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Introduction

This paper originated in the authors’ attempts to understand characteristic classes in
supergeometry.

We start with recalling one of the constructions of characteristic classes in the category
of C°- manifolds, [BC], [MS], [W]. Let X be a C*- manifold, F a locally free sheaf (the
sheaf of sections of a vector bundle) on it. The characteristic classes of F in the de Rham
cohomology can be constructed as follows. Choose a connection V on F and consider
its curvature Fy € I(X, EndF ® Q?X). The forms trFi € T'(X,Q%X) are closed and
their cohomology classes do not depend on the choice of V. If the structure group of F is
reduced, instead of the traces of F§ one should consider all invariant polynomials on the Lie
algebra of the structure group. In the complex-analytic situation a global connection may
not exist, instead one should first construct the Atiyah-class Fg", which is the obstruction
to the existence of a holomorphic connection on F,F&" € H}(X, EndF ® Q' X), and then
consider tr[(Fg")'] € HY (X, ¥'X).

In supergeometry one may carry out these constructions too. However, we were not
satisfied with both of them because the cchomology classes one obtains in this way have
“pure even dimension”, being possible to integrate differential forms only along chains of
odd dimension zero. But in [BL1] Bernstein and Leites introduced objects, which can be
integrated along chains of odd codimension zero. These are the integral forms. It was
natural to conjecture that the complex of integral forms is connected with some “integral
sequence of a sheaf”, in the same manner as the de Rham complex leads to the de Rham
sequence of a sheaf with connection.

The aim of our paper is to present this new construction. We introduce the notion
of a right connection on a vector bundle and discuss its integral sequence (we call it the
Spencer sequence of the right connection).

Although the curvature of a right connection is again a differential form, we are able
to produce characteristic classes with values in integral forms by a trick explained in §4.

A way out of the purely even construction is suggested by another remark of Bernstein
and Leites. One may integrate the so called pseudodifferential forms, fastly decreasing
in the differentials of the odd coordinates, [BL2]. In our case they can be constructed as
power series of the form Y5 a;tr F%.

The problem of characteristic classes in supergeometry is closely connected with the
problem of the (co)homology theory, which carries them. The approach via classifying
spaces gives a possible definition of “Schubert supercells” with varying odd dimension.
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For example in the projective space P™™ lie Pe® with all possible a and b:

0<a<n, 0 < b < m, which may be given with n — a even and m — b odd equations.
However it is not clear in what homology theory there are classes of these cells, with fewer
relations between them, than in the case m = 0.

An idea of A. S. Schwarz to realize characteristic classes not by forms, but by densities,
seems quite interesting too. Densities are objects which can be integrated along chains of
arbitrary codimension, but they do not have a natural structure of a complex, and have
some unusual properties.

§1. Preliminaries

1.1. Let X = (K, 0,.) be a supermanifold over k, where by k we denote one of the
fields IR or €. This means that K is a topological space and O, = Op & O; - a sheaf of
supercommutative rings with the following properties:

1. If we denote by N < O, the ideal of nilpotents, then the ringed space
X,oa & (K,0./N) is a C>- real or analytic (real or complex) manifold.

2. The O, /N -module N/N? is locally free, rkN/N? < co and O, is locally isomorphic
to the Grassman algebra A'(N/N?). In this paper we consider parallelly C*- or analytic
supermanifolds over k. When it is necessary, we restrict ourselves with the smooth or
analytic category.

Given a supermanifold X, there is always an embedding gx : X,.q — X, but in the
analytic category there may be no inverse projection. However the following is true:

Theorem (Batchelor, [B]): In the C* -case there always exists an isomorphism X ~
(K, A'(N/N?)).

If F is a locally free O, -module of rank p | g, the modules [] F and F*, of ranks ¢ |p
and p | g, are defined. [] F is “F with the opposite parity”, and F* is the dual of F, [L].

By TX we denote the tangent sheaf of X, which is locally free of rank dimX. In
this paper we set dimX = n | m where n &= dimX,.q and m is by definition equal to
Tko / NN / N 2 .

1.2. The algebra of differential forms on X is @' X % S(I[T7X*), where by S we denote
the (super)symmetric algebra. Its homogeneous components X are locally free sheaves
on X, and there is defined the de Rham complex (€' X, d), where d: *X — Q*t1X acts
by the formula: d = 3, duig%l—,, u; being homogeneous coordinates on X, uy,---,u, are
even and .41, ++, Unym 0dd. Further if @ is an homogeneous element of a Z, -graded
object, by @ we denote its parity: @is 0 or 1.

The analogue of the canonical sheaf on a supermanifold is the sheaf of volume forms
BerX, which we call the Berezinian. This is an invertible sheaf of O, -modules of parity
3(1 = (=1)"*™). It is convenient to write its sections in the form:

F(ky €).D(dry - - dRndEy - - - dEy)

where f(k,£) is a local section of O, u = (%,£), w; = ki, i < 7, u; = €jp, n+1<
j £ n+m, [L], [BL1}; D is multiplied by the Berezinian of the Jacobian matrix under the
change of coordinates.

If m # 0, BerX does not appear among the Q -s (if m = 0, BerX = Q"X). In this
case BerX is included in another complex - the complex of integral forms ¥ X, [BL1],



[BL3], the members of which are defined by:
"X = BerX ®o, S(J[TX),i>0.
Its differential §: >, ; X — ),,_;,1 X acts in the following way:
o(D(d) 8 Q) = (-1 D(aw) @ Y 5 22—
7 011 52;)0v;
(here @ is a local section of S{(]]7 X ), and [] 6an,~ are local sections of [[7T X,

Moo = +1 = w+1)
We note that d and 0 are odd k -linear maps.
Iff m = 0, there is a canonical isomorphism between Q' X and ¥ X.
Let ¢ be a vector field. We shall use also the Lie derivative

Ly:BerX — BerX

defined in [BL3] by the formula Ly = & o iy, where iy is the operator of left tensor
multiplication by ] ¢:
ig : BerX — BerX ® [[ TX,

v 8 a3
_ _ 1Y% 4. - — i
SICEDIEIETY | FoE TR ST}
§2. Left and Right Connections
2.1. Denote by Dq; the sheaf of differential operators on X of order < 1, and by F a
locally free sheaf of O, -modules.
Definition. A left connection on F is an even k -linear map: A; : Dy ®r F — F, with
the conditions:
0. Aa® f) =af
L1. A(é®af) = Ai¢a® f)
L2. Afadp® f) =ali(s8f)

where ¢ is a vector field - a local section of 7X, and a is a function - a local section of
O;.

A right connection on F is an even k -linear map A, : F @ D¢y — F, with the
conditions:

RO. A.(f®a) =fa
Rl. A{f®¢a) =A.(f®d)a
R2. A (fa®¢) =A.(f®ad).

Note that R1 and L1 imply that connections are not O, -linear maps, for example:
ab(f®¢) =(-1U A (f®¢)-a
= (~1P7HDA(f © ga)
= (CUPDA(£ 8 9(a)) + (-1)T AL(S @ a0)
= Ar(af ® ¢) + (~1)Pg(a)s.
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If we fix a vector field ¢, we obtain operators Aj(¢) and A,(¢) :

A$)(f) M98 f)
A(B)f) = (-1)/%A.(F@¢)

which we call as usual covariant derivatives along ¢.

2.2. The sequences of de Rham and Spencer. For every sheaf 7 with a left connection
A we can define its de Rham sequence D R'(F) and for every sheaf F with right connection
A, we can define its Spencer sequence §.(F):

Definition. To a pair (F, A;) we associate DR (F), where DR{(F) = Q'X ®o, F,
and for every ¢ > 0 we have a differential operator V;(i): O'X ®0, F — Q*1X ® F given
by the formula:

i 0
Vi(i)(duk, - - -duk; ® f) = Z(—l)"’(z‘ dxr)du, - dug, - - dug; ® Al(% ® f).
i 7

Definition. To a pair (F, A,) we associate its Spencer sequence S.(F), where
$,i(F) = F®o, S{(IITX) (S(IT 7 X ) is the supersymmetric algebra of [ 7X), and
for every i > 0 we have a differential operator
V.(=i+n) : F®o, S[ITX) — F Q0. S Y[[ TX), given by the formula:

. o o .
V'(_z+n)(f®7r5;;:m371,.)_

Z(_l)(z:;:: El,-+l=—1)(i';u+1)Jrﬁ'lAr(f ® _2_) ® (wi e 9 . 9
& Ouy, 1

It is easy to check that V(i) and V,.(—i + n) are defined invariantly by A; and A,
and are odd maps. We call them the i-th covariant differentials of A; or A,. Of course in
general DR'(F) and S.(F) are not complexes.

Remark. The connections A; and A, are uniquely determined by their covariant
differentials V(1) and V. (n — 1) because the action of ¢- a is uniquely determined by the
action of a¢ (Leibniz rule), so it is sufficient to give explicitly only the action of vector
fields, or equivalently the covariant differentials V(1) or V,(n — 1).

2.3. The curvature of a connection. As usual, in order to define the curvature of a
connection we have to consider the operators Vi(i+1)-Vi(¢) and V.(—i+n)-V,(~i+n—1)
in more detail.

2.3.1.Lemma: The operators V(i +1)- V(i) and V,.(—i+n)-V,(—i+n~1) are O,
-linear, Vi > 0.

Proof: The statement about V(i + 1) - V(i) may be checked exactly as in the case
m = 0, thus we omit this computation and turn to the case of a right conanection A,.
Consider first V,(n —1)-V,.(n—2): F® S([[ 7X) —» F. We have:

o
Ve(n = 1) Veln - 2)(f @5 om ) =

(—l)ﬁi[A,(A,(f® Biu,) ® aiuj) _ (_l)iiijAr(Ar(f® aiuJ) ® 5(?“_‘)]



The linearity of this map may be checked directly - let us show for example, that:

o @ 3 8
Ve(in—-1)-V.(n-2)(ef® ”Ewa—u;) =aV,(n-1)-V,(n - 0u,~1r3sz)'
We have : . Do - i i B
+(n=1)-V(n-2)(a ®7r3‘u,-7r0uj)_

= (VT 0 a5 8 50) - (1AL (A Baz) 6 L) =

=(—1)5?”"{(—1)“-'[Ar(Ar(f@5u—£~a>® A8 5(a) 5 )1—

T(—1)%U+aT; _3..
(C)REES(A (AL (f 8 5 a) @

EL;)
2y age @ 2=
By v Ou; du;

= T FTHAA(S @ 5 0 i 0)-

—(—I)E(E"*“")Ar(f@ ) (a) (-1)TRAEADT A, (f®——) o (Ot

+(= 1)""‘+("'+“)"’f3u (—( M-

_(_1)a.~i,-[(_l)ai,-ﬁa.-Ar(Ar(f®(%j)aiui_a)_

A @ 1) () - (-1,

AlF © o) - (6) + ((UFEBIET (Do =
 Cosis o /o i,) ® i. a)-
CEBAAS B ) ® o)) =

__( 1)uf+¢(":+"J)V (n 1) v, (n 2)(f®7r 2 8 ) ¢

8

i}
=aV,(n—-1)-V,(n-2)(f ® WHWEEJ‘)

We have now an even O, -linear map:
Vi(n—-1)-V(n-2): FRSH[[TX) > F
which may be identified with a section of (EndF ® Q2X)o. Let’s denote it by Fg,. It

is easy to see that all the maps V,(—i + n)- V,(—i + n — 1) coincide with the inner
multiplication by Fy,. We call Fy, the curvature of A,.




Considering left connections we get Fy,, which is a section of (EndF ® Q?X), again,
but the maps V;(i+1)- V(%) are just multiplication by Fy, in the algebra EndF®Q X. O

2.3.2.Definition. A connection is called integrable iff its curvature is zero.

Remark. Let D be the ring of differential operators on X. It is standard to check
that endowing a sheaf F with a left integrable connection is equivalent of endowing F
with the structure of a left D -module; the integrability condition allows us to construct
a left action of D, coinciding with A; on the differential operators of order < 1. Similarly
to give a right connection on F means to give a right D -module structure on F.

2.3.3.Remark. For pairs (F, A;) with Fy, = 0, the de Rham sequence DR'(F) is a
complex and the Poincaré lemma is true:

HY(DR(F)) = 0, i#0
HYDR(F)) = Fhor

|

where Fp,, is the local system of horizontal sections of F. For the case (0,d) this is
proved in [BL3]. The general case is similar. Given a pair (F, A,), with A, integrable,
the Spencer sequence is by definition also a complex. Here we have the following analogue
of the Poincaré lemma:

Il

HY(S.(F)) 0, i#0
RO(S.(F)) = Frr

where F"" is also a local system, which is a subquotient of F @ S([I7X). We shall
explain this later in more detail.

§3. The Equivalence Theorem

In this section we describe a procedure, allowing given a left connection on F, to
construct a right connection on BerX ®¢_ F. This gives rise to an equivalence of the
categories of pairs (F,A;) and (G, A,).

3.1. Let us first establish some properties of the complexes of differential and integral
forms:

3.1.1.Proposition. Let 1 be a local section of Q°X. Then the following Leibniz
formulae are true:

d(n-s)
d(n-¢)

where s is an integral form, and ¢ - a differential form.

The proof is a straightforward local computation.

3.1.2. Proposition. The sheaf BerX has a canonical right integrable connection,
whose Spencer complex can be identified with £.X.

Proof: We define the map A, by:

—0n-s+(-1)"nds (means inner multiplication)
dn- ¢+ (-1)"-d¢ (means multiplication in S(02' X))

Ar(w ® ¢) = —(—1)*Lyw,

where w is a local section of BerX, and Ly - the Lie derivative, see 1.2.

An easy computation shows that A, is really a connection and that
Vo(~i+n):BerX @ S{([[7X) — BerX ® S*"Y([] TX) is identified with 8. This means
that BerX has a canonical structure of a right D -module, [P]. O



3.2. The functors B and B~1.
Given a pair (F,A;), consider now the pair (BerX ®o, F,Ba,), where Ba, acts on
BerX ®o, F as follows:

Ba (w8 f® ) = —(-1)*FLwe f+(-1)*Tw ® A4 @ f)).

3.2.1.Proposition. a) By, is a right connection.

b) Fp, =0+ Fa =0

Proof: This can alsa be checked directly. We say only that b) means that the functor
B transforms left D -modules into right D -modules. This statement is well known, cf.
[P]O.

3.2.2. The inverse functor B~! transforms right connections on F into left connections
on the sheaf Homo_(BerX,F)= (BerX)* ® F. By definition 6~'A, acts as follows:

B ($® g)(w) = (-1)*F ) {g(A,(w ® 9)) - A (f() ® 9)},

(here, g is a local section of Homo_(Ber X, F)).

B is really the inverse functor to B. Let us check for example that B™'(BerX) =
Hom(BerX, BerX) is just O, with its canonical left connection Al(d® f) = (f),
(f being a local section of Hom(BerX, BerX) = O ). We have:

B0 (¢® flw=

= (12T f. A (w B ¢) ~ A(frw B )} =
= (~1)PFHDTI £ Low + Ly(f - w) =

(=1)%7 - Lyw + Lo(f) -w + (—1)*F £ - Lg(w) = (£)-

The general case is similar. Now one can state:

3.2.3. Proposition. B and B~! are inverse equivalences of the categories of pairs
(F,A;) and (G, A,), in which the morphisms are sheaf morphisms, commuting with the
connections.

Remark. The notion of a right connection is of course essential only in the case m # 0,
because for manifolds the Spencer sequence §.(F) of (F, A,) is canonically isomorphic te
DR (B~YF)).

We explain now the notion of horizontal sections for a right integrable connection. It
is easy to check that for a left integrable connection its sheaf of horizontal sections Fror
is canonically identified with the sheaf of morphisms of O, into F, as sheaves with left
connections or asD -modules: Fhrop = Homp(Oz, F). Similarly we can define Fhor —
Homp(BerX,F), where F hor is now equipped with a right integrable connection. F hor
is a local system, and rkF"*" = rkF. One may check that F hor is the only cohomology
of the complex of sheaves §.(F). The equivalence theorem implies that B(F' hor) = Frs-

3.3. Coordinate computations. Now we want to give an explicit coordinate description
of left and right connections.

As usual, a left connection A; is determined by its connection form
x € T(Q'X ® EndF),, which is an odd matrix of differential forms (in the even case all
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matrices from Q' X ® EndF are automatically odd, because QX is odd). The connection
form depends, of course, on the choice of a trivialization of F and acts by the formula

Vi) (f) = df + xf

where df means differentiation of the components of f (which is a local section of F @ X)
in this trivialization. (Note that V;(z) = d + x is odd, as required). Invariantly this means
that if the set of all left connections on F — Conny(F) is not empty, then it is a priacipal
homogeneous space over I'(X, EndF ® QX);.

Naturally the set of all right connections on F — Conn(F) is also either empty or a
principal homogeneous space over I'(X, EndF @ Q1 X )1, because of the equivalence theo-
rem. (In the category of C* -manifolds, Conny(F) and Conn, (F) are never empty; this
can happen only in the analytic category).

Proposition. Let (F, A;) have a connection form X in some trivialization of . Then

B(Vi)(-i+n): F@BerX ® Si(H TX) » F® BerX ® Si—l(HTX)

acts by the formulas V,(s) = 8s — s, where & acts on the components of s (they are
sections of BerX ® S*([] 7X) and x acts by inner multiplication).
The proof is a direct computation using the formula from 3.2.1.
Consider now the curvature of a left connection. As usual one may compute it in the
following way:
Fo,=(d+{)d+§)=d’+¢-dtd-64+¢-¢=

=0+&-d+d(E)+(-1)% -d+e-£=de)+£-¢ .

Similarly one may compute the curvature of the right connection B(F, A;):
Fo,=(0-€)(0-¢)=0"~¢£-0-0-€+€-¢=
=0-£-0+d()— (-1 d+E-£=d(€)+£-¢

(we use here Leibniz rule from 3.1. and the last proposition).

Corollary: Fy, = Fg(v,).0

3.4. Tensor operations. There are several canonical tensor-operations on left connec-
tions, for example, if F; and F, have left connections Ay and Ay, then Ay and Ap,
induce the left connections Aj; ® Ay on Fy ®0, Fz and A}, ® Az on Hom(Fy, F»):

An®An(¢® fi® f2)=An(é¢® f1) ® f2 + (~1)Nt 2Ap(¢® £)® h
AL ® Aix(48® f)(f1) = A4 ® f(11)) — (1) *f(An(4® f1))

where f; are local sections on F; and f is a local section on H om(Fy, F).

The tensor operations on right connections are not so evident, for example, if F; and
F2 have right connections in the holomorphic category it can happen that the sets
Conn.(F1 ® F3) and Conn,(F} ® F2) are empty. Indeed, let X -be the projective space
P" and let /; = F; = BerX = Q"X (the sheaf of holomorphic n -forms). Then it is
standard to check that the sheaves (2" X )? and O, have no right holomorphic connections
at all. The reason of this “asymmetry” is that the sheaf O, over which we tensor, has a
canonical left connection, but no canonical right connection.
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The right way of obtaining correct tensor operations on right connections is to trans-
form them into left connections using the functor B~!, apply there the already known
tensor operations and then “come back” by the functor B. For example given two pairs
(F1, Ar1), (Fay A;z) the sheaf Fy ® Fy ® (BerX)* has a canonical right connection.

3.5. Bianchi identities.

3.5.1. Proposition. (Bianchi identity for left connections). Let F be equipped with
a left connection A;. Denote by A, the corresponding left connection on End¥. Then

Vi(2)(Fv,) = 0.

Exactly the same computation as in the case m = 0 proves this statement.

3.5.2. Let F be now equipped with a right connection A,. The sheaf EndF ® (BerX)*
is equipped with the connection A,, where the pair (EndF @ (BerX)*, A,) is by definition
equal to the pair B(End}",B:TA,),

F'® BerX = F,
and its Spencer sequence has the form:
— EndF' @ BerX @ S"([[TX) — --- —» EndF'® BerX @ " (][ 7X) - |

Consider also the complex of integral forms §.(BerX). In So(BerX) = Ber X®S™([[ 7 X)
we have a canonical (up to a constant) cohomology class, corresponding to (BerX Yhor,
(Ber X )" is equal to (B(O,))*" which is the constant sheaf k. Let us denote this class
with 5. Then 7 = id ® 5 lies in EndF ® BerX ® S"(J[] TX ) and we can apply to Fy, -
the operator A,.

Proposition (Bianchi identity for right connections):

Ve(2)(Fv, - 71) = 0.

Proof: Let 6 be the connection form of B~!A, in some trivialization of (BerX)* @ F.
Then V,(x) acts as d + add, where ad@(€) = ¢ — (—1)%£6. We have:

(0 — adb)(Fy, - 7) = (0 — adb)(Fp-y(v,) - ) =
= _dFB"1(V,) . ’f] + FB_:(VT)a(f]) - ad0(FB_,(Vr)) . T.) =

= —B-1(V,)(2)[F5-sv.)] - 0 + Fp-3(v.) - (7).

But the first term is equal to zero by the Bianchi identity for left connections, and the
second term is zero because 3(fj) = 0 by definition. O

§4. Remarks on Characteristic classes

If p is an even homogeneous invariant polynomial on the space of p|g —matrices over
a supercommutative ring A—

¢ My (A) — 4, ‘P(ZYZ_l) =¢(Y), Z=0,

considering a locally free sheaf F,rkF = p | g, with (smooth) left or right connection A,
or A,, we can apply ¢ to Fy, or Fy,, which are sections of (EndF ® 22X)o and obtain
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¢(Fy;) and o(Fy, ) (they are correctly defined global differential forms of degree 2degp).
As in case m = 0, we have the following fundamental result:

Theorem (Chern-Weil)

A) dp(Fo,) =0;  d(p(Fg,)-n)=0.

B) The cohomology classes y; € H?degv(T(X, X)) (corresponding to ¢(Fy,) ) and
¢r € H9%(I(X, % X)) (coresponding to ¢(Fy, ) ) do not depend on the choice of A; or
A,.

The statements about left connections can be proved exactly as in the case m = 0,
asing minimum supercommutative algebra, and we turn to the statements about right
connections:

A) 0(p(Fv,)-n) = 0(@(Fg-1(v,) - 1) = —(dp(Fp-y(v,))) - 0+ ¢(Fp-1(v,)) - On = 0.

The first term is zero because B~!(V,) is a left connection, and the second term is
zero because 97 = 0.

B) Let A} and A? be two right connections. We have:

©(Fu;) -0 - ¢(Fyz) -0 = (¢(Fg-1(v1)) = ¢(Fg-1(ym)) - n =

= (da)-n = 8(~a-7).

Here we use again the fact, that 5 = 0, and that P(Fp-1(v1)) - ¢(Fg-1(vr)) = da, where
a is a differential form.

This allows us to construct the Chern classes of a locally free sheaf F using the invariant
forms ¢,(Fy) = str(F5) by two ways. Unfortunately these do not give new interesting
invariants of F, because the previous construction uses smooth connections, and it is well
known that in the C*® -case the category of locally free sheaves on X is equivalent to
the category of Z, -graded locally free sheaves on the reduced manifold X,eq- This is a
variant of the theorem of Batchelor [B], but may be proved directly too. Thus, the classes
we get by the Chern-Weil construction are nothing but the Chern classes of the sheaf F,.q
(respectively {Q"X,.4)* ® Fred)-

Finally, we note that the Atiyah-style classes in the holomorphic situation are more
interesting because the cohomology ring @; Hi(X, QiX ) even in the simplest case of P1I2
(the projectivization of a linear space of dimension 2 | 2) does not coincide with the ring
@iHl(Xreda Qixred)-

References

(1] [B] Batchelor M., The structure of supermanifolds, Transactions of the AMS, 253,
329-338 (1979).

(2] [BC] Bott R., Chern S. S., Hermitean vector bundles and the equidistribution of the
zeroes of their holomorphic sectionsm, Acta Math., 114, 71-112 (1965).

[3] [Bj] Bjérk J. E., Rings of differential operators, North-Holland, Amsterdam. Oxford.
New York, 375p. (1979).

(4] [BL1] Bernstein J. N., Leites D. A., Integrable forms and the Stoke’s formula on
supermanifolds, Funct. Anal. Appl,, 11, 45 (1977).



13
[5] [BL2] Bernstein J. N., Leites D. A., Integration of differential forms on supermanifolds,
Funct. Anal. Appl., 11, 45 (1977).

{6] [BL3] Bernstein J. N., Leites D. A., Invariant differential operators and irreducible
representations of Lie superalgebras of vector fields, Serdika, 7, 320-384, (1981) (in
Russian).

{7] [L] Leites D. A., Introduction te the theory of supermanifolds, Russian Mathematical
Surveys, 35, 1 (1980).

[8] [MS] Milnor J., Stasheff J., Characteristic classes, Annals of mathematical studies, 76,
Princeton, New Jersey, (1974).

[9] [P] Penkov L, D -modules on supermanifolds, Inv. Math., 71, 501-512, (1983).

[10] [W] Wells R. O., Differential analysis on complex manifolds, Prentice-Hall Inc, En-
glewood Cliffs, N. J., (1973).




