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Abstract

We introduce the class of classically semisimple locally finite Lie
superalgebras over an algebraically closed field K of characteristic 0
and classify all Lie superalgebras in this class. By definition, a count-
ably dimensional locally finite Lie superalgebra g= g0 ⊕ g1 over K is
classically semisimple if it is semisimple (i.e. its locally solvable radical
equals zero) and in addition it admits a generalized root decomposi-
tion, such that the root spaces generate g, and g0 is a root-reductive
Lie algebra in the sense of [DP] and [PS]. We prove that any clas-
sically semisimple Lie superalgebra is isomorphic to a direct sum of
copies of the infinite dimensional Lie superalgebras sl (∞|n), sl (∞|∞),
osp(m|∞), osp(∞|2k), osp(∞|∞), sp(∞), sq(∞) and of copies of sim-
ple finite dimensional Lie superalgebras with reductive even part. In
particular, the above listed infinite dimensional Lie superalgebras are
all (up to isomorphism) countably dimensional simple locally finite
Lie superalgebras which admit a generalized root decomposition with
root-reductive even part. Finally, we describe all generalized root
decompositions of any classically semisimple locally finite Lie super-
algebra.
Key words (2000 MSC): Primary 17B65, Secondary 17A70.

To my parents

Introduction. Recently the class of root-reductive locally finite Lie al-

gebras has been studied from several different points of view. According to
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[DP], a root-reductive Lie algebra is defined as the union of at most count-

ably many finite-dimensional reductive Lie algebras kn via root embeddings,

i.e. via embeddings in : kn ,→ kn+1 which map a fixed Cartan subalgebra h n
of kn into a fixed Cartan subalgebra h n+1 of kn+1, and map any root space

of kn into a single root space of kn+1. I. Dimitrov and the author showed in

[DP] that any root-reductive Lie algebra is isomorphic to a split extension of

an abelian Lie algebra by a direct sum of copies of the simple Lie algebras

sl (∞), o(∞) and sp(∞) and of simple finite dimensional Lie algebras. Re-
markably, the simple infinite dimensional root-reductive Lie algebras sl (∞),
o(∞) and sp(∞) can be described alternatively as the simple infinite dimen-
sional finitary Lie algebras, [B], as well as the infinite dimensional locally

finite split Lie algebras, [NS]. Furthermore, H. Strade and the author showed

in [PS] that sl (∞), o(∞) and sp(∞) are the only simple locally finite count-
ably dimensional Lie algebras which admit a generalized root decomposition.

More generally, it is proved in [PS] that any countably dimensional locally

finite Lie algebra which admits a generalized root decomposition, and whose

locally solvable radical is zero, is root-reductive.

It is an interesting problem to find a Lie superalgebra generalization of

the results in [PS]. The finite dimensional simple Lie superalgebras are of two

types, those with a reductive even part (i.e. the classical series and the ex-

ceptional Lie superalgebras) and those whose even part is non-reductive (the

Cartan-type series). Our object of study is a fairly general class of Lie super-

algebras which extends the class of direct sums of simple Lie superalgebras

with reductive even part. More precisely, we define a countably dimensional

locally finite Lie superalgebra g over K to be classically semisimple if it is

semisimple, i.e. its locally solvable radical equals zero, and in addition it

admits a generalized root decomposition which satisfies the following two

natural conditions:

(i) the inherited (generalized) root decomposition on the even part g0
makes g0 root-reductive;

(ii) g is generated by its (generalized) root spaces.
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Condition (i) singles out the “classical” ones among all semisimple locally

finite Lie superalgebras with a generalized root decomposition, and condi-

tion (ii) is a minor technical assumption which allows us not to deal with

semisimple Lie superalgebras which admit non-trivial homomorphisms into

abelian superalgebras.

Our main result shows that any classically semisimple locally finite Lie

superalgebra goverK is isomorphic to a direct sum of classical or exceptional

simple finite dimensional Lie superalgebras and of copies of the following infi-

nite dimensional Lie superalgebras sl (∞|n), sl (∞|∞), osp(m|∞), osp(∞|∞),
osp(∞|2k), sp(∞), and sq(∞). Therefore, up to isomorphism, the latter are
the only countably dimensional locally finite simple Lie superalgebras swhich

admit a generalized root decomposition such that s0 is root-reductive. Actu-

ally we prove more: we prove that g always admits a root isomorphism with

a direct sum as above where in each simple component there is a fixed root

decomposition, and we describe all root decompositions of any simple com-

ponent. In particular, we show that osp(∞|2k) and osp(∞|∞) each admit
precisely two different structures of a classically semisimple Lie superalgebra.

The reason why the above statements are not straightforward corollaries

of the results of [PS] is that a finite dimensional semisimple Lie superalgebra

is not necessarily isomorphic to a direct sum of simple Lie superalgebras, see

[K] and [C]. The main difficulty in the proof is the analysis of certain direct

limits of finite dimensional semisimple Lie algebras.

A problem, which remains open, is to study semisimple locally finite

Lie superalgebras which admit a generalized root decomposition and whose

even part is not necessarily root-reductive. The direct limits of Cartan-

type superalgebras provide examples of simple Lie superalgebras with this

property.

1. Generalities on locally finite Lie superalgebras with root de-

composition. The ground field K is algebraically closed of characteristic 0.

All vector spaces V (including Lie superalgebras) are defined over K and are

assumed to be Z2-graded, i.e. V = V0 ⊕ V1. The sign ⊗ stands for tensor
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product of Z2-graded vector spaces over K, ⊂+ stands for semidirect sum of

Lie superalgebras, and the superscript ∗ denotes dual space. A Lie superal-
gebra g = g0 ⊕ g1 is locally finite if any finite set of vectors g1, . . . , gk ∈ g

generates a finite dimensional subsuperalgebra of g. All Lie superalgebras

considered below are assumed to be locally finite and countably (or finite)

dimensional. By g we denote a fixed such Lie superalgebra. A subsuperal-

gebra k⊂ g is locally solvable (respectively locally nilpotent) if every finite

dimensional subsuperalgebra of k is solvable (resp. nilpotent). The (locally

solvable) radical Rg is defined as the largest locally solvable ideal in g. As

pointed out in the Introduction, g is semisimple if Rg = 0. A chain of Lie

superalgebras

(1) g1 ⊂ ... ⊂ gn ⊂ . . .

is a local system for g if all gi are finite dimensional and ∪igi = g. A subsystem

of a local system for g is a subchain which itself is a local system for g.

If k is a Lie algebra, M is a k-module, and λ ∈ k∗ is a linear function on
k, set

Mλ
k := {m ∈M |∃n : (k − λ(k))n ·m = 0 ∀k ∈ k}.

We define M to be a k-weight module, if

(2) M = ⊕
λ∈suppkM

Mλ
k ,

where suppkM := {λ ∈ k∗|Mλ
k 6= 0}. Usually Mλ

k are called generalized

weight spaces, and modules satisfying (2) are called generalized weight mod-

ules, but we will use the shorter terms weight space and weight module.

In what follows we consider subsuperalgebras h = h 0 ⊕ h 1 of g= g0 ⊕ g1
for which h = g0h 0 (here g is considered as an h 0-module and λ = 0), or

equivalently, h 0 = (g0)0h 0 and h 1 = (g1)0h 0 . Then h is automatically locally

nilpotent. Indeed, since h 0 = (g00)
0
h 0 , h 0 acts locally nilpotently on itself (via

the adjoint representation) and is therefore a locally nilpotent Lie algebra.

Furthermore, it is well known that a finite dimensional Lie superalgebra is
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nilpotent if and only if its even part is nilpotent. Therefore, as h is locally

finite, the local nilpotency of h 0 implies the local nilpotency of h .

If now M is a g-module which is an h 0-weight module, we claim that

each weight spaceMλ
h 0 is an h -submodule ofM . Indeed, clearlyMλ

h 0 is an h 0-

module. To check thatMλ
h 0 is an h -module it is sufficient to check thatMλ

h 0 is

an h 0-submodule for any finite dimensional Lie subsuperalgebra h 0 of h . But

it is well known that the h 00-weight spaces of an h 00-weight h 0-module are h 0-
modules. Furthermore, for any λ,λ0 ∈ h ∗0, λ 6= λ0, there exists a large enough
finite dimensional subsuperalgebra h 0 ⊂ h such that λ|h 00 6= λ0|h 00 . Therefore
each Mλ

h 0 is an h 0-submodule for any h 0, i.e. Mλ
h 0 is an h -module.

The following proposition summarizes the above discussion.

Proposition 1. Let h be a subsuperalgebra of g such that h = g0h 0. Then

a) h is locally nilpotent;

b) if M is an h 0-weight g-module, each h 0-weight space is an h -submodule

of M .

If h is a subsuperalgebra of g, we say that gadmits an h -root decomposition

if h = g0h 0 and g is an h 0-weight module. (In particular h is locally nilpotent.)

Then the set of roots ∆h is defined as {supph 0 g}\{0}, and each gαh 0 , α ∈ ∆h ,

is called a root space of g. Although the action of h 0 on g is not assumed

semisimple, there is the usual vector space decomposition

g= h ⊕
µ
⊕

α∈∆h

gαh 0

¶
.

Let g0 and g00 be two Lie superalgebras with fixed subsuperalgebras h 0 ⊂ g0

and h 00 ⊂ g00 such that g0 and g00 admit respective h 0- and h 00-root decompo-
sitions. If ϕ : g0 → g00 is a Lie algebra homomorphism, we say that ϕ is a
root homomorphism if ϕ(h 0) ⊂ h 00 and, for every α0 ∈ ∆ h 0 , ϕ

³
g0α

0
h 00

´
⊂ g00α

00
h 000

for some α00 ∈ ∆h 00.

In what follows we will denote root spaces simply by gα instead of gαh 0 ,

and we will make use of the following trivial observation: if l is the image

of a root homomorphism into a finite dimensional semisimple Lie algebra k
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(we call l a root subalgebra of k), then the dimension of each root space of l

equals 1.

A Lie algebra fis root-reductive if fadmits a local system of Lie subalge-

bras

(3) f1 ⊂ ... ⊂ fn ⊂ fn+1 ⊂ . . .

such that all fn are reductive and all inclusions fn ⊂ fn+1 are root homomor-

phisms.

Up to isomorphism, there are only three infinite dimensional simple root

reductive Lie algebras: sl (∞), o(∞) and sp(∞), see [BB], [DP], [PS].They
are defined as the direct limits of injective root homomorphisms of simple Lie

algebras of types respectively sl (n), o(m) and sp(2k) for growing n,m, or k. It

is a non-difficult but important observation that up to isomorphism, in these

three cases the direct limit Lie algebras do not depend on the actual injective

root homomorhisms, see [DP], [PS] and also [BB]. The Lie algebra o(∞) can
be obtained as a direct limit of o(m) for m odd, or o(m) for m even. The

resulting Lie algebras, called respectively B(∞) and D(∞), are isomorphic
but obviously do not admit a root isomorphism, i.e. an isomorphism which

is a root homomorphism. (In this paper we do not denote sp(∞) by C(∞)
as we reserve the notation C(∞) for a Lie superalgebra, see (16) below.)
Theorem 1 in [DP], together with Theorem 3.2 in [PS] imply the following

general description of a root-reductive Lie algebra.

Theorem 1. Let f be a root-reductive Lie algebra and h ⊂ f be any

subalgebra such that fadmits an h -root decomposition

f= h ⊕
µ
⊕

α∈∆h

fα
¶
.

Then

a) h is the union of Cartan subalgebras h n ⊂ fn for a suitable local system

(3) of reductive Lie algebras fn;

b) the subalgebra fL ⊂ fgenerated by all fα for α ∈ ∆h is isomorphic to

a countable (or finite) direct sum of simple Lie algebras s, finite dimensional
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or isomorphic to sl (∞), o(∞), sp(∞); furthermore, the intersection h ∩s∩fn

is a Cartan subalgebra in s∩ fn for every s and every n;

c) fL is an ideal in f and equals the intersection of all ideals i⊂ f for

which the quotient f/iis abelian;

d) the extension

0→ fL ,→ f→ a := f/fL → 0

is split, i.e. f is isomorphic to the semidirect sum of fL and an abelian

subalgebra of fisomorphic to a.

Corollary 1. Let fbe a root-reductive Lie algebra.

a) Any locally solvable ideal in fbelongs to the center of f.

b) If fis simple, then fis isomorphic to a direct sum of copies of sl (∞),
o(∞), sp(∞), and of finite dimensional simple Lie algebras.

2. Background on finite dimensional Lie superalgebras. Let kbe

a finite dimensional Lie superalgebra and h k be a Cartan subalgebra of k, i.e.

by definition h k= k0(h k)0
. There is always an h -root decomposition

k= h k⊕
µ

⊕
06=α∈( h k)

∗
0

kα
¶
.

This follows from the equality h k= k0(h k)0
and from the fact that an indecom-

posable finite dimensional module over a nilpotent Lie algebra has isomorphic

1-dimensional composition factors.

Furthermore, the image of h k under any surjective homomorphism k→ k0

is a Cartan subsuperalgebra of k0, [P, App. B]. This applies in particular
to the case when k0 = kss := k/Rk and the map is the canonical projection

p : k→ kss. In the latter case we have also

Lemma 1. ([P]) Let k be a finite dimensional Lie superalgebra, and h k

be a Cartan subsuperalgebra of k. Then p : k→ kss is a root homomorphism

and i(∆p( h k)) ⊂ ∆h k
, where i : p(h k)

∗
0 ,→ (h k)

∗
0 is the canonical injection.
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Proof. If kα is a root space with p(kα) 6= 0, then we claim that α ∈
p(h k)

∗
0. Indeed, let k

α ∈ kα with p(kα) 6= 0 be such that Kp(kα) is an (h k)0-

submodule of p(kα) (it is obvious that such a kα always exists). Then, for

any h ∈ (h k)0 ∩ Rk, 0 = p([h, kα]) = α(h)p(kα). Therefore α(h) = 0, i.e.

α ∈ p(h k)
∗
0. The fact that p is a root homomorphism is now obvious.

In contrast with Lie algebras over K, a finite dimensional semisimple Lie

superalgebra is not necessarily isomorphic to a direct sum of simple Lie su-

peralgebras. In order to be able to state the main result describing finite

dimensional semisimple Lie superalgebras, we need to introduce some nota-

tion. Ifm is a non-negative integer, let Λm = ⊕
0≤t≤m

Λtm denote the Grassmann

(exterior) algebra of m variables over K. ByW(m) we denote the Lie super-

algebra of superderivations of the associative algebra Λm. W(m) is a simple

Lie superalgebra for m ≥ 2, and for m ≥ 3, W(m)0 is a non-reductive Lie

algebra with semisimple part sl (m). Furthermore, any Cartan subalgebra of

W(m) belongs to W(m)0 and projects isomorphically into the semisimple

part ofW(m)0.

Theorem 2. (Kac, [K], Cheng [Ch]). A finite dimensional Lie superal-

gebra k is semisimple, i.e. Rk= 0, if

l⊕
i=1
(si ⊗ Λmi

)⊂+ d⊂ k⊂ l⊕
i=1
(dersi ⊗ Λmi

)⊂+ d

for some simple Lie superalgebras si, i = 1, . . . , l, some d, and some non-

negative integers mi, where si are simple finite dimensional Lie superalgebras,

dersi stands for the Lie superalgebra of superderivations of si, and d is a

subsuperalgebra of
l⊕
i=1
W(mi) such that each si ⊗ Λmi has no d-invariant

ideals (d acts non-trivially only on Λmi via the projection d→W(mi)).

3. Classically semisimple Lie superalgebras. The class of semisimple

locally finite Lie superalgebras is large and not yet explored. In this paper

we define and explicitly describe its subclass of classically semisimple Lie

superalgebras. According to the Introduction, g is classically semisimple if,

in addition to being semisimple, g admits an h -root decomposition (for some
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fixed h ⊂ g) such that g is generated by all root spaces gα, and g0 is a root-

reductive Lie algebra. If g is finite dimensional and simple, g is classically

semisimple unless g is a Cartan-type simple Lie superalgebra, i.e. belongs to

the seriesW, S, S̃, or H, see [K] or [P]. In what follows we reserve the term

Cartan-type superalgebra only for those Lie superalgebras of the series W,

S, S̃ and H which are not isomorphic to a classical finite dimensional Lie

superalgebra as introduced below.

In this paper we refer to the following Lie superalgebras as to the classical

finite dimensional Lie superalgebras:

(4)
gl (m|n),sl (m|n),pgl (m|m),psl (m|m),osp(m|n),p(m),

sp(m),q(m),sq(m),pq(m),psq(m).

Their definitions are well known and we recall them here merely for the

purpose of fixing the notations. By definition, gl (m|n) is the Lie superalgebra
of endomorphisms of an m|n-dimensional (Z2-graded) vector space V , i.e.
V = V0 ⊕ V1, dimV0 = m, dimV1 = n, and sl (m|n) is the subsuperalgebra
of gl (m|n) which consists of endomorphisms of supertrace zero. In matrix
form, gl (m|n) consists of square (m+ n)× (m+ n) block matricesµ

A B
C D

¶
,

where A is of sizem×n andD is of size n×n, and sl (m|n) is singled out by the
condition trA = trD. The Lie superalgebra osp(m|n) is the subsuperalge-
bra of sl (m|n) which leaves invariant a supersymmetric even non-degenerate
bilinear form on V (here necessarily n = 2k), see [K], and p(m) is the sub-

superalgebra of gl (m|m) which leaves invariant a superantisymmetric odd
bilinear form on V . The intersection p(m)∩sl (m|m) is by definition the Lie
superalgebra sp(m). The Lie superalgebra q(m) is the subsuperalgebra of

gl (m|m) which consists of all block matrices of the formµ
A B
B A

¶
,

and sq(m) is singled out by the equation trB = 0. Finally, pgl (m|m),
psl (m|m), pq(m) and psq(m) are respectively the quotients of gl (m|m),
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sl (m|m), q(m) and sq(m) by the 1-dimensional ideal generated by the iden-

tity matrix.

The Lie superalgebras sl (m|n) for m 6= n, m|n 6= 1|0, 0|1, 1|1, psl (m|m)
for m ≥ 3, osp(m|n) for n even, sp(m) for m ≥ 3, and psq(m) for m ≥ 3
are the simple classical finite dimensional Lie superalgebras. Their roots are

described explicitly in [K] and [P], and in fact this provides a description of

the roots of all classical finite dimensional Lie superalgebras

It is natural to construct infinite dimensional simple Lie superalgebras

(which will automatically be classically semisimple) as unions of classical

finite dimensional Lie superalgebras embedded in each under via root in-

jections, i.e. via injective root homomorphisms. Note first that if a Lie

superalgebra is represented as a union of root injections gj ⊂ gj+1, it admits

an h -root decomposition where h is the union of the fixed subsuperalgebras

h j ⊂ gj . Fix now infinite chains of root injections as follows:

(5) sl (j|n) ⊂ sl (j + 1|n),

(6) sl (j|j) ⊂ sl (j + 1|j + 1),

(7) osp(2j + 1|2k) ⊂ osp(2j + 3|2k),

(8) osp(2j + 1|2j) ⊂ osp(2j + 3|2j + 2),

(9) osp(m|2j) ⊂ osp(m|2j + 2), m odd,

(10) osp(2|2j) ⊂ osp(2|2j + 2),

(11) osp(2j|2k) ⊂ osp(2j + 2|2k),

(12) osp(2j|2j) ⊂ osp(2j + 2|2j + 2),
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(13) osp(m|2j) ⊂ osp(m|2j + 2), m even, m 6= 2,

(14) sp(j) ⊂ sp(j + 1),

(15) sq(j) ⊂ sq(j + 1),

where j ∈ Z+, j ≥ 2, and m ≥ 0, n ≥ 0 and k ≥ 0 are fixed. Denote the
unions of the chains (5)—(15) respectively by

(16)
sl (∞|n),sl (∞|∞),B(∞|2k),B(∞|∞),B(m|∞),C(∞),

D(∞|2k),D(∞|∞),D(m|∞),sp(∞),sq(∞).
Each of these Lie superalgebras is infinite dimensional, simple, and has an

h -root decomposition.

C. Oseledets’ thesis [O] studies the above Lie superalgebras, as well as

more general Lie superalgebras which admit a local system of finite direct

sums of classical finite dimensional Lie superalgebras. The following theorem

is a slightly weaker version of the main result of [O] (Oseledets establishes

also a universality result which we do not use).

Theorem 3.

a) Any infinite dimensional simple Lie superalgebra, which admits a local

system of root injections of classical finite dimensional Lie superalgebras, is

isomorphic via a root isomorphism to one of the Lie superalgebras (16).

b) Let g be a Lie superalgebra which admits a local system of root injec-

tions of finite direct sums of classical or exceptional finite dimensional Lie

superalgebras. Consider g as a Lie superalgebra with root decomposition, and

let gL denote the subsuperalgebra of g generated by all root spaces. Then

gL is the smallest ideal in g with an abelian quotient, and gL admits a root

isomorphism with a countable or exceptional (or finite) direct sum of copies

of the superalgebras (16), of simple classical finite dimensional superalgebras,

and possibly of sl (m|m) and sq(m).

Sketch of proof. a) The first key observation is that in a chain (1) of root

injections of classical Lie superalgebras gj, for large enough j, all gj must
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be of the same type. More precisely, if gj equals osp(2l + 1|2k) or is of type
p or q (in the latter case gj equals p(m), sp(m), or q(m), sq(m), pq(m),

psq(m)), for all j0 > j gj
0
also equals osp(2l0 + 1|2k0) for l0 ≥ l, k0 ≥ k, or is

respectively of type p or q. Note also that pgl (m|m), psl (m|m), pq(m) and

psq(m) do not appear in any infinite chain (1) of proper root injections. If

for no j gj equals osp(2l + 1|2k) or is type p or q, one checks if gj equals

osp(2l|2k) for some i. If this is the case, then all gj
0
for j0 ≥ j also equal

osp(2l0|2k0). Finally, if no gj is of type osp, p or q, all gj equal sl (mj|nj) or
gl (mj|nj).
The next step is to exclude the possibility that infinitely many gj equal

gl (mj|nj), p(mj), or q(mj). This follows easily from the simplicity of ∪jgj.
The final important observation is that the remaining possibilities are in

bijective correspondence with the cases (5) — (15) and that in each case ∪jgj
can be identified with one of the Lie superalgebras (16). This is a tedious

but essentially straightforward case by case verification and is carried out in

[O].

b) The proof uses a) and is similar to the proof of Theorem 1 in [DP].

4. Main result. The Lie superalgebra gL in Theorem 3 b) is clearly

classically semisimple. The main result of this paper claims that the explicit

description of gL given in Theorem 3 b) holds, in a stronger form, for any

classically semisimple Lie superalgebra.

Theorem 4. Let g be a classically semisimple Lie superalgebra. Then

there is a root isomorphism between g and a countable (or finite) direct sum

of copies of the Lie superalgebras (16) and of simple classical or exceptional

finite dimensional Lie superalgebras.

We start with a lemma which is a direct extension of Lemma 3.1 in [PS]

to the Lie superalgebra case.

Lemma 2. Let g0 be a semisimple Lie superalgebra, and

(17) (g0)1 ⊂ ... ⊂ (g0)n ⊂ . . .
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be a local system for g0. Then (17) admits a subsystem

(g0)n1 ⊂ ... ⊂ (g0)ns ⊂ . . .

with (g0)ns ∩ R(g0)ns+1 = 0 for every s.
Proof. Since, for each n, ∩t>nR(g0)t is a solvable ideal in g, we have

∩t>nR(g0)t ⊂ Rg0 = 0. Therefore, given n, there exists N(n) ≥ n with

(g0)n ∩ R(g0)N(n) = 0, and this enables us to construct by induction a local

system as desired.

Proof of Theorem 4.

Step 1. Let g= h ⊕ (⊕α∈∆h gα) be the fixed root decomposition of g. We

first choose a local system for g,

(18) g̃1 ⊂ ... ⊂ g̃n ⊂ . . . ,

compatible with the root decomposition, i.e. such that h ∩ g̃n is a Cartan

subsuperalgebra of g̃n for each n and all inclusions g̃n ⊂ g̃n+1 are root homo-

morphisms. This is done in the same way as in the proof of Theorem 3.2 in

[PS]. Indeed, consider an ordered Z2-homogeneous basis g̃1, . . . , g̃n, . . . of g,

such that each g̃n belongs to h or to gαth 0
for some αt ∈ ∆h 0 . Let (g̃

0)n ⊂ g be

the subsuperalgebra generated by g̃1, . . . , g̃n. Then, for each n, fix a finite

dimensional subspace (˜h n)0 ⊂ h 0 such that the subspace of h ∗0 generated by
all α ∈ ∆h with gα ∩ (g̃0)n 6= 0 maps injectively into (˜h n)∗0. Define now (g̃)n
as the subsuperalgebra of g generated by (˜h 1)0, . . . , (˜h n)0 and by (g̃0)n. An
immediate checking shows that g̃n form a local system (18) as desired.

Step 2. All Lie algebras (g̃n)0 are root subalgebras of g0, and as g0
is root-reductive, each (g̃n)0 is a root subalgebra of a finite dimensional re-

ductive subalgebra of g0. By our earlier remark, any quotient of (g̃n)0 has

1-dimensional root spaces. Furthermore, Rg0 ⊂ h 0 by Corllary 1 a). There-

fore Lemma 2, applied to g0/Rg0 , implies that for each n there exists N , such

that the map

(19) (g̃n)0/((g̃
n)0 ∩Rg0) ,→ (g̃N)0/R(g̃N )0
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is a root injection.

Step 3. According to Theorem 2, for each n we have

⊕
i
(sni ⊗ Λmi)⊂+ dn ⊂ (g̃n)ss = g̃n/Rg̃n ⊂ ⊕

i
(dersni ⊗ Λmi)⊂+ dn

for some finite dimensional simple Lie superalgebras sni , some mi, and for an

appropriate subsuperalgebra dn ⊂ ⊕
i
W(mi).

We are now ready to settle the case when g is finite dimensional. Indeed,

if g= g̃n, then (as Rg = 0) g= (g̃n)ss. Clearly, for any sni , (s
n
i )0⊗Λ2mi

⊂ Rg0 ,

(sni )1 ⊗ Λ1mi
⊂ Rg0 , and, if nonzero, neither (s

n
i )0 ⊗ Λ2mi

nor (sni )1 ⊗ Λ1mi

belong to the center of g̃n0 . This shows that mi = 0 for all i with (sni )1 6= 0
and mi ≤ 1 for all i with sni = (sni )0. Note next that dn0 ⊂ h , and as

(g∩ (⊕
i
(dersni ⊗Λmi)))⊂+ dn1 is a subsuperalgebra of g, the condition that g is

generated by its root spaces gives dn0 = 0. Consequently dn1 ⊂ h 1, and, since

g∩ (⊕
i
(dersni ⊗ Λ1mi

)) is a subsuperalgebra of g, we have dn1 = 0. Theorem 2

implies now that mi = 0 for all i.

We have proved that g' ⊕
i
(g∩dersni ). All Cartan-type simple Lie super-

algebras have non-reductive even part, so sni must necessarily be classical or

exceptional. Furthermore, it is well known that for a classical or exceptional

simple Lie superalgebra, see [K], ders = s unless s ' psl (m|m), sp(m),

psq(m|m). In the latter cases ders equals pql (m|m), p(m) and pq(m|m) re-
spectively. Since none of the latter Lie superalgebras is generated by its root

spaces, we obtain finally that g' ⊕
i

sni , and the case of a finite dimensional

g is settled.

¿From now on dimg = ∞, and the remainder of the proof is an infinite
dimensional version of the above argument in the finite dimensional case.

Note first that by Lemma 1, for every n, there is N such that the com-

position

(20) g̃n ,→ g̃N → (g̃N)ss

is a root injection. In what follows we will assume that we have replaced

(18) with a subsystem for which both maps (19) and (20) are root injections
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with N = n + 1. This is obviously possible. And we will make one more

assumption. The condition that g is generated by its root spaces does not

imply that each g̃n is generated by its root spaces, but implies that for each

n there is N such that the Cartan subsuperalgebra h ∩ g̃n of g̃n is mapped

into the subsuperalgebra of g̃N generated by the root spaces of g̃N . Our third

assumption on the local system (18) is that (after a possible replacement by

a subsystem) the latter condition holds also for N = n+ 1.

Step 4. We claim that mi ≤ 1 for any sni . Indeed, let m := mi ≥ 2 for
some s := sni , and let for some root α of g̃n f(α) be an sl (2)-subalgebra of

g̃n0 which maps injectively into s. Denote the image of f(α) in (sni )0 by s(α).

Consider the simple component c of g̃n+10 into which f(α) maps. Since as

an s(α)-module s(α)⊗ Λ2m is isomorphic to the direct sum of dimΛ2m copies

of the adjoint representation, chas a root β whose α-string through β is of

length 3. Therefore the rank two subalgebra of cgenerated by the image of

f(α) and c±β is isomorphic to o(5). We can also assume that cβ belongs to

the image of g̃n0 , and that as a subspace of g̃n0 cβ maps into s(α)α ⊗ Λ2m.
Consider now the preimage of s(α) ⊗ Λ1m in g̃n1 . The relation [s(α)

α ⊗
Λ1m,s(α)

−α ⊗ Λ1m] = [s(α)α,s(α)−α] ⊗ Λ2m implies (via Lemma 1) that x +
(x − 2α) = β − α for some root x of g such that gx1 in contained in the

preimage of s(α)α ⊗ Λ1m in g̃n1 . This means that x =
α+ β

2
, i.e. x is not

an integral o(5)-weight. This is a contradiction as all roots of g are integral

weights of c, in particular of o(5).

Step 5. Step 4 implies that dn is necessarily solvable for every n, as

⊕
i
W(mi) is solvable for mi ≤ 1. Consider any simple component s= sni and

let s̃ be a preimage of s in g̃n admitting no solvable quotients. It is clear

that s̃ exists. As dn+1 is solvable, the image of s̃ in (g̃n+1)ss belongs to the

ideal ⊕
j
(sn+ij ⊗ Λmj ). Since the semisimple part of this ideal is isomorphic

to ⊕
j

sn+1j , projection onto ⊕
j

sn+1j yields an injective homomorphism s̃ ,→ s0

for some s0 = sn+1j . When iterating this procedure, the arising sequence of

simple components either stabilizes or does not stabilize.
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We will now modify the local system (18). Fix an integer N greater then

the rank of the even part of all exceptional simple superalgebras and large

enough so that all Cartan-type simple Lie superalgebras whose even part

has semisimple rank N or higher have even root spaces of dimension strictly

higher than 1. (It is obvious that all sufficiently “large” simple Cartan-type

superalgebras have this property). Using an inductive process we will now

replace (18) by a local system

(21) (g0)1 ⊂ ... ⊂ (g0)n ⊂ ...

for g, such that, for every n, any simple component s of (g0)n has rank N or

higher1 unless the sequence of simple components corresponding to s is sta-

ble. Let l1 be the smallest index such that at least one simple component sl
1

i

has rank N or higher, or the sequence corresponding to sl
1

i is already stable.

Then we let (g0)1 be the preimage in g̃l
1
of (g̃l

1
)ss ∩ (dersl

1

i ⊗ Λmi⊂+ (dl10 +
(⊕
j
W(mi)))). This is the base of induction. If (g0)n−1 is given, we con-

sider an index l for which (g0)n−1 ⊂ g̃l and define (g0)n as the preimage of
(g̃l)ss ∩ (⊕

j
(derslj ⊗ Λmj)⊂+ (dl10 + (⊕

j
W(mi)))) in g̃l, where slj are all simple

components of (g̃l)ss which have rank at least N or whose respective sequence

of simple components is stable. A straightforward checking shows that the so

obtained sequence (21) is a well-defined local system for g, compatible with

the fixed root decomposition of g in the same sense as the local system (18).

We will continue to use the notations sni and dn in the context of this new

local system.

Three observations are in order.

If s is a simple component of (g0)nss, then s is necessarily of classical or

exceptional type. Indeed, assume the contrary, i.e. that s is of Cartan-type.

The sequence of simple components corresponding to s cannot be stable, as

then the preimages in (g0)l for l ≥ n of the radicals of ((g0)lss)0 would yield a
non-abelian locally solvable ideal in g0, which would contradict Corollary 1

a). Hence the rank of s is at least N , and s0 has at least one root space of

1Under rank of a superalgebra we mean the semisimple rank of its even part.
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dimension 2 or higher. This is impossible too, as then g0 would have a root

space of dimension at least 2.

If s is exceptional, the sequence of simple components corresponding to s

is stable according to the construction of (21).

Finally, if s = sni is a simple component of (g
0)n with s1 6= 0 and such

that the corresponding sequence of simple components is stable, thenmi = 0.

Indeed mi = 1 would imply immediately that the preimage of s1 ⊗ Λ1mi
in g

generates a non-abelian locally solvable ideal in g0, which is impossible.

Step 6. We will prove now that the local system (21) can be further

modified so that mi = 0 for any simple component sni of the new local

system. Fix a simple component s= sni and let mi = 1. Put Ξ := Λ1mi
and

h n := h ∩ (g0)n. Consider first the case when s' psq(r), r ≥ 3. Note that
p−1((p(h n) ∩ s1) ⊗ Ξ) is an h n0 -invariant subspace of (g

0)n, p : (g0)n → (g0)nss
denoting the canonical projection (p is a root homomorphism by Lemma 1).

Moreover, there are two alternatives: p−1((p(h n) ∩ s1) ⊗ Ξ) is a single root
space of (g0)n (this is equivalent to the projection of h n ontoW(mi)0 being

non-zero) or p−1((p(h n)∩s1)⊗Ξ) ⊂ h n0 . Both alternatives are contradictory.

Indeed, if p−1((p(h n) ∩ s1) ⊗ Ξ) is a root space, its dimension is greater or
equal r − 1, which is impossible as r − 1 ≥ 2. Assuming that p−1((p(h n) ∩
s1)⊗ Ξ) ⊂ h n0 , we have [s0, (p(h

n) ∩ s1)⊗ Ξ] 6= 0, which contradicts the fact
that p−1((p(h n) ∩ s1)⊗ Ξ) belongs to h n0 intersected with the radical of (g

0)n0
and must therefore commute with the semisimple part of (g0)n0 . This implies
that mi = 0 whenever s' psq(r).

Assume now that s 6' psq(r) and s1 6= 0. Consider the inclusion of

p−1(s0)∩ h n-weight modules p−1((p(h n)∩s0)⊗Ξ) ⊂ [p−1(s1), p−1(s⊗Ξ)] and
note that p−1((p(h n)∩s0)⊗Ξ) is a single h n0 -weight space. Let s0 be the simple
component of (g0)n+1ss into which s is being mapped, see Step 5. As p−1(s0)
and p−1(s1 ⊗Ξ) are being mapped to s00, and p

−1(s1) is being mapped to s01,
p−1(s0⊗Ξ) is necessarily being mapped to s01. Therefore p

−1((p(h n)∩s0)⊗Ξ)
is being mapped to p(h n+1) ∩ s01 or to a single root space in s01. The second
alternative is impossible. Indeed, it implies that dim p(h n) ∩ s0 = 1, i.e.
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s' osp(1|2). This implies in turn that the sequence of simple components
corresponding to s is stable, hence mi = 0. Assume now that p

−1((p(h n) ∩
s0) ⊗ Ξ) is being mapped to p(h n+1) ∩ s01. Then s01 ' psq(r) for some r,

and p−1(s1) and p−1(s1 ⊗ Ξ) are being mapped to p(h n+1) ∩ s00-submodules,
respectively of s01 and s00, with the same weights. This is impossible as s1⊗Ξ
is abelian while s1 is not. Therefore the first alternative is also contradictory,

hence mi = 0.

It remains to consider the case when s1 = 0. Here there are the following

alternatives: p−1(s⊗Ξ) is being mapped to a simple component s0 as in Step
5, or p−1(s⊗Ξ) is being mapped to s00⊗Λ1mj

. In the first case we undertake a

further modification of the local system (21). By induction on n, we replace

(g0)n by the preimage in (g0)n of (g0)nss∩(⊕
t
(dersnt ⊗Λmt)⊂+ (dn0+(⊕

t
W(mt)))),

where snt runs over all simple components of (g
0)n except those with zero odd

part for which the first alternative holds. This is a well-defined new local

system of g, which we will continue to denote by (21).

The second alternative is contradictory. Indeed, we have to consider the

possibilities that the projection of h n+1 onto W(mi)0 is zero, or that it is

nonzero. To rule out the first possibility, note that in this case the projection

of all root spaces of (g0)n+1 intoW(mi)1 is zero, and consequently the projec-

tion of (g0)n+1 intoW(mi)1 equals zero. This is in direct contradiction with

Theorem 2 as then s0 is a dn+1-invariant ideal in s0 ⊗ Λmi . To rule out the

second possibility, note that in that case the projection of the subsuperalge-

bra of (g0)n+1 generated by all root spaces onto W(mi)0 equals zero, while

the image of (g0)n in (g0)n+1 projects non-trivially onto W(mi)0. This is in

contradiction with the last assumption of Step 3. Hence, finally mi = 0.

Step 7. We have proved that, for each n, (g0)nss = ⊕
i
((g0)nss ∩ dersni ).

This enables us to make one final modification to the local system (21). We

denote the new system by

(22) g1 ⊂ ... ⊂ gn ⊂ ... .

Note that Step 6 implies that each root space gα is 1|0-, 0|1-, or 1|1-dimen-
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sional and is identified with a root space in (g0)nss for all n greater than an
appropriate n0. Order all root spaces of g in a manner compatible with

the local system (21) (i.e. all root spaces intersecting non-trivially with

(g0)n come before those intersecting non-trivially with (g0)n+1 but not with
(g0)n) and let gn be the subalgebra of g generated by all root spaces which

intersect non-trivially with (g0)n. It is immediately clear that gn form a local

system of root injections for g. It is also clear that gn is a direct sum of

classical or exceptional simple Lie superalgebras, as those are all possible

subsuperalgebras generated by the root spaces of ders for a classical simple

s.

Step 8. To complete the proof it remains to apply Theorem 3 to the

local system (22). The fact that g is semisimple eliminates the possibility of

direct summands of the form sl (m|m) or sq(m).

5. Corollaries of the main result.

Corollary 2. Let s be an infinite dimensional simple (countably dimen-

sional locally finite) Lie superalgebra with root-reductive even part s0, and

let h 0 ⊂ s0 be a subalgebra such that s0 admits an h 0-root decomposition.

If s1 is an h 0-weight module, then s admits an h -root decomposition for

h := h 0 ⊕ (s1)0h 0, and there is a root isomorphism between s and precisely

one of the Lie algebras in (16).

Proof. Clearly h is a Lie subsuperalgebra of swith s0h 0 = h , and Propo-

sition 1 implies that h is locally nilpotent. The fact that s0 and s1 are both

h 0-weight modules means that s admits an h -root decomposition. Further-

more, s is automatically classically semisimple as s is simple and is thus

generated by its root spaces. (The contrary would yield a proper ideal in s).

Therefore the claim is an immediate corollary of Theorem 4.

Here are two remarks. First, if s is as in Corollary 2 and h 0 ⊂ s is a

subsuperalgebra with s0h 00 = h 0, then s does not necessarily admit an h 0-root
decomposition. This is already true when s is a Lie algebra, and in [PS]

there is an example of an abelian (selfnormalizing) subalgebra h 0 ⊂ sl (∞)
with sl (∞)0h 0 = h 0, such that sl (∞) admits no h 0-root decomposition.
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Second, it is easy to construct simple (countably dimensional locally fi-

nite) Lie superalgebras swhich do not satisfy the condition of Corollary 2.

Consider the following Lie superalgebra inclusion

sl (j|j) ⊂ sl (2j|2j),

µ
A B
C D

¶
7→


A 0 B 0
0 A 0 B
C 0 D 0
0 C 0 D

 ,
and let g= ∪

j≥2
sl (j|j). There is no subsuperalgebra h ⊂ g for which g admits

an h -root decomposition. This follows from the exact sequence of Lie algebras

0→ g00 ⊕ g00 ,→ g0 → C → 0,

where g00 is the simplest “diagonal” Lie algebra admitting no root decompo-
sition. The fact that g00 admits no root decomposition is a consequence of
the known fact that g00 is simple and is not isomorphic to sl (∞), o(∞) or
sp(∞), see [BZ].
We now address the question of which pairs of superalgebras in (16) are

isomorphic.

Lemma 3. The following are the only Lie superalgebra isomorphisms

between pairs of Lie superalgebras in (16):

(23)
B(∞|2k) ' D(∞|2k)
B(∞|∞) ' D(∞|∞).

Proof. The case when k = 0 is crucial. Here we clam that B(∞|0) =
B(∞) and D(∞|0) = D(∞) are isomorphic as Lie algebras. To construct
an isomorphism, note that there is an alternative description of B(∞) and
D(∞). For B(∞) our definition via the chain (7) is equivalent to the follow-
ing. Let V be a vector space with basis . . . , v−1, v0, v1, . . . , equipped with a
bilinear form ( , ) such that (vi, vj) = δi,−j . Then B(∞) is the subalgebra of
sl (∞) (sl (∞) being identified with the automorphisms of V whose matrices
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are finite in the above basis) which consists of endomorphisms ϕ: V → V

with (ϕv, v0) + (v,ϕv0) = 0. Similarly, D(∞) is described in terms of a basis
. . . , v0−1, v

0
1, . . . and a form ( , ) such that (vi, vj) = δi,−j . The point is that

a simple base change on V (which we leave to the reader to work out) iden-

tifies the two bilinear forms on V and consequently yields an isomorphism

B(∞) ' D(∞).
A straightforward generalization of this argument produces isomorphisms

(23) as desired. We omit the details.

Finally, to check that (23) are the only isomorphisms among the Lie su-

peralgebras (16) it is enough to know that sl (∞), B(∞) ' D(∞), and sp(∞)
are pairwise non-isomorphic. This follows from the much stronger Theorem

5.2 in [BZ]. Then the general statement follows from a straightforward in-

spection of the even parts of the Lie superalgebras (16) which verifies that the

even parts of (16) are isomorphic precisely for the pairs (B(∞|2k),D(∞|2k)),
(B(∞|∞),D(∞|∞)), and ((B(1|∞),B(0|∞)). As B(0|∞) and B(1|∞) are
obviously non-isomorphic, this yields the statement.

Lemma 3 enables us to set now

osp(∞|2k) := B(∞|2k) ' D(∞|2k),

osp(∞,∞) := B(∞|∞) ' D(∞|∞).
Furthermore, Corollary 2 and Lemma 3 have the following direct corollary.

Corollary 3. Let s be a simple Lie superalgebra as in Corollary 2.

a) Then s is isomorphic to one of the following Lie superalgebras:

(23)
sl (∞|n),sl (∞|∞),osp(m|∞),osp(∞|2k),

osp(∞|∞),sp(∞),sq(∞).

b) Let h ⊂ s be subsuperalgebra for which s admits an h -root decompo-

sition. Then, for s ' sl (∞|n), sl (∞|∞), osp(m|∞), sp(∞), sq(∞) there
exists an automorphism ϕ : s→ s such that ϕ(h ) is the union of fixed Cartan

subsuperalgebras of the respective local system (5), (6), (9), (14) or (15). If

s ' osp(∞|2k) (respectively s ' osp(∞|∞), there exists an automorphism
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ϕ : s→ swhich maps ϕ(h ) respectively into the union of fixed Cartan subsu-

peralgebras of the local system (7) or (11) (resp. (8) or (12)).

Finally, note that Theorem 4 together with Corollary 3 imply that any

classically semisimple Lie superalgebra g is isomorphic to a direct sum of

copies of the Lie superalgebras (23) and of classical or exceptional simple

finite dimensional Lie superalgebras. Theorem 4 and Corollary 3 provide

also a complete description of all subsuperalgebras h ⊂ g for which g admits

an h -root decomposition.
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