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Abstract

Our main object of study are Borel subalgebras of the Lie algebra gl(oo) of finitary
infinite matrices. By definition, a Borel subalgebra of gl(co) is a maximal locally solv-
able subalgebra. We give an explicit description of Borel subalgebras as stabilizers of
certain chains of subspaces in the natural representation of gl(co). More precisely, we
claim that each Borel subalgebra of gl(co) is the stabilizer of a unique maximal closed
generalized flag in the natural representation. We also discuss the relationship be-
tween Borel subalgebras and toral subalgebras of gl(c0). The paper is a self-contained
statement of results and examples. Proofs will appear elsewhere.
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Introduction

In this talk we announce our recent general description of all maximal locally solvable subal-
gebras of the Lie algebra gl(oo) or, equivalently, of its maximal simple subalgebra si(occ). In
fact, our main result applies to any Lie algebra associated with a linear system, see Section 1
below. This result is part of our ongoing study of the structure of locally finite Lie algebras
and in particular of the classical simple locally finite Lie algebras sl(oc), o(occ) and sp(c0).

Sections 1, 2 and 3 are of preliminary nature. In Section 1 we review some basic properties
of linear systems, i.e. of pairs of vectors spaces in duality, see also [M], and discuss the
propertues of the Lie algebras associated with linear systems. Section 2 recalls the definition
and main properties of generalized flags. Generalized flags, see [DP2], are certain chains of
subspaces in an infinite dimensional vector space which generalize the notion of a flag in a
finite dimensional vector space. Section 3 summarizes results on maximal toral subalgebras
of gl(oco) following [NP]. The main result, Theorem 1, is stated in Section 4. If U denotes
the natural representation of gl(oc), the theorem claims that each Borel, i.e. maximal locally
solvable subalgebra of gl(00), is the stabilizer of a unique generalized flag in U which is closed
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with respect to a natural closure operation. We give examples and explain the relations to
existing more specific results. In Section 5 we state results about the relation between Borel
subalgebras and toral subalgebras of gl(co). In particular we describe all Borel subalgebras
which contain a given maximal toral subalgebra of a certain type, Theorem 2. We also discuss
the toral subalgebras contained in a given Borel subalgebra. In particular we construct a
somewhat unexpected example of a Borel subalgebra of gl(co) which contains no nonzero
toral subalgeras. This example also solves an open problem posed in [NP] as it is an example
of a selfnormalizing locally nilpotent subalgebra of gl(co) whose adjoint representation is not
locally finite.

The present talk contains no proofs. The proofs of all new results announced here will
appear in a complete paper to follow.
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Conventions The base field is C. N = {1,2,...}. All vector spaces and Lie algebras are
assumed to be defined over C. The countable ordinal is denoted as usual by ¥;. A Lie
algebra is locally finite (respectively, locally nilpotent or locally solvable) if every finite set of
elements generates a finite dimensional (respectively, nilpotent or solvable) subalgebra. A
module M over a Lie algebra € is locally finite if every vector m € M is contained in a finite
dimensional £—submodule of M. The superscript * denotes dual space.

1 Linear systems and the Lie algebra gl(co)

Let U and V' be a pair of vector spaces equipped with a fixed bilinear form
(1) (0,0): U xV = C.

G. Mackey calls such a pair a linear system. In what follows we will always assume that the
bilinear form (o, o) is non-degenerate. If (U, V) is a linear system, the vector space U @ V
is naturally endowed with the structure of an associative algebra over C such that

(2) (u1 ® v1)(ug @ v2) = (Ug, v1)u1 ® Vg,

where uj,us € U and vy,ve € V. Furthermore, U is a left U ® V-module such that (u; ®
v1) - ug = (ug,v1)uq, and V is a right U ® V-module such that v; - (ug ® ve) = (ug, v1)v;.
Note also that (1) induces inclusions U C V* and V C U*.



If both the dimensions of U and V' are finite or countable (in that case they are necessarily
equal), G. Mackey has shown, [M], Ch. III, Lemma in Sec. 5, that U and V always admit
bases {u,} and {v,} with the property (u,,vs) = 04,3, Where d, 4 stands for Kronecker’s
symbol. An immediate corollary of Mackey’s result is that if dim U and dim V' are countable
dimensional or finite, the associative algebra U ® V depends up to isomorphism only on
dimU. If dimU =dimV =n, U ® V is isomorphic to End U, and if dimU = dimV = Ry,
U ® V is isomorphic to the algebra Mat/  of infinite matrices with finitely many nonzero
entities. If either dimU or dim V' is uncountable, the isomorphism class of the associative
algebra U ® V' is not determined by dimU and dim V' only. An example of a linear system
with different dimensions of U and V is the pair (U,V = U*), where U is a countable
dimensional vector space and the bilinear form (o, o) is the canonical pairing U x U* — C.

For the rest of this talk we fix a linear system (U,V). We denote by g the Lie algebra
corresponding to the associative algebra U @ V', i.e. g = U ® V with Lie bracket induced
by the product (2). Each of the spaces U and V is a g-module. When both U and V are
countable dimensional, g is isomorphic to gi(oc), the Lie algebra of infinite matrices with
finitely many nonzero entries.

We also fix the following notation. For any subspace W C U we set Wt = {v €
V| {w,v) =0, for every w € W}. By definition, W+ is a subspace of V, and W c (W+)* C
U. Following Mackey, [M], we call the correspondence

Wi W= WH*

closure, and call W closed if W = W.

2 Generalized flags

Any Borel subalgebra of gl(n) is the stabilizer of a unique maximal flag of subspaces in the
natural (n-dimensional) representation. Our main result, Theorem 1 below, is an analog of
this statement for g. In the present section we introduce a class of chains of subspaces which
we call generalized flags and which appear in Theorem 1.

Let X be a vector space. A chain of subspaces in X is a set C of subspaces in X linearly
ordered by inclusion. A generalized flagin X, [DP2], is a chain of subspaces F in X satisfying
the following properties:

(i) each space F' € F has an immediate predecessor or an immediate successor;

(ii) for every 0 # x € X there exists a pair F', F” € F, such that © € F"\F' and F" is
the immediate successor of F'.

Condition (i) implies that F = {F., F/}aca, where F! is the immediate predecessor of
F!', and A is an index set which is linearly ordered as follows: a < f if and only if F], is
a proper subspace of F é If a subspace F' € F has both an immediate successor and an
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immediate predecessor, then F' = F, = Fy for some o, 8 € A. (In the latter case, § is the
immediate predecessor of a in A.) A generalized flag F such that the corresponding index
sett A of F is isomorphic as an ordered set to a subset of Z, is called a flag in X. For the
rest of the talk the superscripts ' and ” will be used to denote two subspaces in a generalized
flag, such that the subspace with superscript ” is the immediate successor of the subspace
with superscript ’.

Example 1.
a) Any chain of subspaces in X of one of the following forms:
(i) OCFCFC...CF,CX,;
(11) 0CF,CF,C..., suchthat Ujeny F; = X;
(111) ...CF,CF_;C X, such that MieN F_;,= 0;
(IV) ...CF_QCF_1CFOCF1C..., such that ﬂiezﬂzoand Uiezﬂzv

is a flag in X. Furthermore, any flag in X is of one of the above types.
b) An infinite chain of subspaces in X of the form
OCFRCFKC...CF,CF CX,

such that Ujea F; = Njeca_F_;, is a generalized flag but not a flag. Here A, and A_ are
nonempty subsets of N not both of which are finite. A simple case which we will consider
below is the case when A, =N and A_ = {1}.

c) Let dim X = N and let {z,},cq be a basis of X enumerated by Q. For each ¢ € Q,
set F, = span{z,|s < ¢} and F) = span{z,|s < ¢}. Then the chain of subspaces F =
{Fy; F }qeq 1s a generalized flag with A = Q.

A generalized flag F is maximal if it is not properly contained in another generalized flag
in X. Clearly, F = {F., F'}sca is maximal if and only if dim F//F! = 1 for every a € A.
In particular, the generalized flag F from Example 1, ¢) is a maximal generalized flag.
However, it is not a maximal chain of subspaces in X for the chain C = {F}, F}/, F\ }4cq.cr\0>
where F, := span{es|s < 1}, properly contains F. In fact, one can check that C is the
unique maximal chain in X containing the maximal generalized flag F, see also [DP2]. More
generally, any chain C of subspaces in X determines a unique generalized flag. Indeed,
if C = {C,} is a chain and z € X is a nonzero vector, put F,(C) := UpeczgrF and
F)(C) := NpecwerF. Then F := {F)(C), F}(C)}ozex is a generalized flag in X which we
denote by fi(C). (See [DP2] for more details on the relation between C and fi(C).)

If F is a generalized flag in X and {zs}gecp is a basis of X, we say that F and {zg}
are compatible if there exists an order preserving injection ¢ : A — B such that F, =
span{zs |8 < ¢(a)} and F? = span{zg | ¢(a) A B}. For instance, the generalized flag in
Example 3, c) is compatible with the basis {z,},cq-

Proposition 3 in [DP2] claims that if dim X < N, then every generalized flag in X admits
a compatible basis. There are generalized flags in X with dim X > N, which do not admit
compatible bases.



Consider now generalized flags in the space U of a linear system (U, V). In all consid-
erations below U may be replaced by V. To every chain C = {C} in V we can assign the
chain C := {C}} in V, and by iteration, the chain (C*)* in U. It is not true that C is a
subchain of (C1)%, as for instance we may have Ct = {0} and, consequently, (C+)+ = {X},
while C has infinitely many spaces. If F is a generalized flag, then F+ and (F*)* are not
necessarily generalized flags but are in general well defined chains in V' and U respectively.
Therefore we can define F as fi((F1)t). We call F closed if F = F, and strongly closed if
(FH)L = F. Clearly every strongly closed generalized flag in U is a closed generalized flag.
The converse is not true. Here is an explicit characterization of closed and strongly closed
generalized flags in U.

Proposition 1 (i) F is strongly closed if and only if F = F for every F € F.
(ii) F is closed if and only if F"" = F!" and F!, equals either F! or F" for every a € A.

Example 2.

a) Let U be a countable dimensional space with basis {t }aca, V = span{u}} C U*, where
u’ (ug) = da,p, and the bilinear form U x V' — C be the restriction of the canonical pairing
UxU*— CtoU x V. Any generalized flag F which is compatible with the basis {u,} is
automatically strongly closed.

b) Let (U,V) be as in a) and let {a,} denote the coordinates of a vector v € U with respect
to the basis {u,}. Identify A with N x N and let U, for j € N be the subspace of U given
by the system of j equations

Z ak,l = 0, Z ak,l = 0, Ce y Z a'k,l =0.

k,leN klENk>2 klENk>j

Then the chain F
...cU,cU cU

is a (maximal) flag for which F*+ = {0} and (F*)* = {U}, i.e. F is not closed.

c) Let now U = span{u;, i}ien, V = span{v; }ien, and (u;, vj) = 6; 4, (@, v;) = 1. Then the
chain F
ocU,clUy,c...cU cU,

where U; = span{u;}i<j, U’ = UjenUj, is a maximal generalized flag in U. We have U; = U,
for every j and U’ = U. Hence F is closed but not strongly closed.

3 Maximal toral subalgebras of g

In this section we review some results from [NP] which are relevant to our topic.



We call an element g € g semisimple (respectively, nilpotent) if it is semisimple (respec-
tively, nilpotent) as a linear operator on the vector space U. A subalgebra t C g is toral if all
its elements are semisimple. Similarly, to the classical case of a semisimple finite dimensional
Lie algebra, any toral subalgebra of g is necessarily abelian, [NP], Lemma 1.3.

A dual system of one dimensional subspaces in the linear system (U, V) is a pair of sets of
one dimensional subspaces U%, V*, o running over some index set A, such that (U%, V#) =0
if and only if a # 3. There is the following correspondence between maximal dual systems
of one dimensional subspaces (i.e. dual systems which are not proper subsets of any dual
system), and maximal toral subalgebras of g. If U* C U, V® C V is a maximal dual system,
we set

t:= @aeAUa X Ve,

Conversely, if t is a maximal toral subalgebra, we define the families of one dimensional
subspaces in U and V' as eigenspaces of t with nonzero eigenvalues in U and V respectively.
The following proposition is a reformulation of [NP], Proposition 3.7.

Proposition 2 The above correspondence is a well-defined bijection between the set of mazx-
imal toral subalgebras of g and the set of mazimal dual systems of one dimensional subspaces
in the linear system (U, V).

A maximal toral subalgebra t C g determines also the following subspaces of U and V:
U :={u€eU|t-u=0 for every t € t},

Ve :={veV|t-v=0 for every t € t}.

It is shown in [NP] that (U2, V) = 0. We call a maximal toral subalgebra t splitting if
U = @aeAUa and V = @aeAva.

Example 3.

a) Let U and V be as in Example 2, a). The subalgebra t = @4c4(Cuq) @ (Cuy,) is a splitting
maximal toral subalgebra of g, and any splitting maximal toral subalgebra of g is of this
form for some basis {u/, }aca such that span{(u})*} =V.

b) Let U and V be as in Example 2, ¢). The subalgebra t = @;en(Cu;) ® (Cuf) is a maximal
toral subalgebra of g which is not splitting.

c) Let U and V be as in Example 2, a) with A = N. Consider the following maximal dual
system
Ub = Clug —ug), V*¥=C(u} —u}), fork>3.

The corresponding maximal toral subalgebra
t = ®p>3U FRVF

is not splitting, and furthermore, both U? = Cuy and V,? = Cu} are nonzero.
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In [NP] a Cartan subalgebra of g is defined as a self-normalizing locally nilpotent subal-
gebra b of g for which the adjoint module of b is locally finite. It is shown ([NP], Theorem
4.1 and Proposition 3.8) that any such subalgebra of g is the centralizer C(t) of a unique
maximal toral subalgebra t of g. Moreover, C(t) = t® (U? ® V}?). Imposing the additional
condition of locally finite action in the above definition is in contrast with the definitions of
a toral subalgebra or a Borel subalgebra of g. Indeed, the latter are very straightforward
extensions of the definitions in the finite dimensional case. Therefore the problem whether
locally finite action is a redundant condition is quite natural and was posed in [NP]. We
show in Section 4 that this condition is in fact essential by constructing an example of a
self-normalizing locally nilpotent subalgebra of g whose adjoint representation is not locally
finite, see Example 4 below.

4 Borel subalgebras of g

We are now ready to announce and discuss the main result of the talk.

We define a Borel subalgebra of g as a maximal locally solvable subalgebra of g. For
the finite dimensional Lie algebra gl(n), every Borel (i.e. maximal solvable) subalgebra is
the stabilizer of a unique maximal flag in the natural representation of gi(n). The following
theorem is a far reaching generalization of this result.

Theorem 1 FEwvery Borel subalgebra b of g is the stabilizer of a unique mazximal closed gen-
eralized flag Fp in U, and the map
b— Fy

s a bijection between the set of Borel subalgebras in g and the set of mazimal closed gener-
alized flags in U. The inverse map 1s

F = St]:,
where Sty denotes the stabilizer of F.
In fact, both maps in Theorem 1 are very explicit. Firstly, o = fi({b- u}ucr), where
{6 u}yer is the chain of cyclic b-submodules of U, and, secondly, Stz =Y _ F® (Fp.)* for
any generalized flag F = {F, F”} in U. Furthermore, the maximal closed generalized flags

in U have a simple description: F is a maximal closed generalized flag in U if and only if it
is closed and dim F//F! = 1 whenever F! = F! cf. Proposition 1.

Next we describe the nilradical of a Borel subalgebra of g. Let b be a Borel subalgebra
of g with F, = {F}, F!'}, and let n, denote the subspace of nilpotent elements in b.
Proposition 3 (i) ny is an ideal of b. Moreover, ny =Y. F! ® (F2)*- = [b,b], and b is the
normalizer of ng in g.

(ii) There exists a toral subalgebra | of g such that b =@ ng, and [I,b] C n,.
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Unlike the case of gl(n), the toral subalgebra [ need not be a maximal toral subalgebra
of g. For more details on the relation between Borel subalgebras and toral subalgebras of g
in the case when g = gl(00) see Section 5.

In the rest of this section we use Theorem 1 to provide examples of Borel subalgebras of
g by describing explicitly their corresponding generalized flags Fp.

The simplest maximal closed generalized flags in U are the maximal strongly closed
generalized flags in U. Note that F is a maximal strongly closed generalized flag in U if
and only if F is a strongly closed generalized flag which is also a maximal generalized flag.
Let {uq}aca be a basis of U such that for every o« € A there is an element u’ € V with
(ug,ul) = 04p for every f € A. Then every maximal generalized flag in U compatible
with {u,} is a maximal strongly closed generalized flag in U. Conversely, if F is a maximal
strongly closed generalized flag in U, then F admits a compatible basis {u,} with the above

property.

A simple example of a maximal closed generalized flag in U which is not strongly closed
is the generalized flag F from Example 2, c).

Our next example is an example of a Borel subalgebra b of gl(co) for which ny = b.
As every Borel subalgebra is self-normalizing, b is an example of a self-normalizing locally
nilpotent subalgebra of [(co) whose adjoint module is not locally finite. The latter follows
directly from the explicit description of b.

Example 4. Let U = span{i,}.cq, V = span{u; }4cq, and where
- w1 i g>s
<ulI7u5> - { 0 if q S s.

Then (o,0) is non—-degenerate and dimU = dimV = ¥, hence g = gl(co). Similarly to
Example 1, c), set F; = span{i,|s < ¢} and F = span{i,|s < q}. Then F = {F, F/'}
is a maximal closed generalized flag in U for which Fé = F} for every ¢ € Q. Thus, for
b = Stx, n, = b by Proposition 3 (i). Moreover, b contains no nonzero semisimple elements,
and hence no nontrivial toral subalgebras.

5 The case when g = gl(o0)

In this section we restrict ourselves to the case when g = gl(00), i.e. dimU = dimV = Y,
and study the relationship between maximal toral subalgebras and Borel subalgebras of g.
As the examples at the end of the previous section show, Theorem 1 is a powerful tool
for constructing Borel subalgebras of gl(co). However, not all relevant information about a
Borel subalgebra b can be easily read off the generalized flag Fy. In fact, it is very useful
to look at the b-stable maximal closed generalized flags in both spaces U and V' of g. The
consideration of both representations U and V' leads naturally to connections between Borel
subalgebras and toral subalgebras of g.



In the case of gl(n), every Borel subalgebra contains a maximal toral subalgebra, and
in fact, infinitely many maximal toral subalgebras. As Example 4 shows, it is no longer
true in the case of gl(co). On the other hand, every toral subalgebra of g is abelian, thus
solvable, and hence it is contained in a Borel subalgebra, and, in fact, in infinitely many
Borel subalgebras. The best understood Borel subalgebras are those containing a splitting
maximal toral subalgebra of g, and we discuss them first.

Define a splitting Borel subalgebra b of g as a Borel subalgebra b containing a splitting
maximal toral subalgebra t of g. If b is splitting, all b—stable subaspaces in U are of the
form span{U®},cp for varying subsets B of the set of indices A of the maximal dual system
{U*,V?},ea corresponding to t. This follows from the fact that all t-invariant subspaces
have that form. The following proposition characterizes the splitting Borel subalgebras of g.

Proposition 4 Let b be a Borel subalgebra of g. The following statements are equivalent.
(i) b is splitting.
(ii) The b-stable mazimal closed generalized flags in both U and V' are strongly closed.

(iii) There exists a direct system of subalgebras g, C g, such that g, = gl(n) and lim g, = g,
and for which the intersection b N g, is a Borel subalgebra of g, for every n.

Informally, Proposition 4 shows that if one thinks of gl(c0) as the direct limit of gi(n),
one is naturally led to consider splitting Borel subalgebras only. Proposition 4 implies also
that the splitting Borel subalgebras of g containing a fixed maximal toral subalgebra t are
in a bijective correspondence with maximal generalized flags in U compatible with a fixed
basis {us} of U such that u, € U* for every a € A. In other words, the splitting Borel
subalgebras containing t are in a bajective correspondence with permutations of the index
set A. This result is well known, and has appeared in particular in [DP1], [N] and [LN].

Here are examples of splitting Borel subalgebras of g. We assume that the maximal toral
subalgebra t and its corresponding dual system {U*, V*} are fixed.

Example 5. Here U and V are as in Example 2, a).
a) If A=N, set U; = span{u,},<; and U_; = span{u;},>;. Then the generalized flags

OcU,cU,cC...

and
...cU_,CcU_,CU

are maximal, they are compatible with the basis {u;}, and their respective stabilizers are
splitting Borel subalgebras of g.

If A=7, we set U; = span{u;};<; and the generalized flag

...CU,1CU0CU1C...
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is also maximal and compatible with the basis {u;} and its stabilizer is a splitting Borel
subalgebra of g.

All generalized flags above are flags and the corresponding Borel subalgebras play a
special role among all splitting Borel subalgebras as each of them admits a basis of simple
roots. We do not discuss roots in this talk and refer the interested reader to [DP1].

b) Let A = Q. Set, as in Example 1, ¢), U, = span{u,|s < ¢}, U] = span{u,|s < ¢}.
Then the generalized flag F = {U,, U} }4cq is maximal and compatible with the basis {u,}.
It’s stabilizer is a Borel subalgebra of g, and this Borel subalgebra does not stabilize any
maximal flag in U.

Here are some comments to Example 5. First of all, both parts a) and b) show that
a Borel subalgebra b C g does not necessarily have a one dimensional (or even a finite
dimensional) b-stable subspace in U. On the other hand, a splitting Borel subalgebra b C g
always stabilizes a unique maximal chain in U. This is the unique maximal chian Cy such
that f1(Cp) = Fs. In Example 5, a) Cp is obtained from F, by adding either U or 0, while in
Example 5, b) C, equals the unique maximal chain containing F; introduced in Section 2:

Cb = fb U {UL}LER\Q:

where U, = span{us|s < ¢} for « € R\Q.

As Example 4 shows, not every Borel subalgebra of g is splitting. A simpler example of a
non-splitting Borel subalgebra of g is the stabilizer b of the maximal closed generalized flag
F from Example 2, ¢). Note however that eventhough b is not a splitting Borel subalgebra
of g, it is isomophic to a splitting Borel subalgebra of g, e.g. to the subalgebra corresponding
to the second flag in Example 5, a). This phenomenon is related to the fact that b contains
the maximal toral subalgebra t from Example 3, b) which is not splitting in g but is splitting
in a subalgebra g’ C g with g’ = gl(c0).

We complete this section by describing all Borel subalgebras of g which contain a fixed
self-normalizing maximal toral subalgebra t of g. Since t is self-normalizing, U? = 0 or
V? = 0. Without restriction of generality we assume that U = 0. For each eigenspace U®
of t fix a nonzero vector u, € U*. Complete the set {ty}aca to a basis {ug}taca U{tUs}sen
of U. Consider an index set C' with an order < such that the relation ”~;~, if and only if
neither v; < 72 nor 7, < ;" is an equivalence relation on C. Suppose, furthermore, that a
surjection 7 : AU B — (C is given and satisfies the following properties:

(i) the restriction of 7 on A is injective and 7~ (7(A)) = A4;
(ii) for every 8 € B, (ug,u’) = 0if 7(8) < 7();

(iii) for every § € B and every o € A with 7(a) < 7(8) there exists o’ € A such that
m(a) < 7(a’) < m(B) and (g, u’,) # 0.

For every v € C, set F, 1= span{u, lig | T(a) < v,7(8) < 7} and F := span{ug, g | 7(7) A
a,m(y) A B}. Finally, set 77 := {F, F/},ec. (In fact, F/ = F) and F| = FJ if 7, and
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v9 are equivalent with respect to the equivalence relation above, so F™ is indexed by the the
quotient C'/~ of C' with respect to this equivalence relation.)

Theorem 2 F™ is a mazrimal closed generalized flag in U such that Stx contains t. Con-
versely, if b is a Borel subalgebra of g containing t, then Fy equals F™ for some 7 as above.
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