orbit O(f)
follows from the combinatorial description of the Springer correspondence for clas-
sical groups given in [BV]. Note that the functions B/C/D combine these two
procedures in one formula.

O

6.7. Estimates on the corank of a partition. Let x € O(f). By identify-
ing g(n) with g(n)* we consider x as a linear operator in a natural g(n)-module.
Therefore we can define the corank of x as the corank of the respective operator.
For x € O(f), the corank of z is independent on x and equals #p(f).

Lemma 6.4. Let [ be the length of a longest strictly decreasing subsequence of f7.
Then

lip(f) =1 <5+ 1.

Proof. Tt is known that, for each ¢, #p; = #p([~];) equals the length of a longest
strictly decreasing subsequence of elements in [~]; [Knu, p. 69, Ex. 7]. A longest
strictly decreasing subsequence of f* could be shorter by 1 than a longest strictly
decreasing subsequence of elements of [~]; with respect to order «: this is due to
the exceptions in Step 3 for the C'/D-cases. As a result, we have

‘max(ﬂplvﬁp%ﬁpzi’)) - l| = |max(ﬁp17ﬁp21 ﬁp3a ceey ijt) - l| S 1.

Combining this inequality with the inequalities B2/C2/D2 of 6.3.5, and recalling
that p(f) = (B/C/D)(p1,p2,p>3), we finish the proof of Lemma 6.4. O
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6.8. Proofs of Theorems 5.3, 5.4 and Proposition 5.5. These proofs are
very similar to the proofs of corresponding statements in the A-case [PP2, The-
orems 3.1, 3.2 and Proposition 3.3]. In particular, the proofs of Theorem 5.4
and Proposition 5.5 coincide verbatim with the respective proofs of [PP2, The-
orem 3.2] and [PP2, Proposition 3.3] modulo exchange of notation and replac-
ing [PP2, Proposition 2.10] by Proposition 5.7.

We split the proof of Theorem 5.3 into two parts:

a) if Anny(g(ee)) Lo(f) # 0, then f satisfies conditions (1) and (2) of Theo-
rem 5.3;

b) if f satisfies conditions (1) and (2) of Theorem 5.3, then

Anny(g(ee)) Le(f) # 0.

Furthermore, the proof of part a) can be broken down into the proofs of the
following 3 statements:

al) Let f € FZ>0. If I(f) # 0, then |f| < .

a2) Let f € FZ>0 _ If I(f) # 0, then f is almost integral or almost half-integral.

a3) Let f € FZ>0 _ If I(f) # 0, then f is locally constant with respect to linear

order <.
Statement al) coincides with Proposition 6.1 above, of which we provided a com-
plete proof. The proofs of a2) and a3) follow very closely the respective proofs of
Proposition 13 and 14 of [PP2], where instead of [PP2, Lemma 18] one has to use
Lemma 6.4.

The proof of part b) is the proof of [PP2, Theorem 3.1 b)] verbatim modulo
the new B/C'/D-notation, except in the case when g(oo) = sp(oco) and f is half-
integral.

We now consider this latter case. Let g(00) = g“(00) = sp(oc), and let fs5 to
be a function such that f5(i) = % for all i € Z~(y. One can check directly that
Lo (f5) = Anny(sp(oo)) Lo (fs)

e does not depend on a choice of a splitting Borel subalgebra b,

e equals the kernel Iyy of the natural map U(sp(oo)) — Weyl(oo), where

Weyl(o0) is the Weyl algebra of V(co) defined by the skew-symmetric form

of V(c0).

Since f is half-integral, it is clear that f — fs is an almost integral function, and
thus Ly (f — f5) is annihilated by some proper integrable ideal I. Next, we observe
that Ly (f) is a subquotient of Ly (f — f5) ® Le(fs) and thus

Anny g(ee)) (Lo (f — f5) ® L(f5)) C Anny(g(eo)) Le(f)-

In particular, if the left-hand side ideal is nonzero then the right-hand side ideal is
also nonzero.
Now we prove that

Anny (g(ooy) (Lo (f — f5) @ L(f5)) # 0.

For this, we show using Lemma 7.7 that Annyg(eo)) (Le(f — f5) ® L(fs)) = D' 1
for some nonzero ideal I of U(o(00)). As Annyg(so))(Le(f — f5)) is an integrable
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ideal,
Annyg(oo)) (Lo (f — f5)) = DI
for some integrable ideal I’ of U(o(c0)). One the other hand,

AnnU(g(oo))(L[,(fg) = Dip AnnU(o(oo)) SW

Hence, indeed
Anny(g(oo)) (Lo (f — f5) ® L(fs)) = DFI

for some nonzero integrable ideal I in U(o(c0)).

7. Integrable and semiintegrable ideals are radical

One can define the radical v/T of an ideal I by one of the following requirements:
1. VT is the intersection of all primitive ideals which contain I,
2. v/ is the intersection of all prime ideals which contain I,
3. /I is the sum of all ideals J such that J* C I for some n.

Proposition 7.1. Ifg(oo) = sl(c0), 0(00), sp(c0) and I C U(g(co)) is an integrable
ideal, then definitions 1, 2, 8 are equivalent, and moreover I = +/1I.

Proof. Any integrable ideal is an intersection of finitely many prime integrable
ideals, and any prime integrable ideal is primitive, see Proposition 4.4 b). This
shows that I = /T with respect to definitions 1 and 2.

To prove that I = /I with respect to definition 3, it is enough to show that
INU(g') = +/INU(g) for any finite-dimensional subalgebra g’ C g(oc). The last
statement follows from the fact that the ideal I NU(g’) is an intersection of prime
ideals as it is integrable. O

For g(oco) = sp(o0) we have a slightly more general statement. We define an
ideal I C U(sp(c0)) to be semiintegrable if I is in the image of the lattice of
integrable ideals in U(o(co)) under the isomorphism of lattices constructed in the
proof of Theorem 4.9. A semiintegrable ideal may be integrable.

Proposition 7.2. If g(oco) = sp(c0), I C U(g(co)) is a semiintegrable ideal, and
F is uncountable, then definitions 1, 2, 3 are equivalent, and moreover I = /1.

Proof. * Consider definition 3 first. Clearly, it suffices to show that if v/T is defined
as in definition 3, then TNU(g(S)) = /I NU(g(S)) for any finite subset S C Z~.

Recall that sp(2n) has two nonisomorphic Shale-Weil (oscillator) representa-
tions with respective highest weights %51 + ...+ %5n and %51 + ...+ %%_1 — %sn.
It is easy to check that sp(co) has infinitely many nonisomorphic Shale-Weil repre-
sentations obtained as direct limits of Shale-Weil representations of sp(2n). Since
the annihilators of all these sp(co)-modules coincide, for our purposes it suffices to
consider one fixed Shale-Weil sp(oo)-module which we denote by SW.

4 After this paper was completed, we found a similar argument in [MCR, Chapter 9], so we
present the proof here for the mere convenience of the reader.
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Proposition 7.7 implies that a semiintegrable ideal is the annihilator of an
5p(00)-module of the form M &N ®SW, where M are N integrable sp(oo)-modules.
Therefore, for a finite set S, we have

I'Ng(S) = Anny(g(s)) (Mlg(s) ® Nlgs) @ SW]g(s))-

Note that the restriction of SW to g(9) is a direct sum of infinitely many copies
of Shale-Weil representations of g(S). A Shale-Weil representation of g(S) is a
(highest) weight module with 1-dimensional weight spaces. Thus a tensor product
of a Shale-Weil representation of g(S) with a finite-dimensional g(S)-module is
a direct sum of finitely many bounded weight modules of finite length, each of
which affords a generalized central character. The annihilator of any such a simple
module P equals the annihilator of a simple module in the block of P, see [GS,
Theorems 5.1, 5.2]. Therefore I N g(S) is the intersection of some set of primitive

ideals, and hence
I'nU(g(s)) = vVINU(g(S)). (16)

Next we show that I = /T with respect to definition 1. This will automatically
imply that I = v/I with respect to definition 2. Let v/T be the radical of I with
respect to definition 1. We prove first (following closely [Dix, 3.1.15]) that for any
i € VT there exists n € Zw( such that i" € I.

Fix i € v/I/I and consider the algebra C := (U(g)/I) @ F[X], where X is a new
variable. Then C(1 —iX) = C or C(1 —iX) # C, where C(1 —iX) denotes the
left ideal of C generated by (1 —iX). If C(1 —iX) = C, there exist ag, a1, ..., a,
such that

(1 —iX)(ao+ a1 X +asX?+ ... +a, X") =1.

Consequently, a; = i* for s < n and i"t! = 0, which is precisely what we need to

prove.
Assume next that C(1 —iX) # C. Then there is a simple C-module M and

an element m € M such that (1 —iX)m = 0. We claim that there exists A € F
such that Xm’ = Am’ for any m’ € M, or equivalently such that (X — \)M = 0.
Indeed, assume to the contrary that, for any A € F, the homomorphism

dr:M— M, m— (X-\m,

is nonzero. The fact that X — X belongs to the center of C' implies that the kernel
and cokernel of ¢, equal 0, and therefore that ¢, is an automorphism of M for
any A. The collection of elements

{¢;1m}/\eF

is uncountable as F is uncountable. On the other hand, M is at most countable
dimensional over F because C is countable dimensional over F. Thus there exist
nonzero sequences Ai, Ag, ..., A\, € F and aq, ..., a,, € F such that

Eiaiqb;ilm =0.

Clearly, 21‘04#);1 is an endomorphism of M, and hence Eiai¢L1M = 0. Therefore
P(X)M =0, where



On ideals in U(sl(c0)), U(o(c0)), U(sp(c0)) 31

P(X) = (X = A)(X = A2) (X = M) By

This implies that (X — A)M = 0 for some root A € F of the polynomial P(X).

Finally, we have

0=(1-iX)m=m— Xim,

and thus im # 0. Consequently, i does not annihilate M, and hence i ¢ /I/I.
This shows that our assumption is contradictory, and as a consequence we obtain
that for any 7 € /I there exists n such that i € I.

Next, one shows exactly as in [Dix, 3.1.15] that for any finite set .S there exists
n € Zsq such that

(VINU(g(s)" c InU(g(S)).

This, together with (16), implies

(VINU@(S)))" 2 /InU(g(S)) =INUgSs)).

Therefore, vVTINU(g(S)) = I N U(g(S)) for any finite set S, and hence T = I.
O

Appendix A: Roots, weights, and splitting Borel subalgebras

The Lie algebra gl(co) can be defined as the Lie algebra of infinite matrices
(@ij)i jez each of which has at most finitely many nonzero entries. Equivalently,
gl(co) can be defined by giving an explicit basis. Let {e;;}i jcz be a basis of
a countable-dimensional vector space denoted by gl(co). The structure of a Lie
algebra on gl(oco) is given by the formula

leij, ert]) = Ojkeir — dier;,

where i, j,k,l € Z and d,,, is Kronecker’s delta.
The Lie algebras 02/P (c0) and sp(co) can be defined as subalgebras of gl(co)
spanned by the following vectors

B

e i=e, _i—e:_;
B B o 7 1,—] 7~ B ._ L .

0 (OO) €i,—j = €i,j — €—j,—i, eB" . é o _é o €Y, ‘= €450 — €0,Fi
- —lD—] . —%J] — v +5

07(c0) | € =€y —€—j_i, € i=€_j—€j_i eZi_j = €—ij —€—ji
sp(oo) [ e =€ j—e_j eC =€ _jt+ej eC, _ii=e_ijte_j;
P Pl B2V -7 i, T )] J,—1 —i,—j T €—iyj —ji

for i,j € Z~g. We set
B( P(oo),  g9(c0) :=sp(0),  g"(00) := 0P (c0).
Note that the Lie algebra spanned by {effj}i,j€Z>o is isomorphic to gl(co), and
let g#(c0) = sl(00) be the commutator subalgebra of this Lie algebra.

The splitting Cartan subalgebras introduced in Subsection 5.1 can be chosen
as follows:

g°(00) =0
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hA = span{ef_i — ef_j}i,jezma hB/C/D = Span{ef_i}iez>o.
Then the Lie algebra g#/B/¢/P (00) has the root decomposition

gA/BICID (o0) — yA/BIC/D g @ g/ BICID (o)

QEAB/C/D

which is similar to the usual root decomposition respectively of sl(n), o(2n + 1),
sp(2n) and o(2n). Here

At = {Ei_Ej}i;éjeZ>ga AP = {51'—53'7 iEiai(€i+5j)i¢j}i,jeZ>m

A% = {e;—ej, 26, 2(ei+&))inj tijersor AP i={ei—ej t(ei+e))izjtijezsos

where the system of vectors {¢;};ez., in (hB/¢/P)* is dual to the basis {e; _; }icz_,

of hB/C/P and the system of vectors {e;}jez., for h* is the restriction of {¢;} ez,
from HB/C/P to hA.

A splitting Borel subalgebra b C gA/B/C/D(oo) is defined as the inductive limit
of Borel subalgebras b(n) C g(n) in the sequence (1). Any splitting Borel sub-
algebra is conjugate via Aut(g(co)) to a splitting Borel subalgebra containing
hA/B/C/D - and we only consider splitting Borel subalgebras b satisfying this as-
sumption. Fixing b is equivalent to splitting A = A4/B/C/D into AT U A~ with
the usual properties

e, AT a+pBEA=a+BEAT

eac AT & —ac AT,

It has been observed in [DP1] that the splitting Borel subalgebras of sl(co)
containing h* are in one-to-one correspondence with linear orders < on the set
Z~g: given such an order, the corresponding set of positive roots is

A (<) = {ei — g5}z

In a similar way, the splitting Borel subalgebras of 02 (cc0) and sp(co) containing
hB/C are in one-to-one correspondence with linear orders on Zw together with a
partition Sy U S_ of Z,: given such datum, the corresponding subset of positive
roots is

{ei +¢e5}ijes, U{ei —€jties, jes. U{—¢€i —€j}ijes. U{ei +¢;}ies, <jes U
U{ei — €j}ies, <jes, Uiei —€jties_sjes. U{eities, U{—€ities_

in the B-case, and

{ei +ej}ijes, U{ei —€jties, jes. U{—¢€i —€j}ijes. U{ei + ¢ ies, <jes U
U{ei — €5 }ies, <jes, U{ei —€jties_sjes_ U{2ei}ties, U{—2¢i}ies_

in the C-case.

The splitting Borel subalgebras of 0 (c0) containing b are in one-to-one corre-
spondence with linear orders on Z~ o together with a partition S, US_ LSy of Z
such that Sy is the set of <-maximal elements (thus Sy consists of one element or
is empty): given such datum, the corresponding subset of positive roots is
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{ei +¢5}ies, use,jes, U{ei — €jties, use,jes_us, U{—¢€i — €5 }ies_use,jes_ U
U{ei + € }ies, <jes. U{ei — €j}ies, <jes,us, U{ei — € ies_»jes_ -

(In the paper [DP1, p. 229] an equivalent description of splitting Borel subalgebras
of gB/C/P is given. It is based on the notion of Zs-linear order which we do not
use here).

It is easy to verify that, for any splitting Borel subalgebra b, there is an au-
tomorphism w € Aut(g?/¢/P(00)) such that whB/¢/P = pB/C/P and S = ()
for wb. Hence for the purposes of this paper it suffices to consider only the case
in which S_ = . Under this assumption, a linear order < on Z~( determines a
unique Borel subalgebra:

ABT(R) = {eitiezao U{ei + € injeza, U{ei — € iezoo<icza0s
AT (<) == {2ei}iczs, U{ei + €5 izjezso U{ei — €5 iczoo<iczon
APT(<) = {ei tejtiziezso U{ei — €j}iczo0=icZo0-

Finally, we need to give a definition of dominant function as used in Lemma 5.6.
A function f € FZ>0 is b-dominant for fixed b(<), if

(A) (i) = f(j) € Zxo for i < j € Zo case A;
(B1) f(i) € Z>g for all i € Zsq or f(i) € & + Zx for all i € Zxy, case B;
(B2) f(i) > f(j) fori<j
(Cl) f(’L) S ZZO for all 7 € Z>0, case C”
(C2) fgcig)Zf(j)ffori-<j fi e f

1) €Zforalli € Zsgor f(i) € 5 +Zfor all © € Z~, and
(D1) f(@) >0foralli e Zsg Which2 are not <-maximal, case D.
(D2) [f(@)] = [f(5)] for i < j

Appendix B: T-algebras and osp-duality

Let C be a tensor (or monoidal) category. We define a T-algebra in C to be an object
M of C together with a morphism m : M @ M — M. Two T-algebras M; and Mo,
in respective tensor categories Cy1,Ca, are isomorphic if there exists an equivalence
of tensor categories € : C; — Cy such that e(M;) = My and €(mq) = mao.

For example, an algebra over a field F (or a commutative ring R) is a T-algebra
in the tensor category of F-vector spaces (respectively, R-modules).

If g is a Lie algebra, then the enveloping algebra U(g) defines a T-algebra TU(g)
in the category of g-modules via the morphism U(g) ® U(g) — U(g).

A left (respectively, right, or two-sided) ideal in a T-algebra M is a subobject
I of M such that m maps M ® I to I (respectively, I ® M to I, or both M ® I
and I ® M to I). The following lemma is straightforward.

Lemma 7.3. a) The notions of left, right and two-sided ideals in TU(g) coincide.
b) The lattice of (two-sided) ideals in U(g) is naturally isomorphic to the lattice of
ideals in TU(g).
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Recall that U(g) is the quotient of the tensor algebra T"(g) by the ideal gener-
ated by x @y —y®x — [x,y]. Tt is clear that TU(g) is the quotient of the T-algebra
TT (g) by the ideal generated by the image of the morphism

YigRg— (g 0gCTT(g) (@Ry—-rRy—y®r—[,y]).

In what follows we refer to this image as the module of g-relations. Note that the
morphism v factors through the morphism g ® g — AZ?g.
Let T?(Lgo) be the category of inductive limits of objects from T, (o). Similarly,

we define the category Téﬁ?oo). Note that the T-algebras TU(0(c0)) and TU(sp(00))

are well defined in the respective categories Tff(Lgo) and Tiﬁ‘(ioo).

Theorem 7.4. The T-algebras TU(o(c0)) and TU(sp(c0)) are isomorphic.

In [S] V. Serganova has constructed an explicit functor D" : To(o0) = Tsp(oo)
which is an equivalence of tensor categories. It is clear that this functor induces
also an equivalence of the tensor categories Tff(‘go) and ']T?;‘(ioo). In order to prove
Theorem 7.4, it is enough to show that D§f TU(0(c0)) = TU(sp(oc)) and that
D3Pmy = Mgy, where m, is the multiplication morphism for TU(o(c0)) and myp is
the multiplication morphism for TU(sp(00)). However, Dg* T"(0(00)) =T (sp(c0)),
and since D3F is a tensor functor, it suffices to show that D5 maps the module of
o(oo)-relations in TT (0(00)) to the module of sp(co)-relations in TT (sp(co)).

We need the following two lemmas.

Lemma 7.5. We have D3? A?(A%V (c0)) = A2(S? V(0)).
Proof. The idea is to embed A2(A2?V(c0)) into
V(00)®* 1= V(00) ® V(00) ® V(00) ® V(c0)

and then show that DI maps A2(A2V(c0)) to A2(S? V(o)) as submodules of
V (00)®4.

Since DgPV (00) = V(o0), we see that Dg? maps V(00)®4 to V(0o)®4. Next, it
is easy to check that, for any permutation o of the set {1,2, 3,4},

D:Po =sgn(o)o

where o is considered as a linear operator on V (c0)®4. In what follows we write o,
and o4, to distinguish the action of o on the fourth tensor powers of the natural
representations of o(oco) and sp(co).

The o(oo)-module A?(A2V (c0)) is nothing but the 0(co)-submodule of V (00)®4
consisting of tensors R such that

(12),R=—R, (34);R=—R, ((13)(24))oR= —R.

Consequently, D5 A2(A%V (o)) is the sp(oco)-submodule of V(00)®4 consisting of
tensors X such that

(12)epX = X, (34)epX = X,  ((13)(24))epX = —X.

This latter sp(oo)-submodule is nothing but A%(S? V(c0)), and the proof is com-
plete. O
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Lemma 7.6. We have dim Homﬁp(oo)(Ag(S2 V(20)),8? V(o)) = 1.

Proof. The sp(co)-module A%(S? V(c0)) is a direct summand of V(c0)®*. The
emebedding is given by the formula

(zY) A (zt) > [(2@y+yR2)®(2Qt+t®2) — (2@t+tR2)® (Y +y ).
Restriction from V(00)®* to A%(S?V(00)) defines a surjective linear operator
Hotgp (o) (V(00)#4, V(00)#?) — Homigy (o) (A% (S V(00)), V (00)#2).
A basis of the space Homgy (o0) (V (00)®4, V (00)®2) is given in [PSt, Lemma 6.1], and
it is straightforward to check that all basis elements map to a single 1-dimensional
subspace of Homgy (o) (A%(S* V(00)), V(00)®2). Hence,
dim Homgy (o) (A%(S* V(00)),S* V(00)) < 1.

On the other hand, S* V(c0) 22 sp(00), and the existence of the Lie bracket on
S?V(c0) shows that

dim Homgp(oo)(A2(S2 V(00)),8?V(00)) > 1.
This completes the proof. O

Proof of Theorem 7.4. Lemma 7.5 implies that the module of o(oo)-relations is
being mapped by DgF to the image of a homomorphism of the form

A?sp(c0) — [A%sp(00)Bsp(00)] C [sp(c0)*@sp(00)] € T'(sp(00)), @ > 2—d(2),
where ¢ : A?sp(00) — sp(00) is the image of the Lie bracket morphism
A%0(c0) — 0(c0)

under DiF. Lemma 7.6 claims that, up to proportionality, ¢ coincides with the Lie
bracket morphism for sp(co). This completes the proof. O

Theorem 4.9 is a direct consequence of Theorem 7.4 and Lemma 7.3. Note
that, despite the fact that TU(0(c0)) and TU(sp(c0)) are isomorphic T-algebras,
the algebras U(o(o0)) and U(sp(c0)) are not isomorphic, see [PP1].

The following proposition is used in Proposition 7.2 above.

Proposition 7.7. Let X, and Y, be 0(co)-modules, X, and Ysy be sp(00)-modules,
such that

D (Anny (o (o0)) Xo) = ANy (sp(oo)) Xeps  DgF (ANNy(o(oe)) Yo) = ANNy(sp(oc)) Yep-

Then Dg¥ (Anny (o(co)) (Xo @ Y5)) = Anny(sp(oo)) (Xsp @ Yap).
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Proof. Let A, be the diagonal morphism of Lie algebras o(cc) — 0(00) & 0(00).
This morphism induces the comultiplication morphism

AY - U(0(00)) = U(o(o0)) @ U(o(c0)).
We have

Anny (o(s0)) (Xo @ Vo) = (AY) 7 (Anny o(se)) Xo ® U(0(00), )+

(17)
+ U(o(oo)l) X AHHU(O(OO)) YL),

where the subscripts “1” and “r” refer to the left and right direct summands of
0(o0) @ 0(00). Since D U(o(oc)) = U(sp(oo)) according to Theorem 7.4, and
DP AV = AU formula (17) implies that

spo

D3P (Anny (o (s0)) (Xo @ Y5)) = Anny(sp(oo)) (Xep @ Yop).
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