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Abstract. We study socle filtrations of indecomposable injective objects in
certain universal tensor categories obtained as categories of representations
of the classical locally finite Lie algebras gl∞, sl∞, sp∞, and so∞ introduced
in [13], and the ℵt-dimensional Mackey Lie algebra glM introduced in [2]. It
was known that these injective objects have exhaustive and finite length socle
filtrations, however no general formula for their Loewy length was available.
The indecomposable injectives over gl∞ and sl∞ are parameterised by Young
diagrams λ and µ. We prove that these objects have Loewy length |λ ∩ µ|+ 1.
The indecomposable objects over sp∞ and so∞ are parameterised by one Young
diagram λ. We show that in both cases the Loewy length is |γ|+ 1 where γ is
maximal such that 2γ ⊂ λ> in case of sp∞ and 2γ ⊂ λ in case of so∞. The
indecomposable injective objects, denoted Ṽλt,...,λ0,µ,ν , in the category Tℵt
are parameterised by t + 3 Young diagrams λt, . . . , λ0, µ, ν. We prove that
these objects have Loewy length 1+ (t+1)|µ|+

∑t
u=0(t− u)|λu|. In addition,

we also show that whenever all diagrams for all objects that appear in the
socle filtration of Ṽλt,...,λ0,µ,ν are conjugated, we obtain the socle filtration of
Ṽλ>t ,...,λ

>
0 ,µ
>,ν> .
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CHAPTER 1

Introduction

This work studies universal monoidal categories obtained as subcategories
of representations of certain infinite dimensional Lie algebras. The Lie algebras
themselves are generalisations of the classical Lie algebras. The first generalisation
is to the “limiting” Lie algebra obtained by taking the union of the classical Lie
algebras under the obvious inclusions. The next generalisation is obtained by
studying the so-called Mackey Lie algebra, i.e. the Lie algebra of endormorphisms
of a diagonalisable paring of two vector spaces of dimension ℵt for the same but
arbitrary t.

Let g be one such Lie algebra. Our main focus here are subcategories Tg of
g-mod. The chosen ℵt-dimensional vector spaces have a g-module structure and are
called the natural and the conatural representations of g. We require Tg to contain
these representations and be closed with respect to tensor products, finite direct
sums, submodules, and quotients. It turns out that these requirements are sufficient
to make Tg universal among all K-linear symmetric monoidal categories generated
by two objects a and b where a has a finite filtration and there is pairing a⊗ b→ e
to the monoidal unit e. A review of results about the Lie algebras involved and
the category Tg is available in [2], [12] and [13]. A proof of universality is given
in [2]. We summarise some of these results along with the required mathematical
prerequisites in sections 5 and 4 of Chapter 2.

In this general setup, we restrict to representations of of g that can be studied
as indecomposable injective objects in Tg. Since an arbitrary object of this type
need not be semi-simple, it is therefore worthwhile to study its “largest semi-simple
part” called the socle. Successively computing the socles, we get the socle filtration
of an indecomposable injective object. A explicit description of the simple objects
that appear in various “layers” of the socle filtration is given in [13] and [2]. We
summarise these facts in Chapter 3. This filtration is an important invariant and
whenever it terminates, the object is said to have finite Loewy length. Previously it
was known that the indecomposable injective objects in Tg have finite Lowey length.
However the exact Loewy length and, in particular, the dependence of this length
on the indices was not known. The goal of the present work was to tackle precisely
this problem and determine a formula for the Loewy length in terms of the indices.

Results from [13] and [2] describe a parameterisation of the indecomposable
injectives in terms of partitions of non-negative integers. The number of such
partitions required depends on the dimension of g. The multiplicities of the simple
objects are given in terms of Littlewood-Richardson coefficients that encode some
combinatorial data related to partitions. Hence to determine the Loewy length,
we need to determine the lowest level at which all simple objects appear with zero
multiplicity.

We were able to use this combinatorial description of the multiplicities to first
write a computer program that computed socle filtrations for many objects. We
then studied the generated computations and were able to conjecture a formula
for the Loewy length. Proofs of these conjectures appear as theorems 4.10, 4.11
and 4.16. In our proof, in order to show that a special class of Littlewood-Richardson
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2 1. INTRODUCTION

coefficients is non-zero, we introduce the “Sorted Filling Algorithm” in Definition 4.1.
The relationship between our combinatorial algorithm and Littlewood - Richardson
coefficients is proven in Lemma 4.8. Furthermore, in Theorem 5.1 we show that
the socle filtrations have a symmetry with respect to conjugation of partitions. In
particular, this fact provides combinatorial evidence for the existence of a functor of
auto-equivalence of the category Tg. We state this as Conjecture 5.2. The details
of our results are available in chapters 4 and 5. A description of the computer
program and a selection of generated computations is given in appendices A and B
respectively.



CHAPTER 2

Preliminaries

In this chapter we discuss the basic mathematical objects and list some of their
properties that are relevant for our work. Note that in the rest of the document, we
call the discussion of objects in gl∞-mod, sl∞-mod, sp∞-mod and so∞-mod the
“locally-finite case” and that of objects in Tℵt the “ℵt-case”.

1. Indecomposable injective objects and tensor categories

All definitions stated here closely follow the ones given in [8], [7], [3] and [14].

1.1. Injective objects. Let C be a category. A morphism m : a → b is a
monomorphism in C whenever

m ◦ f = m ◦ f ′ =⇒ f = f ′

for every f and f ′. Similarly a morphism h : a→ b is an epimorphism if

g ◦ h = g′ ◦ h =⇒ g = g′

for every g and g′. An object p is projective if every morphism h : p→ c factors
through every epimorphism g : b→ c. An object q is injective if every morphism
h : c → q factors through every monomorphism g : c → d. Equivalently, the
diagrams

p

b c

∃h′
h

g

and
c d

q

g

h
∃h′

commute when p and q are, respectively, projective and injective.

1.2. Indecomposable objects. The product of two objects a, b in a category
is an object a× b (or a

∏
b) together with morphism p : a× b→ a and q : a× b→ b

called projections such that morphisms f : c → a and g : c → b factor through
a unique h : c→ a× b. The coproduct , dual to a product, is an object a+ b (or
a
∐
b) together with morphisms i : a→ a+ b and j : b→ a+ b called injections

such that morphisms f : a→ c and g : b→ c factor through a unique h : a+ b→ c.
For products and coproducts the diagrams

c

a a× b b

f

∃!h
g

p q

and
a a+ b b

c

i

f
∃!h

j

g

commute respectively. An object t is terminal if for every object a there is exactly
one morphism a→ t. An object s is initial if for for every object a there is exactly
one morphism s→ a. A terminal object which is also initial is called a null object
(or zero object). An object x is called indecomposable if every isomorphism
x ∼= x1 + x2 implies that either x1 or x2 is a zero object.

3



4 2. PRELIMINARIES

1.3. Tensor categories. Let B be a category and let ⊗ : B × B → B be a
bifunctor. The category B is monoidal if there are natural isomorphisms α, λ, %
and an object e in B such that for all objects a, b, c and d in B, the following
conditions hold

(1) associativity of ⊗ is given by the natural isomorphism α and hence

α = αa,b,c : a⊗ (b⊗ c) ∼= (a⊗ b)⊗ c,

(2) the pentagonal diagram

(a⊗ b)⊗ (c⊗ d)

a⊗ (b⊗ (c⊗ d))

a⊗ ((b⊗ c)⊗ d) (a⊗ (b⊗ c))⊗ d

((a⊗ b)⊗ c)⊗ d

α

1⊗α

α

α⊗1

α

commutes,
(3) the object e is the left and the right unit of ⊗ with the respeective

isomorphisms given by λ and % and

λa : e⊗ a ∼= a, %a : a⊗ e ∼= a,

(4) the triangular diagram

a⊗ c

a⊗ (e⊗ c) (a⊗ e)⊗ c

1⊗λ

α

%⊗1

commutes.

A tensor category (or a symmetric monoidal category) is a monoidal
category together with a natural isomorphism

β = βa,b : a⊗ b→ b⊗ a

such that for all objects a, b and c

(1) the hexagonal diagram

(a⊗ b)⊗ c c⊗ (a⊗ b)

a⊗ (b⊗ c) (c⊗ a)⊗ b

a⊗ (c⊗ b) (a⊗ c)⊗ b

β

αα

1⊗β

α

β⊗1

commutes,
(2) the natural isomorphism β satisfies

βb,a ◦ βa,b = 1a⊗b.
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2. Littlewood-Richardson coefficients

This section introduces Young diagrams, skew diagrams and their tableaux,
Littlewood-Richardson coefficients, and the Schur functor. The discussion on Young
diagrams and skew tableaux is based on [4] and [20], the results on Littlewood-
Richardson coefficients and related combinatorics summarise some results from [5],
[15] and [18]. The description of the Schur functor and the Young symmetrizer is
based on the discussion in [5].

2.1. Skew diagrams and tableaux. A partition λ of a positive integer n,
denoted λ ` n, is a tuple λ = (λ1, λ2, . . . , λk) of positive integers such that

n = λ1 + · · ·+ λk and λ1 ≥ · · · ≥ λk.

The Young diagram associated to this partition, also denoted by λ, is a collection
of boxes (or cells) indexed by the set of positive integers

{(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ λj}.

A Young diagram is usually represented by drawing a box at the coordinates (−i, j)
for each index (i, j). The conjugate diagram to λ is the Young diagram λ>

obtained by transposing λ. The number of boxes in the k-th row of λ> is equal
to the number of boxes in the k-th column of λ. We also use the convention that
λl = 0 for all l > k and say that the empty set (with the diagram ∅) is a partition
of 0. If µ is another partition whose diagram is contained in the diagram of λ,
that is µ ⊂ λ, then the skew diagram λ/µ consists of boxes of λ not present in
µ. Since a Young diagram λ can be thought of as the skew diagram λ/∅, we only
focus on the skew diagrams in the rest of the discussion. Note that the cardinalities
|λ| and |λ/µ| indicate the number of boxes in λ and λ/µ respectively. In particular,
|λ/µ| = |λ| − |µ|.

A filling of a skew diagram is a map T : λ/µ→ N that assigns a non-negative
integer to each cell in the diagram. The value of T on each cell is called the entry
assigned to that cell. A filling T is called a tableau (or a semistandard tableau)
on λ/µ if all entries

(1) are weakly increasing across each row, i.e. T (i, j) ≤ T (i+ 1, j), and
(2) strictly increasing down each column, i.e. T (i, j) < T (i, j + 1).

We will denote the set of all semi-standard tableaux on the shape λ/µ by SST(λ/µ).
A standard tableau on λ is a semistandard tableau with entries in the set

{1, . . . , |λ|} = [|λ|] = [n].

The content (or weight , or type) of a tableau T is a tuple η = (η1, . . . , ηr) such
that T has ηi entries equal to i.

Example 2.1. Let λ = (5, 4, 3, 2) and µ = (3, 3, 1). The following shows the
skew diagram λ/µ and a tableau T (λ/µ) of weight (2, 2, 2, 1) :

λ/µ = , T (λ/µ) =

1 1
2

2 3
3 4

.

2.2. Littlewood-Richardson coefficients. A word is a string of positive
integers. The reverse of a word x1 . . . xr is the word xr . . . x1. A lattice word (or
a lattice permutation) is a word every prefix of which contains as many positive
integers i as integers i+ 1. The word w is a reverse lattice word if its reverse is
a lattice word. The word (or row word) of a skew tableau T , denoted by w(T ) or
wrow(T ), is defined as the string obtained by writing down the entries in all rows of T
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from left to right starting at the bottom row. The skew tableau T is a Littlewood-
Richardson skew tableau if wrow(T ) is a reverse lattice word. If ν is a Young
diagram then the total number of Littlewood-Richardson skew tableaux of shape
λ/µ with content ν is denoted by Nλ

µ,ν and is called the Littlewood-Richardson
coefficient .

Example 2.2. Let T be the skew tableau in Example 2.1. Then wrow(T ) =
3423211. One can check that the word wrow(T ) is a reverse lattice word and thus
T is a Littlewood-Richardson tableau of shape λ/µ. Moreover this is the only
Littlewood-Richardson tableau with content ν = (2, 2, 2, 1). Hence Nλ

µ,ν = 1.

In the sequel we will be interested in checking when products of Littlewood-
Richardson coefficients are non-zero. In general it is not easy to determine necessary
and sufficient conditions on the diagrams such that the corresponding Littlewood-
Richardson coefficients are non-zero. However, as shown by the following result
from [4, p. 66], this is possible in cases when some relationship between the diagrams
is known.

Lemma 2.3. Let µ and ν be Young diagrams, and let λi = νi + µi for all i.
Then Nλ

µ,ν = 1.

Moreover, several necessary conditions and symmetries between tableaux are
available, for instance, in [4] and [20]. If Nλ

µ,ν is non-zero, then the number of boxes
in λ/µ is equal to the total number of entries |ν|. Hence one can conclude

Lemma 2.4. If Nλ
µ,ν is non-zero then |λ| = |µ|+ |ν|.

An equivalent definition states that the Littlewood Richardson coefficients are
given by the relation

sµsν =
∑
λ

Nλ
µ,νsλ

between Schur symmetric polynomials sλ, sµ and sν . This allows us to also conclude

Lemma 2.5. Nλ
µ,ν = Nλ

ν,µ.

Moreover, as proved in [6] we also have symmetry of Littlewood-Richardson
coefficients with respect to partition conjugation.

Lemma 2.6. Nλ
µ,ν = Nλ>

µ>,ν> .

2.3. Schur functor. Young diagrams play a crucial role in representation
theory in general and in the representations of the symmetric group in particular.
If Sd is the symmetric group on d objects, then an irreducible representation of Sd

can be obtained inside the group algebra C[Sd]. These irreducible representations
are parametrized by partitions of d. Say λ is one such partition and say {eσ}σ∈Sd

is a basis of C[Sd]. Since Sd acts on [d] it also acts on the set of standard fillings
on λ. The Young symmetrizer is defined as the element

cλ =

(∑
σ∈R

eσ

)(∑
σ∈C

sgn(σ)eσ

)
in the group algebra where R [resp. C] denote the elements of Sd that preserve
each row [resp column] of the chosen filling of λ. The irreducible representations of
Sd are given by

Hλ = C[Sd]cλ.

If V is any vector space then the symmetric group Sd has a natural action on the
d-th tensor power V ⊗d by permuting the factors. For any partition, we can use the
Young symmetrizer to define the Schur functor

Sλ : VectC → VectC
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given by the correspondence

V  SλV = im(cλ : V ⊗d → V ⊗d).

We will often denote SλV by Vλ. In this setup the Littlewood-Richardson coefficients
Nλ
µ,ν appear as coefficients in the decomposition of the composition SµSν as a sum

of applications of Sλ. Proofs for these facts, including a systematic treatment of the
representation theory of Sd, is available in [5] and [15].

3. Semi-simplicity and socle filtrations

Recall that a module is semi-simple when it is a direct sum of a family of
simple submodules. Moreover the following conditions on a moduleM are equivalent

(1) M is a sum of a family of simple sub-modules,
(2) M is the direct sum of a family of simple submodules, and
(3) Every submodule N of M is a direct summand and there is another

sub-module N ′ such that M = N ⊕N ′.
A proof of the above is available, for instance, in [9, XVII.2]. Since an arbitrary
module need not be semi-simple, it is worthwhile to study its “largest semi-simple
submodule”. IfM is a module, then the sum of all of its simple sub-modules, denoted
soc(M), is called the socle of M . Equivalently, the socle is the maximal semisimple
submodule of M . Hence

soc(soc(M)) = soc(M)

and whenever M is semisimple

soc(M) = M.

The semisimplicity of the socle implies that we can write

soc(M) =
∑
i∈I

Mi =
⊕
j∈J

Mj

where the Mi are the simple submodules of M and J ⊆ I. The socle filtration of
a module M is defined inductively by

0 ⊂ soc(M) = soc1(M) ⊂ soc2(M) = π−11 (M/soc(M)) ⊂ . . .
where πi are the canonical projections. For such a filtration we define the q-th socle
layer by the quotient

socq(M) = socq(M)/socq−1(M).

The socle filtration of an object is exhaustive if M is the union of all of its socles.
The socle filtration of an objectM has finite length if for some q, the layer socq+1(M)
is zero. In this case, the smallest such q is called the Loewy length of M . If no
such q exists, then the Loewy length is said to be infinite.

4. Classical locally finite Lie algebras

In this section we define the classical locally finite Lie algebras gl∞, sl∞, so∞,
and sp∞. We also some facts about their tensor representations and socles. The
content in this section summarises some of the main results and definitions from
[13].

We fix the base field C and two countable dimensional vector spaces V and V∗.
Let 〈·, ·〉 : V ⊗ V∗ → C be a non-degenerate pairing of the two vector spaces. A
result of Mackey [10] implies that in this case one can always find countable dual
bases {ξi : i ∈ I} and {ξ∗i : i ∈ I} of V and V∗ respectively such that the pairing is
diagonal. That is,

〈ξi, ξ∗j 〉 = δi,j for all i, j ∈ I.



8 2. PRELIMINARIES

Hence the tensor product space V ⊗ V∗ is spanned by the basis

{Ei,j = ξi ⊗ ξ∗j : i, j ∈ I}.

4.1. The Lie algebras gl∞ and sl∞. The Lie algebra gl∞ is the tensor
product vector space V ⊗ V∗ together with the bracket

(2.1) [u⊗ u∗, v ⊗ v∗] = 〈v, u∗〉u⊗ v∗ − 〈u, v∗〉v ⊗ u∗

for u, v ∈ V and u∗, v∗ ∈ V∗. In the basis {Ei,j} the bracket is given by the expected
commutation relation

[Ei,j , Ek,l] = δj,kEi,l − δi,lEk,j .

The Lie subalgebra sl∞ of gl∞ is defined as the kernel of the map 〈·, ·〉. A
tensor representation of these Lie algebras is obtained on the vector space V ⊗(p,q) =
V ⊗p ⊗ (V∗)

⊗q with the action of gl∞ given by

(u⊗ u∗) · (x⊗ x∗) = (u⊗ u∗) · (v1 ⊗ · · · vp ⊗ v∗1 ⊗ · · · ⊗ v∗q )

=

p∑
i=1

〈vi, u∗〉x[vi→u] −
q∑
j=1

〈u, v∗j 〉x∗[v∗j→u∗]

where the notation x[vi→u] means that we replace the i-th tensor factor vi in x by u
and similarly for x∗[v∗j→u∗].

The symmetric groups Sp and Sq act, respectively, on the tensor powers V ⊗p
and (V∗)

⊗q by permuting factors and it is easy to see that this action commutes
with the action of gl∞. Hence we can regard V ⊗(p,q) as a (gl∞,Sp ×Sq)-module.
Moreover for every choice of indices i, j with 1 ≤ i ≤ p and 1 ≤ j ≤ q, we can define
the contraction Φ(i,j) : V ⊗(p,q) → V ⊗(p−1,q−1) of the factors vi and v∗j by

Φ(i,j)(v1⊗ · · · ⊗ vp⊗ v∗1 ⊗ · · · ⊗ v∗q ) = 〈vi, v∗j 〉v1⊗ · · · v̂i · · · ⊗ vp⊗ v∗1 ⊗ · · · v̂∗j · · · ⊗ v∗q .

Considering all choices of (i, j) we define the submodule V {p,q} of V ⊗(p,q) by

V {p,q} =
⋂
(i,j)

ker(Φ(i,j) : V ⊗(p,q) → V ⊗(p−1,q−1)).

We also set V {p,0} = V ⊗p and V {0,q} = V ⊗q. For partitions λ and µ of p and q the
gl∞-submodule Γλ;µ is defined by

Γλ;µ = V {p,q} ∩ (SλV ⊗ SµV∗).

This module is actually irreducible as shown by the following theorem.

Theorem 2.7 (Theorem 2.1 in [13]). For any p, q there is an isomorphism of
(gl∞,Sp ×Sq)-modules

V {p,q} ∼=
⊕
λ`p

⊕
µ`q

Γλ;µ ⊗Hλ ⊗Hµ

For all partitions λ and µ the gl∞-module Γλ;µ is irreducible. Furthermore, Γλ;µ is
also irreducible when regarded by restriction as an sl∞-module.

Observe that in the special case p = 0 or q = 0, we get

V ⊗p ∼=
⊕
λ`p

Γλ;∅ ⊗Hλ, (V∗)
⊗q ∼=

⊕
µ`q

Γ∅;µ ⊗Hµ.
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4.2. The Lie algebra sp∞. Let V be a countable dimensional vector space as
before and consider a non-degenerate anti-symmetric bilinear form Ω : V ⊗ V → C.
Let gl∞ be the Lie algebra from the last subsection corresponding to V∗ = V and
Ω = 〈·, ·〉 . The Lie algebra sp∞ is the maximal subalgebra of gl∞ such that the
form Ω is invariant. That is

sp∞ = {X ∈ gl∞ : Ω(Xu, v) + Ω(u,Xc) = 0 for all u, v ∈ V } .
Picking a basis {ξi : i ∈ I} of V with indexing set I = Z \ {0} such that

Ω(ξi, ξj) = sign(i)δi+j,0.

In coordinates, the Lie algebra is spanned by the basis

{sign(j)Ei,j − sign(i)E−j,−i : i, j ∈ I}.
Since the dual basis {ξ∗i : i ∈ I} is given by ξ∗i = sign(i), we have sp∞ = S2V . The
Lie bracket on sp∞ is induced by the Lie bracket (2.1) on gl∞. Moreover, as the
gl∞ action on V ⊗(p,q) coincides with the gl∞ action on V ⊗(p+q) we can restrict our
study to the tensor representation V ⊗d.

Similar to the previous subsection, any pair of indices (i, j) satisfying 1 ≤ i <
j ≤ d defines a contraction Φ〈i,j〉 : V ⊗d → V ⊗(d−2) by

Φ〈i,j〉(v1 ⊗ · · · ⊗ vd) = Ω(vi, vj)v1 ⊗ · · · v̂i · · · v̂j · · · ⊗ vd.

Now we set V 〈0〉 = C, V 〈1〉 = V , and obtain

V 〈d〉 =
⋂
(i,j)

ker(Φ〈i,j〉 : V ⊗d → V ⊗(d−2))

for d ≥ 2 where we look at all pairs of indices (i, j), Finally for any partition λ of d,
we define the sp∞ module

Γ〈λ〉 = V 〈d〉 ∩ SλV.
Analogous to the result earlier we have

Theorem 2.8 (Theorem 3.1 in [13]). For any non-negative integer d there is
an isomorphism of (sp∞,Sd)-modules

V 〈d〉 ∼=
⊕
λ`d

Γ〈λ〉 ⊗Hλ.

For every partition λ the sp∞-module Γ〈λ〉 is irreducible.

4.3. The Lie algebra so∞. Pick a countable dimensional vector space V and
a non-degenerate symmetric bilinear form Q : V ⊗ V → C. Realising gl∞ as the Lie
algebra with V∗ = V and Q = 〈·, ·〉, we obtain the Lie algebra

so∞ = {X ∈ gl∞ : Q(Xu, v) +Q(u,Xv) = 0 for all u, v ∈ V } .
Picking basis {ξi : i ∈ I} indexed by I = Z \ {0} such that Q(ξi, ξj) = δi+j,0, so∞
is spanned by the basis

{Ei,j − E−j,−i : i, j ∈ I}.
Since the dual basis is {ξ∗i = ξ−i : i ∈ I}, so∞ =

∧2
V . As before, the bracket is

obtained using (2.1).
Furthermore indices (i, j) satisfying 1 ≤ i < j ≤ d define a contraction Φ[i,j] :

V ⊗d → V ⊗(d−2) by

Φ[i,j](v1 ⊗ · · · ⊗ vd) = Q(vi, vj)v1 ⊗ · · · v̂i · · · v̂j · · · ⊗ vd.

We set V [0] = C, V [1] = V and

V [d] =
⋂
(i,j)

ker(Φ[i,j] : V ⊗d → V ⊗(d−2))
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for d ≥ 2 with intersection over all pairs (i, j). Finally for any partition λ of d, we
define the so∞ module

Γ[λ] = V [d] ∩ SλV.
The irreducibility of the Γ[λ] is proved in the following theorem.

Theorem 2.9 (Theorem 4.1 in [13]). For any non-negative integer d there is
an isomorphism of (so∞,Sd)-modules

V [d] ∼=
⊕
λ`d

Γ[λ] ⊗Hλ.

Moreover for every partition λ, the module Γ[λ] is irreducible.

Alternatively, the Lie algebras described above can also be obtained by taking the
union of the respective finite dimensional Lie algebras under the obvious inclusions.

5. The category Tℵt
Recall that to define the classical locally finite Lie algebras, we first fixed

countable dimensional vector spaces and then considered a suitable pairing between
them. Following [2], we describe here a generalisation of the same idea to higher
dimensions. While [2] treats vector spaces whose dimensions are given by an
arbitrary cardinal α, here we only restrict to the special case α = ℵt. Moreover we
fix the base field K = C.

Consider a fixed diagonalizable pairing p : V ⊗V∗ → C of ℵt-dimensional vector
spaces V and V∗. The pairing gives us the inclusion V∗ ⊆ V ∗ where V ∗ = hom(V,C)
is the dual space to V . Picking bases for V∗ and V that diagonalize p, we think of
V∗ [resp. V ] as containing ℵt-sized row vectors [resp. column vectors] with finitely
many non-zero entries. Let β ≤ ℵt+1 and denote the subspace of V ∗ consisting
of row vectors with strictly fewer than β non-zero entries by V ∗β . By definition,
V ∗ℵt+1

= V ∗ and V ∗ℵ0 = V∗ and we get the chain of inclusions

(2.2) 0 ⊂ V ∗ℵ0 ⊂ · · · ⊂ V
∗
ℵt ⊂ V

∗.

The Mackey Lie algebra glM = glM (V∗, V ) associated to the pairing p is the
Lie algebra of endomorphisms of p. It is given by the formula

glM (V∗, V ) = {x ∈ End(V∗) : x∗(V ) ⊆ V } = {y ∈ End(V ) : y∗(V∗) ⊆ V∗}
where x∗ and y∗ respectively denote the duals of x and y. If we think of V and V∗
as α-sized column and row vectors then elements of glM (V∗, V ) are ℵt×ℵt-matrices
with finite rows and columns. Moreover, V and V∗ are modules over glM with the
action of g ∈ glM given by

g · v = gv for v ∈ V,
g · v∗ = −v∗g for v∗ ∈ V∗.

Note that this action keeps the filtration in (2.2) invariant. Let glM -mod denote
the category of modules over glM . The category Tℵt is obtained as the smallest
full monoidal subcategory of glM -mod which contains V and V∗ and is closed
under taking subquotients. The category Tℵt is the full subcategory of glM -mod
whose objects are arbitrary direct sums of objects in Tℵ1 . In fact the category
just constructed is universal among all C-linear symmetric monoidal categories
generated by two objects a and b such that the object a has a possible transfinite
filtration, and there is a pairing a⊗ b→ e to the monoidal unit e. A proof of this
fact is available in [2].

To describe the simple objects in Tℵt , we first introduce Vµ,ν . Let µ and ν

be Young diagrams then (V∗)µ ⊆ (V∗)
⊗|µ| and Vν ⊆ V |ν|. Hence (V∗)µ ⊗ Vν ⊆
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(V∗)
⊗|µ| ⊗ V ⊗|ν|. Let us use the pairing p to contract one factor of V with another

factor of V∗ to obtain the composition

(V∗)µ ⊗ Vν ⊆ (V∗)
⊗|µ| ⊗ V |ν| → (V∗)

⊗(|µ|−1) ⊗ V ⊗(|ν|−1).
We denote the space annihilated by all possible |µ| · |ν| applications of p in the
composition above by Vµ,ν . The following proposition classifies the simple objects
of Tℵt .

Theorem 2.10 (Proposition 4.2 in [2]). Given Young diagrams λt, . . . , λ0, µ, ν
the object

Vλt,...,λ0,µ,ν =

t⊗
s=0

(V ∗ℵs+1
/V ∗ℵs)λs

⊗ Vµ,ν

is simple over glM , and objects obtained for distinct choices of Young diagrams are
mutually non-isomorphic.

Studying the injective objects of this category is crucial to understanding its
structure. Since the injective objects in Tℵt appear as arbitrary direct sums of
indecomposable injective objects, it suffices to study the indecomposable injectives.
These objects are classified by the following result:

Theorem 2.11 (Corollary 4.25(b) in [2]). The indecomposable injective objects
in the category Tℵt are (up to isomorphism)

(2.3) Ṽλt,...,λ0,µ,ν =

t⊗
s=0

(
V ∗/V ∗ℵs

)
λs
⊗ (V ∗)µ ⊗ Vν

for arbitrary Young diagrams λt, . . . , λ0, µ, ν.



CHAPTER 3

Socle Filtrations

In both the locally finite case and the ℵt-case the indecomposable injective
objects admit well-defined socle filtrations. The goal of this chapter is to summarise
results about their socle-layers, review some existing results on the Loewy lengths
and state the main question we investigate.

1. Socle filtrations: Locally finite case

The socle layers that appear in the socle filtrations of the indecomposable
gl∞-, sl∞, sp∞- and so∞-modules Γλ;µ, Γ〈λ〉 and Γ[λ] are given, respectively, by
theorems 2.3, 3.3 and 4.3 in [13]. Let r be a non-negative integer and let λ and µ
be Young diagrams. Then, for the gl∞-module Γλ;∅ ⊗ Γ∅;µ,

(3.1) socr+1(Γλ;∅ ⊗ Γ∅;µ) ∼=
⊕
λ′,µ′

∑
γ`r

Nλ
λ′,γNµ

µ′,γ

Γλ′;µ′ .

The equation above also holds for Γλ;∅ ⊗ Γ∅;µ regarded as an sl∞-module. Say
d = |λ| and r = 1, . . . ,

[
d
2

]
, then the sp∞-module Γλ;∅ is indecomposable and

(3.2) socr+1(Γλ;∅) ∼=
⊕
µ

∑
γ`r

Nλ
µ,(2γ)>

Γ〈µ〉.

Above 2γ = 2(γ1, . . . , γk) = (2γ1, . . . , 2γk). Similarly, so∞-module Γλ;∅ is indecom-
posable and

(3.3) socr+1(Γλ;∅) ∼=
⊕
µ

∑
γ`r

Nλ
µ,2γ

Γ[µ].

2. Socle filtrations: ℵt-case

A series of results in [2] describe the socle filtration of indecomposable injective
objects in Tℵt . From [2, Corollary 4.25(b)], the indecomposable injective Ṽλt,...,λ0,µ,ν

has socle Vλt,...,λ0,µ,ν for arbitrary Young diagrams λt, . . . , λ0, µ, ν. We describe
the socle filtration in two stages. First we use the decomposition (2.3) of an
indecomposable injective as a tensor product to define the socle layers for the
individual tensorands (see lemmas 4.28 and 4.29 in [2]) and then describe a method
(see Proposition 4.30 in [2]) to combine the layers of the tensorands.

Let u ≤ t and q be given. Say λ is an arbitrary Young diagram. If ηt−u, . . . , η0
are Young diagrams, then the multiplicity of the simple object Vηt−u,...,η0,∅,...,∅ in
the layer socq((V ∗/V ∗ℵu)λ) is given by

(3.4) [socq((V ∗/V ∗ℵu)λ) : Vηt−u,...,η0,∅,...∅] =
∑

Nα1
η0,η1Nα2

α1,η2 · · ·N
λ
αt−u−1,ηt−u

whenever the indices ηt−u, . . . , η0 satisfy

(3.5)
t−u∑
x=0

|ηx| = |λ|

12
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and

(3.6) q = 1 +

t−u∑
x=0

x|ηx|.

Above in (3.4) the summation is over all repeated indices. The multiplicity is zero
in all other cases.

Let Young diagrams µ and ν be given. If ηt, . . . , η0, ξ, ζ are Young diagrams
that satisfy

(3.7) q = 1 + |ν| − |ζ|+
t∑

x=0

(x+ 1)|ηx|,

then the multiplicity of the simple object Vηt,...,η0,ξ,ζ in the q-th layer of (V ∗)µ ⊗ Vν
is given by

(3.8) [socq((V ∗)µ ⊗ Vν) : Vηt,...,η0,ξ,ζ ] =
∑

Nµ
πt,ηtN

πt
πt−1,ηt−1

. . .Nπ1
π0,η0Nπ0

ξ,δN
ν
ζ,δ

with summation over repeated indices. In all other cases, the multiplicity is zero.
We can now describe the socle layers of an arbitrary indecomposable injective

object. Let Ṽλt,...,λ0,µ,ν be an arbitrary indecomposable injective. According to
Propostion 4.30 in [2], we have an isomorphism

(3.9) socq(Ṽλt,...,λ0,µ,ν) ∼=
∑
ux,y

t⊗
x=0

socux((V ∗/V ∗ℵx)λx
)⊗ socy((V ∗)µ ⊗ Vν)

with summation over all indices ux and y satisfying

(3.10)
t∑

x=0

(ux − 1) + (y − 1) = q − 1.

3. Problem statement

Note that even thought the socle filtration of an object might be exhaustive,
the object need not have a finite Loewy length. That is, the object need not have a
finite Loewy length. However, for the indecomposable injectives that we study it was
known that the socle filtrations are exhaustive and have finite Loewy length. In the
locally finite case it was previously known that the gl∞-module V ⊗(p,q) has Loewy
length min(p, q) + 1 (Theorem 2.2 in [13]) and that the sp∞- and so∞-module V ⊗d

has Loewy length [d2 ] + 1 (theorems 3.2 and 4.2 in [13]). In the ℵt-case it was known
that the socle filtration of the indecomposable injectives is exhaustive and finite,
however a general formula for the Loewy length was not available. A formula for
the special case t = 0 was proved in [17]. Our goal is to generalise this result and
determine a formula based on the indices that parameterise the indecomposable
injective objects.



CHAPTER 4

Loewy Lengths of Indecomposable Injectives

In this chapter we state our main results for Lowey lengths for two classes of
indecomposable injective modules. At first in Section 1 we introduce our results on
intersections of Young diagrams and properties of related Littlewood-Richardson
coefficients. Then we use these results in Section 2 to determine Lowey lengths of
indecomposable injective modules over gl∞, sp∞, and so∞. Finally in Section 3 we
find the Loewy lengths for indecomposable injective objects in the category Tℵt .

1. Sorted filling of skew diagrams

Let λ = (λ1, . . . , λk) and µ = (µ1, . . . , µl) be Young diagrams. The intersec-
tion diagram λ ∩ µ is the Young diagram that has min(k, l) rows with

(λ ∩ µ)i = min(λi, µi)

boxes in each row. Note that λ∩ µ is just the diagram obtained by the set-theoretic
intersection of the boxes of λ with the boxes of µ when they are aligned at the top-left
corner. Let λ/µ be a skew diagram with λ = (λ1, . . . , λk) and µ = (µ1, . . . , µk)
(where some µi are possibly zero), then the sort of the skew diagram λ/µ is the
Young diagram obtained by sorting the tuple (λ1 − µ1, . . . , λk − µk) in descending
order. We denote this diagram by sort(λ/µ). Sorting the boxes of λ/µ can be used
to define a bijection σ : {1, . . . , k} → {1, . . . , k} between the rows of λ/µ and rows
of sort(λ/µ) such that

sort(λ/µ)i = λσ(i) − µσ(i) = (λ/µ)σ(i).

Moreover this bijection is unique when we require

sort(λ/µ)i = sort(λ/µ)i+1 if and only if σ(i) > σ(i+ 1).

When there are no ambiguities, we refer to rows of (λ/µ) by σ(j) and those of
sort(λ/µ) by j. We now introduce a tableau SF(λ/µ) on λ/µ with weight sort(λ/µ).

Definition 4.1 (Sorted Filling Algorithm). The filling SF(λ/µ) is defined by
iterating on the rows of sort(λ/µ). Fill all boxes of σ(1) with 1s and set j = 1. If
j ≤ k repeat the following steps.

SF.I Increment j by one.
SF.II Set nj = sort(λ/µ)j .
SF.III Note that rows σ(1), . . . , σ(j − 1) have been filled already.

SF.1 If there are no pre-filled rows below σ(j) then fill all boxes of σ(j)
with j

SF.2 Else let σ(j2) < · · · < σ(jk) be the pre-filled rows below σ(j1) = σ(j).
SF.a For all l < k refill the rightmost nj boxes of σ(jl) with the

values from the last nj boxes of σ(jl+1) while maintaining the
left-to-right order of the entries in the boxes.

SF.b Fill the rightmost nj boxes of σ(jk) with j.

The algorithm clearly terminates when j > n. Since σ was chosen to be unique
and since the filling of boxes in λ/µ only depends on σ, the resulting tableau SF(λ/µ)

14
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is well defined. Observe that at each step of the algorithm we obtain a filling on the
diagram

(4.1) (λ/µ)(j) = (λσ(i1), . . . , λσ(ij))/(µσ(i1), . . . , µσ(ij))

corresponding to the rows σ(1), . . . , σ(j). Here the il are picked such that the relative
order of rows in (λ/µ)(j) is consistent with those in λ/µ. At each step, the partial
filling obtained will be denoted by SF

(
(λ/µ)(j)

)
. Clearly SF

(
(λ/µ)(k)

)
= SF(λ/µ).

The initialisation of the algorithm and step SF.1 ensure that that σ(j) gets
filled with js whenever σ(j) is the bottom-most unfilled row at step j. When this is
not the case, step SF.a just moves the rightmost nj boxes from the pre-filled rows
to fill the boxes in σ(j). The example below illustrates this process.

Example 4.2. Consider the Young diagrams λ = (5, 4, 4, 3, 1) and µ = (3, 3, 2).
Then

λ/µ = =⇒ sort(λ/µ) =

The sequence of diagrams below show SF
(
(λ/µ)(j)

)
for various j. At step j the σ(j)

row has been shaded in black and the nj boxes that move as a result of step SF.a
are shaded in grey.

1 1 1
 1 1

1 2 2
 

1 1

2 2
1 3 3

 

1 1

2 2
1 3 3
4

 

1 1
2

2 3
1 3 4
5

We now prove several properties of the filling SF(λ/µ).

Lemma 4.3. The filling SF(λ/µ) has weight sort(λ/µ).

Proof. None of the steps decrease the total number of boxes filled with j.
Since nj boxes are filled with j at the start of the algorithm and at steps SF.1 and
SF.b, the total number of js is exactly nj = sort(λ/µ)j . �

Lemma 4.4. For all steps j, the largest entry in SF
(
(λ/µ)(j)

)
only appears in

the bottom-most row of (λ/µ)(j).

Proof. At the end of step j, the largest entry in SF
(
(λ/µ)(j)

)
is j. If row σ(j)

was filled using step SF.1, then it is the bottom-most row and contains j-s at the
end of step j. Otherwise, the j-s get added to row σ(jr) which was the bottom-most
row. �

Lemma 4.5. Let xsi be the s-th entry from the right in row i of SF(λ/µ). If both
xsi and xsi+1 are valid entries then xsi < xsi+1.

Proof. Suffices to show that the statement holds for all SF
(
(λ/µ)(j)

)
. We

proceed by induction. The statement vacuously holds for j = 1. Inductively assume
that the statement holds for all i < j. If s > nj or if SF.1 was used to fill the row
σ(j) the claim follows from the inductive step. Now let x̃sσ(j2), . . . , x̃

s
σ(jr)

be the
entries before step SF.2 is executed. After step SF.2, as a result of the move, the
entries are xsσ(j1) = x̃sσ(j2), . . . , x

s
σ(jr)

= j and the claim holds. �

Lemma 4.6. SF(λ/µ) ∈ SST(λ/µ).
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Proof. It suffices to check that for all j ≤ n, SF
(
(λ/µ)(j)

)
∈ SST(λ/µ). We

proceed by induction. When j = 1, SF
(
(λ/µ)(1)

)
has one row filled with 1-s hence

the filling is semi-standard. Now suppose that for all i < j, SF
(
(λ/µ)(i)

)
∈ SST(λ/µ)

also suppose that we are at the end of step j. Consider two cases:
Case I: Step SF.1 was used to fill row σ(j). The only entries in σ(j) are j-s

hence the entries weakly decrease along the row. From the inductive hypothesis,
the entries weakly decrease along the rest of the rows. Now Lemma 1, the entries
strictly increase down each column.

Case II: Step SF.2 was used to fill row σ(j). From the inductive hypothesis,
the rows above σ(j) have weakly increasing entries. Moreover the nj entries in row
σ(j) come from the last nj boxes of σ(j2) and hence have weakly increasing entries.
For rows below σ(j), the situation is illustrated in the following diagram:

nj boxes
row σ(jl+1)z

nj boxes

row σ(jl)x y
...

In this case x ≤ y from the inductive hypothesis and y < z from Lemma 4.5. Hence
the entries are weakly increasing in row σ(jl).

We now check the conditions on the columns. Since the right-most boxes of a
row are also the right-most boxes of the corresponding row in λ, as a result of SF.2
entries in a box are not allowed to move to the left of their position before SF.2.
It suffices to check columns with entries that are affected by the move. Suppose x
is in row i and z is a box below x in the column containing x. Let z be the s-th
box from the right. Let y be the s-th box from the right in row i. The situation is
illustrated below:

s boxes
z

s boxes
row ix

...

y

Above, x ≤ y since the row-entries are weakly increasing and y < z from Lemma 4.5.
�

We now show that the word of SF(λ/µ) is a reverse lattice word. It is easy to
see that any initial segment in the reverse word corresponds to a sequence of boxes
starting at the top-rightmost box in SF(λ/µ). Alternatively, any initial segment
corresponds to the word of the tableau obtained by removing some boxes starting
at the bottom-leftmost box. Hence it suffices to show that removing any number
of boxes (in the order just described) results in a tableau with weakly increasing
weight. We now use this strategy to show that SF(λ/µ) is a reverse lattice word.

Lemma 4.7. The word w = wrow(SF(λ/µ)) is a reverse lattice word.

Proof. Let w = w1 . . . wN . Proceeding by induction, when no boxes are
removed, the tableau has weight sort(λ/µ) by Lemma 4.3. Inductively assume that
k boxes have been removed and the resulting weight is weakly decreasing. For the
(k+ 1)-th removed box wN−k and let p be the number of boxes to the right of wN−k.
We now consider two cases.
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Case I: p = 0. From Lemma 4.5, the rightmost boxes of the rows above
will have entries strictly smaller than wN−k. Moreover the entries in each of the
rows are weakly decreasing by Lemma 4.6. Therefore wN−k is the largest entry in
w1 . . . wN−k and removing it keeps the weight weakly decreasing.

Case II: p 6= 0. Since the word w1 . . . wN−k has weakly decreasing weight it
suffices to check that the number of occurrences of wN−k is strictly greater than the
number of occurrences of wN−k + 1. Since there are p boxes to the right of wN−k,
the number of occurrences of wN−k in w1 . . . wN−k is at least p+ 1 (as p+ 1 entries
of wN−k must have been added by step SF.b). Moreover the number of occurrences
of wN−k + 1 is at most p as only p entries could have moved to the last p boxes in
this row by SF.a and therefore to the rest of the rows above. �

Lemma 4.8 (Sorted Filling Lemma). If λ, µ are diagrams with then there exists
a Littlewood-Richardson tableau of shape λ/µ with content sort(λ/µ). In particular,
if ν = sort(λ/µ), then Nλ

µ,ν 6= 0

Proof. The required Littlewood-Richardson tableau is given by SF(λ/µ). The
filling SF(λ/µ) has weight sort(λ/µ) by Lemma 4.3 and is a Littlewood-Richardson
tableau as by lemmas 4.6 and 4.7. �

2. Loewy lengths of indecomposable injectives: Locally finite case

Lemma 4.9. If Nλ
µ,ν is non-zero then ν ⊆ λ.

Proof. The symmetry Nλ
µ,ν = Nλ

ν,µ of the Littlewood-Richardson coefficients
implies that whenever Littlewood-Richardson tableaux of type ν on shape λ/µ exist,
so do Littlewood-Richardson tableaux of type µ on shape λ/ν. In particular the
skew diagram λ/ν is well defined and ν ⊆ λ. �

Theorem 4.10. The Loewy length of the indecomposable gl∞-module Γλ;∅⊗Γ∅;µ

is |λ ∩ µ|+ 1.

Proof. Let r = |λ ∩ µ|. We first check that the (r + 1)-th layer is non-zero.
If α = λ ∩ µ then clearly |α| = r. As α ⊆ λ and α ⊆ µ, set λ′ = sort(λ/α) and
µ′ = sort(µ/α). From the Sorted Filling Lemma, the coefficients Nλ

α,λ′ and Nµ
α,µ′

are non-zero. Using the formula (3.1) the multiplicity of the object Γλ′,µ′ in the
layer, we obtain

1 ≤ Nλ
α,λ′N

µ
α,µ′ ≤

∑
|γ|=r

Nλ
λ′,γNµ

µ′,γ = [socr+1(Γλ;∅ ⊗ Γ∅;µ) : Γλ′;µ′ ].

This implies that the (r + 1)-th layer is non-empty.
Now suppose the layer r + 2 is non-empty. Then there exist Young diagrams

λ̃, µ̃ and γ with |γ| = r + 1 such that the product Nλ
λ̃,γ

Nµ
µ̃,γ is non-zero. From

Lemma 4.9, γ ⊆ λ and γ ⊆ µ. Hence for all indices i

γi ≤ min(λi, µi) = (λ ∩ µ)i =⇒ γ ⊆ (λ ∩ µ).

However the equations |γ| = r+ 1 and |λ∩µ| = q lead to a contradiction. Therefore
all layers after r+ 1 are empty and, as claimed, the Loewy length is |λ∩ µ|+ 1. �

Since the socle layers for indecomposable gl∞- and sl∞-modules coincide, we
get the following corollary.

Corollary. The Loewy length of the indecomposable sl∞-module Γλ;∅ ⊗ Γ∅;µ

is |λ ∩ µ|+ 1.
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To treat the case of indecomposable sl∞- and so∞-modules we first introduce
some terminology. A tuple γ′ = (γ′1, . . . , γ

′
k) of non-negative integers will be called

even if all γ′i are even. Hence γ′ = 2γ for some tuple γ. If λ is a Young diagram
then consider the tuple γ with entries γi satisfying

λi = 2γi + δi, 0 ≤ δi < 2.

Since λi ≥ λi+1, γi ≥ γi+1 and γ is a valid Young diagram. Since γ is unique
by construction, we will call 2γ the maximal even sub-diagram of λ. Term
“maximal” is justified as for any other even subdiagram 2ε ⊆ λ, ε ⊆ γ.

Theorem 4.11. Let λ be a Young diagram and 2γ be the maximal even subdia-
gram of λ>. The Loewy length of the indecomposable sp∞-module Γλ;∅ is |γ|+ 1.

Proof. Pick γ as indicated and set r = |γ|. We first check that the layer
socr+1(Γλ;∅) is non-empty. Since (2γ)> ⊆ λ, let µ = sort

(
λ/(2γ)>

)
. As

r = |γ| ≤ |2γ| ≤ |λ|,

we use (3.2) to obtain

1 = Nλ
µ,(2γ)> ≤

∑
|η|=r

Nλ
µ,(2η)> = [socr+1(Γλ;∅) : Γ〈µ〉].

Above the first equality is a consequence of the Sorted Filling Lemma and the
inequality follows by picking the index η = γ.

Now suppose that the layer socr+2(Γλ;∅) is non-zero. There are diagrams ν
and δ satisfying |δ| = r + 1 such that the Littlewood-Richardson coefficient Nλ

ν,(2δ)>

is non-zero. From Lemma 4.9, the the skew diagram λ/(2δ)> is well defined and
2δ ⊆ λ> is an even sub-diagram. As 2γ was the maximal even diagram,

r + 1 = |δ| ≤ |γ| = r

which is not possible.
Hence the sp∞-module Γλ;∅ has Loewy length |γ|+ 1. �

The proof above can be used, mutatis mutandis, to show the analogous statement
for indecomposable so∞-modules.

Theorem 4.12. Let λ be a Young diagram and 2γ be the maximal even subdia-
gram of λ. The Loewy length of the indecomposable so∞-module Γλ;∅ is |γ|+ 1.

3. Loewy lengths of indecomposable injectives: ℵt-case

We will first calculate Loewy lengths for the indecomposable injective objects
(V ∗)µ ⊗ Vν and (V ∗/V ∗ℵu)λ. We then use formula (3.9) to obtain the Loewy length
of Ṽλt,...,λ0,µ,ν .

Theorem 4.13. The indecomposable injective object (V ∗)µ ⊗ Vν has Loewy
length (t+ 1)|µ|+ 1.

Proof. We first show that the layer socq((V ∗)µ ⊗ Vν) for q = (t + 1)|µ| + 1
is non-zero. Consider the simple object Vηt,...,η0,ξ,ζ where ηt = µ , ζ = ν, and
ηt−1 = · · · = η0 = ξ = ∅. Then the indices satisfy the required condition (3.7) as

1 + |ν| − |ζ|+
t∑

x=0

(x+ 1)|ηx| = 1 + |ν| − |ν|+
t−1∑
x=0

(x+ 1)|∅|+ (t+ 1)|ηt|

= 1 + (t+ 1)|µ| = q.
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Setting πt = · · · = π0 = δ = ∅, from (3.8) we see that the multiplicity of Vηt,...,η0,ξ,ζ
in socq((V ∗)µ ⊗ Vν) is at least

Nµ
πt,ηtN

πt
πt−1,ηt−1

· · ·Nπ0

ξ,δN
ν
ζ,δ = Nµ

∅,µN∅
∅,∅ . . .N

∅
∅,∅Nν

ν,∅ = 1

and hence the q-th layer is non-zero.
Now suppose the (q + 1)-th layer is non-empty. Then there is a simple object

Vηt,...,η0,ξ,ζ that appears with non-zero multiplicity in socq+1((V ∗)µ ⊗ Vν). Hence
we can find indices πt, . . . , π0, δ for which the product of Littlewood-Richardson
coefficients

Nµ
πt,ηtN

πt
πt−1,ηt−1

· · ·Nπ0

ξ,δN
ν
ζ,δ

is non-zero. In particular, each Littlewood-Richardson coefficient is non-zero and
from Lemma 2.4 we obtain the set of equations

|µ| = |π1|+ |ηt|,
|πt| = |πt−1|+ |ηt−1|,
· · ·

|π0| = |ξ|+ |δ|,
|ν| = |ζ|+ |δ|.

Using the convention πt+1 = µ, for any x we can write

|ηx| = |πx+1| − |πx|.

This implies that

1 + |ν| − |ζ|+
t∑

x=0

(x+ 1)|ηx| = 1 + |ν| − |ζ|+
t∑

x=0

(x+ 1)(|πx+1| − |πx|)

= 1 + |δ|+
t∑

x=0

(x+ 1)|πx+1| −
t∑

x=0

(x+ 1)|πx|

= 1 + |δ|+ (t+ 1)|µ| −
t∑

x=0

|πx|.

Since the (q + 1)-th layer was assumed to be non-zero, the expression above must
satisfy the condition in (3.7), that is

q + 1 = 1 + |δ|+ (t+ 1)|µ| −
t∑

x=0

|πx|

=⇒ (t+ 1)|µ|+ 2 = 1 + |δ|+ (t+ 1)|µ| −
t∑

x=0

|πx|

=⇒
t∑

x=0

|πx|+ 1 = |δ|.

However since |δ| ≤ |π0|, the above equality leads to a contradiction. Hence the
(q + 1)-th layer has to be zero and the Loewy length is q = (1 + t)|µ| + 1 as was
claimed. �

Theorem 4.14. The indecomposable injective object (V ∗/V ∗ℵu)λ has Loewy
length 1 + (t− u)|λ|.
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Proof. Let s = t− u and q = 1 + (t− u)|λ| = 1 + s|λ|. We first show that the
q-th layer is non-zero. Consider the simple object Vηs,...,η0,∅,...,∅ = Vλ,∅,...,∅. Then
as required by (3.6) and (3.5) the indices satisfy

1 +

s∑
x=0

x|ηx| = 1 + s|ηs| = 1 + s|λ| = q,

and

|λ| =
s∑

x=0

|ηx| = |ηs|

respectively. Setting α1 = · · · = αs−1 = ∅, we see from (3.4) that the multiplicity
of Vηs,...,η0,∅,...,∅ is at least

Nλ
αs−1,ηs · · ·N

α2
α1,η2Nα1

η0,η1 = Nλ
∅,λ · · ·N∅

∅,∅N∅
∅,∅ = 1.

Hence the q-th layer is non-zero.
Now suppose that the (q+1)-th layer contains some simple object Vηs,...,η0,∅,...,∅.

Then from (3.4) there are indices αs−1, . . . , α1 such that the product of Littlewood-
Richardson coefficients

Nλ
αs−1,ηs · · ·N

α2
α1,η2Nα1

η0,η1

is non-zero. In particular, each of the Littlewood-Richardson coefficients are non-zero
and from Lemma 2.4 we get

|λ| = |αs−1|+ |ηs|,
· · ·

|α2| = |α1|+ |η2|,
|α1| = |η0|+ |η1|.

Using the convention αs = λ and α0 = η0, for all x > 0 we can write

|ηx| = |αx| − |αx−1|.

Hence we now have
s∑

x=0

x|ηx| =
s∑

x=1

x(|αx| − |αx−1|)

= s|αs|+
s−1∑
x=0

x|αx| −
s−1∑
x=0

(x+ 1)|αx|

= s|λ| −
s−1∑
x=0

|αx|.

Since the (q+1)-th layer was assumed to be non-zero from (3.6) we must additionally
have

q + 1 = 1 +

s∑
x=0

x|ηx|

=⇒ 1 + s|λ| = s|λ| −
s−1∑
x=0

|αx|

=⇒ 1 +

s−1∑
x=0

|αx| = 0.

Since for all x, |αx| ≥ 0 and the equality above leads to a contradiction. Hence the
(q + 1)-th layer is zero and the Loewy length is q = 1 + s|λ| = 1 + (t− u)|λ|. �
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We can now compute the Loewy length of an arbitrary indecomposable injective
object. First observe that for any u and partition λ the only simple objects that
appear in any socle layer of (V ∗/V ∗ℵu)λ have empty indices in the two right-most
positions, that is these simple objects are of the form Vηt,...,η0,∅,∅.

Lemma 4.15. Let Vηt,...,η0,∅,∅ and Vθt,...,θ0,∅,∅ be two simple objects. If for
all s the inequality 0 ≤ s ≤ t and the equality κs = ηs + θs are satisfied, then the
Vκt,...,κ0,∅,∅ appears as a sub-module in Vηt,...,η0,∅,∅ ⊗ Vθt,...,θ0,∅,∅.

Proof. Writing out the definition of the simple objects, we obtain

Vηt,...,η0,∅,∅ ⊗ Vθt,...,θ0,∅,∅ =

(
t⊗

s=0

(V ∗ℵs+1
/V ∗ℵs)ηs

)
⊗

(
t⊗

s=0

(V ∗ℵs+1
/V ∗ℵs)θs

)

=

t⊗
s=0

(
(V ∗ℵs+1

/V ∗ℵs)ηs ⊗ (V ∗ℵs+1
/V ∗ℵs)θs

)
=

t⊗
s=0

(∑
πs

Nπs

ηs,θs
(V ∗ℵs+1

/V ∗ℵs)πs

)
Above we use the Littlewood-Richardson rule to expand the tensor product at s.
From Lemma 2.3 we know that for all s the coefficient πs = κs = ηs + θs is certainly
non-zero. Expanding the sums and then the tensors shows that the simple object
Vκt,...,κ0,∅,∅ appears as a sub-module in the tensor product. �

Theorem 4.16. The indecomposable injective object Ṽλt,...,λ0,µ,ν has Loewy
length

1 + (t+ 1)|µ|+
t∑

x=0

(t− x)|λx|.

Proof. Recall that the isomorphism (3.9) describes the socle layer of Ṽλt,...,λ0,µ,ν

in terms of layers of objects discussed in Theorem 4.13 and in Theorem 4.14. The
previous lemma implies that a summand in (3.9) is non-zero only when all the layers
appearing in the tensor product are non-zero. From Theorem 4.13 and Theorem 4.14
this is only possible when

ux ≤ 1 + (t− x)|λx| and y ≤ 1 + (t+ 1)|µ|.
Moreover since the indices ux and y satisfy (3.10), we obtain the bound

q = y +

t∑
x=0

(ux − 1) ≤ 1 + (t+ 1)|µ|+
t∑

x=0

(t− x)|λx| = qmax.

Hence for any q′ > qmax, the layer socq
′
(Ṽλt,...,λ0,µ,ν) is necessarily zero.

Now consider the layer socqmax(Ṽλt,...,λ0,µ,ν). The indices ux = 1 + (t− x)|λx|
and y = 1 + (t+ 1)|µ| satisfy (3.10) with q = qmax. Moreover, from Theorem 4.13,

Vµ,∅,...,∅,ν ⊆ socy((V ∗)µ ⊗ Vν)

and from Theorem 4.14,

Vλx,∅,...,∅ ⊆ socux((V ∗/V ∗ℵx)λx).

From the previous lemma, the tensor product of these simple modules is non-zero.
Hence the qmax-th layer is non-zero and the Loewy length is

qmax = 1 + (t+ 1)|µ|+
t∑

x=0

(t− x)|λx|.

�



CHAPTER 5

Symmetry of Socle Filtrations

We now consider the symmetry of the socle filtrations in Tℵt with respect to
partition conjugation. The theorem below is a generalisation of Theorem 1 in [17].
The general proof technique used is also similar.

Theorem 5.1. Let λt, . . . , λ0, µ, ν and ηt, . . . , η0, ξ, ζ be Young diagrams. Then
for all q,

[socq(Ṽλt,...,λ0,µ,ν) : Vηt,...,η0,ξ,ζ ] = [socq(Ṽλ>t ,...,λ>0 ,µ>,ν>) : Vη>t ,...,η>0 ,ξ>,ζ> ].

Proof. Let k be arbitrary and consider Young diagrams α1, . . . , αk, β1, . . . , βk,
and γ1, . . . , γk. Using Lemma 2.6 we immediately get

Nα1

β1,γ1
· · ·Nαk

βk,γk
= N

α>1
β>1 ,γ

>
1
· · ·Nα>k

β>k ,γ
>
k

.

This fact along with formula (3.9) and possibly repeated applications of the Lit-
tlewood - Richardson rule in Lemma 4.15, allows us to reduce to the case of
indecomposable injectives of type (V ∗)µ ⊗ Vν and (V ∗/V ∗ℵu)λu

.
Let q be given. Since |α| = |α>|, whenever the indices ηt, . . . , η0, ξ, ζ satisfy

the conditions (3.5), (3.6) and (3.7), so do the indices η>t , . . . , η>0 , ξ>, ζ>. In case of
(V ∗/V ∗ℵu)λu , from formula (3.4) we obtain

[socq((V ∗/V ∗ℵu)λu
) : Vηt−u,...,η0,∅,...∅] =

∑
Nα1
η0,η1Nα2

α1,η2 · · ·N
λu
αt−u−1,ηt−u

=
∑

N
α>1
η>0 ,η

>
1

N
α>2
α>1 ,η

>
2
· · ·Nλ>u

α>t−u−1,η
>
t−u

≤
∑

Nα1

η>0 ,η
>
1

Nα2

α1,η>2
· · ·Nλ>u

αt−u−1,η>t−u

= [socq((V ∗/V ∗ℵu)λ>u ) : Vη>t−u,...,η
>
0 ,∅,...∅].

Similarly for (V ∗)µ ⊗ Vν , formula (3.8) gives us

[socq((V ∗)µ ⊗ Vν) : Vηt,...,η0,ξ,ζ ] =
∑

Nµ
πt,ηtN

πt
πt−1,ηt−1

. . .Nπ1
π0,η0Nπ0

ξ,δN
ν
ζ,δ

=
∑

Nµ>

π>t ,η
>
t

N
π>t
π>t−1,η

>
t−1

. . .N
π>1
π>0 ,η

>
0

N
π>0
ξ>,δ>

Nν>

ζ>,δ>

≤
∑

Nµ>

πt,η>t
Nπt

πt−1,η>t−1

. . .Nπ1

π0,η>0
Nπ0

ξ>,δ
Nν>

ζ>,δ

= [socq((V ∗)µ> ⊗ Vν>) : Vη>t ,...,η>0 ,ξ>,ζ> ].

The equality of multiplicities follows by first noting that (α>)> = α and repeating
the process above starting with the objects (V ∗/V ∗ℵu)λ>u and (V ∗)µ> ⊗ Vν> . �

The above theorem allow us state a general version of Conjecture 2 from [17]
in the setting of the category Tℵt .

Conjecture 5.2. There exists a functor of autoequivalence

(·)> : Tℵt → Tℵt
such that

(Ṽλt,...,λ0,µ,ν)> ∼= Ṽλ>t ,...,λ>0 ,µ>,ν> .

22
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As remarked in [17], we also note that the functor conjectured below resembles
Serganova’s functor of autoequivalence of the category Tgl(∞) (Theorem 7 in [16])
and can perhaps be constructed by moving to the appropriate superalgebra.



APPENDIX A

Interface to the socle filtration calculator

We used the computer algebra system SageMath [19] to program a socle filtration
calculator which we have made available at [11]. The program in particular relies
on the library lrcalc [1] to compute values for various Littlewood-Richardson
coefficients and an implementation of [21] to compute integer partitions. Both of
these components were available in the combinatorics toolbox of SageMath.

To compute the socle filtrations, we first find the all possible indices for simple
objects that can appear in a given layer q of the filtration. For each Young diagram
η in the index, we first find possible values of |η|. A particularly useful trick here is
to first use Lemma 2.4 and then the conditions relating q and |η| to narrow down the
choices for |η|. Once this is done, we generate all possible partitions and compute
the multiplicity of simples in the q-th layer. The whole socle filtration is now just
obtained by iterating on q until no simples appear in q-th layer.

The main interface to the program consists of the following sets of functions:
• The function socle_filtration_aleph_t in socles_aleph_t.py accepts
a list of indices λt, . . . , λ0, µ, ν and returns the socle filtration of the
indecomposable injective object Ṽλt,...,λ0,µ,ν . Note that the category Tℵt
is automatically determined by the number of indices.
• The functions socle_filtration_gl_mod, socle_filtration_sp_mod

and socle_filtration_so_mod in socles_two_diag.py accept two, one
and one indices and return the filtration of the corresponding gl∞-, sp∞-
and so∞ modules respectively.
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APPENDIX B

Socle computations

Here we present some computations that were produced by our program [11].
Since the total number of simple objects that appear in the socle filtration grows
very large for even small values of t, we only show a small selection of explicit
computations.

Example B.1. We construct the socle filtration of the indecomposable injective
object

Ṽ∅,(1,1),(1),(1,1),∅ = Ṽ∅,(1,1),∅,∅,∅ ⊗ Ṽ∅,∅,(1),∅,∅ ⊗ Ṽ∅,∅,∅,(1,1),∅

in the category Tℵ2 . First note that we have

V(1, 1),∅,∅,∅,∅
V(1), (1),∅,∅,∅
V∅, (1, 1),∅,∅,∅

,
V(1),∅,∅,∅,∅
V∅, (1),∅,∅,∅
V∅,∅, (1),∅,∅

,

V(1, 1),∅,∅,∅,∅
V(1), (1),∅,∅,∅

V(1),∅, (1),∅,∅ ⊕ V∅, (1, 1),∅,∅,∅
V(1),∅,∅, (1),∅ ⊕ V∅, (1), (1),∅,∅
V∅, (1),∅, (1),∅ ⊕ V∅,∅, (1, 1),∅,∅

V∅,∅, (1), (1),∅
V∅,∅,∅, (1, 1),∅

.

Combining these using the formula 3.9 we obtain the full socle filtration

V(1, 1, 1, 1, 1),∅,∅,∅,∅ ⊕ 2V(2, 1, 1, 1),∅,∅,∅,∅ ⊕ 2V(2, 2, 1),∅,∅,∅,∅
⊕V(3, 1, 1),∅,∅,∅,∅ ⊕ V(3, 2),∅,∅,∅,∅

3V(1, 1, 1, 1), (1),∅,∅,∅ ⊕ 5V(2, 1, 1), (1),∅,∅,∅ ⊕ 3V(2, 2), (1),∅,∅,∅ ⊕ 2V(3, 1), (1),∅,∅,∅
2V(1, 1, 1, 1),∅, (1),∅,∅ ⊕ 5V(1, 1, 1), (1, 1),∅,∅,∅ ⊕ 3V(1, 1, 1), (2),∅,∅,∅ ⊕ 3V(2, 1, 1),∅, (1),∅,∅

⊕6V(2, 1), (1, 1),∅,∅,∅ ⊕ 4V(2, 1), (2),∅,∅,∅ ⊕ 2V(2, 2),∅, (1),∅,∅ ⊕ V(3, 1),∅, (1),∅,∅
⊕V(3), (1, 1),∅,∅,∅ ⊕ V(3), (2),∅,∅,∅

V(1, 1, 1, 1),∅,∅, (1),∅ ⊕ 5V(1, 1, 1), (1), (1),∅,∅ ⊕ 5V(1, 1), (1, 1, 1),∅,∅,∅ ⊕ 6V(1, 1), (2, 1),∅,∅,∅
⊕V(1, 1), (3),∅,∅,∅ ⊕ 2V(2, 1, 1),∅,∅, (1),∅ ⊕ 6V(2, 1), (1), (1),∅,∅ ⊕ V(2, 2),∅,∅, (1),∅

⊕3V(2), (1, 1, 1),∅,∅,∅ ⊕ 4V(2), (2, 1),∅,∅,∅ ⊕ V(2), (3),∅,∅,∅
⊕V(3, 1),∅,∅, (1),∅ ⊕ V(3), (1), (1),∅,∅

3V(1, 1, 1), (1),∅, (1),∅ ⊕ 2V(1, 1, 1),∅, (1, 1),∅,∅ ⊕ V(1, 1, 1),∅, (2),∅,∅ ⊕ 7V(1, 1), (1, 1), (1),∅,∅
⊕4V(1, 1), (2), (1),∅,∅ ⊕ 3V(1), (1, 1, 1, 1),∅,∅,∅ ⊕ 5V(1), (2, 1, 1),∅,∅,∅ ⊕ 3V(1), (2, 2),∅,∅,∅
⊕2V(1), (3, 1),∅,∅,∅ ⊕ 4V(2, 1), (1),∅, (1),∅ ⊕ 2V(2, 1),∅, (1, 1),∅,∅ ⊕ V(2, 1),∅, (2),∅,∅

⊕4V(2), (1, 1), (1),∅,∅ ⊕ 3V(2), (2), (1),∅,∅ ⊕ V(3), (1),∅, (1),∅
2V(1, 1, 1),∅, (1), (1),∅ ⊕ 4V(1, 1), (1, 1),∅, (1),∅ ⊕ 4V(1, 1), (1), (1, 1),∅,∅ ⊕ 2V(1, 1), (1), (2),∅,∅
⊕3V(1, 1), (2),∅, (1),∅ ⊕ 5V(1), (1, 1, 1), (1),∅,∅ ⊕ 6V(1), (2, 1), (1),∅,∅ ⊕ V(1), (3), (1),∅,∅
⊕2V(2, 1),∅, (1), (1),∅ ⊕ 3V(2), (1, 1),∅, (1),∅ ⊕ 2V(2), (1), (1, 1),∅,∅ ⊕ V(2), (1), (2),∅,∅

⊕2V(2), (2),∅, (1),∅ ⊕ V∅, (1, 1, 1, 1, 1),∅,∅,∅ ⊕ 2V∅, (2, 1, 1, 1),∅,∅,∅ ⊕ 2V∅, (2, 2, 1),∅,∅,∅
⊕V∅, (3, 1, 1),∅,∅,∅ ⊕ V∅, (3, 2),∅,∅,∅

V(1, 1, 1),∅,∅, (1, 1),∅ ⊕ 4V(1, 1), (1), (1), (1),∅ ⊕ V(1, 1),∅, (1, 1, 1),∅,∅ ⊕ V(1, 1),∅, (2, 1),∅,∅
⊕3V(1), (1, 1, 1),∅, (1),∅ ⊕ 4V(1), (1, 1), (1, 1),∅,∅ ⊕ 2V(1), (1, 1), (2),∅,∅ ⊕ 4V(1), (2, 1),∅, (1),∅

⊕2V(1), (2), (1, 1),∅,∅ ⊕ V(1), (2), (2),∅,∅ ⊕ V(1), (3),∅, (1),∅ ⊕ V(2, 1),∅,∅, (1, 1),∅
⊕2V(2), (1), (1), (1),∅ ⊕ 2V∅, (1, 1, 1, 1), (1),∅,∅ ⊕ 3V∅, (2, 1, 1), (1),∅,∅

⊕2V∅, (2, 2), (1),∅,∅ ⊕ V∅, (3, 1), (1),∅,∅
2V(1, 1), (1),∅, (1, 1),∅ ⊕ V(1, 1),∅, (1, 1), (1),∅ ⊕ V(1, 1),∅, (2), (1),∅ ⊕ 4V(1), (1, 1), (1), (1),∅
⊕V(1), (1), (1, 1, 1),∅,∅ ⊕ V(1), (1), (2, 1),∅,∅ ⊕ 2V(1), (2), (1), (1),∅ ⊕ V(2), (1),∅, (1, 1),∅

⊕V∅, (1, 1, 1, 1),∅, (1),∅ ⊕ 2V∅, (1, 1, 1), (1, 1),∅,∅ ⊕ V∅, (1, 1, 1), (2),∅,∅ ⊕ 2V∅, (2, 1, 1),∅, (1),∅
⊕2V∅, (2, 1), (1, 1),∅,∅ ⊕ V∅, (2, 1), (2),∅,∅ ⊕ V∅, (2, 2),∅, (1),∅ ⊕ V∅, (3, 1),∅, (1),∅

V(1, 1),∅, (1), (1, 1),∅ ⊕ 2V(1), (1, 1),∅, (1, 1),∅ ⊕ V(1), (1), (1, 1), (1),∅ ⊕ V(1), (1), (2), (1),∅
⊕V(1), (2),∅, (1, 1),∅ ⊕ 2V∅, (1, 1, 1), (1), (1),∅ ⊕ V∅, (1, 1), (1, 1, 1),∅,∅

⊕V∅, (1, 1), (2, 1),∅,∅ ⊕ 2V∅, (2, 1), (1), (1),∅
V(1), (1), (1), (1, 1),∅ ⊕ V∅, (1, 1, 1),∅, (1, 1),∅ ⊕ V∅, (1, 1), (1, 1), (1),∅

⊕V∅, (1, 1), (2), (1),∅ ⊕ V∅, (2, 1),∅, (1, 1),∅
V∅, (1, 1), (1), (1, 1),∅

.

Example B.2. Let µ = (1, 1) and ν = ∅ we will now consider the socle filtration
of the object (V ∗)µ ⊗ Vν in Tℵt for increasing values of t.
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V(1, 1),∅,∅
V(1), (1),∅
V∅, (1, 1),∅

V(1, 1),∅,∅,∅
V(1), (1),∅,∅

V(1),∅, (1),∅ ⊕ V∅, (1, 1),∅,∅
V∅, (1), (1),∅
V∅,∅, (1, 1),∅

V(1, 1),∅,∅,∅,∅
V(1), (1),∅,∅,∅

V(1),∅, (1),∅,∅ ⊕ V∅, (1, 1),∅,∅,∅
V(1),∅,∅, (1),∅ ⊕ V∅, (1), (1),∅,∅
V∅, (1),∅, (1),∅ ⊕ V∅,∅, (1, 1),∅,∅

V∅,∅, (1), (1),∅
V∅,∅,∅, (1, 1),∅

V(1, 1),∅,∅,∅,∅,∅
V(1), (1),∅,∅,∅,∅

V(1),∅, (1),∅,∅,∅ ⊕ V∅, (1, 1),∅,∅,∅,∅
V(1),∅,∅, (1),∅,∅ ⊕ V∅, (1), (1),∅,∅,∅

V(1),∅,∅,∅, (1),∅ ⊕ V∅, (1),∅, (1),∅,∅ ⊕ V∅,∅, (1, 1),∅,∅,∅
V∅, (1),∅,∅, (1),∅ ⊕ V∅,∅, (1), (1),∅,∅
V∅,∅, (1),∅, (1),∅ ⊕ V∅,∅,∅, (1, 1),∅,∅

V∅,∅,∅, (1), (1),∅
V∅,∅,∅,∅, (1, 1),∅

V(1, 1),∅,∅,∅,∅,∅,∅
V(1), (1),∅,∅,∅,∅,∅

V(1),∅, (1),∅,∅,∅,∅ ⊕ V∅, (1, 1),∅,∅,∅,∅,∅
V(1),∅,∅, (1),∅,∅,∅ ⊕ V∅, (1), (1),∅,∅,∅,∅

V(1),∅,∅,∅, (1),∅,∅ ⊕ V∅, (1),∅, (1),∅,∅,∅ ⊕ V∅,∅, (1, 1),∅,∅,∅,∅
V(1),∅,∅,∅,∅, (1),∅ ⊕ V∅, (1),∅,∅, (1),∅,∅ ⊕ V∅,∅, (1), (1),∅,∅,∅
V∅, (1),∅,∅,∅, (1),∅ ⊕ V∅,∅, (1),∅, (1),∅,∅ ⊕ V∅,∅,∅, (1, 1),∅,∅,∅

V∅,∅, (1),∅,∅, (1),∅ ⊕ V∅,∅,∅, (1), (1),∅,∅
V∅,∅,∅, (1),∅, (1),∅ ⊕ V∅,∅,∅,∅, (1, 1),∅,∅

V∅,∅,∅,∅, (1), (1),∅
V∅,∅,∅,∅,∅, (1, 1),∅

V(1, 1),∅,∅,∅,∅,∅,∅,∅
V(1), (1),∅,∅,∅,∅,∅,∅

V(1),∅, (1),∅,∅,∅,∅,∅ ⊕ V∅, (1, 1),∅,∅,∅,∅,∅,∅
V(1),∅,∅, (1),∅,∅,∅,∅ ⊕ V∅, (1), (1),∅,∅,∅,∅,∅

V(1),∅,∅,∅, (1),∅,∅,∅ ⊕ V∅, (1),∅, (1),∅,∅,∅,∅ ⊕ V∅,∅, (1, 1),∅,∅,∅,∅,∅
V(1),∅,∅,∅,∅, (1),∅,∅ ⊕ V∅, (1),∅,∅, (1),∅,∅,∅ ⊕ V∅,∅, (1), (1),∅,∅,∅,∅

V(1),∅,∅,∅,∅,∅, (1),∅ ⊕ V∅, (1),∅,∅,∅, (1),∅,∅ ⊕ V∅,∅, (1),∅, (1),∅,∅,∅ ⊕ V∅,∅,∅, (1, 1),∅,∅,∅,∅
V∅, (1),∅,∅,∅,∅, (1),∅ ⊕ V∅,∅, (1),∅,∅, (1),∅,∅ ⊕ V∅,∅,∅, (1), (1),∅,∅,∅
V∅,∅, (1),∅,∅,∅, (1),∅ ⊕ V∅,∅,∅, (1),∅, (1),∅,∅ ⊕ V∅,∅,∅,∅, (1, 1),∅,∅,∅

V∅,∅,∅, (1),∅,∅, (1),∅ ⊕ V∅,∅,∅,∅, (1), (1),∅,∅
V∅,∅,∅,∅, (1),∅, (1),∅ ⊕ V∅,∅,∅,∅,∅, (1, 1),∅,∅

V∅,∅,∅,∅,∅, (1), (1),∅
V∅,∅,∅,∅,∅,∅, (1, 1),∅

Example B.3. Let t = 4. We will now consider the case when all but one
diagram are empty. Let us pick (1, 1) to be the non-empty diagram.

V(1, 1),∅,∅,∅,∅,∅,∅ ,
V(1, 1),∅,∅,∅,∅,∅,∅
V(1), (1),∅,∅,∅,∅,∅
V∅, (1, 1),∅,∅,∅,∅,∅

,

V(1, 1),∅,∅,∅,∅,∅,∅
V(1), (1),∅,∅,∅,∅,∅

V(1),∅, (1),∅,∅,∅,∅ ⊕ V∅, (1, 1),∅,∅,∅,∅,∅
V∅, (1), (1),∅,∅,∅,∅
V∅,∅, (1, 1),∅,∅,∅,∅

,

V(1, 1),∅,∅,∅,∅,∅,∅
V(1), (1),∅,∅,∅,∅,∅

V(1),∅, (1),∅,∅,∅,∅ ⊕ V∅, (1, 1),∅,∅,∅,∅,∅
V(1),∅,∅, (1),∅,∅,∅ ⊕ V∅, (1), (1),∅,∅,∅,∅
V∅, (1),∅, (1),∅,∅,∅ ⊕ V∅,∅, (1, 1),∅,∅,∅,∅

V∅,∅, (1), (1),∅,∅,∅
V∅,∅,∅, (1, 1),∅,∅,∅

,

V(1, 1),∅,∅,∅,∅,∅,∅
V(1), (1),∅,∅,∅,∅,∅

V(1),∅, (1),∅,∅,∅,∅ ⊕ V∅, (1, 1),∅,∅,∅,∅,∅
V(1),∅,∅, (1),∅,∅,∅ ⊕ V∅, (1), (1),∅,∅,∅,∅

V(1),∅,∅,∅, (1),∅,∅ ⊕ V∅, (1),∅, (1),∅,∅,∅ ⊕ V∅,∅, (1, 1),∅,∅,∅,∅
V∅, (1),∅,∅, (1),∅,∅ ⊕ V∅,∅, (1), (1),∅,∅,∅
V∅,∅, (1),∅, (1),∅,∅ ⊕ V∅,∅,∅, (1, 1),∅,∅,∅

V∅,∅,∅, (1), (1),∅,∅
V∅,∅,∅,∅, (1, 1),∅,∅

,
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V(1, 1),∅,∅,∅,∅,∅,∅
V(1), (1),∅,∅,∅,∅,∅

V(1),∅, (1),∅,∅,∅,∅ ⊕ V∅, (1, 1),∅,∅,∅,∅,∅
V(1),∅,∅, (1),∅,∅,∅ ⊕ V∅, (1), (1),∅,∅,∅,∅

V(1),∅,∅,∅, (1),∅,∅ ⊕ V∅, (1),∅, (1),∅,∅,∅ ⊕ V∅,∅, (1, 1),∅,∅,∅,∅
V(1),∅,∅,∅,∅, (1),∅ ⊕ V∅, (1),∅,∅, (1),∅,∅ ⊕ V∅,∅, (1), (1),∅,∅,∅
V∅, (1),∅,∅,∅, (1),∅ ⊕ V∅,∅, (1),∅, (1),∅,∅ ⊕ V∅,∅,∅, (1, 1),∅,∅,∅

V∅,∅, (1),∅,∅, (1),∅ ⊕ V∅,∅,∅, (1), (1),∅,∅
V∅,∅,∅, (1),∅, (1),∅ ⊕ V∅,∅,∅,∅, (1, 1),∅,∅

V∅,∅,∅,∅, (1), (1),∅
V∅,∅,∅,∅,∅, (1, 1),∅

,

V∅,∅,∅,∅,∅,∅, (1, 1) .
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