ON BOUNDED GENERALIZED HARISH-CHANDRA
MODULES

IVAN PENKOV AND VERA SERGANOVA

ABSTRACT. Let g be a complex reductive Lie algebra and € C g be
any reductive in g subalgebra. We call a (g, £)-module M bounded
if the t-multiplicities of M are uniformly bounded. In this pa-
per we initiate a general study of simple bounded (g, £)-modules.
We prove a strong necessary condition for a subalgebra £ to be
bounded (Corollary 4.6), i.e. to admit an infinite-dimensional sim-
ple bounded (g, £)-module, and then establish a sufficient condition
for a subalgebra ¢ to be bounded (Theorem 5.1). As a result we
are able to classify the maximal bounded reductive subalgebras of

g =sl(n).

1. INTRODUCTION

In recent years several constructions of generalized Harish-Chandra
modules have been given, [PS1], [PSZ], [PZ1], [PZ2], [PZ3], and a clas-
sification of such modules with generic minimal ¢-type has emerged,
[PZ2]. Recall that if g is a finite-dimensional Lie algebra and ¢ C g
is a reductive in g subalgebra, a g-module M is a (g, €)-module if ¢
acts finitely on each vector m € M. In the present paper we study
t-semisimple (g, £)-modules with bounded &-multiplicities, or as we call
them, bounded generalized Harish-Chandra modules; all necessary def-
initions are given in sections 3 and 4 below.

There are two important cases of generalized Harish-Chandra mod-
ules on which there is extensive literature: the case when £ is a sym-
metric subalgebra (Harish-Chandra modules) and the case when b is a
Cartan subalgebra (weight modules). In the latter case there is a com-
plete description of simple bounded modules, [M]. In the former case
several constructions of simple bounded modules are known, but there
is still no complete description of all such modules in the literature, see
the discussion in Section 6 below.

Our main interest in this paper is the case when £ is neither a sym-
metric nor a Cartan subalgebra, and our first main result is that, if
there exists an infinite-dimensional simple bounded (g, £)-module, then
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rg < bg, where bg is the dimension of a Borel subalgebra of £ and ry is
the half-dimension of a nilpotent orbit of minimal positive dimension in
the adjoint representation of g. This limits severely the possibilities for
€. Our second main result is an explicit geometric construction of sim-
ple bounded generalized Harish-Chandra modules, which in particular
gives a sufficient condition for a subalgebra £ C g with ry < b to be
bounded. As an application we clasify all bounded reductive maximal
subalgebras ¢ in g = sl(n) and give examples of non-maximal reductive
bounded subalgebras of sl(n).

Acknowledgement. This paper has been written in close con-
tact with Gregg Zuckerman who has supported us on several occasions
with valuable advice. David Vogan, Jr. has also generously shared his
knowledge of Harish-Chandra modules with us, and A. Joseph and D.
Panyushev have pointed out useful references. Additional very helpful
comments were made by a referee. Finally, we acknowledge the hos-
pitality and support of the Max-Planck Institute for Mathematics in
Bonn.

2. NOTATION

All vector spaces, Lie algebras and algebraic groups are defined over
C. The sign ® stands for ®c. S, is the symmetric group of order n,
and S°(-) and A'(+) denote respectively symmetric and exterior algebra.
By g we denote a finite-dimensional Lie algebra, subject to further
conditions; U = U(g) denotes the enveloping algebra of g, and Zy
stands for the center of U. The filtration (C = U(g)g) C U(g); C
U(g)2 C ... is the standard filtration on U = U(g). If M is a g-
module, then

g[M] = {gEg\dimspan{m,g-m,gz~m,...}<oon€M}.

It is essential that g[M] is in fact a Lie subalgebra of g. As was pointed
out by a referee, this is an unpublished result of B. Kostant and its
proof is presented in [GQS, Thm. 8.1]. This result is also proved by
V. Kac [K2] and by S. Fernando [F].

If M’ C M is any subspace of a g-module M, by AnnM’ we denote
the annihilator of M’ in U(g). If € is a Lie subalgebra of g, we put
Mt:={me M|lg-m=0 Vgct}.

If ¢ is an automorphism of g and M is a g-module, M? stands for
the g-module twisted by o. If g is a reductive Lie algebra, (, ) stands
for any non-degenerate invariant form on g*.

If X is an algebraic variety, Oy is the sheaf of regular functions on
X, Tx is the tangent and cotangent bundle on X, Qy is the bundle
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of forms of maximal degree on X, and Zx denotes the sheaf of linear
differential operators on X with coefficients in 0.

3. PRELIMINARY RESULTS
We start we the following well-known result.

Lemma 3.1. Let {V;} be a family of vector spaces whose dimension is
bounded by a positive integer C, and let R be any associative subalge-
bra of [[, EndV;. Then any simple R-module has dimension less than
or equal to C.

Proof. The Amitsur - Levitzki Theorem, [AL], yields the equality

Z sign(s) sy - - - To20y = 0

s€ESse

for any x1,...,2x9¢c € R. Let W be a simple R-module. Assume
dim W > C + 1, fix a subspace W/ Cc W with dim W’ = C + 1, and
choose y1, ..., y2c € End(W’), such that > g sign(s)ysq)- - - Yseo) #
0. By the Chevalley-Jacobson density theorem [Fa|, there exist x1, ..., Zsoc €
R such that
z; - w = y;(w)

for all 7 and any w € W’. Hence

Z Sigﬂ(s)ysu) - Yseey = 0.

sESso
Contradiction. O

Lemma 3.2. Let € be a semisimple Lie algebra and C' be a positive
integer. There are finitely many non-isomorphic finite-dimensional €-
modules of dimension less or equal than C'.

Proof. Let M, be a simple finite-dimensional €-module with highest
weight 1 with respect to a fixed Borel subalgebra by C . Recall that

(1 +p, )
(a,p)

where A is the set of roots of by and p := %ZaeA+ a. If

dlmMﬂ - Ha€A+

(w Z pa)

C at least for one o, then dim M, > C. But the number of all ’Weights

(1 +p,0)
a, p

of modules M,, of dimension less or equal than C'is finite. Therefore

the number of all finite-dimensional ¢-modules with dimension less or

equal than C' is finite. 0

i such that < C for all @ € A, is finite. Hence the number
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In what follows, ¢ C g will denote a reductive in g subalgebra. By
definition, the latter means that g is a semisimple €-module. For the
purpose of this paper, we call a g-module M a (g, )-module if ¢ C g[M|
and M is a semisimple £-module. For any (g, £)-module M,

M=V eMm,
r€ R
where Ry is the set of isomorphism classes of simple finite-dimensional €-
modules, V" denotes a representative of r € R, and M" := Hom(V", M).
We set
suppeM = {V" € Re|M" # 0}.
In addition, note that each M" has a natural structure of a U(g)*® -
module. The following is a well-known statement [Dix, Prop. 9.1.6],
whose proof we present for the convenience of the reader.

Lemma 3.3. If M is a simple (g, €)-module, then M" is a simple U(g)*
- module for each r.

Proof. Let 0 # w, w' € M". By the density theorem ([Fa]), for any
v € V" there exists € U(g) such that z-(v@w) = v@w'. Ift € ¢, then
rt-(v@w) =t-vew =tr-(v@w), hence [¢, 2] C Ann(V"®w). Since
Ann(V" ® w) is t-invariant under the adjoint action, and since U(g) is
a semisimple ¢ -module, we can write x = y + z with z € Ann(V" ® w)
and y € U(g)®. Therefore y - w = w', i.e. M" is a simple U(g)*® -
module. O

Lemma 3.4. Let M be a (g, ¥)-module such that supp,M is a finite
set.
(a) Then g[M]+g* = g.
(b) If in addition g is simple and M is finitely generated, then M
is finite-dimensional.

Proof. (a)Let g = @, g; be a decomposition of g into a sum of simple
t-modules. It suffices to prove that g; C g[M] for every non-trivial ¢-
module g;. Assuming that the Borel subalgebra be C € is fixed, let x; be
a bg- singular vector of g;, i.e. let x; be a generator of a one-dimensional
be-submodule of M. For any by - singular vector m € M, x! - m is a
by - singular vector for any [ € N. If g; is not a trivial €-module, all
non-zero vectors of the form z! - m generate pairwise non-isomorphic
simple e-submodules of M. Hence, 2! - m = 0 for large [ whenever g; is
non-trivial. Since M is generated as a &-module by be-singular vectors,
we have z; € g[M], and moreover g; C g[M] as € C g[M].

(b) Note that the subalgebra g generated by all non-trivial £-submodules
g; is an ideal in g. On the other hand, by (a), § C g[M]. The simplicity



ON BOUNDED GENERALIZED HARISH-CHANDRA MODULES 5

of g yields now g = g[M]. Hence M is finite-dimensional as it is finitely
generated. U

4. FIRST RESULTS ON BOUNDED MODULES AND BOUNDED
SUBALGEBRAS

Recall that a (g, €)-module M has finite type if M" is finite-dimensional
for all » € Ry, and that a (g, €)-module of finite type is a generalized
Harish-Chandra module according to the definition in [PZ1] and [PSZ].
Any (g, ¥)-module M of finite type is also automatically a (g, ¥')-module
of finite type for any intermediate subalgebra ¥, ¢ C ¢ C g[M]. More-
over, the condition that M is of finite type implies

(1) t+g* Cg[M].

If g is reductive, then for any proper reductive in g subalgebra €, there
exist infinite-dimensional simple (g, £)-modules of finite type over £. A
stronger statement is proved in [PZ2]. A (g,€)-module is bounded if,
for some positive integer Cy;, dim M" < C), for all r € R, and is
multiplicity-free if dim M" <1 for all r € Rj.

Theorem 4.1. Let g = @ g;, where g; are simple Lie algebras, let
t C g be a reductive in g subalgebra, and let M be a simple bounded
(g,8)-module. Then g* = @, ¢!, and g; C g[M] whenever g} is not
abelian. Furthermore, M ~ M'®@M" for some simple finite-dimensional

g = GB g;-module M’ and some simple bounded (g”,¥")-module
9:Co[M]
M", where g" := @ g; and ¢ :=tNg".
9; La[M]

Proof. The equality g* = @, g! follows directly from the definition of
g, In addition, each subalgebra g is reductive in g;, hence s; := [g¢, g?]
is semisimple. Set s := P, s;. Consider the decomposition

M = @ V'@ M.

resuppg M

Since the dimensions of M" are bounded, Lemmas 3.2 and 3.3 imply
that at most finitely many simple s-modules M" are non-isomorphic.
Hence, M considered as a (g, s)-module satisfies the condition of Lemma
3.4. Thus g[M]+ g° = g. Note that the trivial s-submodule g° of g has
a unique s-submodule complement a. Moreover, a C g[M] by Lemma
3.4. In addition, as we already noted in the proof of Lemma 3.4 (b),
the subalgebra of g generated by a is an ideal in g. Since s C a, we
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have @, ., 8; C g[M], i.e. we have proved that g; C g[M] whenever g
is not abelian.

We prove next that M = M'®@M”. Since g’ C g[M], there is a simple
finite-dimensional g'-submodule M’ of M. Set M" := Homy (M', M).
Clearly M" is a g”’-module, and there is a non-zero homomorphism of
g-modules

O: MM — M,
O(m' @ p):=p(m'), meM.

Since M is simple, ® is surjective. To prove that & is injective, note
that M is semisimple as a g’-module. Hence, by the density theorem,
every non-zero submodule of M contains a non-zero vector m’ ® ¢ for
some m' € M'" and ¢ € M". This implies ker & = 0.

The irreducibility of M now yields the irreducibility of M"”. To see
that M” is a bounded (g”,”)-module it suffices to notice that M is
a bounded (g, g @ ¢”’)-module as ¢ C g’ ® ¥ and that the multiplicity
of M' @ V™ in M equals the multiplicity of V" in M” for any " €
Ry ]

In the rest of this section and in Sections 5 and 6 below, g is a
reductive Lie algebra unless further restrictions are explicitly stated.
We call £ a bounded subalgebra of g if there exists an infinite-dimensional
bounded simple (g, ¢£)-module. Theorem 4.1 suggests also the following
stronger notion: a bounded subalgebra & of g is strictly bounded, if
there exists an infinite-dimensional bounded simple (g, £)-module M
such that g[M] contains no simple ideal of g. Clearly, if g is simple, a
subalgebra £ is bounded if and only if it is strictly bounded.

Corollary 4.2. Ift is a strictly bounded subalgebra of a reductive Lie
algebra g, then g* C g is an abelian subalgebra.

Theorem 4.3. Let C' be a positive integer and M be a simple bounded
(g, ®)-module with dim M" < C for all r € Ry. Let N be a simple
(g, ®)-module with AnnN = AnnM. Then N is also bounded and
dim N" < C' for all v € Rs.

Proof. Set Uy; := U(g)/AnnM and Zy; := (Upr)®. The (g, &)-module M

determines an injective algebra homomorphism
Zy — ] End(M7),
re R

and dim M" < C' for all r. By Lemma 3.3, N" is a simple Z;-module
for any r. Therefore, dim N" < C by Lemma 3.1. U



ON BOUNDED GENERALIZED HARISH-CHANDRA MODULES 7

Recall that, for any simple g-module M, its Gelfand-Kirillov dimen-
sion GKdimM € Z> is defined by the formula

GKdimM — T 22 (U(g)n - v)

n—o0 logn
for any non-zero v € M, [KL] [p. 91]. Recall also that the associated
variety Xy of AnnM is the nil-variety in g* of the associated graded
ideal in S"(g) of AnnM. We next prove an explicit bound for dim X, by
dim ¢ + rke for any simple bounded (g, ¥)-module M. For this purpose

we will use the inequality

dim X
GKdimM > 1m2 M

due to O. Gabber and A. Joseph, see [KL] [p. 135].

Theorem 4.4. Let M be a simple bounded (g, ¥)-module. Then
(2) GKdimM < by,
dim € + rkg

5 )

Proof. Fix a Cartan subalgebra h C € and a Borel subalgebra by C ¢
with he C be. Note that by = dim b. Fix also r € R with M"™ # 0 and
let 1o € b; be the be -highest weight of V", Set

M, :=U(g), V"

for n € Z>. It suffices to prove that there exists a polynomial f(n) of
degree b, such that dim M,, < f(n).

Let vy, ...,vs be the be-highest weights of all simple -submodules
of g. Put v := > .1, Then, if V, is the simple finite-dimensional
t-module with be- highest weight 1, Home(V),, M,,) # 0 implies

(3) p< v+ o

where < is the partial order on b; determined by be. The cardinality of
the set of all integral b-dominant weights p satisfying (3) is bounded by
some polynomial g(n) of degree rké. Weyl’s dimension formula implies
that the dimension of V), is bounded by a polynomial h(n) of degree
equal to the number of roots of bg. If dim M"™ < C, then

dim M,, < Ch(n)g(n).

where by :=

O

In the particular case when € = § is a Cartan subalgebra of g and M
is a simple bounded (g, h)-module, A. Joseph [J][4.8] proved that (2) is
an equality, i.e. 2rkh = dim X ;.
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Corollary 4.5. Let M be a bounded simple (g, ¢)-module. Then
dim X
M
2

In the remainder of the paper G' will be a fixed reductive algebraic
group with Lie algebra g. Denote by 74 the half-dimension of a nilpotent
orbit of minimal positive dimension in g. If g is simple, such an orbit
is unique. It coincides with the orbit of a highest vector in the adjoint
representation, and

((tkg =n for g =sl(n+1),sp(2n)
2n—2  for g =so(2n + 1)
2n —3  for g =so(2n)
) 3 for g = Go
"7 8 for g = F,
11 for g = Fjg
17 for g= E7
L 29 for g = F.
Corollary 4.6. If ¢ is a bounded subalgebra, then
(4) rg S b?~

Ifg=g:®...8g, is a sum of simple ideals and € C g is strictly bounded,
then

(5) Tgr + oo +7g < be

Proof. Let M be a infinite-dimensional simple bounded (g, ¥)-module.
Then X,/ is the closure of a nilpotent G-orbit in g [J1]. Since M is
infinite-dimensional, the dimension of X, is positive. Hence dim% >
rg, and (4) follows from Corollary 4.5. If ¢ is strictly bounded, then
there exists a simple bounded (g, ¢)-module M such that g[M] does
not contain g; for all ¢ = 1,...;s. This implies that X,; Ng;, # 0 for
all i = 1,...,s as Xy Ng; = 0 forces g; C g[M]. Hence dimzﬂ >
Tg + .o +Tg,. U

Corollary 4.6 implies that if € ~ s1(2) is a strictly bounded subalgebra
of a semisimple Lie algebra g, then there are only the following three
choices for g:

(6) g~sl(2) ®sl(2), g~sl(3), g~sp4).

In the forthcoming paper [PS2] we show that, up to conjugation, there
are five possible embeddings sl(2) < g (with g in (6)) whose image is a
bounded subalgebra; in [PS2] we describe in detail all simple bounded
(g,s1(2))-modules.  This example shows that the inequality 7y < be
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together with the requirement that g* is abelian are not sufficient for a
reductive in g subalgebra £ to be bounded.

Consider a chain of subalgebras ¢ C g’ C g where ¢ ~ so(n), g’ ~
sl(n) and g ~ sl(n+ 1). Fix Borel subalgebras by C £, b’ C g’ such that
by C b’. As a g’-module g has the decomposition g=g @V dV* @ C,
where V' and V* stand for the natural and conatural representation of
g’ respectively. Therefore we can fix b’- singular vectors x € V., y € V*.
Set z = [x,y]. Then it is easy to check that [z,z] = [y, z] = 0.

Let M be an infinite-dimensional simple bounded (g, ¢£)-module. Then
g[M] # g, while the trivial g’-submodule of g belongs to g[M] by (1).
Since €@ C, z,y generate g, either x or y does not lie in g[M]. Without
loss of generality assume that = ¢ g[M].

We show now that z € g[M]. Assume the contrary. Then for any be-
singular vector m € M the set {2%2°-m}, pez., is a linearly independent
set of be-singular vectors in M. Since the E-weights of z and z are w; and
2wy respectively (w; being the first fundamental weight), the weight of
the vector 2%2%-m is p+ (a+ 2b)wy, where p is the weight of m. Hence
the mutiplicity in M of the simple &-module V#*™1 (of highest weight
i+ nwy) grows linearly in n. This contradicts the boundness of M.

Since ¢ and z generate g’ we obtain that g’ C g[M]. Consider now a
b’-singular vector v € M of weight v. Then ™ - v is a b’-singular vector
for any n € Zso. Hence Homgy ((V')¥*™1, M) # 0, where (V/)¥+m1 is
the simple g’-module of highest weight v + nw! (w} now denoting the
first fundamental weight of g’).

We claim that this implies that M is a (g, £)-module of infinite type.
Indeed, for any positive n .S™(V) is a simple g’-module and

0 # Homg (S"(V)®(V')”, (V')"+"1) = Homg (S™(V), (V'))*@(V')* 1),

However, for any even n S™(V') contains a trivial ¢-constituent. There-
fore

0 (V)")" @ (V/)"1)t = Homy((V')", (V') F74)

for all even n. Since (V')” has finitely many simple €-constituents, there
is a simple £-constituent V" of (V)" such that Homg(V", (V/)¥+71) £ 0
for infinitely many n. This yields dim M" = co. Contradiction.

We conclude this section by a brief discussion of the action of the
translation functor on bounded (g, €)-modules. For any £ € h*, denote
by UX® the quotient of U(g) by the two sided ideal generated by the
kernel of the character x(§) : Zy — C via which Zy acts on the Verma
module with b-highest weight & — p. Let now &, € h* be two weights
whose difference 1 — £ is a g-integral weight. There is a unique simple
finite-dimensional g-module E such that n — ¢ is its extremal weight.
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The following functor is known as translation functor [BJ],[Z]

Ty UX® —mod — UX"W —mod ,
M — U gyq (M E).

It is clear that the image of a bounded (g, £)-module under any trans-
lation functor is a bounded (g, £)-module.

Under the additional condition & and n have the same stabilizer
in the Weyl group Wy and (§,&) € Zsy <= (n,a) € Z>o and
(£,0) € Zey == (1, &) € Z<y for any root a of b (as usual, & = 2%),

(o)
the functors Tg and Tg are known to be mutually inverse equivalences

of categories [BG|. This implies in particular that if %%((g) (respectively,

‘B%‘(n)) is the full subcategory of UX) —mod (resp., of UX("W — mod )
whose objects are bounded generalized (g, €)-modules, Tg and T§ in-

duce mutually inverse equivalences of the categories ‘Bé‘(g) and ‘B%‘(n).

5. A CONSTRUCTION OF BOUNDED (g, #)-MODULES

Let 2¢ be the sheaf of twisted differential operators on G/B as
introduced in [BB]. Recall that if (§,&) # 0 for any a € A, then
[(G/B, 2¢) = UX9. Furthermore, if (¢,&) ¢ Z<o for any root « of
b = LieB, then the functors

I': 2¢—mod ~ UX9 —mod,

D¢ Qux - UX® —mod ~ 2% — mod

are mutually inverse equivalences of categories. Here 2¢ — mod de-
notes the category of sheaves of left 2°-modules on G/B which are
quasicoherent as sheaves of & = 0, p-modules, [BB].

Note that if £, € h* satisty (£, &) ¢ Z<g, (n,&) ¢ Z<o for any root
a of b, and & — 1 is a g-integral weight, then the translation functor

Tg - UXM — mod ~» UX® — mod

coincides with the composition I'o (0(£ — 1) ®g +) 0 (2" Qun -), where
O (& —n) stands for the invertible sheaf on G/B on whose geometric
fibre at the point B € G/B the Lie algebra b acts via the weight
Wi (€ — M), wyy, being the element of maximal length in the Weyl group
Wg. This yields a geometric description of the translation functor Tg.

We need one more basic Z-module construction. For any para-
bolic subgroup P C G there is a well-known ring homomorphism
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U(g) — I'(G/P, Y, p) which extends the obvious homomorphism g —
I'(G/P,7¢/p). Therefore the functor

I': 9¢/p —mod — I'(G/P, Z¢/p) — mod

can be considered as a functor into U(g)-mod.

Let Z be a smooth closed subvariety of G/P, and let (Z¢/p—mod )?
be the full subcategory of Z¢,p-mod with objects Z¢/p-modules sup-
ported on Z as sheaves. Furthermore, denote by Zx. 7 the (Z¢/p, Z2)-
bimodule (Zc/p ®og,p U /p)12) ®o, Qz. A well-known theorem of
Kashiwara [K] claims that the functor

i* . -@Z — mod ~» (-@G/P — mod )Z
Fr— Dxey Ka, F

is an equivalence of categories. In addition, it is easy to see that
i~Yix Oy has a natural 0,-module filtration with successive quotients

(7) AT (N) @6, SN,

where N denotes the normal bundle of Z in G/P and A stands for
maximal exterior power.

Let K be a reductive algebraic group and Bx be a Borel subgroup of
K. A K-module V is called spherical when Bk has an open orbit in V.
If V' is spherical then any rational Bg-invariant on V' is constant and
therefore any two be-singular vectors in S"(V)* have different weights.
Thus, the symmetric algebra S (V) is a multiplicity-free K-module
[VK] [Thm.2].

In the sequel we assume that K is a reductive proper subgroup of our
fixed reductive algebraic group G, € = LieK, and let P C G be a proper
parabolic subgroup such that ) := K N P is a parabolic subgroup in
K. There is a closed immersion

i:K-P=K/Q— G/P.

Since P is @-stable, @ acts in the fiber Np ~ g/(€+ p) at the point P
of the normal bundle N of K/Q in G/P. Let Qy denote a reductive
part of Q.

The following result is one of the key observations in this paper.

Theorem 5.1. Let G, P, K, Q be as above. If Np is a non-zero spheri-
cal Qo-module, thenI'(G /P, ix Uk ¢) is an infinite-dimensional multiplicity-
free (g, t)-module.

Proof. By (7) i i Ok o has a natural Ok g-module filtration with
successive quotients

AN @010 S' V).
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Moreover, i 'ix Ok q is K-equivariant, and at the point P, the above
filtration induces a ()-module filtration and thus also a ()o-module fil-
tration of the fiber (i lixOk/q)p with successive quotients

(8) A (Np) @c S'(Np).

Theorem 5.1 implies that the direct sum of all modules (8) for i > 0 is
a multiplicity-free QQg-module.

According to the Bott-Borel-Weil Theorem the global sections of an
irreducible K-bundle induced from a simple (Jp-module E, whenever
non-zero, form a simple K-module with the same highest weight as FE.
Therefore the K-module T'(K/Q, @,;5,(A™"**(N) ®g,,, S'(N))) is a
multiplicity-free K-module. Since K is reductive, I'(G/ P, ix Ok q) is a
semisimple K-module. Moreover, I'(G/ P, ix Ok /q) has an obvious K-
module filtration induced by the & /o-module filtration on i~ iy Ok .
The associated graded of this filtaration is clearly a submodule of
D(K/Q. @poo(A™ () D0, S'N))). Hence L(G/Q,ixOxsa). be-
ing isomorphic as a K-module to this associated graded, is itself K-
multiplicity-free. The fact that I'(G/Q, ix Ok ¢) is infinite-dimensional
follows from our assumption that Np is not zero. O

We would like to point out that it is relatively straightforward to
generalize Theorem 5.1 to the case when Ok is replaced by a K-
equivariant line bundle on K/@). This more general theorem should
play an important role in a future study of bounded (g, €)-modules
with central characters different from that of a trivial g-module. In the
subsequent paper [PS2] we will discuss this construction in a special
case.

6. ON BOUNDED SUBALGEBRAS

Theorem 5.1 leads to the following results about bounded subalge-
bras.

Corollary 6.1. Let K C G C GL(V') be a chain of reductive algebraic
groups, ¥ = LieK, and let V' C V be a I-dimensional space whose
stabilizers in G and K are parabolic subgroups P C G and ) C K.
Then, if (V')*® (g-V'/€- V") is a non-zero spherical Qo-module, ¢ is a
bounded subalgebra of g.

Proof. We identify G/P with the G-orbit of V' in P(V'). Then K/Q
is identified with the K-orbit of V' in P(V'). Moreover (7g/p)v: =
VY @g- V' (Tk)v = (V')*®E€- V', and hence Np is identified with
(Zeyp)vi /(Tkjo)v) = (V)*®(g-V'/e-V'). Therefore the claim follows
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from Theorem 5.1 (which in addition yields an infinite-dimensional
multiplicity-free (g, £)-module). O

Corollary 6.2. Let K be a reductive subgroup in GL(V') such that
V is a spherical K-module. Then ¢ = LieK is a bounded subalgebra
of gl(V @ C), where ¢ is embedded in gl(V @ C) via the composition
LieK C gl(V) C gl(V @ C).

Proof. One sets V := V @ C and applies Corollary 6.1 to the chain
K C G := GL(V) with the choice of V' as the fixed one dimensional
subspace C € V. Then (V')*® (g-V'/e-V') =V asg-V' =V,
bV =V O

All faithful simple spherical modules of reductive Lie groups are
listed in [K1] [Thm. 3]. This list provides via Corollary 6.2 a lot
of examples of bounded subalgebras of gl(n).

Before we proceed to applications of Corollary 6.1, let us briefly dis-
cuss what is known in the cases when € is a symmetric or a Cartan
subalgebra of g. In the first case, there is the celebrated classification
of Harish-Chandra modules, pioneered by R. Langlands [L], see also
[V1], [KV] and the references therein. In addition, bounded Harish-
Chandra modules have been studied in detail in many cases, and the
corresponding very interesting results are somewhat scattered through-
out the literature. It is an important fact that every symmetric sub-
algebra of a semisimple Lie algebra is bounded, and this follows from
a combination of published and unpublished results, communicated to
us by D. Vogan, Jr. and G. Zuckerman.

More precisely, if the pair (g, ) is Hermitian, i. e. if £ is contained
in a proper maximal parabolic subalgebra, any simple highest weight
Harish-Chandra module is bounded. This follows from results of W.
Schmid, [Sch]. If g is simply laced, then (published and unpublished)
results of D. Vogan, Jr. imply that any symmetric subalgebra € C g is
bounded. In all remaining cases, the boundedness of a symmetric sub-
algebra follows from the existence of a simple ladder module (this is a
special type of multiplicity-free (g, £)-module), or a bounded degenerate
principal series module, or a bounded Zuckerman derived functor mod-
ule. The corresponding results can be found in [V1], [V3], [BS], [GW],
[Str], and [EPWW]. A systematic study of bounded Harish-Chandra
modules would be very desirable but is not part of this paper.

In the case when ¢ = h is a Cartan subalgebra of g the simple
bounded (g, £)-modules have played a quite visible role in the liter-
ature on weight modules. Here it is easy to check that, if g is sim-
ple, (4) is satisfied only for g ~ sl(m),sp(n). This observation, due
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to A. Joseph [J][5.6], easily implies S. Fernando’s result that a Car-
tan subalgebra is a bounded subalgebra of a simple Lie algebra g if
and only if g ~ sl(m),sp(n). Furthermore, the works of S. Fernando,
O. Mathieu and others, see [M], [F] and the references therein, have
lead to an explicit description of all simple bounded (g, h)-modules for
g = sl(m), sp(n), see [M] for comprehensive results.

We now proceed to direct applications of Corollary 6.1: we classify
all bounded reductive subalgebras ¢ C sl(n) which are maximal as
subalgebras, and give examples of bounded non-maximal subalgebras

of sl(n).

Theorem 6.3. Let g = sl(n). A proper reductive in g subalgebra
t which is maximal as a subalgebra of g is bounded if and only if it
satisfies the inequality (4), i.e. iff by > n — 1.

We need the following preparatory statements. For a simple Lie al-
gebra € we denote by wy, ..., wyke the fundamental weights of £, where for
the enumeration of simple roots we follow the convention of [OV]. Fur-
thermore, in what follows we denote by V) the simple finite-dimensional
€-module with highest weight .

Lemma 6.4. Let £ be a simple Lie algebra and V' be a simple ¥ module.
Assume that

di k
() dimy _ 1 < GmEFrkt

Then V is trivial, or we have the following possibilities for € and V :
(1) e=sl(m), V.=V, Vi, 1, Via, Vi s Vours Vaw 1
(2) €= so(m) orsp(m), V =V,,,

(3) E=s0o(m),5<m < 10orm=11,V =1V, . foroddm,

V= Vwm/2 andV =V, /21 for even m,
(4) t=Gy, V=V,
(5) e=F,V=V,,
(6) ¢=Es, V=1V, orV,,,
(1) e=E;,V=V,.

Proof. We start with the observation that (A, ;) = k € Zso implies
dim V) > dim Vj,,. This follows immediately from Weyl’s dimension
formula. Therefore it suffices to find all fundamental representations
for which the inequality (9) holds.

Let € = sl(m). The dimensions of the fundamental representations
are (’:) for k=1,...,m — 1. The condition

m m(m+1) 1 .
< AT _ 2
(k) < 5 2(d1m?+rk?)+1
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is equivalent to (9) and implies £ = 1,2,m — 2,m — 1. Obviously,

dim Va,, _, = dimVa,, is greater than M On the other hand,

dim Vy,, = dim Vs, |, = % Hence (1).

Let € = so(m), m = 2p. We may assume m > 8. The inequality (9)
is equivalent to

dimV < p* + 1.

The dimensions of the fundamental representations are (ZL) for k < p—2
and 2P~1. Tt is not hard to check that for an arbitrary p the inequality
holds only for V,, ; moreover it holds for V, _,, Vi, if p=4,5,6.

Let € = so(m), m = 2p + 1. The inequality (9) is equivalent to

dimV < p* +p+ 1,

and holds for V,,, for any p, and for V,,, if p < 4.
Let € = sp(m), m = 2p. Assume p > 3. The inequality is the same
as in the previous case, but

9 9
dimV,, = (5) _ (k_pQ).

One can check that here the inequality holds only for £ = 1. This
proves (2) and (3).
The cases (4)-(7) can be checked using the tables in [OV]. O

Lemma 6.5. Let £ and V' be as in Lemma 6.4. The following is a
complete list of pairs €,V such that V' has no non-degenerate ¢-invariant
bilinear form:
(1> t = Sl(m)7 Vo=V, Vit Vi (m > 5)7 Vo 25 (m > 5): Vo, s
Vaowm-1i
(2) £=s0(10), V =V, or V;
(3) t=FEs, V=1V, orV,,.

Proof. If V' is not self-dual, the Dynkin diagram of £ admits an involu-
tive automorphism which does not preserve the highest weight. More-
over, in the case of so(2p), p must be odd. These conditions reduce the
list of representations in Lemma 6.4 to the list in the Lemma. U

Proof of Theorem 6.3 According to E. Dynkin’s classification [D]
[Ch.1.], if € C g = sl(n) is a reductive in g subalgebra which is maximal
as a subalgebra of g, one of the following alternatives holds:

(i) ¢ is simple, the natural sl(n)-module V is a simple ¢-module
with no non-degenerate invariant bilinear form, or ¢ = so(n)
and sp(n).

(i) & ~ sl(r) @ sl(s) with rs = n, and V ~ S, ® S, where S, and
S, are respectively the natural modules of sl(r) and sl(s).
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If (i) holds, then € ~ so(n), sp(n) or £ is among the Lie algebras listed
in Lemma 6.5, where g is identified with sl(V'). Consider first the case
t ~ sp(n), n = 2p. To show that ¢ is bounded in g, we apply Theo-
rem 5.1 with G/P being the Grassmannian of p-dimensional subspaces
in C" and K/Q being the Grassmannian of Lagrangian subspaces in
C". Then Qo ~ GL(p) and Np is the exterior square of the natural
representation. The Qy-module Np is spherical, [K1].

We now consider the remaining cases of (i), which can all be settled
using Corollary 6.1. Note that, if € is embedded into sl(n) via a simple
E-module or via its dual, the corresponding embeddings are conjugate
by an automorphism of sl(n), hence it suffices to consider only one such
embedding. The list of Lemma 6.5 reduces therefore to the following
cases, in which all Qp-modules are spherical, [K1]:

t=slk), V=V, Qo~SL2)xGL(k—2)and (V')*®(V/t- V') is
isomorphic to the tensor product of the exterior square of the natural
representation with the determinant representation of GL(k — 2), the
action of SL(2) being trivial;

-t =slk), V = Vo, Qo ~ GL(k — 1) and (V')* @ (V/&-V') is
isomorphic to the tensor product of the symmetric square of the natural
representation with the determinant representation of GL(k — 1);

- =150(10), V =V,,, Qo ~ GL(5) and (V')*®(V/€- V') is isomorphic
to the tensor product of the natural representation of GL(5) with the
determinant representation of GL(5); the case V' = V. can be reduced
to the case V' =V, by dualization;

-t = Fs, V =V, then Qy ~ SO(10) x C* and (V')* @ (V/t- V')
is isomorphic to the natural 10-dimensional representation of SO(10),
and the action of the center of )y is not trivial.

The only remaining case in (i) is when € = so(n), Qo ~ SO(n—2)xC*
and (V')*® (V/€-V’) is a one-dimensional non-trivial, hence spherical,
QQo-module.

If (ii) holds, then € ~ sl(r) @ sl(s) for some rs with rs = n, and we
claim that in this case all pairs r, s with rs = n yield a bounded subal-
gebra €. To see this, fix V' of the form S| ® S’ for some 1-dimensional
spaces S, C S, 5, C Ss. Then @ is isomorphic to GL(S,/S.) x
GL(Ss/S)) and g-V'/e- VI =V/e- V' ~ (S,./S]) ® (Ss/S%). Since the
action of GL(r — 1) x GL(s — 1) on V' is given by the inverse of the
determinant, (V')*® (V/€-V") is isomorphic as a GL(r—1) x GL(s—1)-
module to S,_; X.S,_; twisted by the determinant. This representation
is spherical, [K1]. O

We give now three more examples of bounded subalgebras of sl(n)
which are not maximal in the class of reductive subalgebras of sl(n).



ON BOUNDED GENERALIZED HARISH-CHANDRA MODULES 17

(i) Let ¢ ~sl(k+1), k > 2. The ¢-module V :=V, &V, defines an
embedding ¢ C g = sl(V), and Corollary 6.1 implies that £ is a bounded
subalgebra of g. Indeed, choose V' to be a 1-dimensional subspace
V' C V,, and note that the conditions of Corollary 6.1 are satisfied. In
this case Qo ~ GL(k) and (V')* ® (V/€- V') is isomorphic to A¥(S),) ®
(Ak(Sy) @ S7), Sk being the natural Qp-module. A straightforward
calculation shows that this representation is spherical.

(ii) Consider the embedding ¢ = so(7) C g = sl(8), where the nat-
ural sl(8)-module restricts to the 8-dimensional spinor representation
of so(7). Corollary 6.1 implies that € is a bounded subalgebra of g.
Here V = C8, G = SL(V), K = Spin(7) and V' is a Bg-stable line,
where By is a fixed Borel subgroup of K. Then g -V’ = V and
dim€- V' =7, hence dim(g-V'/¢- V') = 1. Since Q) acts non-trivially
on (V)*® (V/e- V'), the latter Qp-module is spherical.

(iii) Let ¢ = Gy C g = sl(7). Then again, Corollary 6.1 implies that
t is a bounded subalgebra. The argument is similar to the argument
in (ii) as dimg-V/¢- V' = 1.

We conclude the paper by the following conjecture which is sup-
ported by all the empirical evidence available to us. Let € C g be a
reductive in g subalgebra. Then € is bounded if and only if there ex-
ists a simple infinite-dimensional multiplicity-free (g,€)-module.  If
g = sl(n) and £ is a maximal proper subalgebra, then the claim of
the conjecture follows from the proof of Theorem 6.3 (which is in turn
based on Corollary 6.1 and Corollary 6.2).

Note added in proof. While the present paper has been under review,
A. Petukhov has posted on the arXiv a proof of the above conjecture
for g =sl(n).
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