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Abstract

Let G be a locally semisimple ind-group, P be a parabolic subgroup, and E
be a finite-dimensional P -module. We show that, under a certain condition on
E, the nonzero cohomologies of the homogeneous vector bundle OG/P (E

∗) on
G/P induced by the dual P -module E∗ decompose as direct sums of cohomolo-
gies of bundles of the form OG/P (R) for (some) simple constituents R of E∗. In
the finite-dimensional case, this result is a consequence of the Bott–Borel–Weil
theorem and Weyl’s semisimplicity theorem. In the infinite-dimensional setting
we consider, there is no relevant semisimplicity theorem. Instead, our results
are based on the injectivity of the cohomologies of the bundles OG/P (R).

Key words: ind-groups, cohomology of vector bundles, Bott–Borel–Weil
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1. Introduction. The Bott–Borel–Weil theorem is a basic result which con-
nects algebraic geometry with representation theory. More precisely, if G is a
connected complex reductive linear algebraic group and P is a parabolic sub-
group, the Bott–Borel–Weil theorem states that a homogeneous bundle on G/P ,
induced by a simple P -module, has at most one nonzero cohomology group. More-
over, this group is a simple highest weight G-module. Using Weyl’s semisimplicity
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theorem, one can further show that, for any finite-dimensional P -module, the cor-
responding nonzero cohomologies are semisimple G-modules. More specifically,
these cohomologies split as direct sum of cohomologies of homogeneous bundles
induced by (some) simple constituents of the inducing P -module.

Analogues of the Bott–Borel–Weil theorem have been proved in various con-
texts. In particular, in [2, 3], the case of locally reductive ind-groups G has been
studied. For a locally reductive ind-group G, a homogeneous bundle on G/P
induced by a simple finite-dimensional P -module still has at most one nonzero
cohomology group. However, the difference with the finite-dimensional case is
that this cohomology group is dual to a simple G-module, and hence is not irre-
ducible being uncountable dimensional. In addition, the cohomology group may
or may not be an integrable g = Lie(G)-module.

In this article we consider locally semisimple ind-groups G and their homoge-
neous ind-spaces G/P for parabolic ind-groups P →֒ G. To any finite-dimensional
P -module E we attach the homogeneous vector bundle OG/P (E

∗) induced by the
dual P -module E∗. We impose the condition that all non-zero cohomology groups
Hq(G/P,OG/P (E

∗)) are integrable g-modules. Then, our main result (Theorem
4.5) is that, despite the absence of a relevant analogue of Weyl’s semisimplicity
theorem, any such nonzero cohomology group Hq(G/P,OG/P (E

∗)) is isomorphic
to a direct sum of cohomologies of homogeneous bundles on G/P induced by
(some) simple constituents of E∗. The proof uses the fact that any nonzero coho-
mology group of a homogeneous bundle on G/P induced by a simple constituent
of E∗ is injective in the category of integrable g-modules.

2. Preliminaries. In this section we summarize the definitions and prop-
erties from the field of ind-groups, which we need throughout the article. More
detailed expositions on the subject can be found in [2, 3].

A locally algebraic ind-group over C, which we briefly refer to as an ind-group,
is a setG which is the inductive limit of embeddings of connected algebraic groups,
i.e. G = lim

−→
Gn, where

G1 ⊂ G2 ⊂ · · ·Gn ⊂ · · ·(1)

An ind-group G is locally (semi)simple if the filtration (1) can be chosen so
that each Gn is a (semi)simple linear algebraic group. A first important class of
locally simple ind-groups is that of diagonal locally simple ind-groups. For its
definition we need to recall the notion of a diagonal embedding. An embedding
of classical simple finite-dimensional groups G′ ⊂ G is called diagonal if the
induced injection of the Lie algebras g

′ ⊂ g has the following property: the
natural representation of g decomposes over g

′ as a direct sum of copies of the
natural representation of g′, of its dual, and of the trivial g′-representation. A
locally simple ind-group G is called diagonal if the filtration (1) can be chosen
so that each embedding Gn ⊂ Gn+1 is a diagonal embedding of classical simple
groups. First examples of diagonal ind-groups are the finitary simple ind-groups
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SL(∞) = lim
−→

SL(n), SO(∞) = lim
−→

SO(n), and Sp(∞) = lim
−→

Sp(2n), where the

inclusions SL(n) ⊂ SL(n + 1) and SO(n) ⊂ SO(n + 1) are given by A 7→
(

A 0
0 1

)

and the inclusion Sp(2n) ⊂ Sp(2n+ 2) is given by A 7→
(

A 0 0
0 1 0
0 0 1

)

.

Let G = lim
−→

Gn be an ind-group. A Cartan (resp., Borel) subgroup of G is
an ind-subgroup H (resp., B) of G such that for a well-chosen filtration (1), the
group Hn = Gn ∩H (resp., Bn = Gn ∩B) is a Cartan (resp., Borel) subgroup of
Gn for each n. A parabolic subgroup P of G is an ind-subgroup P which contains
a Borel subgroup B. A G-module is a vector space V equipped with compatible
structures of Gn-modules for all n.

An ind-group is an example of the more general notion of an ind-variety (see
[3, 6]). Briefly, an ind-variety X = lim

−→
Xn is determined by a sequence of closed

embeddings of algebraic varieties

X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · ·

An ind-variety X is automatically a topological space, and one defines the struc-
ture sheaf OX of X as the projective limit sheaf of the structure sheaves OXn

of
Xn. More generally, a sheaf F on X is the limit of a projective system of sheaves
Fn on Xn.

Let G = lim
−→

Gn be a locally semisimple ind-group and P = lim
−→

Pn be a
parabolic subgroup. Let E be a finite-dimensional P -module. The inductive limit
G/P = lim

−→
Gn/Pn has a natural structure of an ind-variety. The sheaf OG/P (E

∗)
is defined as the projective limit OG/P (E

∗) = lim
←−
OGn/Pn

(E∗
n), where En = E|Pn

and OGn/Pn
(E∗

n) is the sheaf of regular local sections of the homogeneous vector
bundle over Gn/Pn induced by the module E∗

n. Using the Mittag-Leffler principle,
it is shown in [3] that the cohomology group Hq(G/P,OG/P (E

∗)) is canonically
isomorphic to the projective limit lim

←−
Hq(Gn/Pn,OGn/Pn

(E∗
n)) for each q.

By definition (see [3]), the Lie algebra of an ind-group G = lim
−→

Gn is the
inductive limit Lie algebra g = lim

−→
gn for the filtration

g1 ⊂ g2 ⊂ · · · ⊂ gn ⊂ · · · ,

where gn is the Lie algebra of Gn and the inclusions gn ⊂ gn+1 are the differentials
of the group embeddings Gn ⊂ Gn+1. A Lie algebra g which is isomorphic to a
direct limit of finite-dimensional Lie algebras is called locally finite. Therefore, the
Lie algebra of an ind-group is locally finite. A locally finite Lie algebra g which
is isomorphic to a direct limit of (semi)simple finite-dimensional Lie algebras, is
called locally (semi)simple. First examples of locally simple Lie algebras are the
simple finitary Lie algebras sl(∞), so(∞), and sp(∞), which are the Lie algebras
of the ind-groups SL(∞), SO(∞), and Sp(∞).

A module M over g is called integrable if dim span{m, g ·m, g2 ·m, · · · } <∞
for any m ∈ M and g ∈ g. Below we use extensively the properties of integrable

Compt. rend. Acad. bulg. Sci., 70, No 7, 2017 909



g-modules established in [8]. By Intg we denote the category of integrable g-
modules.

3. On integrable g-modules. In this section g = lim
−→

gn denotes a locally
semisimple Lie algebra.

Lemma 3.1. Let M = lim
−→

Mn be an integrable g-module obtained as the in-
ductive limit of finite-dimensional gn-modules Mn. If the length of Mn is bounded
by a number N not depending on n, the length of the g-module M is also bounded
by N .

Proof. Assume, on the contrary, that M possesses a chain of submodules of
the form

0 ( U1 ( U2 ( · · · ( UN ( UN+1 = M.

We choose elements x1 ∈ U1 \ {0}, x2 ∈ U2 \ U1, . . . , xN+1 ∈ UN+1 \ UN , and
choose n large enough so that x1, x2, . . . , xN+1 ∈ Mn. Then we consider the
filtration of Mn

0 ⊂ (U1 ∩Mn) ⊂ (U2 ∩Mn) ⊂ · · · ⊂ (UN ∩Mn) ⊂Mn

and note that U i ∩ Mn 6= U i+1 ∩ Mn for i = 1, . . . , N . This contradicts the
assumption that the length of Mn is bounded by N .

We recall the following results from [8] which are very useful for our consid-
erations.

Lemma 3.2 ([8], Lemma 4.1, Proposition 3.2). Let M be an integrable g-
module.

(a) The g-module M∗ = HomC(M,C) is an integrable g-module if and only
if for any n, M considered as a gn-module has finitely many isotypic gn-
components.

(b) If the g-module M∗ is integrable, then M∗ is an injective object in the cat-
egory Intg.

Corollary 3.3. Let M ∈ Intg be a module of finite length N with simple
constituents Mi, i = 1, . . . N , and such that M∗ ∈ Intg. Then there is an isomor-
phism of g-modules

M∗ ∼=
⊕

i

M∗
i .

Proof. The case N = 1 is clear and the general case follows from a simple
induction argument using Lemma 3.2 (b) and the fact that Intg is closed with
respect to taking submodules and quotients.

In the setting of Section 2, let Bn be a Borel subgroup of Gn. A weight
µ of B = lim

−→
Bn is the (projective) limit of a projective system of integral Gn-

weights {µn}. By definition, µ is B-dominant if all µn are Bn-dominant. Let
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µ be a B-dominant weight. By VB(Cµ) we denote the inductive limit of finite-
dimensional simple Gn-modules VBn

(Cµn
) with Bn-highest weight µn, where the

highest weight space Cµn
of VBn

(Cµn
) is mapped to Cµn+1

. Assuming that Gn

is classical simple, following Bourbaki [1], we write the weights of Gn as linear
combinations of standard functions ε1n, . . . , ε

rn+1
n ifGn is of type A, and ε1n, . . . , ε

rn
n

otherwise, where rn = rkgn.
Proposition 3.4. Let G be one of the finitary simple ind-groups and let

µ = lim
←−

µn be a dominant weight of G.

(i) If G ∼= SL(∞), then VB(Cµ)
∗ is an integrable g-module if and only if there

exists an integer m0 such that for any n if µn =
∑

i a
i
nε

i
n then a1n−arn+1

n ≤
m0.

(ii) If G ∼= SO(∞) or Sp(∞), then VB(Cµ)
∗ is an integrable g-module if and

only if there exists an integer m0 such that for any n if µn =
∑

i a
i
nε

i
n, then

a1n ≤ m0.

Proof. According to Lemma 3.2 (a), the g-module VB(Cµ)
∗ is integrable if

and only if, when considered as a gn-module, it has finitely many isotypic com-
ponents. Using the standard branching rules for embeddings of classical groups
(see e.g. [9]) one can show that this latter condition is equivalent to the explicit
conditions of (i) and (ii).

Notice that the simple tensor sl(∞)-, so(∞)-, sp(∞)-modules discussed in [8]
are a special case of the modules discussed in Proposition 3.4.

More generally, ifG is a diagonal nonfinitary locally simple ind-group, it turns
out that the condition of g-integrability of the module VB(Cµ)

∗ is equivalent to the
condition that AnnU(g)(VB(Cµ)) 6= 0, see ([7], Proposition 4.5) and the references
therein. Here we present an explicit sufficient condition for the integrability of
VB(Cµ)

∗ for all diagonal locally simple ind-groups.
Proposition 3.5. Let G be a diagonal locally simple ind-group and let µ =

lim
←−

µn be a dominant weight of G. Assume that there exists an integer m0 with

the property that for any n, the weight µn has an expression µn =
∑

i a
i
nε

i
n such

that
∑

i |a
i
n| ≤ m0. Then VB(Cµ)

∗ is integrable as a g-module.

Proof. Since G is diagonal, for large enough n and for all k the embeddings
gn ⊂ gn+k are diagonal. Therefore, we can decompose VBn+k

(Cµn+k
) over gn

using branching rules for diagonal embeddings of classical Lie algebras, see [4, 5].
These branching rules show that for the highest weight ν of any simple gn-module
U which enters the decomposition of VBn+k

(Cµn+k
) over gn, there exists an ex-

pression ν =
∑

i biε
i
n which satisfies

∑

i |bi| ≤
∑

i |a
i
n+k| ≤ m0. This holds for any

k. Thus there are only finitely many isotypic gn-components in the decomposi-
tion of VBn+k

(Cµn+k
) and their number stabilizes for large k. By Lemma 3.2 (a),

VB(Cµ)
∗ is an integrable g-module.
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4. Decomposition of cohomology. In this section we fix G = lim
−→

Gn to
be a locally semisimple ind-group and P = lim

−→
Pn a parabolic subgroup. By g we

denote the Lie algebra of G.
Lemma 4.1. Let E be a finite-dimensional P -module. Then

Hq(G/P,OG/P (E
∗))

is the dual module of an integrable g-module of finite length.

Proof. By Theorem 10.3 in [3] we have

Hq(G/P,OG/P (E
∗)) = lim

←−
Hq(Gn/Pn,OGn/Pn

(E∗
n)),

where En := E|Pn
. The classical Bott–Borel–Weil theorem implies that

Hq(Gn/Pn,OG/P (E
∗
n))
∼= M∗

n,

where Mn is some finite-dimensional Gn-module. In other words,

Hq(G/P,OG/P (E
∗)) = lim

←−
M∗

n,

hence Hq(G/P,OG/P (E
∗)) is the dual module to the module M = lim

−→
Mn. Ob-

viously, M ∈ Intg. Since the length of each Mn is bounded by the length of E,
by Lemma 3.1 the same holds for the length of M .

Lemma 4.2. For any finite-dimensional P -module E, the integrability of
the g-module Hq(G/P,OG/P (E

∗)) implies the injectivity of this module in the
category Intg.

Proof. The statement follows directly from Lemma 4.1 and Lemma 3.2
(b).

Let E be a finite-dimensional irreducible P -module. Then Theorem 11.1 (ii)
from [3] states that Hq(G/P,OG/P (E

∗)) 6= 0 for at most one integer
q ≥ 0. Moreover, if q is such an integer, then Hq(G/P,OG/P (E

∗)) = V ∗ for
some irreducible G-module V . We call the module E strongly finite if V ∗ is an
integrable g-module.

Furthermore, we call an arbitrary finite-dimensional P -module E strongly
finite if all its simple constituents are strongly finite.

We now describe several classes of strongly finite modules. Let G = lim
−→

Gn

be a diagonal locally simple ind-group, let H = lim
−→

Hn be a Cartan subgroup and
B = lim

−→
Bn be a Borel subgroup containing H.

Proposition 4.3. Let E be a finite-dimensional B-module satisfying the
following condition: if λ = lim

←−
λn is a weight of a simple constituent of E, then

there exists an integer m0, such that for any n the weight λn has an expression
λn =

∑

i a
i
nε

i
n with

∑

i |a
i
n| ≤ m0. Then E is a strongly finite B-module.

Proof. Let L = Cλ denote the one-dimensional B-module of weight λ =
lim
←−

λn, such that λ satisfies the condition of the proposition. In [2] an analogue
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WB of the Weyl group for diagonal locally simple ind-groups is defined and it is
proved that (see Theorem 4.27 in [2])

Hq(G/B,OG/B(L
∗)) = VB(Cw·λ)

∗,

where w ∈WB and w ·λ is a dominant weight defined as the (projective) limit of
a projective system of Gn-weights {w(n)(λn+ρn)−ρn}. Here w(n) is an element
of the Weyl group of Gn, determined uniquely by w, and ρn denotes as usual the
half-sum of the positive roots of gn. The definitions of w and of w(n) can be
found in [2]. It is important for our considerations that given w, there exists an
integer N such that for each n, the weight w(n)ρn − ρn is a linear combination
of at most N of the εin’s. Furthermore, it is proved in [2] that {w(n)ρn − ρn} is a
projective system of weights of Gn. It follows that there exists an integer m, such
that for all n the weight w(n)ρn − ρn has an expression w(n)ρn − ρn =

∑

i b
i
nε

i
n

with
∑

i |b
i
n| ≤ m. This shows that if w(n)(λn + ρn)− ρn =

∑

i(k
i
n + bin)ε

i
n, then

∑

i |k
i
n+ bin| ≤ m0+m. Therefore, by Proposition 3.5, VB(Cw·λ)

∗ is an integrable
g-module.

When G is a finitary simple ind-group the following stronger result holds.
Proposition 4.4. Let G be one of the finitary simple ind-groups and let E

be a finite-dimensional B-module. Then E is strongly finite if and only if the
following holds:

• If G ∼= SL(∞) and λ = lim
←−

λn is the weight of a simple constituent of E,

then there exists an integer m0 such that for any n, if λn =
∑

i a
i
nε

i
n, then

amax
n − amin

n ≤ m0. Here amax
n = maxi{a

i
n} and amin

n = mini{a
i
n}.

• If G ∼= SO(∞) or Sp(∞) and λ = lim
←−

λn is the weight of a simple constituent

of E, then there exists an integer m0 such that for any n, if λn =
∑

i a
i
nε

i
n,

then maxi{|a
i
n|} ≤ m0.

The proof follows the same ideas as in Proposition 4.3, and uses also Propo-
sition 3.4.

We now return to the general setting of this section and state the main result
of this note.

Theorem 4.5. Let E be a strongly finite P -module. Then

(i) Hq(G/P,OG/P (E
∗)) is an integrable g-module for any q, and

Hq(G/P,OG/P (E
∗)) 6= 0 for at most N values of q, where N denotes the

length of E.

(ii) Hq(G/P,OG/P (E
∗)) 6= 0 implies that as a g-module Hq(G/P,OG/P (E

∗)) is
isomorphic to a direct sum of cohomologies of homogeneous bundles of the
form OG/P (R) for simple constituents R of E∗.
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Proof. We use induction on N . When E is irreducible, Theorem 11.1 from
[3] tells us that OG/P (E

∗) has at most one non-vanishing cohomology group. The
integrability of the nonzero cohomology group follows from the assumption that
E is strongly finite. This proves (i) and (ii) for an irreducible P -module E. Next,
assume that (i) and (ii) hold for stongly finite modules E′ of length N − 1. Then
we consider our module E of length N together with a short exact sequence

0→ E′′ → E → E′ → 0

such that E′ is of length N−1 and E′′ is irreducible. If Hq(G/P,OG/P (E
′′∗)) = 0

for all q, both (i) and (ii) follow trivially from the induction assumption. Suppose
that Hq(G/P,OG/P (E

′′∗)) 6= 0. Then the short exact sequence

0→ OG/P (E
′∗)→ OG/P (E

∗)→ OG/P (E
′′∗)→ 0

yields an exact sequence

(2)

0→ Hq(G/P,OG/P (E
′∗))→ Hq(G/P,OG/P (E

∗))→

Hq(G/P,OG/P (E
′′∗))

g
→ Hq+1(G/P,OG/P (E

′∗))→

Hq+1(G/P,OG/P (E
∗))→ 0.

Since Intg is an abelian category and E is strongly finite, it follows that
Hq(G/P,OG/P (E

∗)) and Hq+1(G/P,OG/P (E
∗)) are integrable g-modules. More-

over, for p 6= q, q + 1 we have Hp(G/P,OG/P (E
∗)) ∼= Hp(G/P,OG/P (E

′∗)), and
this proves (i).

To prove (ii) we use Lemma 4.6 below and consider two cases for the con-
necting homomorphism g in the exact sequence (2).

Case 1. ker g = Hq(G/P,OG/P (E
′′∗)). Then the integrability of

Hq(G/P,OG/P (E
∗)) proven in (i), and Lemmas 4.1, 4.2 imply that

Hq(G/P,OG/P (E
∗)) ∼= Hq(G/P,OG/P (E

′∗))⊕Hq(G/P,OG/P (E
′′∗)).

Furthermore, Hq+1(G/P,OG/P (E
′∗)) ∼= Hq+1(G/P,OG/P (E

∗)). Therefore, by
induction (ii) holds for both Hq(G/P,OG/P (E

∗)) and Hq+1(G/P,OG/P (E
∗)).

Case 2. ker g = 0. Then img is a direct summand of Hq+1(G/P,OG/P (E
′∗))

by Lemma 4.2, i.e.

Hq+1(G/P,OG/P (E
′∗)) ∼= Hq(G/P,OG/P (E

′′∗))⊕Hq+1(G/P,OG/P (E
∗)).

Furthermore, Hq(G/P,OG/P (E
′∗)) ∼= Hq(G/P,OG/P (E

∗)).

Since by induction both Hq(G/P,OG/P (E
′∗)) and Hq+1(G/P,OG/P (E

′∗))
are isomorphic to direct sums of cohomologies of bundles OG/P (R

′)
for simple constituents R′ of (E′)∗, and hence also of E∗, the same follows for
Hq(G/P,OG/P (E

∗)) and Hq+1(G/P,OG/P (E
∗)).
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Lemma 4.6. Consider the connecting homomorphism

g : Hq(G/P,OG/P (E
′′∗))→ Hq+1(G/P,OG/P (E

′∗)),

where E′′ is an irreducible P -module. Then ker g = Hq(G/P,OG/P (E
′′∗)) or

ker g = 0.

Proof. We have the following commuting diagram of homomorphisms

· · · → Hq(Gn+1/Pn+1,OGn+1/Pn+1
(E′′∗

n+1))→

gn+1

��

Hq(Gn/Pn,OGn/Pn
(E′′∗

n ))→

gn

��

. . .

· · · →Hq+1(Gn+1/Pn+1,OGn+1/Pn+1
(E′∗

n+1))→Hq+1(Gn/Pn,OGn/Pn
(E′∗

n ))→ . . .

where

Hq(G/P,OG/P (E
′′∗)) = lim

←−
Hq(Gn/Pn,OGn/Pn

(E′′∗
n )),

Hq+1(G/P,OG/P (E
′∗)) = lim

←−
Hq+1(Gn/Pn,OGn/Pn

(E′∗
n )),

and g = lim
←−

gn.

For each n it holds that Hq(Gn/Pn,OGn/Pn
(E′′∗

n )) is an irreducible Gn-
module. Hence for gn we have ker gn = Hq(Gn/Pn,OGn/Pn

(E′′∗
n )) or ker gn = 0.

By the commutativity of the above diagram the statement of the lemma fol-
lows.

Theorem 4.5 together with Lemma 4.2 imply
Corollary 4.7. If E is strongly finite, then all nonzero cohomology groups

Hq(G/P,OG/P (E
∗)) are injective objects of Intg.
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