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1. Introduction

Let V be a countable-dimensional vector space over C. The Lie algebra EndV of all linear
endomorphisms of V is a most natural infinite-dimensional analog of the Lie algebra gl(n)
for n ∈ Zn>0. However, the theory of representations of the Lie algebra EndV is much less
developed than the representation theories of other infinite-dimensional analogues of gl(n)
such as Kac-Moody Lie algebras or the Lie algebra gl(∞). In this paper, by gl(∞) we denote
the “smallest” analogue of gl(n) among Lie algebras of infinite matrices, i.e., gl(∞) is the
direct limit lim−→ gl(n) for n → ∞; equivalently, gl(∞) is the Lie algebra of finitary infinite
matrices (infinite matrices with at most finitely many nonzero entries). By gl(V ) we denote
the Lie algebra EndV .

It is known that the Lie algebra gl(V ) has no nontrivial finite-dimensional representations,
and we are interested in the following question: what is a category of gl(V )-modules, rich
enough to resemble the category of all finite-dimensional gl(n)-modules? This same question,
with gl(V ) replaced by gl(∞), has been studied and various answers have been provided:
see [10] and [9].

One possible answer in the case of gl(∞) is the category of tensor modules Tgl(∞), or
Tsl(∞), introduced in [5], see also [12] and [14]. This category is an abelian symmetric
monoidal category of gl(∞)-modules generated by the two natural representations V and
V∗ of gl(∞), each of them being the restricted dual of the other. The category Tgl(∞) has a
number of remarkable properties, in particular it is a non-semisimple Koszul category which
is universal among non-rigid linear symmetric monoidal abelian categories generated by two
objects X, Y with a pairing X⊗Y → 1, where 1 denotes monoidal unit. The category Tgl(∞)

has also found notable applications beyond the theory of representations of gl(∞) [6].
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In the case of the Lie algebra gl(V ), an analogue Tgl(V ) of the category Tgl(∞) has been
introduced in [11] and has been further studied in [4]. The category Tgl(V ) is an abelian
symmetric monoidal category of gl(V )-modules generated by the gl(V )-modules V and V:=
HomC(V,C), and it is proved in [4] that Tgl(V ) is equivalent as a tensor category to Tgl(∞).
Consequently, all categorical properties of Tgl(∞) hold also for Tgl(V ), in particular Tgl(V ) is
universal in the same sense as Tgl(∞).
Still, Tgl(V ) does not qualify for a good answer to our question above, since the adjoint

representation of gl(V ) is not an object of Tgl(V ). Indeed, note that V ⊗ V is merely a
submodule of gl(V ) and the quotient gl(V )/(V ⊗ V) is not isomorphic to a subquotient
of a direct sum of modules of the form V ⊗p ⊗ V⊗q for p, q ∈ Z≥0. On the other hand,
gl(∞) ≃ V ⊗ V∗, so the adjoint representation of gl(∞) is an object of Tgl(∞).
This is why we propose another answer to our central question. We construct a category

T̂gl(V ) of topological gl(V )-modules so that all three modules V,V, and gl(V ) are objects of

T̂gl(V ). While as an algebraic gl(V )-module gl(V ) has length 4, see [2], [11] and [8], in the

topological category T̂gl(V ) the object gl(V ) has length 2, its only proper subobject being
the trivial submodule generated by the identity operator.

Our main result is that the category T̂gl(V ) is antiequivalent to the category Tgl(∞). Con-

sequently, the category T̂gl(V ) is endowed with a symmetric tensor product ⊗̂!
, and moreover

is a universal symmetric monoidal category. Its universality property is the “mirror image”

of the universality property of the category Tgl(∞). The tensor product ⊗̂!
is a particular

instance of a tensor product introduced by A. Beilinson in [1].
Here is a brief description of the contents of the paper. Section 2 is devoted to topological

preliminaries, mainly to ind-linearly compact vector spaces and pro-discrete vector spaces.
These types of spaces form two respective quasi-abelian semisimple categories which are
antiequivalent. In Section 3, we present our main objects of study: the categories Tgl(V )

and T̂gl(V ). The former category is a completion of the category Tgl(V ) and its objects
are closed gl(V )-stable subquotients of finite direct sums of tensor products of the form

V ⊗p ⊗HomC(V
⊗q,C). The category T̂gl(V ) is defined as the continuous dual of the category

Tgl(V ), and it is antiequivalent to Tgl(V ). Moreover, we show that Tgl(V ) and Tgl(∞) are
equivalent as abelian categories.

In Section 4 we introduce respective tensor products ⊗̂∗
and ⊗̂!

on the categories Tgl(V ) and

T̂gl(V ), and prove that there is an antiequivalence of abelian symmetric monoidal categories

(Tgl(V ), ⊗̂
∗
) and (T̂gl(V ), ⊗̂

!
). We then draw some corollaries of this antiequivalence. In par-

ticular, objects of the form V ⊗p⊗̂!
V⊗̂!

q are projective in T̂gl(V ), and there is an isomorphism

gl(V ) ≃ V ⊗̂!
V. Consequently, the object gl(V ) (adjoint representation) is a projective cover

of the simple object gl(V )/C. We also obtain explicit fomulas for the radical filtrations of

indecomposable projectives, as well as for the Exts between simple objects of T̂gl(V ).
Acknowledgements. This research has been partially supported by the project of the

University of Padova BIRD203834/20. The second author thanks INdAM for facilitating
a visit to the University of Padua in the fall of 2019, when some first collaboration plans
between the suthors emerged. The second author acknowledges also partial support by the
DFG through grant PE 980/8-1.
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2. Preliminaries on topological vector spaces

In this section, we discuss the categories of topological vector spaces which play a role,
and the relations between them.

2.1. Discrete and linearly compact topological vector spaces. The category of dis-
crete vector spaces we consider is that of at most countable-dimensional vector spaces, with
arbitrary linear maps as morphisms; i.e., we call a vector space W discrete if it is the union
of a countable ascending family

0 ⊂ W1 ⊂ W2 ⊂ . . .

of finite-dimensional vector spaces:

W =
⋃
i∈Z>0

Wi .

The category of discrete vector spaces is abelian and semisimple. The dual of a countable-
dimensional vector space is in general not countable dimensional. Hence, taking (algebraic)
duals does not preserve the category of discrete vector spaces, and taking the (algebraic)
double dual does not yield back the vector space one started with. To get a well-behaved
duality starting with discrete vector spaces, one endows their duals with the structure of
linearly compact vector spaces, which we now define.

Definition 2.1. A topological vector space Z is said to be linearly compact if

(i) it has a fundamental system of open neighborhoods of 0 given by a countable descending
filtration of (open) subspaces of finite codimension

Z = Z(0) ⊃ Z(1) ⊃ . . . ;

(ii) the canonical morphism

Z → lim←−Z/Z
(i)

is an isomorphism, where lim←−Z/Z
(i) is endowed with the projective limit topology of

the discrete topologies on the finite-dimensional vector spaces Z/Z(i).

A fundamental result about the category of linearly compact vector spaces with morphisms
continuous linear maps, is that it is antiequivalent to the category of discrete vector spaces.
Let us state this in the form of a lemma.

Lemma 2.2. Let W =
⋃
iWi be a discrete vector space. Then the dual space

W ∗ = lim←−(Wi)
∗

is naturally a linearly compact topological vector space. Moreover, this construction is func-
torial and yields an antiequivalence between the category of discrete vector spaces and the
category of linearly compact vector spaces.

Proof. Given a presentation W =
⋃
iWi of a discrete vector space as a countable ascending

union of finite-dimensional subspaces, one gets a presentation of the dualW ∗ as the projective
limit lim←−(Wi)

∗. Thus W ∗ may be endowed with the projective limit topology, making it a
linearly compact vector space. In addition, one observes that different presentations of W
give rise to the same linearly compact topology on W ∗.
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Furthermore, the continuous dual Z∗ of a linearly compact vector space Z = lim←−Z/Z
(i) is

naturally a discrete space which is the union of the finite-dimensional vector spaces (Z/Z(i))∗;
and this construction is independent from the presentation.

The above two constructions are functorial and mutually inverse. □

Here are some easy consequences of Lemma 2.2.

Lemma 2.3. The following statements hold:

(i) a continuous linear map between linearly compact vector spaces is closed, i.e., takes
closed subsets to closed subsets;

(ii) if U be a subspace of a linearly compact vector space Z = lim←−Zi, then its closure U
equals lim←−Ui, where Ui is the image of U in Zi;

(iii) a linearly compact vector space is not the union of a countable family of nested proper
closed subspaces;

(iv) the category of linearly compact vector spaces, with continuous linear maps as mor-
phisms, is a semisimple abelian category.

Proof. (i) follows from the antiequivalence of Lemma 2.2 and from the fact that such antiequiv-
alence yields, by taking annihilators, an order-preserving bijection between the closed sub-
spaces of a linearly compact vector space and the subspaces of its continuous dual, the latter
being a discrete vector space.

To obtain (ii), observe that U and lim←−Ui have the same annihilator in Z∗, hence, by

Lemma 2.2 and (i), one gets U = lim←−Ui.
(iii) follows from the antiequivalence of Lemma 2.2 and from the observation that the

projective limit of surjective linear maps of finite-dimensional vector spaces of unbounded
dimensions is of uncountable dimension.

(iv) follows, by the antiequivalence of Lemma 2.2, from the fact that discrete spaces form
a semisimple abelian category. □

2.2. Ind-linearly compact and pro-discrete topological vector spaces. Here we present
the definitions and main properties of the categories of ind-linearly compact and pro-discrete
vector spaces. These categories are dual to one another and constitute natural ambient cat-
egories for the study of topological tensor representations.

Definition 2.4. A topological vector space W is said to be ind-linearly compact if:

(i) it is the union of an ascending sequence of closed linearly compact subspaces

W =
⋃
i

Wi ;

(ii) the topology of W is the inductive limit topology of the topologies of the subspaces
Wi, i.e., a subset U of W is closed if and only if, for each i, the subset Ui = U ∩Wi is
closed in Wi.

We denote I the category whose objects are ind-linearly compact vector spaces and whose
morphisms are continuous linear maps.

The dual definition is that of a pro-discrete vector space.

Definition 2.5. A topological vector space Z is said to be pro-discrete if:
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(i) it has a fundamental system of open neighborhoods of 0 given by a countable descending
filtration of (open) subspaces of countable codimension

Z = Z(0) ⊃ Z(1) ⊃ . . . ;

(ii) the canonical morphism

Z → lim←−Z/Z
(i)

is an isomorphism, where lim←−Z/Z
(i) is endowed with the projective limit topology of

the discrete topologies on the vector spaces Z/Z(i).

We denote P the category whose objects are pro-discrete vector spaces and whose mor-
phisms are continuous linear maps.

The categories I and P contain the abelian semisimple categories of discrete vector spaces
and linearly compact vector spaces. However, I and P are only quasi-abelian categories
(see [15], Definition 1.1.3 or [3], Definition 4.1), i.e., are additive categories in which

(i) every morphism has a kernel and a cokernel;
(ii) the push-out of a kernel is a kernel;
(iii) the pull-back of a cokernel is a cokernel.

Let us recall some basic definitions and facts. A quasi-abelian category has a canonical
exact structure (see [15], 1.1.7), for which the short exact sequences are the kernel-cokernel
pairs (i, p) (i.e., i is the kernel of p and p is the cokernel of i). Furthermore, recall that
a morphism in a quasi-abelian category is called strict if the canonical morphism from its
coimage to its image is an isomorphism, or equivalently, if it is the composition of a strict
monomorphism (i.e., a kernel) after a strict epimorphism (i.e., a cokernel).

We now prove some basic results about the categories I and P . These are special cases of
statements for more general topological vector spaces, but, for the convenience of the reader,
we give independent and self-contained proofs.

Proposition 2.6. The categories I and P are dual to one another under the respective
functors of taking continuous duals. Moreover, duality sends strict morphisms to strict mor-
phisms.

Proof. Let us show that taking continuous duals yields well-defined contravariant functors
from I to P and from P to I, that are quasi-inverses of each other.
Let W =

⋃
iWi be a presentation of the ind-linearly compact vector space as the union

of an ascending sequence of closed linearly compact subspaces Wi. By the definition of
inductive limit topology, a linear form φ onW is continuous if and only if all of its restrictions
φi = φ|Wi

are continuous. Therefore, the continuous dual W ∗ of W may be identified with
the projective limit lim←−W

∗
i of discrete spacesW ∗

i . The continuous dualW
∗ is hence naturally

a pro-discrete vector space, and the same topology is independent of the presentation of W .
It is straightforward to check that this yields a functor

( )∗ : I → P .

Let now Z = lim←−Z/Z
(i) be a presentation of the pro-discrete vector space Z as the pro-

jective limit of the discrete spaces Z/Z(i). By definition of the projective limit topology, a
linear form φ on Z is continuous if and only if it factors through one of the discrete quo-
tients Z/Z(i). Therefore, the continuous dual Z∗ may be identified with the union, i.e., the
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inductive limit, of the duals (Z/Z(i))∗ of the discrete spaces Z/Z(i). It is hence naturally
an ind-linearly compact space, and one gets ethe same topology for all presentations of Z.
Moreover, it is clear that also the functor of continuous dual

( )∗ : P → I

is well defined.
The fact that the above two functors of continuous dual are quasi-inverse to each other

follows from the duality between discrete and linearly compact vector spaces stated in
Lemma 2.2.

□

The next result is a special case of the open mapping theorem.

Lemma 2.7. (a) Let f : W → Z be a continuous linear bijection of ind-linearly compact
vector spaces. Then f is bicontinuous, i.e., is an isomorphism in I.

(b) Let g : W ′ → Z ′ be a continuous linear bijection of pro-discrete vector spaces. Then g is
bicontinuous, i.e., is an isomorphism in P.

Proof. Let W =
⋃
iWi and Z =

⋃
j Zj be presentations of the ind-linearly compact vector

spaces W and Z as inductive limits of linearly compact closed subspaces.
By the continuity of f , the subspaces f−1(Zj) are closed in W . Moreover one has

Wi =
⋃
j

(Wi ∩ f−1(Zj)).

It follows that, by 2.3 (iii), for every i ∈ Z>0 there is j ∈ Z>0 such that

Wi ⊂ f−1(Zj).

Furthermore, the restriction f|Wi
: Wi → Zj is a continuous linear map between linearly

compact vector spaces. Consequently, by 2.3 (i), its image f(Wi) is a closed subspace of Zj,
and thus of Z. This implies that the space f(Wi) is linearly compact. Again by 2.3 (iii),
from

Zj =
⋃
i

(Zj ∩ f(Wi))

one infers that, for every j ∈ Z>0, there is i ∈ Z>0 such that Zj ⊂ f(Wi).
FromWi ⊂ f−1(Zj) and Zj ⊂ f(Wi) it is straightforward to deduce that the two inductive

limit topologies are equivalent. This proves (a).
To prove (b), observe that if f = g∗, then g is continuous and bijective if and only if f is

continuous and bijective, and g is an isomorphism in P if and only if f is an isomorphism in I.
Therefore statements (a) and (b) are dual of each other under the duality of Proposition 2.6,
and hence are equivalent. □

Lemma 2.8. Let Z be a closed subspace of the ind-linearly compact vector space W . Then
Z, endowed with the subspace topology, and W/Z, endowed with the quotient topology, are
ind-linearly compact topological vector spaces. Moreover, one has an isomorphism

W ∼= Z ⊕W/Z

in the category I.
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Proof. LetW =
⋃
iWi be a presentation ofW as a countable nested union of linearly compact

closed subspaces, such that the topology on W is the inductive limit topology. Then

Z =
⋃
i

Zi ,

where Zi = Z ∩Wi. It is straightforward to check that the subspace topology on Z coincides
with the inductive limit topology. Hence Z is ind-linearly compact.

Let us now discuss the quotient W/Z. Since Wi and Zi are linearly compact, one has

W/Z =
⋃
i

Wi/Zi

where the quotient topology on Wi/Zi is linearly compact. Furthermore, one can verify that
the quotient topology on W/Z coincides with the inductive limit topology of the topologies
on Wi/Zi. This proves that the space W/Z is ind-linearly compact.
Since the category of linearly compact vector spaces is abelian semisimple (Lemma 2.3 (iv)),

it follows that for every i one has a splitting Wi
∼= Zi ⊕Wi/Zi. Moreover, proceeding in-

ductively, one may choose all these splittings compatible, so that, taking the inductive limit,
they give rise to an isomorphism

W ∼= Z ⊕W/Z
in I. □

Proposition 2.9. The categories I and P are antiequivalent quasi-abelian semisimple cat-
egories. Moreover, in these categories, kernels are closed embeddings and cokernels are sur-
jective linear maps.

Proof. Since the duality functor is additive, it follows from Proposition 2.6 that the categories
I and P are antiequivalent as additive categories. To prove the proposition, it is thus enough
to show that I is quasi-abelian. Observe that I is a full subcategory of the category TopC
of topological vector spaces with linear topology (see [13], Section 7). Furthermore, by [13],
Theorem 7.1(b), the category TopC is quasi-abelian, its kernels are closed embeddings and
its cokernels are open surjections. It follows hence, by Lemma 2.8, that if f : W → Z is
a morphism of I, then its kernel and cokernel in TopC are in fact objects of I. Moreover,
pushing out or pulling back a morphism of I by a morphism of I affords a morphism of I;
it thus follows that the category I is quasi-abelian.

The semisimplicity of I follows from the second part of Lemma 2.8; the semisimplicity
of P follows by duality. To conclude the proof, observe that Lemma 2.7 implies that ev-
ery continuous surjective linear map between two ind-linearly compact or two pro-discrete
vector spaces is automatically open. This implies that the cokernels in I or P are the con-
tinuous linear surjections. Since we have already remarked that kernels are exactly closed
embeddings, this concludes the proof. □

Lemma 2.10. Let f be a morphism in either I or P. Then the following statements are
equivalent:

(a) f is strict;
(b) f has closed image.

Proof. Follows from the description of kernels and cokernels in I and P given in Proposi-
tion 2.9. □
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3. The categories Tgl(V ) and T̂gl(V )

In this section we introduce our main object of study, the category T̂gl(V ). This is a
category of topological representations of the Lie algebra gl(V ), and we define it as the dual
of a completion Tgl(V ) of the category Tgl(∞).

3.1. Topological vector spaces of mixed tensors. We fix a countable-dimensional vector
space V and a basis V = {vi}i∈Z>0 of V . Then V =

⋃
i Vi, where Vi is the span of the first

i basis vectors. We consider V as a discrete topological vector space. Therefore the Lie
algebra gl(V ) of linear endomorphisms of V coincides with the Lie algebra of continuous
endomorphisms of V as a topological vector space. Inside the Lie algebra gl(V ) there is the
infinite-dimensional subalgebra h of endomorphisms of V which have diagonal matrices with
respect to the basis V . We denote by V the space HomC(V,C) which, of course, is also the
continuous dual of V . Since V =

⋃
i Vi, it follows that

V = lim←−V
∗
i ,

and thus V can be considered as a linearly compact vector space. Analogously, we consider
the space V ⊗p =

⋃
i V

⊗p
i as a discrete topological vector space, and its dual (V ⊗p)∗ =

HomC(V
⊗p,C) as a linearly compact topological vector space.

In what follows, we use the superscript ∗ to indicate continuous dual space. The precise
meaning will depend on the context, as we can apply ∗ to a discrete, linearly compact,
ind-linearly compact, or pro-discrete vector space.

Next, we define the spaces Vp,q as V ⊗p⊗(V ⊗q)∗. These are naturally ind-linearly compact
vector spaces. Indeed,

Vp,q =
⋃
i

(V ⊗p
i ⊗ (V ⊗q)∗),

which yields a presentation of Vp,q as an ascending union of linearly compact vector spaces,
since the spaces V ⊗p

i are finite dimensional and the spaces (V ⊗q)∗ are linearly compact.
Other relevant topological vector spaces are obtained by taking continuous duals of the

spaces of mixed tensors just defined. More precisely, we set

V̂p,q := (Vq,p)∗.

The structure of pro-discrete topological vector space on V̂p,q may be seen explicitly as
follows:

V̂p,q = HomC(lim−→V ⊗q
i , V ⊗p) = lim←−HomC(V

⊗q
i , V ⊗p) = lim←− ((V ⊗q

i )∗ ⊗ V ⊗p).

Observe that both topological vector spaces V and V have obvious gl(V )-module struc-

tures, therefore the spaces of mixed tensors Vp,q and V̂p,q are gl(V )-modules.

3.2. Structure of Vp,q as an h-module. Recall that an element χ ∈ h∗ is called a weight,
and the χ-weight space of a gl(V )-module W is the subspace

W χ = {w ∈ W | ∀t ∈ h, tw = χ(t)w} .
The sum of all one-dimensional h-submodules of W is the weight part Wwt of W ; it is the
maximal semisimple h-submodule of W .

Lemma 3.1. The following statements hold:
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(a) The subspaces V ⊗p
i ⊗ (V ⊗q)∗ are h-submodules of the gl(V )-module Vp,q. For any

weight χ ∈ h∗, the weight space (V ⊗p
i ⊗ (V ⊗q)∗)χ is finite dimensional, and

V ⊗p
i ⊗ (V ⊗q)∗ =

∏
χ

(V ⊗p
i ⊗ (V ⊗q)∗)χ

with only a countable number of weights occurring. Furthermore,

(Vp,q)wt = V p,q := V ⊗p ⊗ (V∗)
⊗q

where V∗ = (V ∗)wt.
(b) There is an order-preserving bijection between closed h-stable subspaces of Vp,q and

h-stable subspaces of V p,q := (Vp,q)wt, given in one direction by taking weight part,
and in the other direction by taking closure. In particular (Vp,q)wt is dense in Vp,q.

Proof. Recall that V = {vi}i∈Z>0 is the fixed basis of V with respect to which h is the
subalgebra of diagonal matrices. Then, for each i ∈ Z>0, the vector vi is of weight εi, where
εi is the projection to the i-th component of h. So the weights of V are all εi for i > 0.
Furthermore, the linear forms v∗i form a topological basis of V which is dual to V , and v∗i
has weight −εi.

Let us now study the weight spaces of V ⊗p
i ⊗ (V ⊗q)∗. Observe that the space V ⊗p

i ⊗ (V ⊗q)∗

is linearly compact and may be realized as the following inverse limit

V ⊗p
i ⊗ (V ⊗q)∗ = lim←−

j

V ⊗p
i ⊗ (V ⊗q

j )∗ .

The canonical surjection
V ⊗p
i ⊗ (V ⊗q

j )∗ → V ⊗p
i ⊗ (V ⊗q

j−1)
∗

is a surjective homomorphism of h-modules which has a unique right inverse due to the
fact that it is an isomorphism when restricted to the direct sum of the weight subspaces of
V ⊗p
i ⊗ (V ⊗q

j )∗ corresponding to weights of V ⊗p
i ⊗ (V ⊗q

j−1)
∗. It follows that all weight spaces of

V ⊗p
i ⊗ (V ⊗q)∗ are finite dimensional. Furthermore, the canonical map∏

χ

(V ⊗p
i ⊗ (V ⊗q)∗)χ = lim←−

χ

(V ⊗p
i ⊗ (V ⊗q)∗)χ → lim←−

j

V ⊗p
i ⊗ (V ⊗q

j )∗

is an isomorphism of topological vector spaces. The weights of V ⊗p
i ⊗ (V ⊗q)∗ are of the form

χ =
∑∞

j=1 njεj, where the coefficients nj are integers satisfying −q ≤ nj ≤ p for j ≤ i,

−q ≤ nj ≤ 0 for j > i, and
∑

j nj = p− q. Furthermore, the above implies

(Vp,q)wt =
⋃
i

(V ⊗p
i ⊗ (V ⊗q)∗)wt =

⋃
i,j

(V ⊗p
i ⊗ (V ⊗q

j )∗)wt

=
⋃
i,j

(V ⊗p
i ⊗ (V ⊗q

j )∗) = V ⊗p ⊗ V ⊗q
∗ = V p,q ,

where the injection V ⊗p
i ⊗ (V ⊗q

j−1)
∗ ↪→ V ⊗p

i ⊗ (V ⊗q
j )∗ is the unique homomorphism of h-

modules which is right inverse to the canonical surjection V ⊗p
i ⊗ (V ⊗q

j )∗ → V ⊗p
i ⊗ (V ⊗q

j−1)
∗.

This concludes the proof of (a).
Let us now prove (b). Observe that, for each i ≥ 1, there is an order-preserving bijection

between the closed h-stable subspaces of
∏

χ(V
⊗p
i ⊗ (V ⊗q)∗)χ and the h-stable subspaces of
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its weight part
⊕

χ(V
⊗p
i ⊗ (V ⊗q)∗)χ. If A is an h-stable subspace of V p,q, then A =

⋃
iAi

where Ai = A∩ (V ⊗p
i ⊗ (V ⊗q)∗)wt. Furthermore, one checks that Ai = Ai+1∩ (V ⊗p

i ⊗ (V ⊗q)∗).
Therefore the closure A of A in Vp,q is equal to

⋃
iAi, where Ai is the closure of Ai in

V ⊗p
i ⊗(V ⊗q)∗. Thus, taking the weight part gives rise to an order-preserving bijection between

closed h-stable subspaces ofVp,q and h-stable subspaces of V p,q. The inverse bijection is given
by taking the closure. In particular, one has (Vp,q)wt = Vp,q, so (Vp,q)wt is dense in Vp,q.
This concludes the proof of (b). □

3.3. The category Tgl(V ). We now define a completion of the category Tgl(V ) from [4].

Definition 3.2. The objects of the category Tgl(V ) are topological vector spaces of the form
Z/U , where Z is a closed gl(V )-stable subspace of a finite direct sum of topological vector
spaces of the form Vp,q, and U is a closed gl(V )-stable subspace of Z. The morphisms in
the category Tgl(V ) are gl(V )-equivariant continuous linear maps.

Lemma 3.3. Let W be an object of Tgl(V ) and let Z be a closed h-stable subspace of W .
Then there is a closed h-stable subspace U of W such that the canonical map Z ⊕U → W is
an h-equivariant topological isomorphism.

Proof. It is clear from Definition 3.2 that it is enough to consider the case W = Vp,q.
Here, the filtration V ⊗p

i ⊗ (V ⊗q)∗ of Vp,q induces an h-stable filtration by closed linearly
compact subspaces W =

⋃
iWi which, by Lemma 3.1(a), are isomorphic to direct products

of finite-dimensional weight spaces. Analogously, the closed subspace Z has the induced
filtration Z =

⋃
i Zi. For every weight χ of W , one may choose compatible supplementary

subspaces (Ui)
χ of (Zi)

χ in (Wi)
χ. Then, the subspaces Ui :=

∏
χ(Ui)

χ are closed, h-stable,
and such that there are isomorphisms Zi⊕Ui ∼= Wi of topological h-modules. Consequently,
denoting by U the union of the Ui, it follows that U is closed and h-stable in W , and that
the canonical morphism Z ⊕ U → W is an isomorphism of topological h-modules. This
concludes the proof. □

Below we show that taking the weight part yields an equivalence of categories

( )wt : Tgl(V ) → Tgl(∞) .

As a first step, we have

Lemma 3.4. Taking the weight part is a functor ( )wt : Tgl(V ) → Tgl(∞).

Proof. By Lemma 3.1, the weight part of Vp,q is V p,q. Note that V p,q is not gl(V )-stable, but
is stable by the dense Lie subalgebra gl(∞) consisting of finitary matrices with respect to
the basis V of V . Let W ∼= Z/U be an object of Tgl(V ), with U ⊂ Z two closed gl(V )-stable
subspaces of a finite direct sum

⊕
iV

pi,qi . Then the weight parts Uwt and Zwt are gl(∞)-
stable subspaces of

⊕
i V

pi,qi . Furthermore, Lemma 3.3 implies that Wwt ∼= Zwt/Uwt. Thus
the weight part Wwt is an object of the category Tgl(∞). Next, it is clear that morphisms
in Tgl(V ) restrict to gl(∞)-equivariant morphisms between weight parts. This proves the
statement. □

Lemma 3.5. The map

Φ : HomTgl(V )
(Vp,q,Vp′,q′)→ HomTgl(∞)

((Vp,q)wt, (Vp′,q′)wt)

induced by the functor ( )wt, is an isomorphism of vector spaces.
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Proof. Since (Vp,q)wt is dense in Vp,q, the map Φ is injective. Furthermore, by [5] (see
Lemma 6.1 and the text right above Lemma 6.1), the vector space HomTgl(∞)

((Vp,q)wt, (Vp′,q′)wt)
is generated by compositions of contractions and permutations. These morphisms clearly
extend to Vp,q by continuity, and hence are in the image of the map Φ. Thus Φ is also
surjective. □

Proposition 3.6. Let

W =
r⊕

k=1

Vpk,qk and W ′ =
r′⊕

k′=1

Vp′
k′ ,q

′
k′ .

Then every f ∈ HomTgl(V )
(W,W ′) is strict. Moreover, if U is a closed gl(V )-stable subspace

of W , also the restriction f|U of f to U is strict.

Proof. Let f ∈ HomTgl(V )
(W,W ′) and let Z denote the image of f . By Lemma 2.10, one

must prove that Z is a closed subspace of W ′.

LetW ′
j =

⊕r′

k′=1 V
⊗p′k
j ⊗(V ⊗q′k)∗ andWi =

⊕r
k=1 V

⊗pk
i ⊗(V ⊗qk)∗. The topologies onW and

W ′ are the inductive limit topologies on
⋃
iWi and

⋃
jW

′
j respectively. Thus, if Zj = Z∩W ′

j ,

one has Z =
⋃
j Zj; moreover Z is closed in W ′ if and only if, for every j, the subspace Zj

is closed in W ′
j .

Let us fix j and prove that Zj is closed in W ′
j . Set Zj,i := f(Wi)∩W ′

j . Then Zj =
⋃
i Zj,i,

and, by Lemma 2.3(iii), the subspace Zj is closed in W ′
j if and only if there exists i such that

Zj,i = Zj.
We now show that there is i such that Zj,i = Zj, thus proving the proposition. By

Lemma 3.1(a), the linearly compact vector spaces Wi and W
′
j are such that, for any χ ∈ h∗,

the χ-weight space is finite dimensional and

Zj =
∏
χ

(Zj)
χ and Zj,i =

∏
χ

(Zj,i)
χ.

Let S denote the finitary symmetric group on countably many letters, i.e., S =
⋃
n Sn.

Then S acts contragrediently on V = V ∗, thus also on the spaces Vp,q, and hence on W and
W ′. Lemma 3.5 and [5, Lemma 6.1] imply that the map f is S-equivariant. Observe that
W ′
j is stable under the action of the subgroup S ′ of S which fixes pointwise the set [1, j].

Furthermore, since S normalizes h, it follows that the action of S ′ permutes the weights and,
accordingly, the respective weight spaces. Note that the weights χ for which (W ′

j)
χ ̸= 0 form

finitely many S ′-orbits and each orbit contains a weight of V ⊗p
j ⊗ (V ∗

j+q)
⊗q. Let i be such

that, for every weight χ of V ⊗p
j ⊗ (V ∗

j+q)
⊗q, one has (Zj)

χ = (Zj,i)
χ.

Let us show that this implies (Zj)
ψ = (Zj,i)

ψ for any weight ψ, and thus ultimately
Zj = Zj,i. Indeed, let Ek,l ∈ gl(V ) be the endomorphism sending vl to vk, and sending all
other basis vectors to 0. Observe that if k < l, one has Ek,l(W

′
j) ⊂ W ′

j and, for every i,
Ek,l(Wi) ⊂ Wi; since f is gl(V )-equivariant, one has also Ek,l(Zj,i) ⊂ Zj,i.
Let us proceed by contradiction. Suppose ψ is a weight for which (Zj)

ψ ̸= (Zj,i)
ψ. Then

ψ =
∑
alεl and we may suppose that ψ is such that in its decomposition appear the minimum

number of εl with l > j + q. By the hypothesis on i, there is at least one l > j + q such that
al > 0. In this case, there is also at least one k such that j < k ≤ j + q and ak = 0.
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Let σ ∈ S ′ be the permutation exchanging k and l. Let θ = σ(ψ). By S-equivariance, one

has dim(Zθ
j ) = dim(Zψ

j ). Furthermore, one checks that the operator Eak
k,l sends isomorphi-

cally (W ′
j)
θ to (W ′

j)
ψ; by gl(V )-equivariance of f , it also sends isomorphically (Zj)

θ to (Zj)
ψ

and (Zj,i)
θ to (Zj,i)

ψ. Since in the decomposition of θ there appears one less εi with i > j+q
and ai ̸= 0, it follows that (Zj)

θ = (Zj,i)
θ and thus also (Zj)

ψ = (Zj,i)
ψ. The contradiction

proves that Zj = Zj,i, and thus f is strict.

Let now U be a closed gl(V )-stable subspace of W . Since by Lemma 3.1 one has U = Uwt,
it follows that U is S-stable. If Ui = U ∩ Wi, then U =

⋃
i Ui is a presentation of U

as inductive limit of linearly compact closed h-submodules. The above arguments can be
repeated with Z = f(U), Zj = Z ∩W ′

j , Zj,i = f(Ui)∩Zj, to prove that f|U has closed image,
and hence is strict.

This concludes the proof. □

Proposition 3.7. Every object of Tgl(V ) is isomorphic to a subobject of a finite direct sum
of Vp,q-s.

Proof. Let W = Z/U where U ⊂ Z are closed gl(V )-equivariant subspaces of a finite direct
sum M =

⊕
j V

pi,qi . It follows from Lemma 3.3 that Wwt ∼= Zwt/Uwt. Furthermore,

by [5, Proposition 4.5], any object of Tgl(∞) is isomorphic to a subobject of an injective
object of the form

⊕
j V

rj ,sj . Let φ : Wwt → A be a gl(V )-equivariant isomorphism, where

A is a gl(V )-stable subspace of (M ′)wt =
⊕

j V
rj ,sj for M ′ =

⊕
j V

rj ,sj . Let Z ′ be the

closure of A in M ′. Moreover, by the injectivity of (M ′)wt and Lemma 3.5, it follows that φ
is the restriction of a gl(V )-equivariant map φ̃ : Mwt → (M ′)wt which extends to a gl(V )-
equivariant map f : M → M ′. By Proposition 3.6, one has that f(Z) is closed, and is thus
equal to Z ′. Now f induces a bijective continuous linear map between W and Z ′, which is
a topological isomorphism by Lemma 2.7(a). This proves the proposition. □

3.4. The category T̂gl(V ) and duality. Finally, we define the category of topological vector

representations T̂gl(V ) as the dual to the category Tgl(V ).

Definition 3.8. The objects of the category T̂gl(V ) are topological vector spaces of the form
Z/U , where Z is a closed gl(V )-stable subspace of a finite direct sum of topological vector

spaces of the form V̂p,q, and U is a closed gl(V )-subspace of Z. The morphisms in the

category T̂gl(V ) are gl(V )-equivariant continuous linear maps.

Theorem 3.9. The following statements hold:

(i) The categories Tgl(V ) and T̂gl(V ) are abelian subcategories of I and P respectively.

(ii) The duality between I and P restricts to a duality between Tgl(V ) and T̂gl(V ).
(iii) The weight part functor

( )wt : Tgl(V ) → Tgl(∞)

is an equivalence of abelian categories.

Proof. From the description in Proposition 2.9 of kernels and cokernels in I and P , it follows
that the categories Tgl(V ) and T̂gl(V ) are closed under taking kernels and cokernels, respec-

tively in I and P . Thus Tgl(V ) and T̂gl(V ) inherit the quasi-abelian structure. Furthermore, a
linear map f is gl(V )-equivariant if and only if its dual f ∗ is gl(V )-equivariant. This implies

12



that the duality stated in Proposition 2.6 restricts to a duality between the quasi-abelian

categories Tgl(V ) and T̂gl(V ), and hence proves (ii).
To prove (i), observe that a quasi-abelian category is abelian if and only if every morphism

is strict (see [3], Remark 4.7 and Remark 4.9). By duality, it suffices to prove that every
morphism in Tgl(V ) is strict. By Lemma 2.10, this amounts to showing that every morphism
of Tgl(V ) has closed image.
Let f : W → W ′ be a morphism in Tgl(V ). By Proposition 3.7, one may suppose that W

andW ′ are submodules of respective modulesM andM ′ which are finite direct sums of Vp,q-
s. By [5, Proposition 4.5] and Lemma 3.5, one gets that the gl(V )-equivariant continuous
linear maps from W to W ′ are restrictions of gl(V )-equivariant continuous linear maps from
M to M ′, and such restrictions are strict by Proposition 3.6. Thus (i) is proved.
Let us prove (iii). We keep the notations W,W ′,M,M ′ from (i). Then one has a commu-

tative diagram

HomTgl(V )
(M,M ′)

a−−−→ HomTgl(V )
(W,M ′)

c

y d

y
HomTgl(∞)

(Mwt, (M ′)wt)
b−−−→ HomTgl(∞)

(Wwt, (M ′)wt) .

The map c is bijective by Lemma 3.5; the map b is surjective by injectivity of (M ′)wt

( [5, Proposition 4.5]). It follows that d is surjective. Since Wwt is dense in W , the map d
is also injective, and hence d is an isomorphism.
Assume W ′ is the kernel of a map g ∈ HomTgl(V )

(M ′, N ′), where N ′ is a finite direct sum
of Vp,q-s. This leads to the commutative diagram

0 −−−→ HomTgl(V )
(W,W ′) −−−→ HomTgl(V )

(W,M ′) −−−→ HomTgl(V )
(W,N ′)y d

y ∼=
y

0 −−−→ HomTgl(∞)
(Wwt, (W ′)wt) −−−→ HomTgl(∞)

(Wwt, (M ′)wt) −−−→ HomTgl(∞)
(Wwt, (N ′)wt)

where the rows are exact and the middle vertical arrow is the map d from above. We have
established that d is an isomorphism, and in the same way one can establish that the third
vertical arrow is an isomorphism. It thus follows that the first vertical arrow is also an
isomorphism. This proves that the functor ( )wt is fully faithful.
Let us prove the essential surjectivity of the functor ( )wt. Let A be an object of Tgl(∞). By

[5, Proposition 4.5], Amay be assumed to be the kernel of a map ϕ ∈ HomTgl(∞)
((M ′′)wt, (M ′′′)wt),

where M ′′,M ′′′ are finite direct sums of Vp,q-s. By Lemma 3.5, the map ϕ is the restriction
of a unique map ψ ∈ HomTgl(V )

(M ′′,M ′′′). One has then (kerψ)wt = A; thus the functor

( )wt is essentially surjective. This concludes the proof of (iii). □

Corollary 3.10. Every object of T̂gl(V ) is isomorphic to a quotient of a finite direct sum of

V̂p,q-s.

Proof. Follows from Theorem 3.9(ii) and Proposition 3.7. □

4. Monoidal structure and further properties

We now endow the categories T̂gl(V ) and Tgl(V ) with symmetric monoidal structures. We
use Beilinson’s tensor product operations between topological vector spaces introduced in [1].
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We recall these operations here, following Positselski’s notation [13], and show that they

endow the categories T̂gl(V ) and Tgl(V ) with antiequivalent symmetric monoidal structures.
The following definitions are taken from Sections 12 and 13 of [13]. Let W1, W2 be vector

spaces endowed with linear topologies.
The topological vector space W1⊗∗W2 is the usual tensor product W1⊗W2 endowed with

the linear topology for which a subspace E ⊂ W1 ⊗W2 is open if the following properties
hold:

• there exist open subspaces P1 ⊂ W1 and P2 ⊂ W2 such that P1 ⊗ P2 ⊂ E;
• for every w1 ∈ W1, there is an open subspace Qw1 ⊂ W2 such that w1 ⊗Qw1 ⊂ E;
• for every w2 ∈ W2, there is an open subspace Qw2 ⊂ W1 such that Qw2 ⊗ w2 ⊂ E.

The topological vector space W1⊗!W2 is the usual tensor product W1⊗W2 endowed with
the linear topology for which a subspace E ⊂ W1⊗W2 is open if there exist open subspaces
P1 ⊂ W1 and P2 ⊂ W2 such that P1 ⊗W2 +W1 ⊗ P2 ⊂ E.
The completions of the vector spaces W1⊗∗W2 and W1⊗!W2 are denoted respectively by

W1⊗̂
∗
W2 and W1⊗̂

!
W2.

For the convenience of the reader, we recall here some facts about the operations ⊗̂∗
and

⊗̂!
.

Lemma 4.1. The following statements hold:

(1) For W discrete and any W ′, one has W ⊗̂∗
W ′ = W ⊗W ′ where W ⊗W ′ is endowed

with the inductive limit topology.
(2) For W discrete and W ′ = lim←−W

′
j linearly compact, one has

W ⊗̂!
W ′ = lim←− W ⊗W ′

j .

(3) For W = lim←−Wj and W
′ = lim←−W

′
j linearly compact, one has

W ⊗̂∗
W ′ = W ⊗̂!

W ′ = lim←− Wj ⊗W ′
j .

(4) For any W1,W2,W3, one has canonical isomorphisms

(W1⊗̂
∗
W2)⊗̂

∗
W3
∼= W1⊗̂

∗
(W2⊗̂

∗
W3)

and

(W1⊗̂
!
W2)⊗̂

!
W3
∼= W1⊗̂

!
(W2⊗̂

!
W3) .

Proof. Statements (1) and (3) follow from [13, Examples 13.1 (1), (2)]. Statement (2) is
observed in [13, Remark 12.1] and statement (4) is proved in [13, Proposition 13.4]. □

The above facts lead to the following

Lemma 4.2. One has canonical isomorphisms:

(a) Vp,q = V ⊗̂∗
p ⊗̂∗

V⊗̂∗
q,

(b) V̂p,q = V ⊗̂!
p ⊗̂!

V⊗̂!
q,

(c) V ⊗̂!
V ∼= gl(V ).

Proof. The space V =
⋃
i Vi is discrete and the space V = lim←−(Vi)

∗ is linearly compact, hence

V ⊗p = V ⊗̂∗
p by Lemma 4.1(1), and (V ⊗q)∗ = lim←−(V

⊗q
i )∗ = V⊗̂!

q by Lemma 4.1(3).
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Furthermore, by statement (2) of Lemma 4.1, one has

V ⊗̂!
V = lim←− V ⊗ V ∗

i = lim←− Hom(Vi, V ) = EndV = gl(V ) .

□

We can now strengthen Theorem 3.9 as follows.

Proposition 4.3. The following statements hold:

(i) The category Tgl(V ) is symmetric monoidal when endowed with the tensor product

⊗̂∗
.

(ii) The category T̂gl(V ) is symmetric monoidal when endowed with the tensor product ⊗̂!
.

(iii) The functor ( )wt : Tgl(V ) → Tgl(∞) establishes an equivalence of abelian monoidal
categories.

(iv) The functor ( )∗ : Tgl(V ) → T̂gl(V ) establishes an antiequivalence of abelian monoidal
categories.

Proof. Let us first show that if W and W ′ are two objects of Tgl(V ), then W ⊗̂∗
W ′ is an

object of Tgl(V ). Indeed, by Proposition 3.7 and by Lemma 2.8, we may assume that there
are (in general not gl(V )-stable) objects C and C ′ of I such that W ⊕ C and W ′ ⊕ C ′

are isomorphic to finite direct sums of Vp,q-s. Since the tensor product ⊗̂∗
is a biadditive

functor, Lemma 4.2(a) implies that W ⊗̂∗
W ′ is isomorphic to a closed gl(V )-stable subspace

of a finite direct sum of Vp,q-s; hence it is an object of Tgl(V ).

The fact that (Tgl(V ), ⊗̂
∗
) is a symmetric monoidal category follows from the associativity

in Lemma 4.1(4) and the commutativity of ⊗̂∗
. This proves (i). Statement (ii) is proved

analogously by using Lemma 4.2(b), Corollary 3.10 and the associativity and commutativity

of ⊗̂!
.

To prove (iii), observe that Lemma 4.2(a) implies

(Vp,q⊗̂∗
Vp′,q′)wt = (Vp,q)wt ⊗ (Vp′,q′)wt .

Using Lemma 3.3 and Proposition 3.7, one gets decompositions of h-modules W ⊕ U =⊕
iV

pi,qi and W ′ ⊕ U ′ =
⊕

j V
p′j ,q

′
j for any two objects W and W ′ of of Tgl(V ). This shows

that (W ⊗̂∗
W ′)wt = Wwt ⊗ (W ′)wt, and (iii) is proved.

Let us now establish (iv). Indeed, by Lemma 4.2(a), (b) we have

(Vp,q ⊗̂∗
Vp′,q′)∗ = (Vp+p′,q+q′)∗ = V̂q+q′,p+p′ = V̂q,p ⊗̂!

V̂q′,p′ = (Vp,q)∗ ⊗̂!
(Vp′,q′)∗ .

Therefore, using the semisimplicity of I and Proposition 3.7, we conclude that

(W ⊗̂∗
W ′)∗ = W ∗ ⊗̂!

(W ′)∗

for any two objects W,W ′ of Tgl(V ). This proves (iv). □

To state some corollaries of Proposition 4.3, we need to fix some notation. Recall that the
radical radM of an object M of an abelian category is the intersection of all kernels of all
homomorphisms of M into semisimple objects. Then the descending radical filtration of M
is

radiM = rad(radi−1M)
15



for i ⩾ 2, and the layers radiM/radi+1M of this filtration are semisimple objects. Moreover,
if M has finite length (i.e., admits a Jordan-Hölder series), then the radical filtration of M
is finite and separating.

Given a Young diagram λ, by |λ| we denote its degree and λ⊥ stands for the conjugate
diagram. Next, by Nλ

µ,ν we denote the Littlewood-Richardson coefficient associated to the
Young diagrams λ, µ, ν.
Finally, we note that the definition of Schur functors Sλ for Young diagrams λ makes sense

for pure tensors also in the category T̂gl(V ). Indeed, one can apply the usual symmetrization
procedure associated with a Young tableau of shape λ to tensor products of the form V ⊗p and

obtain Sλ(V ). Then one sets Ŝλ(V) := Sλ(V )∗. Moreover, Sλ(V ) and Ŝλ(V) are irreducible

objects of T̂gl(V ) for any λ.
Theorem 3.9 has now the following

Corollary 4.4.

a) The simple objects of T̂gl(V ) are parametrized by pairs of Young diagrams (λ, µ) : the

simple object V̂λ,µ is the quotient of the object Sλ(V ) ⊗̂! Ŝµ(V) ∈ T̂gl(V ) by its radical.

Moreover, the object Sλ(V ) ⊗̂! Ŝµ(V) has finite length.

b) The objects Sλ(V ) ⊗̂! Ŝµ(V) ∈ T̂gl(V ), for pairs of Young diagrams (λ, µ), are pro-
jective and indecomposable, and any indecomposable projective object of the category

T̂gl(V ) is isomorphic to Sλ(V ) ⊗̂! Ŝµ(V) for some (λ, µ).

c) The category T̂gl(V ) is equivalent to the category of locally unitary finite-dimensional
modules over the infinite-dimensional Koszul algebra Asl(∞) studied in [5, Sect. 4].

d) We have

radi
(
Sλ(V ) ⊗̂! Ŝµ(V)

)
/radi+1

(
Sλ(V ) ⊗̂! Ŝµ(V)

)
≃

⊕
ν,κ

∑
|γ|=i

Nλ
ν,γN

µ
κ,γ

 V̂ν,κ ,

where ν, κ and γ are Young diagrams. In particular, if V̂ν,κ is a simple constituent

of radi
(
Sλ(V ) ⊗̂! Ŝµ(V)

)
/radi+1

(
Sλ(V ) ⊗̂! Ŝµ(V)

)
then the Young diagrams ν and

κ are obtained respectively from λ and µ by removing exactly i boxes.

e) For any (λ, µ), (ν,κ), and i ∈ Z⩾0, the vector space Exti
T̂gl(V )

(
V̂λ,µ, V̂ν,κ

)
is finite

dimensional and its dimension equals the multiplicity of V̂ν,κ⊥ in

radi
(
Sλ(V ) ⊗̂! Ŝµ⊥(V)

)
/radi+1

(
Sλ(V ) ⊗̂! Ŝµ⊥(V)

)
,

i.e.,

dimExti
T̂gl(V )

(
V̂λ,µ, V̂ν,κ

)
=

∑
|γ|=i

Nλ
ν,γN

µ⊥

κ⊥,γ
.

Proof. All statements follow from the existence of an antiequivalence of the symmetric

monoidal categories T̂gl(V ) and Tgl(∞) (Proposition 4.3), and from the respective results
from [5] concerning the category Tgl(∞). □
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We conclude the paper by presenting briefly a universality property of the symmetric

monoidal category T̂gl(V ).
Recall that to every object X of the category Tgl(∞) one assigns its dual X∗ and that there

is a canonical morphism surjective X⊗X∗ → C. The category Tgl(∞) is not a rigid symmetric
monoidal category according to the definition in [7], since the morphism X⊗X∗ → C admits
in general no splitting C→ X ⊗X∗.

In comparison, to every object Y of the category T̂gl(V ) one assigns a dual Y ∨ defined as
((Y ∗)∗)

∗, where the functor ( )∗ : Tgl(V ) → Tgl(V ) is transferred to the category Tgl(V ) via

the equivalence Tgl(V )
( )wt

→ Tgl(∞). However, since T̂gl(V ) is antiequivalent to Tgl(∞), there is

an injective morphism C→ X⊗̂!
X∨ which does not split in general.

Corollary 4.5. Let (T ,⊗) be an abelian linear symmetric monoidal category. Assume that
two objects X, Y ∈ T and nonzero morphism 1→ X⊗Y are given, where 1 is the monoidal
unit of T . Then there exists a right-exact monoidal functor

F : T̂gl(V ) → T ,

satisfying F (V ) = X, F (V) = Y , and sending the injection CId → gl(V ) to the monomo-
sphism 1→ X ⊗ Y .

References

[1] Alexander Beilinson. Remarks on topological algebras. Moscow Mathematical Journal, 8(1):1–20, 2008.
[2] Oksana Bezushchak, Waldemar Ho lubowski, and Bogdana Oliynyk. Ideals of general linear Lie algebras

of infinite-dimensional vector spaces, 2021. arXiv:2112.02431.
[3] Theo Bühler. Exact categories. Expositiones Mathematicae, 28(1):1–69, 2010.
[4] Alexandru Chirvasitu. Three results on representations of Mackey Lie algebras. In Developments and

Retrospectives in Lie Theory, volume 38 of Developments in Mathematics, pages 99–109. Springer In-
ternational Publishing, 2014.

[5] E. Dan-Cohen, I. Penkov, and V. Serganova. A Koszul category of representations of finitary Lie algebras.
Adv. Math., 289:250–278, 2016.

[6] Inna Entova-Aizenbud, Vladimir Hinich, and Vera Serganova. Deligne categories and the limit of cate-
gories Rep(GL(m|n)). Oxford University Press.

[7] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories, volume 205.
American Mathematical Soc., 2016.
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