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Abstract.
Let g be a complex finite-dimensional semisimple Lie algebra and k be any sl(2)-

subalgebra of g. In this paper we prove an earlier conjecture by Penkov and Zuckerman
claiming that the first derived Zuckerman functor provides an equivalence between a trun-
cation of a thick parabolic category O for g and a truncation of the category of admissible
(g, k)−modules. This latter truncated category consists of admissible (g, k)−modules with
sufficiently large minimal k-type. We construct an explicit functor inverse to the Zuckerman
functor in this setting. As a corollary we obtain an estimate for the global injective dimen-
sion of the inductive completion of the truncated category of admissible (g, k)−modules.
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1. Introduction

Let g be a complex finite-dimensional semisimple Lie algebra and k ⊆ g be
a reductive in g subalgebra. An admissible (g, k)-module is a g-module on which
k acts semisimply, locally finitely, and with finite multiplicities. The study of
the category of admissible (g, k)-modules is a main objective of the theory of
generalized Harish-Chandra modules, see [PZ1].

In the case of a general reductive in g subalgebra k, a central result of the
existing theory of generalized Harish-Chandra modules is the classification of
simple admissible (g, k)-modules with generic minimal k-type [PZ1]. Other notable
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results for a general k are established in [PSZ], [PS], [PZ2], and [PZ4].
There are three special cases for k in which more detailed information on admis-

sible (g, k)-modules is available. First of all, this is the case when k is a symmetric
subalgebra of g, i.e., k coincides with the fixed points of an involution on g. This
case, the theory of Harish-Chandra modules, is in the origin of the studies of
generalized Harish-Chandra modules. There is an extensive literature on Harish-
Chandra modules, see for instance [V], [KV], and references therein. (In particular,
some remarks on the history of Harish-Chandra modules can be found in [KV].)
Another case which has drawn considerable attention is the case when k is a
Cartan subalgebra of g, see for instance [BL], [BBL], [F], [Fe], [M], [GS1], [GS2],
and references therein. In both these cases, a classification of simple admissible
(g, k)-modules is available and there has been progress in the study of the category
of admissible (g, k)-modules.

A third natural choice for k is to let k be isomorphic to sl(2). This case “inter-
polates” between the above two cases and is a natural experimentation ground
when aiming at the case of a general k. For k ' sl(2), there is no classification of
simple admissible (g, k)-modules for a general g and an arbitrary sl(2)-subalgebra
k ⊂ g; however, for k ' sl(2) the partial classification of [PZ1] can be carried out un-
der much less severe restrictions on the minimal k-type: the details are explained
in [PZ3] and [PZ4]. Since the k-types are parametrized here simply by nonnegative
integers, one can talk about a truncated category of admissible (g, k)-modules: it
consists of finite-length admissible modules whose minimal k-type is larger than
or equal to a bound Λ depending on the pair (g, k). The simple objects of this
truncated category have been classified in [PZ3] (see also [PZ4]).

The purpose of this paper is to describe the above truncated category of ad-
missible (g, k)-modules for k = sl(2) by proving that it is equivalent to an explicit
full subcategory of a thick parabolic category O for g. In fact, the objects of the
truncated category of (g, k)-modules are constructed by simply applying the Zuck-
erman (first derived) functor Γ1 to a subcategory of a thick parabolic category O.
It was conjectured in [PZ3] that the functor Γ1 yields an equivalence of these
categories, and here we prove this conjecture. We construct a left adjoint to Γ1

defined on all finitely generated admissible (g, k)-modules, and then show that,
when restricted to the truncated category of admissible (g, k)-modules, this functor
is an inverse to the appropriately restricted functor Γ1.

The history of
(
g, sl(2)

)
-modules goes back to the 1940’s: a classical example here

is the Lorentz pair
(
sl(2) ⊕ sl(2),diagonal sl(2)

)
studied by Harish-Chandra [HC],

Gelfand-Minlos-Shapiro [GMS], and others. Explaining how exactly the theorem
proved in this paper fits in the 70-year history of the topic is a task so complex
that we do not really attempt to tackle it. Nonetheless, we would like to mention
that in this subject many equivalences of categories have been established; some
relate algebraic categories of g-modules to geometric categories of sheaves, others
relate algebraic categories of g-modules to other algebraic categories of g-modules.
The equivalence we establish is clearly of the second kind and could be seen
as an analogue of Bernstein-Gelfand’s equivalence of a certain subcategory of
Harish-Chandra bimodules (or (g ⊕ g,diagonal g)-modules) with category O. An
extension of the geometric techniques introduced by Beilinson and Bernstein from
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the theory of Harish-Chandra modules to generalized Harish-Chandra modules
is not straightforward (see some results in this direction in [PSZ], [PS], and [Pe]),
and fitting the main result of the present paper into a geometric contex is an
open problem. We show, however, that the algebraic methods from the 1970’s
(where, in addition to the third author’s contribution, we would like to mention
the important contributions by Enright-Varadarajan and Enright), together with
the more recent ideas of [PZ1], [PZ3], and [PZ4] (which are building up on Vogan’s
work), are well suited to yield concrete results about the structure of categories of
generalized Harish-Chandra modules.

The paper is structured as follows. We state the main result in Section 3. In
particular, we introduce the functor B1 which will then be shown to be inverse to
the functor Γ1. In Section 4 we present some results which deal mostly with the
structure of a semi-thick parabolic category O we work with. Section 5 contains
the proof of the adjointness of Γ1 and B1. The proof of the fact that Γ1 and B1
are mutually inverse equivalences of categories is carried out in steps throughout
Sections 6,7 and 8. In Section 9 we show that for some blocks of the semi-thick
parabolic category O, the truncation condition is vacuous, which then implies
a stronger equivalence of categories for certain central characters. Finally, in
Section 10 we provide an application of our equivalence of categories by proving
an estimate for the global dimension of the truncated category of admissible
(g, k)-modules via a correponding estimate for the truncated semi-thick parabolic
category O.
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Finally, all three authors acknowledge the hospitality of the American Institute
for Mathematics in San Jose, where the results of the present paper were a subject
of discussion in a SQuaRE.

2. Notations and Conventions

The ground field is C. The superscript ∗ indicates dual spaces. By g we will
denote a fixed finite-dimensional semisimple Lie algebra. We fix also an sl(2)-
subalgebra k ⊆ g. By k⊥ we denote the orthogonal (with respect to the Killing
form) complement of k in g. The classification of all possible subalgebras k up to
conjugacy is equivalent to describing all nilpotent orbits in g, and goes back to
Malcev and Dynkin (see [D] and the references therein). By a k-type we mean a
simple finite-dimensional sl(2)-module. A simple finite-dimensional sl(2)-module
with highest weight µ ∈ Z≥0 is denoted by Vk(µ). By Soc M (respectively, Top M),
we denote the socle (respectively, the top) of a g-module M of finite length. Soc M
is the maximal semisimple submodule of M, and Top M is the maximal semisimple
quotient of M. By [A : B] we denote the multiplicity as a subquotient of a simple
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module B in a module A. Resq stands for the restriction of a module M to a
subalgebra q, and M⊕t stands for the direct sum of t copies of M. The sign ⊃+
denotes semidirect sum of Lie algebras (the round side of the sign points to the
ideal).

3. Statement of Main Result

The main result of this paper states that certain categories of g-modules are
equivalent via explicit mutually inverse functors. In this section we define these
categories and functors.

Recall that g is a finite-dimensional semisimple Lie algebra and k is an arbitrary
sl(2)-subalgebra of g. Fix a standard basis

{
e, f , h = [e, f ]

}
of k and note that h is a

semisimple element of g. Let t = Ch be the toral subalgebra of g spanned by h. For
any α ∈ t∗ let gα denote the subspace of g of weight α:

gα = {g ∈ g | [t, g] = α(t)g ∀t ∈ t}.

Observe that if gα , 0 for some α ∈ t∗ then α(h) ∈ Z.
Define the parabolic subalgebra p of g by setting

p := C(t)⊃+




⊕

α∈t∗
α(h)>0

gα



,

where C(t) is the centralizer of h in g. By p̄ we denote the opposite parabolic
subalgebra

p̄ = C(t)⊃+




⊕

α∈t∗
α(h)<0

gα



.

We also set
n :=

⊕

α∈t∗
α(h)>0

gα.

Let Cp̄,t be the category of finite-length g-modules which are p̄-locally finite, t-
semisimple, and t-integral (i.e., h acts with integer eigenvalues). Informally, Cp̄,t is
a “semi-thick” (“thick in all directions except the t-direction”) parabolic category
O. By Cp̄,t,n for n ∈ Z≥0, we denote the n-truncated category Cp̄,t, i.e., the full
subcategory of Cp̄,t consisting of objects all t-weights µ of which satisfy µ(h) ≥ n.
We also assign an integer Λ to the pair (g, k): we set Λ = 1

2 (λ1 + λ2), where λ1
(respectively, λ2) is the maximum (resp., submaximum) weight of t in g/k. Here
and below, we identify t-weights with integers via the correspondence µ{ µ(h).

Denote by Ck the category of admissible (g, k)-modules of finite length, i.e., the
category of g-modules M of finite length on which k acts locally finitely and such
that dim Homk(L,M) < ∞ for any k-type L. By Ck,n for n ∈ Z≥0, we denote the full



ADMISSIBLE
(
g, sl(2)

)
-MODULES 5

subcategory of Ck consisting of g-modules M such that Homk(L,M) , 0 implies
dim L > n.

We now describe two functors: Γk,t and Bk,t. The functor Γk,t is the functor of
k-finite vectors in a (g, t)-module. That is, if M is a (g, t)-module then

Γk,tM :=
{
m ∈M

∣∣∣ dim U(k) ·m < ∞
}
,

and Γk,tM is a g-submodule of M. It is well known (and easy to see) that Γk,t is a
left-exact functor. In what follows we set Γ := Γk,t and denote the right derived
functors RiΓk,t by Γi. The functor Γi is known as the i-th Zuckerman functor. By
definition, Γi is a functor from (g, t)-mod to (g, k)-mod. It is proved in [PZ3] that
the restriction of Γi to Cp̄,t,n+2 is a well-defined functor from Cp̄,t,n+2 to Ck,n. We
denote this functor also by Γi.

Next, we define a functor

Bk,t : (g, t)fg-mod Cp̄,t,n+2 ,

where (g, t)fg-mod stands for the category of finitely generated (g, t)-modules. For
this we need to fix some further notation.

Throughout the rest of the paper, θ : ZU(g) → Cdenotes a fixed central character.
If M is a g-module, then Mθ stands for the vectors in M on which z − θ(z) acts
locally nilpotently for any z ∈ ZU(g). By ` we denote a variable positive integer.
We also fix a Cartan subalgebra h of g such that h ∈ h. Then h is also a Cartan
subalgebra of the reductive subalgebra C(t) of g.

Let Cθ,`
p̄,t,n+2 be the subcategory of Cp̄,t,n+2 consisting of modules M with M = Mθ

and such that h acts via Jordan blocks of size at most `. We note that Cθ,`
p̄,t,n+2 is a

finite-length category which has an injective cogenerator Iθ,`n+2. This fact is proved
in Lemma 6 below. We set

(
Bk,t

)θ,`
X := X

/



⋂

ϕ∈Homg(X, Iθ,`n+2)
kerϕ




for X ∈ (g, t)fg-mod. Lemma 14 below claims that
(
Bk,t

)θ,`
X ∈ Cθ,`

p̄,t,n+2, which shows

that
(
Bk,t

)θ,`
X is the “largest quotient” of X lying in Cθ,`

p̄,t,n+2.
Next, we notice that there is a canonical surjective homomorphism

(
Bk,t

)θ,`
X�

(
Bk,t

)θ,`−1
X ,

i.e., that
{(

Bk,t
)θ,`

X
}

is an inverse system of p̄-locally finite (g, t)-modules. We set

(
Bk,t

)θ
X := lim←−

(
Bk,t

)θ,`
X .
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It is easy to see that
(
Bk,t

)θ
is a right-exact functor from (g, t)fg-mod to g-mod,

and we denote by
(
Bk,t

)θ
j

its left derived functors, that is
(
Bk,t

)θ
j

X = L j

(
Bk,t

)θ
X for

X ∈ (g, t)fg-mod.
Let Cθ

k,n and Cθ
p̄,t,n+2 be the respective subcategories of Ck,n and Cp̄,t,n+2 consisting

of g-modules M with M = Mθ. Corollary 18 below states that in fact
(
Bk,t

)θ
j

is a

well-defined functor from Cθ
k,n to Cθ

p̄,t,n+2. As k and t are fixed, in what follows

we set Bθ,` :=
(
Bk,t

)θ,`
, Bθ :=

(
Bk,t

)θ
, and Bθj :=

(
Bk,t

)θ
j
. By the same letters we also

denote the restrictions of these functors to the category Cθ
k,n.

The main result of this paper is the following:

Theorem 1. For X ∈ Ck,n, let B jX :=
⊕

θ

Bθj X. Then, for any n ≥ Λ, the functors

Γ1 : Cp̄,t,n+2 Ck,n

and
B1 : Ck,n Cp̄,t,n+2

are mutually inverse equivalences of categories.

Remark 1. Let us note that for the Lorentz pair
(
sl(2) ⊕ sl(2),diagonal sl(2)

)
a de-

scription of the category Ck was given by I. Gelfand and V. Ponomarev in [GP]
already in 1967.

4. Preparatory Results

We start with two general results.

Proposition 2. Let nk := n ∩ k (dim nk = 1).

a) For any (g, k)-module X there exists a singly graded spectral sequence converging to
Hi(n,X) such that its E1-term has the form

E1
i = H0(nk,X) ⊗Λi(n ∩ k⊥) ⊕H1(nk,X) ⊗Λi−1(n ∩ k⊥). (1)

b) If X ∈ Ck,n for n ≥ 0, then the n-homology H•(n,X) is finite dimensional.

Proof. a) The statement follows from Proposition 3.1 in [PZ3] and the formula for
the singly graded E1-term right after Proposition 3.1. Formula (1) is a direct
cosequence of the above formula in [PZ3] if one takes into account that in our
case k is isomorphic to sl(2). In fact, the statement holds more generally for any
g-module X but the assumption that X is a (g, k)-module is sufficient for us.

b) This follows from the more general statement of Proposition 3.5 in [PZ3].
�
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Let M = ⊕p∈CMp be an admissible (g, t)-module where Mp is the t-weight space
in M of weight p: by definition, hm = pm for m ∈ Mp. Set M∗

t
:= ⊕p∈CM∗p. Then

M∗
t

is a well-defined admissible (g, t)-module. Similarly let X = ⊕µ∈Z≥0 Ṽk(µ) be an
admissible (g, k)-module. Here Ṽk(µ) stands for the Vk(µ)-isotypic component in
X. Then X∗

k
:= ⊕µ∈Z≥0 Ṽk(µ)∗ is a well-defined admissible (g, k)-module. Moreover,

(•)∗
t

and (•)∗
k

are well-defined contravariant functors (in fact antiequivalences) on
the respective categories of admissible (g, t)-modules and (g, k)-modules.

In what follows we will use the composition of the functors (•)∗
t

and (•)∗
k

with
the twist by the Cartan involution of g which acts as − id on h. The so obtained
new functors are denoted respectively by (·)∨

t
and (·)∨

k
. These functors preserve

the respective t- and k-characters of the modules.
A duality theorem proved in [EW] implies the following:

Proposition 3. For any admissible (g, t)-module M there is a natural isomorphism of
admissible (g, k)-modules

(ΓiM)∨k ' Γ2−i(M∨t ).

In the remainder of the paper E stands for a finite-dimensional simple C(t)-
module on which h acts via a natural number |E|. Often, we consider E as a
p̄-module by setting n̄ · E := 0. In this case we set also

M(E) := U(g) ⊗
U(p̄)

E

and let L(E) be the unique simple quotient of M(E). Then L(E)∨ ' L(E), and M(E)∨
is an indecomposable object of Cp̄,t with Soc M(E)∨ = L(E)∨ ' L(E).

The following proposition is a summary of preliminary results concerning the
specific categories we study in this paper.

Proposition 4. Let n ≥ 0. Then

a) Γ1 : Cp̄,t,n+2 Ck,n is a faithful exact functor;
b) under the assumption that n ≥ Λ, the functor from a) maps a simple object to a simple

object and induces a bijection on the isomorphism classes of simple objects in Cp̄,t,n+2
and inCk,n, respectively. Moreover, the simple (g, k)-module Γ1L(E) has minimal k-type
|E| − 2.

c) under the assumption that n ≥ Λ, Γ1L(E) and Top Γ1M(E) are isomorphic simple
(g, k)-modules with minimal k-type |E| − 2, and the isotypic components of the minimal
k-types of Γ1M(E) and Γ1L(E) are isomorphic.

Proof. Parts a) and b) follow directly from the results of [PZ3], see Proposition 7.8
and Corollary 6.4. Part c) is a consequence of the above mentioned results and the
fact that the functor Γ1 commutes with (•)∨ according to Proposition 3. �

Remark 2. Since Γ1 preserves central characters, Proposition 4, b) implies in partic-
ular the existence of a bijection between the isomorphism classes of simple objects
in Cθ

p̄,t,n+2 and Cθ
k,n for n ≥ Λ. Without the condition n ≥ Λ, no such bijection exists

in general. For instance, if (g, k) is the Lorentz pair and θ is the central character of
a finite-dimensional g-module of the form V � V for a simple finite-dimensional
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sl(2)-module V, then Cθ
p̄,t,2 has 3 pairwise nonisomorphic simple objects while Cθ

k,0
has two nonisomorphic simple objects.

The rest of the section is devoted to results on p̄-locally finite modules.
By ß we denote the derived subalgebra of the reductive Lie algebra C(t), and

by c the center of C(t). Then c ⊂ h. Let FC(t),t be the category of locally finite
C(t)-modules semisimple over t with integral h-eigenvalues. By F `

C(t),t we denote
the subcategory of FC(t),t consisiting of modules on which c acts via Jordan blocks
of size less than or equal to `. Clearly

FC(t),t = lim−→ F
`

C(t),t.

Note that (•)∨ is also a well-defined functor on the category F `
C(t),t (but not on

FC(t),t).

Lemma 5. Let S be a simple finite-dimensional ß-module and λ ∈ c∗ be a t-integral
weight. Define E as S ⊗ Cλ where Cλ is a one-dimensional c-module with weight λ. Let
I`λ denote the ideal in S(c) generated by h − λ(h) and (z − λ(z))` for all z ∈ c. Then
a) Every simple object inFC(t),t is isomorphic to E for some choice of S andλ. Furthermore,

E∨ ' E.
b) E` := E ⊗ (S(c)/I`λ) is a projective cover of E and

(
E`

)∨
is an injective hull of E in

F `
C(t),t.

c) Ē := lim−→
(
E`

)∨
is an injective hull of E in FC(t),t.

Proof. (a) is obvious. To show (b), note that S is projective in the category of locally
finite ß-modules, and that E` is the maximal quotient of the induced module
U(C(t)) ⊗U(ß) S lying in in F `

C(t),t. Then (c) is clearly a corollary of (b). �

Recall that, for any two Lie algebras a′ ⊂ a, the functor

proaa′ : a′-mod a-mod

is defined as
proaa′ K′ = HomU(a′)

(
U(a),K′

)

for an a′-module K′. In addition, if a′′ is an abelian Lie subalgebra of a, we have
the functor

Γa′′ : a-mod a-mod

of a′′-weight vectors defined as

Γa′′K =
⊕

α∈(a′′)∗
Kα ,

where K ∈ a-mod and

Kα =
{
k ∈ K | a′′k = α(a′′) k for all a′′ ∈ a′′

}
.

The following generalizes basic results in [BGG].
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Lemma 6. For any ` > 0 and any n ≥ 0, the abelian category Cθ,`
p̄,t,n+2 has a unique, up

to isomorphism, minimal injective cogenerator Iθ,`n+2. Moreover, the t-weight spaces of Iθ,`n+2
are finite dimensional.

Proof. We denote by F `
p,t the category of p-modules whose restrictions to C(t)

belong to F `
C(t),t, and by F `

p,t,n+2 the subcategory consisting of modules whose t-
weights are bounded from below by n + 2. Let E be as in Lemma 5. Endow E with
a p-module structure by letting n act trivially on E, and consider the p-module

ΓtpropC(t)

((
E`

)∨)
= ΓtHomU(C(t))

(
U(p),

(
E`

)∨)
. (2)

Recall that propC(t)(·) preserves injectivity and that the functor of t-weight vec-
tors Γt is right adjoint to the inclusion of the category of p-modules semisimple
over t into the category of all p-modules. Therefore Γt also preserves injectivity,
and the p-module (2) is injective in F `

p,t. It is straightforward to verify that this
module is an injective hull of E in F `

p,t. Consequently, the truncated submodule(
ΓtpropC(t)

((
E`

)∨))

≥n+2
of (2), spanned by all t-weight spaces with weights greater

or equal than n + 2, is an injective hull of E in F `
p,t,n+2.

Set

J`(E) :=
[
Γtprogp

((
ΓtpropC(t)

((
E`

)∨))

≥n+2

)]θ
.

Then, by a similar argument, J`(E) is injective in Cθ,`
p̄,t,n+2 and we have an em-

bedding of g-modules L(E) ↪→ J`(E) induced by the embedding of p-modules

E ↪→
(
ΓtpropC(t)

((
E`

)∨))

≥n+2
. The p-module

(
ΓtpropC(t)

((
E`

)∨))

≥n+2
is finite dimen-

sional. Moreover, it is easy to check that the g-module J`(E) has finite-dimensional
t-weight spaces.

Note that, up to isomorphisms, Cθ,`
p̄,t,n+2 has finitely many simple objects L(E1),

. . . , L(Er). Each of them has a unique, up to isomorphism, injective hull I`
(
E j

)

which is a submodule of J`(E j). Then Iθ,`n+2 is the direct sum
⊕r

j=1 I`
(
E j

)
. �

Corollary 7. Let Aθ,`
n+2 := Endg Iθ,`n+2. Then Cθ,`

p̄,t,n+2 is equivalent to the category of finite-
dimensional Aθ,`

n+2-modules.

Let Cθ,ind
p̄,t,n+2 be the category of inductive limits of objects from Cθ,`

p̄,t,n+2.

Corollary 8. For any n, the category Cθ,ind
p̄,t,n+2 has a unique, up to isomorphism, minimal

injective cogenerator Iθn+2. Moreover, Iθn+2 = lim−→ Iθ,`n+2. In particular, the category Cθ,ind
p̄,t,n+2

has enough injectives.

In fact, if I is any injective object in Cθ,ind
p̄,t,n+2, then I is a direct limit, lim−→ I`, for

injective objects I` ∈ Cθ,`
p̄,t,n+2.

Recall the definition of Ē from Lemma 5, and let

W(E) := Γtprogp(Ē).
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Lemma 9. LetFp̄,t be the category of locally finite p̄-modules such that their restrictions to
C(t) lie inFC(t),t. Then Resp̄W(E) is an injective hull of E inFp̄,t. Moreover, ResC(t) W(E)
is isomorphic to a finite direct sum

⊕
α F̄α for some finite-dimensional irreducible C(t)-

modules Fα.

Proof. By the Poincare–Birkhoff–Witt Theorem we have an isomorphism

Resp̄W(E) ' ΓtHomC(t)(U(p̄), Ē) = Γtprop̄C(t)Ē.

Since Ē is an injective module in FC(t),t, Γtprop̄C(t)Ē is an injective module in Fp̄,t.
Hence Resp̄W(E) is an injective module in Fp̄,t.

Let S(E) be the socle of Resp̄W(E) as a module over C(t). Since ResC(t) W(E) is
locally C(t)-finite, it is an essential extension of S(E), and therefore ResC(t) W(E) is
by definition an injective hull of S(E).

Let S(E) =
⊕

α Fα for some finite-dimensional irreducible C(t)-modules Fα. We
now prove that ResC(t) W(E) '⊕

α F̄α. For this it is enough to show that the C(t)-
module T(E) :=

⊕
α F̄α is injective as Soc T(E) = S(E), T(E) is an essential extension

of S(E), and any two injective hulls of S(E) are isomorphic. Finally, the injectivity
of T(E) follows directly from the left Noetherian property of U

(
C(t)

)
since any

direct sum of injective modules over a left Noetherian algebra is injective. �

We define an object M ∈ Cind
p̄,t to admit a parabolic co-Verma filtration if there exists

a finite filtration
0 = M0 ⊂M1 ⊂ · · · ⊂Mt = M

whose successive quotients Mi+1/Mi are isomorphic to W(Ei) for simple C(t)-
modules E1, . . . ,Et. In what follows we say simply “co-Verma filtration”.

Lemma 10. Let M be an object of Cind
p̄,t . Then M admits a co-Verma filtration if and only

if Resp̄M is injective in Fp̄,t with socle of finite length.

Proof. If M admits a co-Verma filtration, then Resp̄M is a direct sum of modules
of the form W(F), and by Lemma 9 Resp̄M is injective in Fp̄,t with p̄-socle of finite
length.

To prove the opposite assertion, choose a simple p̄-submodule E ⊂ Resp̄M with
minimal |E|. The existence of E follows from the fact that the socle of Resp̄M has
finite length. Let k be the multiplicity of E in Soc Resp̄M. Then we have a surjective
morphism ϕ : RespM → Ē⊕k of p-modules (ϕ|Ē⊗k being the identity map) which
induces a morphism ϕ̃ : M→W(E)⊕k of g-modules by Frobenius reciprocity. Since
Resp̄M is injective in Fp̄,t, and since Resp̄ is p̄-locally finite, we have that Resp̄M is
an injective hull of its socle, i.e.,

Resp̄M ' Resp̄


W(E)⊕k ⊕

⊕

|F|>|E|
W(F)



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by Lemma 9. Moreover, Homp̄
(
Resp̄W(F),Resp̄W(E)

)
= 0 if |F| > |E|. Therefore

ϕ̃

(
Resp̄

(⊕
|F|>|E|W(F)

))
= 0, and

ϕ̃
∣∣∣
Resp̄W(E)⊕k : Resp̄W(E)⊕k → Resp̄W(E)⊕k

is an isomorphism of p̄-modules since it is induced by the identity map ϕ|Ē⊕k :
Ē⊕k → Ē⊕k.

Set Q := ker ϕ̃. Then Resp̄Q is isomorphic to Resp̄
(⊕

|F|>|E|W(F)
)
, and hence Q

satisfies all conditions of the lemma. So we can finish the proof by induction on
the length of the socle of Resp̄M. �

Corollary 11. Let R = M⊕N for some M,N ∈ Cθ,ind
p̄,t . Suppose that R admits a co-Verma

filtration. Then M and N also admit co-Verma filtrations.

Proof. A direct summand of an injective module is injective, so the statement
follows from Lemma 10. �

Lemma 12. Let I(E) be an injective hull of L(E) in Cθ,ind
p̄,t,n+2. Then I(E)/W(E) admits a

co-Verma filtration with successive quotients isomorphic to W(D) for |D| < |E|.

Proof. Let J(E) :=
[
Γtprogp

((
ΓtpropC(t)

(
Ē
))
≥n+2

)]θ
. The p-module Γt

((
propC(t)(Ē)

)
≥n+2

)

has a finite filtration with successive quotients D̄ such that |D| ≤ |E|. Moreover,

the quotient
(
Γt

((
propC(t)(Ē)

)
≥n+2

) )
/Ē has a filtration with successive quotients D̄

for |D| < |E|. Therefore J(E)/W(E) admits a co-Verma filtration with successive
quotients W(D) such that |D| < |E|.

Similarly as in the proof of Lemma 6, I(E) is a direct summand of J(E). Therefore,
by Lemma 11, I(E) has a filtration as desired. �

Corollary 13. Iθn+2 admits a co-Verma filtration.

5. Adjointness of B1 and Γ1

In this section, n is an arbitrary nonnegative integer.

Lemma 14. For any ` ∈ Z>0, Bθ,` is a right-exact functor from (g, t)fg-mod into Cθ,`
p̄,t,n+2

(in particular, Bθ,`X has finite length for X ∈ (g, t)fg-mod).

Proof. Fix X ∈ (g, t)fg-mod. Then Homg
(
X, Iθ,`n+2

)
is finite dimensional. This follows

from the fact that the t-weight spaces of Iθ,` are finite dimensional. As a conse-
quence, Bθ,`X is isomorphic to a submodule of a finite direct sum of copies of Iθ,`n+2.
Since Iθ,`n+2 has finite length, Bθ,`X also has finite length, and is an object of Cθ,`

p̄,t,n+2.
The fact that Bθ,` is right-exact follows from the observation that Bθ,` is left

adjoint to the inclusion functor Cθ,`
p̄,t,n+2 (g, t)fg-mod, i.e.,

HomCθ,`
p̄,t,n+2

(
Bθ,`X,M

)
' Homg,t(X,M)
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for any X ∈ (g, t)fg-mod and M ∈ Cθ,`
p̄,t,n+2. Indeed, a left adjoint to a left-exact

functor is right-exact. �

Next we need to recall the Mittag-Leffler principle. Let K• be a complex which
is the limit of an inverse system of morphisms of complexes Kl+1• → Kl• for l ∈ Z≥0.
Then for each l and j the images of H j(Kl+l′• ) in H j(Kl•) for l′ ≥ 1 form a descending
chain of subspaces. The Mittag-Leffler principle asserts that if, for a fixed j, the
filtration in H j−1(Kl•) stabilizes for every l, then H j(K•) is isomorphic to the inverse
limit of H j(Kl•), see for example [W], Theorem 3.5.8.

Lemma 15. For any X ∈ (g, t)fg-mod and j ∈ Z≥0, we have

Bθj X ' lim←− Bθ,`j X ,

where Bθ,`j is the j-th left derived functor of Bθ,`.

Proof. Let P• be a projective resolution of X in the category (g, t)fg-mod. By defini-
tion, Bθ•X is the homology of the complex BθP•, and Bθ,`• X is the homology of the
complex Bθ,`P•. Moreover,

BθP• = lim←− Bθ,`P• .

By Lemma 14, for every `, j and q, Bθ,`j Xq has finite length as a g-module. So,
Lemma 15 follows from the Mittag-Leffler Principle. �

If
{
A`

}
is an inverse system of objects from Cθ,`

p̄,t for variable ` → ∞, we set (by
analogy with the continuous dual of an inverse limit of topological spaces)

Homcont
g

(
lim←− A`,M

)
:= lim−→ Homg

(
A`,M

)

for any g-module M.

Proposition 16. Let I be injective in Cθ,ind
p̄,t,n+2. Then, for any finitely generated (g, t)-

module X and for any j ∈ Z≥0,

Homcont
g

(
Bθj X, I

)
' Ext j

g,t
(X, I) .

Proof. Let P• be as in the proof of Lemma 15. Then

Homcont
g

(
Bθj X, I

)
= Homcont

g

(
H j(BθP•), I

)
= Homcont

g

(
H j

(
lim←− Bθ,`P•

)
, I
)
.

Since
H j

(
lim←− Bθ,`P•

)
' lim←− H j

(
Bθ,`P•

)
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by the Mittag-Leffler Principle, we have

Homcont
g

(
H j

(
lim←− Bθ,`P•

)
, I
)
' Homcont

g

(
lim←− H j

(
Bθ,`P•

)
, I
)

= lim−→ Homg
(
H j

(
Bθ,`P•

)
, I
)
.

Next, the injectivity of I in Cθ,ind
p̄,t,n+2 implies

Homg
(
H j

(
Bθ,`P•

)
, I
)
' H j

(
Homg

(
Bθ,`P•, I

) )
.

Consequently,

lim−→ Homg
(
H j

(
Bθ,`P•

)
, I
)
' lim−→ H j

(
Homg

(
Bθ,`P•, I

) )
,

and since homology commutes with direct limits,

lim−→ H j

(
Homg

(
Bθ,`P•, I

) )
' H j

(
lim−→ Homg

(
Bθ,`P•, I

) )
. (3)

Recalling that I = lim−→ I`, we notice that

Homg
(
Bθ,`P•, I

)
= Homg

(
Bθ,`P•, I`

)
= Homg

(
P•, I`

)
. (4)

Furthermore, since P• is finitely generated,

lim−→ Homg
(
P•, I`

)
' Homg (P•, I) . (5)

Therefore, (3), (4), and (5) yield

lim−→ H j

(
Homg

(
Bθ,`P•, I

) )
' H j

(
Homg (P•, I)

)
.

Since H j

(
Homg (P•, I)

)
= Ext j

g,t
(X, I), we obtain

Homcont
g

(
Bθj X, I

)
' Ext j

g,t
(X, I)

as desired. �

Recall that Iθn+2 is an injective cogenerator of the category Cθ,ind
p̄,t,n+2.

Proposition 17. For any X ∈ Ck,n and any j ≥ 0, Ext j
g,t

(
X, Iθn+2

)
is finite dimensional.

Proof. By Lemma 12, it suffices to show that dim Ext j
g,t

(
X,W(E)

)
< ∞ for any E

with W(E) ∈ Cθ,ind
p̄,t,n+2. Shapiro’s Lemma yields

Ext j
g,t

(
X,W(E)

)
= Ext j

g,t

(
X,ΓtprogpĒ

)
' Ext j

p,t

(
X, Ē

)
.

Since by the injectivity of Ē as a C(t)-module we have Ext j
p,t

(
X, Ē

) ' HomC(t)

(
H j(n,X), Ē

)
,

we conclude that

Ext j
g,t

(
X,W(E)

)
' HomC(t)

(
H j(n,X), Ē

)
. (6)

Now the statement follows from the finite-dimensionality of H j(n,X), see Propo-
sition 2, b). �
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Corollary 18. For X ∈ Ck,n and any j ≥ 0, we have B jX ∈ Cp̄,t,n+2.

Proof. By Lemma 14, Homg
(
Bθ,`j X, Iθn+2

)
is finite dimensional for any `. By Proposi-

tions 16 and 17, Homcont
g

(
Bθj X, Iθn+2

)
= lim−→ Homg

(
Bθ,`j X, Iθn+2

)
is finite dimensional.

By the definition of the direct limit functor, we have, for sufficiently large s,

Homg
(
Bθ,sj X, Iθn+2

)
' Homg

(
Bθ,s+1

j X, Iθn+2

)

under the g-module mapαs : Bθ,s+1
j X→ Bθ,sj X. Since Iθn+2 is an injective cogenerator

for the category Cθ,ind
p̄,t,n+2, we conclude that the map αs is an isomorphism for

sufficiently large s.
By Lemma 15 and the definition of an inverse limit of functors, we conclude

that Bθj X ' Bθ,sj X for large enough s. Since Bθ
′

j X , 0 for only finitely many θ′, B jX
has finite length, or equivalently B jX ∈ Cp̄,t,n+2. �

Corollary 19. For any X ∈ Ck,n and any injective object I ∈ Cθ,ind
p̄,t,n+2,

Homcont
g

(
Bθj X, I

)
= Homg

(
Bθj X, I

)
.

Proof. This follows from the isomorphism Bθj X ' Bθ,sj X for large enough s. �

Proposition 20. For any X ∈ Ck,n and M ∈ Cp̄,t,n+2,

Homg (B1X,M) ' Homg
(
X,Γ1M

)
, (7)

so B1 : Ck,n Cp̄,t,n+2 and Γ1 : Cp̄,t,n+2 Ck,n are adjoint functors.

Proof. It clearly suffices to prove (7) for X ∈ Cθ
k,n and M ∈ Cθ

p̄,t,n+2. By Proposition
7.9 in [PZ3],

Homg
(
X,Γ1I

)
' Ext1

g,t(X, I) (8)

for any injective object I ∈ Cθ,ind
p̄,t,n+2. By Proposition 16 and Corollary 19,

Ext1
g,t(X, I) ' Homg (B1X, I) . (9)

Consider a part of an injective resolution of M in Cθ,ind
p̄,t , 0 → M → I0 → I1.

Since Γ1 is an exact functor (Proposition 4), the following sequence is also exact:
0→ Γ1M→ Γ1I0 → Γ1I1. Next, applying Homg(X, •), we obtain an exact sequence

0→ Homg
(
X,Γ1M

)
→ Homg

(
X,Γ1I0

)
→ Homg

(
X,Γ1I1

)
.

By (8) and (9), we have a diagram

0 Homg
(
X,Γ1M

)
Homg

(
X,Γ1I0

)
Homg

(
X,Γ1I1

)

Homg (B1X, I0) Homg (B1X, I1)

ϕ

≃ ≃
ψ
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which is commutative as the identifications

Homg
(
X,Γ1I

)
' Ext1

g,t(X, I) = Homg (B1X, I)

are functorial in I. Since Homg (B1X, •) is left-exact, we conclude that

kerψ ' Homg (B1X,M) .

Finally, kerϕ ' kerψ, and we are done. �

Corollary 21. B1 : Ck,n Cp̄,t,n+2 is a right-exact functor.

Proof. This is a direct consequence of the fact that B1 is a left adjoint functor. �

6. B1 is a bijection on isomorphism classes of simple modules in Ck,n and
Cp̄,t,n+2.

As stated in Proposition 4, for n ≥ Λ the functor Γ1 induces a bijection between
the sets of isomorphism classes of simple objects in the categories Cp̄,t,n+2 and Ck,n.
The main result of this section is:

Proposition 22. For n ≥ Λ, the functor B1 induces a bijection of sets of isomorphism
classes of simple objects of Ck,n and Cp̄,t,n+2, inverse to the bijection induced by Γ1.

In the rest of the paper we assume that n ≥ Λ. Recall that E is a finite-
dimensional simple p̄-module (in particular, n̄ · E = 0) on which h acts via a
natural number |E|. We set X(E) := Γ1L(E) for L(E) ∈ Cθ

p̄,t,n+2. Then X(E) is a simple
object of Ck,n, and all simple objects in Ck,n are of this form for appropriate simple
C(t)-modules.

Lemma 23. Let X ∈ Cθ
k,n have the property that the isotypic component of the minimal

k-type of X is isomorphic to the isotypic component of the minimal k-type of X(E) ∈ Cθ
k,n.

Then [
Bθ1 X : L(F)

]
=

{
0 for |F| < |E| ,
≤ 1 for |F| = |E| .

Proof. Observe first that the t-weights of H0 (nk,X) are less than or equal to−
(
|E|−2

)
.

Therefore the t-weights of H0 (nk,X)⊗ (nk ∩ k⊥) are less than or equal to−|E|+2+λ1.
This shows that

(
H0 (nk,X) ⊗ (nk ∩ k⊥)

)
p

= 0 for n + 2 ≤ p < |E|. Indeed, the

inequalities n + 2 ≤ p < |E| and p ≤ −|E| + 2 + λ1 yield |E| ≤ λ1
2 − λ2

2 ≤ λ1
2 , which

contradicts our assumption that |E| ≥ 2 + λ1+λ2
2 ≥ 2 + λ1

2 .
Next, note that Kostant’s Theorem applied to k gives

H1 (nk,X)p =

{
0 for p < |E| ,
C for p = |E| .

Therefore the spectral sequence (1) of Proposition 2 implies

(E1
1)p =


0 for n + 2 ≤ p < |E|
C for p = |E| , (E1

0)|E| = (E1
2)|E| = 0 .
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Hence,

H1 (n,X)p =

{
0 for n + 2 ≤ p < |E| ,
C for p = |E| .

Furthermore, for any D

dim Ext1
g,t

(
X,W(D)

)
= dim HomC(t)

(
H1(n,X), D̄

)
≤ dim H1(n,X)|D|

by (6). This yields

dim Ext1
g,t

(
X,W(D)

)
=

{
0 for |D| < |E| ,
≤ 1 for |D| = |E| .

Consequently, since the injective hull I(F) of L(F) in Cθ,ind
p̄,t,n+2 admits a co-Verma

filtration with successive quotients isomorphic to W(D) for |D| ≤ |F|, and W(E)
enters I(E) with multiplicity 1, we have

dim Ext1
g,t

(
X, I(F)

)
=

{
0 for |F| < |E| ,
≤ 1 for |F| = |E| .

Finally,

dim Ext1
g,t

(
X, I(F)

)
= dim Homg

(
Bθ1 X, I(F)

)
=

[
Bθ1 X : L(F)

]
,

and the lemma is proved. �

Corollary 24. Set Y(E) := Γ1M(E) under the assumption that M(E) ∈ Cθ
p̄,t,n+2. Then

[B1Y(E) : L(F)] = [B1X(E) : L(F)] =

{
0 for |F| < |E| ,
1 for F ' E .

Proof. For |F| < |E|, the statement follows directly from Lemma 23 as the isotypic
components of the minimal k-types of Y(E) and X(E) are isomorphic by Proposi-
tion 4, c). If F ' E, then

Homg (B1X(E),L(E)) ' Homg
(
X(E),X(E)

)
,

so the identity homomorphism X(E)→ X(E) provides a nonzero homomorphism
B1X(E) → L(E). Since Γ1 is exact and B1 is right-exact, this homomorphism
is in fact a composition of surjections B1Y(E) → B1X(E) → L(E), in particular,
[B1Y(E) : L(E)] ≥ 1 and [B1X(E) : L(E)] ≥ 1. On the other hand, [B1Y(E) : L(E)] ≤ 1
by Lemma 23; hence,

[B1Y(E) : L(E)] = [B1X(E) : L(E)] = 1 .

�
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Corollary 25. B1Y(E) 'M(E).

Proof. By the adjointness of B1 and Γ1, we have a canonical nonzero homomor-
phism

ϕ : B1Y(E)→M(E)

induced by the identity homomorphism Y(E) → Y(E). Note that Top Y(E) is
isomorphic to X(E) by Proposition 4, c). Next (again by the adjointness of B1 and
Γ1),

Homg (B1Y(E),L(F)) ' Homg
(
Y(E),X(F)

)
.

Since Homg
(
Y(E),X(F)

)
, 0 only for F ' E by Corollary 24, we see that

Top B1Y(E) ' L(E) .

As ϕ , 0, ϕ induces an isomorphism

Top B1Y(E) ' L(E) = Top M(E) . (10)

Consequently, ϕ is surjective.
Let N = kerϕ. The isomorphism (10) shows that the exact sequence

0→ N→ B1Y(E)→M(E)→ 0

does not split. Therefore, the assumption N , 0 leads to the conclusion that
Ext1

g(M(E),L(F)) , 0 for some simple subquotient L(F) of N. However, Ext1
g(M(E),L(F))

implies |F| < |E|, while [B1Y(E) : L(F)] = 0 for |F| < |E| by Corollary 24. This con-
tradiction shows that N = 0, i.e., that ϕ is an isomorphism. �

Corollary 26. Top Γ1B1X(E) ' X(E).

Proof. B1 is right-exact, hence the surjective homomorphism Y(E) → X(E) yields
a surjective homomorphism M(E) ' B1Y(E)→ B1X(E). By applying Γ1 we obtain
a surjective homomorphism Y(E)→ Γ1B1X(E), hence Top(Γ1B1X(E)) ' Top Y(E) '
X(E). �

Corollary 27. B1X(E) ' L(E).

Proof. By Corollary 24, B1X(E) , 0. The adjointness of B1 and Γ1 yields an isomor-
phism

Homg
(
X(E),Γ1B1X(E)

)
' Homg (B1X(E),B1X(E)) .

Hence, there is a nonzero (and therefore injective) homomorphism

α : X(E)→ Γ1B1X(E)

corresponding to the identity homomorphism B1X(E)→ B1X(E).
Once again, Corollary 24 implies [B1X(E) : L(E)] = 1. Since Γ1 is exact and is a

bijection on isomorphism classes of simple modules, we have
[
Γ1B1X(E) : X(E)

]
= 1 . (11)
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By Corollary 26, there is a surjective homomorphism

β : Γ1B1X(E)→ X(E) .

Equation (11) now implies that βα , 0 and αβ , 0. Thus, X(E) is a direct sum-
mand of Γ1B1X(E). But Corollary 26 shows that Γ1B1X(E) is indecomposable. We
conclude that

Γ1B1X(E) ' X(E) = Γ1L(E) .

As before, Γ1 is exact and is a bijection on isomorphism classes of simple modules.
So, B1X(E) is a simple g-module, and B1X(E) ' L(E). �

7. Exactness of B1

The goal of this section is to prove the following:

Proposition 28. B1 : Ck,n Cp̄,t,n+2 is an exact functor.

Our main effort will go into proving the following lemma:

Lemma 29. B2Y(E) = 0 for X(E) ∈ Ck,n.

Note that it suffices to show that H2

(
n,Y(E)

)
|F| = 0 for all X(E),X(F) ∈ Ck,n.

Indeed, the implication
(
H2

(
n,Y(E)

)
|F| = 0 for all X(E),X(F) ∈ Ck,n

)
⇒ (

B2Y(E) = 0 for all X(E) ∈ Ck,n)

follows from the following three facts:

(1) Ext2
g,t

(
Y(E), I(F)

)
' Homg (B2Y(E), I(F));

(2) I(F)/W(F) has a co-Verma filtration with factors isomorphic to W (F′) for
|F′| < |F| (Lemma 12);

(3) dim Ext2
g,t

(
Y(E),W(F)

)
= dim HomC(t)

(
H2

(
n,Y(E)

)
, F̄

)
≤ dim H2

(
n,Y(E)

)
|F|,

see (6).

To prove that H2

(
n,Y(E)

)
|F| = 0 for all X(E),X(F) ∈ Ck,n, we give another con-

struction of the functor Γ1 : Cp̄,t,n+2 → Ck,n. Denote by Ue(g) the enveloping algebra
U(g) localized by the multiplicative set {en}n∈Z≥1

. The localized algebra Ue(k) is a
subalgebra of Ue(g). For any g-module (resp., k-module) M, set

Dge (M) := Ue(g) ⊗U(g) M, Dke(M) := Ue(k) ⊗U(k) M .

Lemma 30. If M is a g-module on which e acts injectively, we have an isomorphism of
k-modules

ReskDge (M) ' Dke(M).

Proof. There is an embedding ψ : M ↪→ Dge (M). By Frobenius reciprocity, ψ
induces a morphism ψ̃ : Dke(M) → Dge (M). As Ue(g) = Ue(k)S(k⊥), the morphism ψ̃
is surjective. Let us show that ψ̃ is also injective. Since e acts injectively on M, we
see thatDge (M) is an essential extension of M. Therefore, the fact that ker ψ̃∩M = 0
suffices to conclude that ψ̃ is injective. �
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Suppose that a g-module M is free over C[e] and locally finite over C[ f ]. Then
we have an embedding

M ↪→ ΓC fDge (M)

where ΓC f is the functor of C f -finite vectors. Set

EM := (ΓC fDge (M))/M,

cf. [E]. Since M ∈ Cp̄,t,n+2 satisfies the above assumptions, we have constructed a
new functor

E : Cp̄,t,n+2 Ck,n.
Lemma 31. If M ∈ Cp̄,t,n+2, n ≥ 0, then for some γ(µ) ∈ Z≥0

ReskM '
⊕

µ≥n+2

Mk(µ)⊕γ(µ)

and
Resk(EM) '

⊕

µ≥n+2

Vk(µ − 2)⊕γ(µ),

where Mk(µ) := U(k) ⊗U(k∩p̄) Cµ for an integral t-weight µ.

Proof. Any t-weight of M is not less than n + 2. Therefore M is free over Ce,
which implies that ReskM has a filtration with quotients isomorphic to Verma
modules Mk(µ) for µ ≥ n + 2. Recall that if µ′ and µ′′ are positive then the
central characters of Mk(µ′) and Mk(µ′′) coincide only if µ′ = µ′′, and there is
no non-trivial t-semisimple self-extension of a Verma module of k. This implies
Ext1

k,t(Mk(µ′),Mk(µ′′)) = 0 for positive µ′ and µ′′, therefore ReskM is isomorphic to
a direct sum of Verma modules. The first assertion follows.

Let us prove the second assertion. Recall thatDke
(
Mk(µ)

)
= Ue(k)⊗U(k) Mk(µ). By

Lemma 30 it suffices to check that for any µ ≥ 2

ΓC fDke
(
Mk(µ)

)
/Mk(µ) ' Vk(µ − 2). (12)

First, we show that Dke(Mk(µ)) is an indecomposable multiplicity-free weight
sl(2)-module with socle filtration

Mk(µ) ⊂Mk(2 − µ) ⊂ Dke(Mk(µ)).

Indeed, let v ∈ Mk(µ) be a nonzero vector annihilated by f (v is unique up to
proportionality). Then {ekv | k ∈ Z≥0} is a basis of h-eigenvectors in Mk(µ). In the
localized algebra Ue(k) we have the relations

[h, e−1] = −2e−1, [ f , e−1] = e−1he−1 = e−2(h − 2), [ f , e−k] = e−k−1k(h − (k + 1)).

Therefore Dke(Mk(µ)) has a basis {ekv | k ∈ Z} and the action of h and f is defined
by the above relations. In particular, w = e1−µv is annihilated by f and generates
a submodule Mk(2 − µ) ⊂ Dke(Mk(µ)). The quotient Mk(2 − µ)/Mk(µ) is isomorphic
to the finite-dimensional module Vk(µ − 2), and the quotientDke(Mk(µ))/Mk(2 − µ)
is isomorphic to the Verma module with respect to k ∩ p with highest weight −µ.
Since the latter quotient is free over f , (12) follows. �
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Corollary 32. If M ∈ Cp̄,t,n+2, n ≥ 0, then

Resk(EM) ' Resk
(
Γ1M

)
.

Corollary 33. The functor E : Cp̄,t,n+2 Ck,n is exact.

Proof. The exactness of Γ1, together with Corollary 32, shows that the functor
Resk ◦E is exact. Therefore E is also exact. �

Proposition 34. The functors E : Cp̄,t,n+2  Ck,n and Γ1 : Cp̄,t,n+2  Ck,n are isomor-
phic.

Proof. Let us start with the construction of a morphism of functors ϕ : E  Γ1.
Let M ∈ Cp̄,t,n+2. Then the exact sequence

0→M→ ΓC fDe
g(M)

πM−→ EM→ 0

does not split over k, and therefore does not split over g. Set

Ri(M) := ΓtHomC
(
U(g) ⊗U(t) Λi(g/t),M

)

and let
0→M

∂0−→ R0(M)
∂1−→ R1(M)

∂2−→ R2(M)
∂3−→ . . .

be the Koszul resolution of M as introduced in Lemma 2.2 of [Z].
The complex R•(M) is functorial with respect to M and yields an injective

resolution of M in the category of (g, t)-modules. Hence, we have a commutative
diagram

0 −−−−−→ M −−−−−→ ΓC fDe
g(M) −−−−−→ EM −−−−−→ 0

y idM

y ηM

y ϕM

y
y

0 −−−−−→ M
∂0−−−−−→ R0(M)

∂1−−−−−→ R1(M)
∂2−−−−−→ R2(M)

for some morphisms ηM and ϕM, unique up to homotopy. We recall from [PZ3]
that ΓM = 0. By construction, Γ

(
ΓC fDe

g(M)
)

= 0 and ΓEM = EM. By applying Γ

to the above diagram, we obtain a new commutative diagram

0 −−−−−→ 0 −−−−−→ 0 −−−−−→ EM −−−−−→ 0
y

y
y ΓϕM

y
y

0 −−−−−→ 0 −−−−−→ ΓR0(M)
Γ∂1−−−−−→ ΓR1(M)

Γ∂2−−−−−→ ΓR2(M) .

The morphism ΓϕM induces a unique morphism ψM : EM → Γ1M, by the defini-
tion of Γ1. Since our diagram is functorial in M, we obtain a morphism of functors
ψ : E Γ1.
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It remains to show that ψM is an isomorphism for all M ∈ Cp̄,t,n+2. Since both
functors E and Γ1 are exact, it is sufficient to check this for simple M as the general
case follows by an easy induction on the length of M.

Suppose that M is simple and ψM is nonzero. Then we have a surjective
morphism ψM : EM → Γ1M, since Γ1M is also simple. But then, by Corollary 32,
ψM is an isomorphism. Now, suppose ψM = 0. Recall that ψM : EM → Γ1M =
ker Γ∂2/ im Γ∂1. Therefore the equality ψM = 0 defines a non-zero morphism
EM → im Γ∂1, or equivalently a nonzero morphism κM : EM → R0(M) such
that ∂1κM = ϕM. Moreover, imκM ' im ηM. Because ΓC fDe

g(M) is an essential
extension of M, ηM is an injection, and hence Γ im ηM = ηMΓ

(
ΓC fDe

g(M)
)

= 0. On
the other hand,

Γ imκM = im ΓκM = imκM , 0 ,

a contradiction. Hence ψM , 0, and the proposition is proved. �

Corollary 35. There is an isomorphism of g-modules

Y(E) ' EM(E).

We are now ready to give a proof of Lemma 29.

Proof of Lemma 29. Set

D(E) := Dge M(E), C(E) := ΓC f D(E) .

From the explicit form of D(E) as a k-module it is easy to verify that

H0 (nk,D(E)) = H1 (nk,D(E)) = 0 .

By the spectral sequence of Proposition 2 this implies

Hi

(
n,D(E)

)
= 0 for all i .

The exact sequence
0→ C(E)→ D(E)→ F(E)→ 0 ,

where F(E) := D(E)/C(E), yields H2

(
n,C(E)

)
|F| = H3

(
n,F(E)

)
|F|. It is easy to check

that H0 (nk,F(E)) = 0, hence the input into H3

(
n,F(E)

)
in the spectral sequence (1)

comes from
H1 (nk,F(E)) ⊗Λ2 (

n ∩ k⊥) . (13)

The maximum possible t-weight of H1 (nk,F(E)) is 2 − |E|, hence the maximum
possible t-weight of (13) is 2−|E|+λ1 +λ2. However, for any F such that X(F) ∈ Ck,n,
we have 2 − |E| + λ1 + λ2 < |F| as |E|, |F| ≥ λ1+λ2

2 + 2. We obtain H2

(
n,C(E)

)
|F| = 0.

Next, we note that Corollary 35 shows the existence of an exact sequence

0→M(E)→ C(E)→ Y(E)→ 0

as Y(E) ' EM(E). Since M(E) is free as an n-module, H1

(
n,M(E)

)
= 0. Together

with H2

(
n,C(E)

)
|F| = 0, this yields

H2

(
n,Y(E)

)
|F| ' H1

(
n,M(E)

)
|F| = 0

as M(E) is free as an n-module. The proof of Lemma 29 is complete. �

To prove Proposition 28, it now suffices to establish the following.
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Lemma 36. B2X(E) = 0 for any X(E) ∈ Ck,n.

Proof. Fix a Borel subalgebra b of g such that h ⊂ b ⊂ p and e ∈ b. We will prove
the statement by induction on the Bruhat height of the b-lowest weight of L(E).

If λ is b-dominant (i.e. b̄−antidominant), then Y(E) = X(E) and we are done.
For an arbitrary λ, we consider the exact sequences

0→ N(E) ν−→M(E)
µ−→ L(E)→ 0 (14)

and
0→ Γ1N(E)→ Y(E)→ X(E)→ 0 . (15)

The long exact sequence corresponding to (15) is the top row of the following
commutative diagram

. . . B2Y(E) B2X(E) B1Γ
1N(E) B1Γ

1M(E) B1X(E) 0

. . . 0 B2X(E) N(E) M(E) L(E) 0 .

= = ≃ ≃ ≃

ν µ

The vertical isomorphisms are explained as follows:

B2Y(E) = 0 by Lemma 29 ,

B1Γ
1N(E) ' N(E) by the induction assumption ,

B1Γ
1M(E) 'M(E) by Corollary 25 ,

and
B1(X) ' L(E) by Proposition 22 .

The exactness of the bottom row of the diagram yields B2X(E) = 0, and Lemma 36
is proved. Proposition 28 now follows. �

8. End of Proof of Theorem 1

The results of Sections 5-7 imply that, under the assumption n ≥ Λ, the functors

Γ1 : Cp̄,t,n+2 Ck,n
and

B1 : Ck,n Cp̄,t,n+2

are exact functors between finite-length abelian categories which induce mutually
inverse bijections on isomorphism classes of simple objects.

The isomorphisms

Homg
(
B1Γ

1M,M
)
' Homg

(
Γ1M,Γ1M

)
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and
Homg (B1X,B1X) ' Homg

(
X,Γ1B1X

)
,

for X ∈ Ck,n and M ∈ Cp̄,t,n+2, induce morphisms of functors

∆ : B1 ◦ Γ1 idCp̄,t,n+2

and
∇ : Γ1 ◦ B1 idCk,n .

As in the proof of Proposition 34, it suffices to show that ∆ and∇ are isomorphisms
on simple objects as all functors involved are exact functors on finite-length abelian
categories. Finally, for simple objects the claim follows from Proposition 22.

9. Discussion and examples

It is interesting to see when the functor B1 establishes an equivalence of the
category Cθ

k,Λ with the entire category Cθ
p̄,t. This is equivalent to the question: for

which central characters θ does the equality Cθ
p̄,t,Λ+2 = Cθ

p̄,t hold?
Consider in more detail the case when g is simple and k is a principal sl(2)-

subalgebra of g. Here h is a regular element of g and p = b is a Borel subalgebra.
Let the simple roots of b be α1, . . . , αr ∈ h∗, and β be the highest root. Then
β = m1α1 + · · ·+ mrαr for some positive integers m1, . . . ,mr. Moreover, Λ = β(h)−1.
We would like to find central characters θ such that Cθ

b̄,t,Λ+2
= Cθ

b̄,t
. For a weight

ν ∈ h∗ denote by θν the central character of the Verma module M(ν) = U(g)⊗U(b̄)Cν.
The equality θν = θη holds if and only if ν − ρ and η − ρ belong to the same orbit
of the Weyl group, where ρ is the half-sum of roots of b. Consider the set C
of all weights λ ∈ h∗ such that Re(λ, α) ≤ 0 for all positive roots α. The orbit
W(ν − ρ) contains at least one weight γ − ρ lying in C. Moreover, for any other
η = w(γ−ρ)+ρ on the Weyl group orbit we have Re(γ, α) ≤ Re(η, α) for all positive
roots α. Hence Reγ(h) ≤ Re η(h). Thus, it suffices to find γ such that γ−ρ ∈ C and
Reγ(h) ≥ β(h) + 1.

Let h1, . . . , hr denote the simple coroots. Then h = n1h1 + · · · + nrhr for some
positive integers n1, . . . ,nr. We set γi := γ(hi). Since ρ(hi) = 1 for all i = 1, . . . , r, the
condition that γ − ρ ∈ C can be written in the form

Reγi ≤ 1 for all i = 1, . . . r. (16)

The equality αi(h) = 2 shows that β(h) = 2
∑r

i=1 mi. Hence, the condition γ(h) ≥
β(h) + 1 is equivalent to

Re
r∑

i=1

niγi ≥ 1 + 2
r∑

i=1

mi. (17)

Let Σ(g) denote the set of weights satisfying conditions (16) and (17). Clearly
Σ(g) is not empty as soon as

r∑

i=1

ni ≥ 1 + 2
r∑

i=1

mi.
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The latter inequality can be rewritten as

ρ(h) ≥ 1 + β(h). (18)

For example, let g = sl(r + 1). Then m1 = · · · = mr = 1, hence β(h) = 1 + 2r and
ρ(h) =

r(r+1)(r+2)
6 . Therefore (18) holds for r ≥ 3.

Proposition 37. Let g be a simple Lie algebra not isomorphic to sl(2) or sl(3). Then Σ(g)
is not empty. If in addition g is not isomorphic to sp(4), then Σ(g) is infinite.

Proof. Σ(g) is infinite as soon as the inequality (17) is strict. We can further rewrite
(18) as

1
2

∑

α∈∆+\β
α(h) ≥ 1 +

1
2
β(h). (19)

If β(h) ≥ 8, the inequality (19) is strict as in this case the sum of positive non-highest
t-weights in the k-submodule generated by the highest root vector is greater than
the highest t-weight. Therefore, the statement holds for all g of rank greater than
2 and for g = G2. For g = B2 we have ρ(h) = 7, β(h) = 6, and hence Σ(g) consists of
one element: Σ(g) = {ρ}. For g = A2 we have Σ(g) = ∅. �

Note that the set of integral weights lying in Σ(g) is always finite since Σ(g) is
compact. Moreover, the cardinality of this finite set grows with rank.

Using translation functors we can strengthen Theorem 1 for certain central
characters. Let us call a central character θ k-adapted if Cθ

b̄,t,Λ+2
= Cθ

b̄,t
. A central

character θ̃ is weakly k-adapted if there exists a k-adapted character θ and a trans-
lation functor T establishing an equivalence between the categories of g-modules
admitting respective generalized central characters θ and θ̃. Recall that, if θ̃ = θη
for some η such that η − ρ ∈ C and θ = θγ for some γ ∈ Σ(g), then γ − η must be
integral and the stabilizers of γ − ρ and η − ρ in the Weyl group of g must be the
same [BG].

Corollary 38. Assume that θ̃ is weakly k-adapted. Then

(a) Γ1L is simple for any simple module L ∈ Cθ̃
b̄,t

.

(b) Let Γ1Cθ̃
b̄,t

denote the full subcategory of Cθ̃
k,Λ consisiting of modules whose simple

constituents are of the form Γ1L for simple modules L ∈ Cθ̃
b̄,t

. Then the functor

B1 : Γ1Cθ̃
b̄,t
 Cθ̃

b̄,t
is an equivalence of categories, and is inverse to Γ1.

Proof. Both assertions follow from the following commutative diagram of functors

Cθ̃
b̄,t

Γ1Cθ̃
b̄,t

Cθ
b̄,t

Cθ
k,Λ
.

Γ1

T2

B1

T2T1

Γ1

T1

B1
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where T1,T2 are appropriate translation functors. The commutativity of the dia-
gram is a consequence of Theorem 1 and of the fact that the Zuckerman functor
commutes with translation functors. This latter fact is essentially a reformulation
of Proposition 2.6 and Corollary 2.8 in [Z]. �

10. An application

In this section k is an arbitrary sl(2)-subalgebra of g and n ≥ Λ. By Cind
k,n (re-

spectively, Cind
p̄,t,n+2) we denote the category of inductive limits of objects from Ck,n

(respectively, C`
p̄,t,n+2). Theorem 1 implies the following:

Corollary 39. The functors Γ1 and B1 induce mutually inverse equivalences of the cate-
gories Cind

k,n and Cind
p̄,t,n+2.

Recall that if an abelian category C has enough injectives, then the global
dimension gdimC can be defined as

gdimC = supM,N∈C
{
i ∈ Z≥0

∣∣∣ Exti
C(M,N) , 0

}
.

Corollary 8 implies that Cind
p̄,t,n+2 (and consequently also Cind

k,n by Theorem 1) has
enough injectives. The goal of this section is to prove the following proposition.

Proposition 40. We have

gdimCind
k,n = gdimCind

p̄,t,n+2 ≤ 2 dim n + dim c − 1

(n and c are subalgebras of g depending on the pair g, k only).

Lemma 41. For every simple C(t)-module E such that |E| ≥ n+2, the module W(E) has an
injective resolution inCind

p̄,t,n+2 of length not greater than dim n. Hence Exti
Cp̄,t,n+2

(M,W(E)) =

0 for any M ∈ Cind
p̄,t,n+2 and any i > dim n.

Proof. Consider the category of locally finite p-modules which are semisimple
over t and whose t-weights are at least n + 2. Then Ē is an object of this category
and has an injective resolution in it with terms

Zi(E) :=
(
ΓtHomC(U(p) ⊗C(t) Λi(p/C(t)), Ē)

)
≥n+2

.

Furthermore, ΓtprogpZi(E) provides an injective resolution for W(E) in Cind
p̄,t,n+2 of

length at most dim n. �

Lemma 42. For every simple C(t)-module E, let W(E) := M(E)∨ = Γtprogp(E). Then
there exists an acyclic complex

0→W(E)→ S0 → · · · → Sdim c−1 → 0

such that all Si admit co-Verma filtrations.
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Proof. Let
Qi(E) = HomC

(
S•(c/t) ⊗Λi(c/t),E

)
.

Consider the exact complex of C(t)-modules 0→ E→ Q0(E)→ Q1(E)→ . . . with
usual Koszul differentials and set Si := ΓtprogpQi(E). �

Corollary 43. Exti
Cp̄,t,n+2

(M,W(E)) = 0 for any M ∈ Cind
p̄,t,n+2 and i > dim n + dim c − 1.

Proof. We note that, by Lemma 41, Exti
p̄,t,n+2(M,N) = 0 for i > dim n and N ad-

mitting a co-Verma filtration. In particular, Exti
Cp̄,t,n+2

(M,S j) = 0 for i > dim n and
j = 0, . . . ,dim c − 1. Hence the statement. �

Lemma 44. For every E, L(E) has a right resolution of length not greater than dim n by
modules which admit finite filtrations with succesive quotients isomorphic to W(F).

Proof. This is a standard fact about parabolic category O. Indeed let Vi :=
ΓtprogpΛi(g/p)∗. Then Vi ' S•((g/p)∗) ⊗Λi(g/p)∗. Consider the Koszul complex

0→ V0 → V1 → · · · → Vdim n → 0

as the complex of polynomial differential forms on the open orbit of P̄ on G/P,
where G, P and P̄ are appropriate connected algebraic groups with respective Lie
algebras g, p and p̄. It gives a resolution of the trivial module by modules which
admit finite filtrations with succesive quotients isomorphic to W(F). To obtain a
similar resolution for L(E), we tensor the above resolution with L(E) and project
to the subcategory of modules with the central character of L(E). �

Corollary 45. Exti
Cp̄,t,n+2

(M,L(E)) = 0 for any M,L(E) ∈ Cind
p̄,t,n+2, and i > 2 dim n +

dim c − 1.

Proposition 40 follows from the last corollary since Exti
p̄,t,n+2(M,N) , 0 implies

Exti
Cp̄,t,n+2

(M,N′) , 0 for some submodule N′ ⊂ N of finite length.
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