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Abstract

Let G be a locally semisimple ind-group, P be a parabolic subgroup, and F
be a finite-dimensional P-module. We show that, under a certain condition on
E, the nonzero cohomologies of the homogeneous vector bundle Og,p(E£*) on
G/ P induced by the dual P-module E* decompose as direct sums of cohomolo-
gies of bundles of the form Og,p(R) for (some) simple constituents R of E*. In
the finite-dimensional case, this result is a consequence of the Bott—Borel-Weil
theorem and Weyl’s semisimplicity theorem. In the infinite-dimensional setting
we consider, there is no relevant semisimplicity theorem. Instead, our results
are based on the injectivity of the cohomologies of the bundles Og/p(R).
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1. Introduction. The Bott—Borel-Weil theorem is a basic result which con-

nects algebraic geometry with representation theory. More precisely, if G is a
connected complex reductive linear algebraic group and P is a parabolic sub-
group, the Bott—Borel-Weil theorem states that a homogeneous bundle on G/P,
induced by a simple P-module, has at most one nonzero cohomology group. More-
over, this group is a simple highest weight G-module. Using Weyl’s semisimplicity
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theorem, one can further show that, for any finite-dimensional P-module, the cor-
responding nonzero cohomologies are semisimple G-modules. More specifically,
these cohomologies split as direct sum of cohomologies of homogeneous bundles
induced by (some) simple constituents of the inducing P-module.

Analogues of the Bott—Borel-Weil theorem have been proved in various con-
texts. In particular, in [>3], the case of locally reductive ind-groups G has been
studied. For a locally reductive ind-group G, a homogeneous bundle on G/P
induced by a simple finite-dimensional P-module still has at most one nonzero
cohomology group. However, the difference with the finite-dimensional case is
that this cohomology group is dual to a simple G-module, and hence is not irre-
ducible being uncountable dimensional. In addition, the cohomology group may
or may not be an integrable g = Lie(G)-module.

In this article we consider locally semisimple ind-groups G and their homoge-
neous ind-spaces G/ P for parabolic ind-groups P < G. To any finite-dimensional
P-module E we attach the homogeneous vector bundle O/, p(E*) induced by the
dual P-module E*. We impose the condition that all non-zero cohomology groups
HYG/P,Ogq/p(E")) are integrable g-modules. Then, our main result (Theorem
4.5) is that, despite the absence of a relevant analogue of Weyl’s semisimplicity
theorem, any such nonzero cohomology group H%(G/P,Og/p(E™*)) is isomorphic
to a direct sum of cohomologies of homogeneous bundles on G/P induced by
(some) simple constituents of E*. The proof uses the fact that any nonzero coho-
mology group of a homogeneous bundle on G/P induced by a simple constituent
of E* is injective in the category of integrable g-modules.

2. Preliminaries. In this section we summarize the definitions and prop-
erties from the field of ind-groups, which we need throughout the article. More
detailed expositions on the subject can be found in [*3].

A locally algebraic ind-group over C, which we briefly refer to as an ind-group,
is a set G which is the inductive limit of embeddings of connected algebraic groups,
ie. G = @Gn, where

(1) GiCcGyC---Gp C---

An ind-group G is locally (semi)simple if the filtration (1) can be chosen so
that each G,, is a (semi)simple linear algebraic group. A first important class of
locally simple ind-groups is that of diagonal locally simple ind-groups. For its
definition we need to recall the notion of a diagonal embedding. An embedding
of classical simple finite-dimensional groups G’ C G is called diagonal if the
induced injection of the Lie algebras g’ C g has the following property: the
natural representation of g decomposes over g’ as a direct sum of copies of the
natural representation of g’, of its dual, and of the trivial g’-representation. A
locally simple ind-group G is called diagonal if the filtration (1) can be chosen
so that each embedding G,, C G,,41 is a diagonal embedding of classical simple
groups. First examples of diagonal ind-groups are the finitary simple ind-groups
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SL(o0) = liﬂSL(n), SO(c0) = hngO(n), and Sp(oco) = liﬂSp@n), where the
inclusions SL(n) C SL(n + 1) and SO(n) C SO(n + 1) are given by A — (479)
and the inclusion Sp(2n) C Sp(2n + 2) is given by A — (é‘ El]] %).

Let G = lian be an ind-group. A Cartan (resp., Borel) subgroup of G is
an ind-subgroup H (resp., B) of G such that for a well-chosen filtration (1), the
group H,, = G, N H (resp., B, = G, N B) is a Cartan (resp., Borel) subgroup of
G, for each n. A parabolic subgroup P of G is an ind-subgroup P which contains
a Borel subgroup B. A G-module is a vector space V equipped with compatible
structures of G,-modules for all n.

An ind-group is an example of the more general notion of an ind-variety (see
[>6]). Briefly, an ind-variety X = lim X, is determined by a sequence of closed
embeddings of algebraic varieties

XicXoC---C Xy Cne

An ind-variety X is automatically a topological space, and one defines the struc-
ture sheaf Ox of X as the projective limit sheaf of the structure sheaves Oy, of
X,,. More generally, a sheaf F on X is the limit of a projective system of sheaves
Fn on X,,.

Let G = lian be a locally semisimple ind-group and P = lian be a
parabolic subgroup. Let E be a finite-dimensional P-module. The inductive limit
G/P = lim Gn/ Py has a natural structure of an ind-variety. The sheaf Og/p(E™)
is defined as the projective limit Og/p(E*) = @1 Oa,/p,(Ey), where E,, = E|p,
and Og,, /p, (E,) is the sheaf of regular local sections of the homogeneous vector
bundle over G,,/ P, induced by the module E. Using the Mittag-Leffler principle,
it is shown in [*] that the cohomology group HY(G/P,Og/p(E*)) is canonically
isomorphic to the projective limit lim /7 UGn/Pn,Og,/p,(Ey)) for each q.

By definition (see [?]), the Lie algebra of an ind-group G = lim Gy, s the
inductive limit Lie algebra g = h_r)n g for the filtration

91 C @2 C - Cgn C vy

where g,, is the Lie algebra of G,, and the inclusions g,, C g,+1 are the differentials
of the group embeddings G,, C Gy41. A Lie algebra g which is isomorphic to a
direct limit of finite-dimensional Lie algebras is called locally finite. Therefore, the
Lie algebra of an ind-group is locally finite. A locally finite Lie algebra g which
is isomorphic to a direct limit of (semi)simple finite-dimensional Lie algebras, is
called locally (semi)simple. First examples of locally simple Lie algebras are the
simple finitary Lie algebras sl(00), so(co), and sp(oo), which are the Lie algebras
of the ind-groups SL(o0), SO(c0), and Sp(co).

A module M over g is called integrable if dimspan{m,g-m,g> - m,---} < oo
for any m € M and g € g. Below we use extensively the properties of integrable
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g-modules established in [*]. By Int; we denote the category of integrable g-
modules.

3. On integrable g-modules. In this section g = hgl gn denotes a locally
semisimple Lie algebra.

Lemma 3.1. Let M = hgan be an integrable g-module obtained as the in-
ductive limit of finite-dimensional g,,-modules M, . If the length of M, is bounded
by a number N not depending on n, the length of the g-module M is also bounded
by N.

Proof. Assume, on the contrary, that M possesses a chain of submodules of
the form

oculcu?c...cUNcuNt = M.

We choose elements 1 € UM\ {0}, 20 € U2\ UL, ... ,zy41 € UNTL\ UV, and
choose n large enough so that z1,z2,...,2ny41 € M,. Then we consider the
filtration of M,

0c(U'nM,) cU*NM,)cC---c U NNM,)cM,

and note that U' N M, # U N M, for i = 1,...,N. This contradicts the
assumption that the length of M,, is bounded by N. O
We recall the following results from [®] which are very useful for our consid-
erations.
Lemma 3.2 ([?], Lemma 4.1, Proposition 3.2). Let M be an integrable g-
module.

(a) The g-module M* = Homc(M,C) is an integrable g-module if and only
if for any n, M considered as a g,-module has finitely many isotypic gy,-
components.

(b) If the g-module M* is integrable, then M* is an injective object in the cat-
egory Intg.

Corollary 3.3. Let M € Inty be a module of finite length N with simple
constituents M;, 1 =1,... N, and such that M* € Inty. Then there is an isomor-

phism of g-modules
M= P My
i

Proof. The case N =1 is clear and the general case follows from a simple
induction argument using Lemma 3.2 (b) and the fact that Intg is closed with
respect to taking submodules and quotients. ]

In the setting of Section 2, let B,, be a Borel subgroup of G,,. A weight
wof B = liﬂBn is the (projective) limit of a projective system of integral G,,-
weights {u,}. By definition, u is B-dominant if all u, are Bj,-dominant. Let

910 E. Hristova, I. Penkov



p be a B-dominant weight. By Vg(C,) we denote the inductive limit of finite-
dimensional simple Gy,-modules Vg, (C,,) with B,-highest weight p,,, where the
highest weight space C,, of Vp,(C,,) is mapped to C,,.,. Assuming that G,
is classical simple, following BOURBAKI [!], we write the weights of G,, as linear
combinations of standard functions &}, ..., 1 if G, is of type A, and &}, ..., &"n
otherwise, where r,, = rkg,.

Proposition 3.4. Let G be one of the finitary simple ind-groups and let
w= @un be a dominant weight of G.

(i) If G = SL(00), then VB(C,)* is an integrable g-module if and only if there
exists an integer mg such that for any n if p, = iaflafl then al —alntl <
mo.

(1) If G = SO(o0) or Sp(co), then Vg(C,)* is an integrable g-module if and
only if there exists an integer mq such that for any n if p, =Y, alel | then
al < mg.

Proof. According to Lemma 3.2 (a), the g-module V5(C,)* is integrable if
and only if, when considered as a g,-module, it has finitely many isotypic com-
ponents. Using the standard branching rules for embeddings of classical groups
(see e.g. [°]) one can show that this latter condition is equivalent to the explicit
conditions of (i) and (ii). O

Notice that the simple tensor sl(co)-, so(00)-, sp(co)-modules discussed in [?]
are a special case of the modules discussed in Proposition 3.4.

More generally, if GG is a diagonal nonfinitary locally simple ind-group, it turns
out that the condition of g-integrability of the module Vz(C,)* is equivalent to the
condition that Anny g (Va(Cy)) # 0, see ([7], Proposition 4.5) and the references
therein. Here we present an explicit sufficient condition for the integrability of
VB(C,)* for all diagonal locally simple ind-groups.

Proposition 3.5. Let G be a diagonal locally simple ind-group and let p =
@un be a dominant weight of G. Assume that there exists an integer mg with

i

 such

the property that for any n, the weight p, has an expression p, =, ale
that Y, |at| < mo. Then Vg(C,)* is integrable as a g-module.

Proof. Since G is diagonal, for large enough n and for all £ the embeddings
gn C Onyk are diagonal. Therefore, we can decompose Vg, ,(C,,,,) over g,
using branching rules for diagonal embeddings of classical Lie algebras, see [*5].
These branching rules show that for the highest weight v of any simple g,,-module
U which enters the decomposition of Vg ., (C,, . ,) over g,, there exists an ex-
pression v = ), b;e;, which satisfies ) _; [b;| < >, |a;, | < mo. This holds for any
k. Thus there are only finitely many isotypic g,-components in the decomposi-
tion of Vg, ., (C,,,,) and their number stabilizes for large k. By Lemma 3.2 (a),
VB(C,)* is an integrable g-module. O
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4. Decomposition of cohomology. In this section we fix G = liglGn to
be a locally semisimple ind-group and P = h_r)nPn a parabolic subgroup. By g we
denote the Lie algebra of G.

Lemma 4.1. Let E be a finite-dimensional P-module. Then

HY(G/P,Oc/p(E"))

s the dual module of an integrable g-module of finite length.
Proof. By Theorem 10.3 in [}] we have

HYG/P,Og/p(E7)) = lim HY(Gyn/ P, Oc, /p, (Ey)),
where E, := E|p, . The classical Bott-Borel-Weil theorem implies that
HY(Gn/Pn, Ogp(Ey)) = My,
where M, is some finite-dimensional GG,,-module. In other words,
HY(G/P,0gp(E")) = lim M,

hence HY(G/P,Og/p(E")) is the dual module to the module M = lim M. Ob-
viously, M € Intg. Since the length of each M,, is bounded by the length of E,
by Lemma 3.1 the same holds for the length of M. O

Lemma 4.2. For any finite-dimensional P-module E, the integrability of
the g-module H(G/P,Oq/p(E*)) implies the injectivity of this module in the
category Intg.

Proof. The statement follows directly from Lemma 4.1 and Lemma 3.2
(b). O

Let E be a finite-dimensional irreducible P-module. Then Theorem 11.1 (ii)
from [*] states that HY(G/P,Og,p(E*)) # 0 for at most one integer
q > 0. Moreover, if ¢ is such an integer, then H(G/P,Og/p(E*)) = V* for
some irreducible G-module V. We call the module E strongly finite if V* is an
integrable g-module.

Furthermore, we call an arbitrary finite-dimensional P-module E strongly
finite if all its simple constituents are strongly finite.

We now describe several classes of strongly finite modules. Let G = hg Gy
be a diagonal locally simple ind-group, let H = hﬂ H,, be a Cartan subgroup and
B = lii>an be a Borel subgroup containing H.

Proposition 4.3. Let E be a finite-dimensional B-module satisfying the
following condition: if A = lim \,, is a weight of a simple constituent of E, then
there exists an integer mg, such that for any n the weight X\, has an expression
Ao =Y abel with 3. |al| < mg. Then E is a strongly finite B-module.

Proof. Let L = C, denote the one-dimensional B-module of weight \ =
yLn)\n, such that \ satisfies the condition of the proposition. In [?] an analogue
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Wp of the Weyl group for diagonal locally simple ind-groups is defined and it is
proved that (see Theorem 4.27 in [?])

HYG/B,0O¢/p(L")) = VB(Cu.\)",

where w € Wp and w - A is a dominant weight defined as the (projective) limit of
a projective system of Gy,-weights {w(n)(A, + pn) — prn}. Here w(n) is an element
of the Weyl group of G,,, determined uniquely by w, and p,, denotes as usual the
half-sum of the positive roots of g,. The definitions of w and of w(n) can be
found in [?]. It is important for our considerations that given w, there exists an
integer N such that for each n, the weight w(n)p, — p, is a linear combination
of at most N of the &% ’s. Furthermore, it is proved in [?] that {w(n)p, — p,} is a
projective system of weights of G,,. It follows that there exists an integer m, such
that for all n the weight w(n)p, — p, has an expression w(n)p, — p, = >, biel,
with Y7, [b%| < m. This shows that if w(n)(A, + pn) — pn = D, (k% + bl)el,, then
> |kL + %] < mg+m. Therefore, by Proposition 3.5, Vg(C,.»)* is an integrable
g-module. O

When G is a finitary simple ind-group the following stronger result holds.

Proposition 4.4. Let G be one of the finitary simple ind-groups and let E
be a finite-dimensional B-module. Then E is strongly finite if and only if the
following holds:

o If G = SL(c0) and \ = @An is the weight of a simple constituent of F,
then there exists an integer mo such that for any n, if A, = >, aley,, then
al®x — g™ <. Here ap®™ = max;{al,} and ai™ = min;{al,}.

o If G = SO(o0) orSp(co) and A = Wm Ay, is the weight of a simple constituent
of E, then there exists an integer mq such that for any n, if A\, = ), ale},,
then max;{|a} |} < mog.

The proof follows the same ideas as in Proposition 4.3, and uses also Propo-
sition 3.4.

We now return to the general setting of this section and state the main result
of this note.

Theorem 4.5. Let E be a strongly finite P-module. Then

(1) HU(G/P,Oq/p(E")) is an integrable g-module for any q, and
HYG/P,Oq/p(E*)) # 0 for at most N walues of q, where N denotes the
length of E.

(i) HU(G/P,Og/p(E*)) # 0 implies that as a g-module HY(G/P,Og,p(E")) is

isomorphic to a direct sum of cohomologies of homogeneous bundles of the
form Oq,p(R) for simple constituents R of E*.
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Proof. We use induction on N. When FE is irreducible, Theorem 11.1 from
[*] tells us that Og/p(E*) has at most one non-vanishing cohomology group. The
integrability of the nonzero cohomology group follows from the assumption that
E is strongly finite. This proves (i) and (ii) for an irreducible P-module E. Next,
assume that (i) and (ii) hold for stongly finite modules E’ of length N — 1. Then
we consider our module E of length N together with a short exact sequence

0—-EFE' —-E—E -0

such that £’ is of length N —1 and E" is irreducible. If H4(G/P,Og,p(E"™)) =0
for all ¢, both (i) and (ii) follow trivially from the induction assumption. Suppose
that H(G/P,Ogq/p(E"*)) # 0. Then the short exact sequence

0= Og/p(E™) = Og/p(E*) = Og/p(E™) = 0
yields an exact sequence
0— HYG/P,Ogp(E™)) = HU(G/P,Og/p(E")) —

(2) HYG/P,0gp(E"™)) % HITH(G/P,0gp(E™)) -
HYG/P,0g,p(E*)) — 0.

Since Inty is an abelian category and E is strongly finite, it follows that
HY(G/P,0Og,p(E*)) and HT (G/P,Og/p(E*)) are integrable g-modules. More-
over, for p # q,q + 1 we have H?(G/P,Og,p(E*)) = H?(G/P,Og/p(E"™)), and
this proves (i).

To prove (ii) we use Lemma 4.6 below and consider two cases for the con-
necting homomorphism g in the exact sequence (2).

Case 1. kerg = HIYG/P,Og/p(E"™)). Then the integrability of
HY(G/P,Og/p(E*)) proven in (i), and Lemmas 4.1, 4.2 imply that

HQ(G/P, OG/P(E*)) = [{‘J(G/P7 OG/P(E/*)) @HQ(G/P, OG/P(EN*))-

Furthermore, HI*Y(G/P,Og,p(E™)) = H'(G/P,Og,p(E*)). Therefore, by
induction (i) holds for both HY(G /P, Og,/p(E*)) and Hi* (G /P, O, p(E*)).

Case 2. ker g = 0. Then img is a direct summand of H1(G/P, Oc/p(E™))
by Lemma 4.2, i.e.

H™NG/P,0g/p(E™)) = HY(G/P,0g/p(E™)) ® HI* (G/P,Og,p(E*)).

Furthermore, H4(G/P,O¢,p(E"™)) = HY(G/P,O¢/p(E")).
Since by induction both HY(G/P,Og/p(E™)) and H"(G/P,Oq,p(E™))
are isomorphic to direct sums of cohomologies of bundles O p(R)

for simple constituents R’ of (E’)*, and hence also of E*, the same follows for
H(G/P,Og,p(E*)) and HTY(G/P, Og/p(E")). O
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Lemma 4.6. Consider the connecting homomorphism
g: H(G/P,0gp(E™)) = H*H(G/P, Oc/p(E™)),

where E" is an irreducible P-module. Then kerg = HY(G/P,Ogq/p(E"™)) or
ker g = 0.
Proof. We have the following commuting diagram of homomorphisms

S Hq(Gn-l—l/Pn-i-lvOGn+1/Pn+1(EZil)) - Hq(Gn/PTZ’OGn/Pn(E;:*)) —

lgnJrl lgn

where

HY(G/P,Og/p(E™)) =im H)(Gy/Pn, O, /p, (E5")),

HT™(G/P,0gp(E™)) = lim H" (G /Pa, Og, /p, (E})),

and g = lim g,.
—

For each n it holds that HY(G,/Pn,Oq, p,(E;*)) is an irreducible G-
module. Hence for g, we have ker g, = H(G,/P,,Og, /p,(E};")) or ker g, = 0.
By the commutativity of the above diagram the statement of the lemma fol-
lows. O

Theorem 4.5 together with Lemma 4.2 imply

Corollary 4.7. If E is strongly finite, then all nonzero cohomology groups
HY(G/P,Oq;p(E")) are injective objects of Inty.
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