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Abstract. We study the center of U(n), where n is the locally nilpotent radical of a splitting Borel
subalgebra of a simple complex Lie algebra g = sl∞(C), so∞(C), sp∞(C). There are infinitely many
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cases. We then fix n with “largest possible” center of U(n) and characterize the centrally generated
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1. Introduction

The theory of primitive ideals in enveloping algebras of Lie algebras has its roots in the re-
presentation theory of Lie algebras. However, classifying irreducible representations of Lie algebras
is not feasible except in few very special cases, while a classification of annihilators of irreducible
representations, i.e., of primitive ideals, can be achieved in much greater generality. This idea goes
back to J. Dixmier and his seminar, and for semisimple or solvable finite-dimensional Lie algebras
there is an extensive theory of primitive ideals.

In the case when n is a finite-dimensional nilpotent Lie algebra, the primitive ideals in the universal
enveloping algebra U(n) can be described in terms of the Dixmier map assigning to any linear form
f ∈ n∗ a primitive ideal J(f) of U(n). If n is abelian, J(f) is simply the annihilator of f . For a general
finite-dimensional nilpotent Lie algebra n, the theory of primitive ideals retains many properties from
the abelian case: in particular, J(f) is always a maximal ideal and every primitive ideal in U(n) is of
the form J(f) for some f ∈ n∗. Moreover, J(f) = J(f ′) if and only if f and f ′ belong to the same
coadjoint orbit in n∗.

The idea of classifying primitive ideals rather then irreducible representations makes even more
sense for infinite-dimensional Lie algebras, and in this paper we make some first steps in this direction
for a natural class of locally nilpotent infinite-dimensional Lie algebras. These are the locally nilpotent
radicals n of splitting Borel subalgebras of the three simple finitary complex Lie algebras sl∞(C),
so∞(C), sp∞(C).

A comprehensive theory of primitive ideals in U(n) remains to be built. In this paper we concentrate
on centrally generated primitive ideals in U(n). We first provide a description of the center of the
enveloping algebra U(n) for any locally nilpotent radical n as above, and then use the result to describe
the centrally generated primitive ideals in U(n) for some interesting choices of n.

The first author has been supported in part by RFBR grants no. 14–01–31052 and 14–01–97017, by the Dynasty
Foundation and by the Ministry of Science and Education of the Russian Federation. A part of this work was done
in the Max Planck Institute for Mathematics in Bonn and in Jacobs University Bremen, and the first author thanks
these institutions for their hospitality. The second author has been supported in part by DFG via the priority program
Representation Theory.
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The splitting Borel subalgebras of g = sl∞(C), so∞(C), sp∞(C) are not conjugate, and there
are infinitely many isomorphism classes of locally nilpotent radicals n. In the finite-dimensional case
Kostant cascades of orthogonal roots play an important role in describing the center of U(n). In the
infinite-dimensional case the center of U(n) is described in terms of a possibly infinite Kostant cascade.
A significant difference with the finite-dimensional case is that the Kostant cascade depends in an
essential way on the isomorphism class of n, and that in most cases the cascade is finite rather than
infinite.

In order to obtain an explicit form of the generators of the center of U(n), we first recall such an
explicit form of the generators in the finite-dimensional case due to A. Joseph, F. Fauquant-Millet,
R. Lipsman, J.A. Wolf, and A. Panov. This enables us to give an explicit description of the center of
U(n) in all cases.

We then concentrate on the case when g = sl∞(C), sp∞(C) and U(n) has the “largest possible”
center. This latter requirement singles out only one isomorphism class of subalgebras n for a fixed g.
For such n we construct a Dixmier map defined for certain linear forms f ∈ n∗, closely related to
the Kostant cascade of n. We refer to these forms as Kostant forms. Our main result implies then
that the Dixmier map establishes a one-to-one correspondence between Kostant forms and centrally
generated primitive ideals in U(n). This provides an explicit description of the centrally generated
primitive ideals of U(n). As a corollary we obtain that centrally generated primitive ideals J of U(n)
are maximal ideals, and that the quotient U(n)/J is a Weyl algebra with infinitely many generators.

To the best of our knowledge, the analogous description, via Kostant forms, of the centrally
generated primitive ideals in U(n) for n ⊂ sln(C), sp2n(C) is also new.

We thank A. Joseph and A. Panov for helpful discussions.

2. The center of U(n)

2.1. Finite-dimensional case. Let n ∈ Z>0. Throughout this subsection g denotes one of the
Lie algebras sln(C), so2n(C), so2n+1(C) or sp2n(C). The algebra so2n(C) (respectively, so2n+1(C) and
sp2n(C)) is realized as the subalgebra of sl2n(C) (respectively, sl2n+1(C) and sl2n(C)) consisting of all x
such that β(u, xv) + β(xu, v) = 0 for all u, v in C2n (respectively, in C2n+1 and C2n), where

β(u, v) =


∑n

i=1(uiv−i + u−ivi) for so2n(C),
u0v0 +

∑n
i=1(uiv−i + u−ivi) for so2n+1(C),∑n

i=1(uiv−i − u−ivi) for sp2n(C).

Here for so2n(C) (respectively, for so2n+1 and sp2n(C)) we denote by e1, . . . , en, e−n, . . . , e−1 (respec-
tively, by e1, . . . , en, e0, e−n, . . . , e−1 and e1, . . . , en, e−n, . . . , e−1) the standard basis of C2n (respec-
tively, of C2n+1 and C2n), and by xi the coordinate of a vector x corresponding to ei.

The set of all diagonal matrices from g is a Cartan subalgebra of g; we denote it by h. Let Φ be
the root system of g with respect to h. Note that Φ is of type An−1 (respectively, Dn, Bn and Cn)
for sln(C) (respectively, for so2n(C), so2n+1(C) and sp2n(C)). The set of all upper-triangular matrices
from g is a Borel subalgebra of g containing h; we denote it by b. Let Φ+ be the set of positive roots
with respect to b. As usual, we identify Φ+ with the following subset of Rn:

A+
n−1 = {ϵi − ϵj , 1 ≤ i < j ≤ n},
B+

n = {ϵi − ϵj , 1 ≤ i < j ≤ n} ∪ {ϵi + ϵj , 1 ≤ i < j ≤ n} ∪ {ϵi, 1 ≤ i ≤ n},
C+
n = {ϵi − ϵj , 1 ≤ i < j ≤ n} ∪ {ϵi + ϵj , 1 ≤ i < j ≤ n} ∪ {2ϵi, 1 ≤ i ≤ n},

D+
n = {ϵi − ϵj , 1 ≤ i < j ≤ n} ∪ {ϵi + ϵj , 1 ≤ i < j ≤ n}.

Here {ϵi}ni=1 is the standard basis of Rn.
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Denote by n the algebra of all strictly upper-triangular matrices from g. Then n has a basis consisting
of root vectors eα, α ∈ Φ+, where

eϵi =
√
2(e0,i − e−i,0), e2ϵi = ei,−i,

eϵi−ϵj =

{
ei,j for An−1,

ei,j − e−j,−i for Bn, Cn and Dn,

eϵi+ϵj =

{
ei,−j − ej,−i for Bn and Dn,

ei,−j + ej,−i for Cn,

and ei,j are the usual elementary matrices. For so2n(C) (respectively, for so2n+1(C) and sp2n(C)) we
index the rows (from left to right) and the columns (from top to bottom) of matrices by the numbers
1, . . . , n,−n, . . . ,−1 (respectively, by the numbers 1, . . . , n, 0,−n, . . . ,−1 and 1, . . . , n,−n, . . . ,−1).
Note that g = h⊕n⊕n−, where n− = ⟨e−α, α ∈ Φ+⟩C, and, by definition, e−α = eTα . (The superscript T
always stands for transposed.) The set {eα, α ∈ Φ} can be extended to a unique Chevalley basis of g.

Let G be one of the following classical Lie groups: SLn(C), SO2n(C), SO2n+1(C) or Sp2n(C). The
group SO2n(C) (respectively, SO2n+1 and Sp2n(C)) is realized as the subgroup of SL2n(C) (respectively,
of SL2n+1(C) and SL2n(C)) which preserves the form β. Let H (respectively, B and N) be the set of all
diagonal (respectively, upper-triangular and upper-triangular with 1 on the diagonal) matrices from G.
Then H is a maximal torus of G, B is a Borel subgroup of G containing H, N is the unipotent radical
of B, and g (respectively, h, b and n) is the Lie algebra of G (respectively, of H, B and N).

Denote by U(n) the enveloping algebra of n, and by S(n) the symmetric algebra of n. Then n and
S(n) are B-modules as B normalizes N . Denote by Z(n) the center of U(n). It is well-known that the
restriction of the symmetrization map

σ : S(n) → U(n), xk 7→ xk, x ∈ n, k ∈ Z≥0,

to the algebra S(n)N of N -invariants is an algebra isomorphism between S(n)N and Z(n).
We next present a canonical set of generators of Z(n) (or, equivalently, of S(n)N ), whose description

goes back to J. Dixmier, A. Joseph and B. Kostant [Di3], [Jo], [Ko1], [Ko2]. Denote by B the following
subset of Φ+:

B =



∪
1≤i≤[n/2]{ϵi − ϵn−i+1} for An−1,∪
1≤i≤n/2{ϵ2i−1 − ϵ2i, ϵ2i−1 + ϵ2i} for Bn, n even,∪
1≤i≤[n/2]{ϵ2i−1 − ϵ2i, ϵ2i−1 + ϵ2i} ∪ {ϵn} for Bn, n odd,∪
1≤i≤n{2ϵi} for Cn,∪
1≤i≤[n/2]{ϵ2i−1 − ϵ2i, ϵ2i−1 + ϵ2i} for Dn.

Note that B is a maximal strongly orthogonal subset of Φ+, i.e., B is maximal with the property that
if α, β ∈ B then neither α− β nor α+ β belongs to Φ+. We call B the Kostant cascade of orthogonal
roots in Φ+.

We can consider ZΦ, the Z-linear span of Φ, as a subgroup of the group X of rational multiplicative
characters of H by putting ±ϵi(h) = h±1

i,i , where hi,j is the i-th diagonal element of a matrix h ∈ H.
Recall that a vector λ ∈ Rn is called a weight of H if c(α, λ) = 2(α, λ)/(α, α) is an integer for any
α ∈ Φ+, where (·, ·) is the standard inner product on Rn. A weight λ is called dominant if c(α, λ) ≥ 0
for all α ∈ Φ+. An element a of an H-module is called an H-weight vector, if there exists ν ∈ X such
that h · a = ν(h)a for all h ∈ H. By [Ko2, Theorems 6, 7], there exist unique (up to scalars) prime
polynomials ξ1, . . . , ξm ∈ S(n)N , m = |B|, such that each ξi is an H-weight polynomial of a dominant
weight µi belonging to the Z-linear span ZB of B. A remarkable fact is that

ξ1, . . . , ξm are algebraically independent generators of S(n)N , (1)

so S(n)N and Z(n) are polynomial rings. We call ξi the i-th canonical generator of S(n)N .
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Let n∗ be the dual space of n, and let {e∗α, α ∈ Φ+} be the basis of n∗ dual to the basis {eα, α ∈ Φ+}
of n. Put R =

{
t =

∑
β∈B tβe

∗
β, tβ ∈ C×

}
and denote by X the union of all N -orbits in n∗ of elements

of R. In fact, X is a single B-orbit in n∗, and the N -orbits of two distinct point of R are disjoint.
Kostant [Ko3, Theorems 1.1, 1.3] proves that X is a Zariski dense subset of n∗, and for t ∈ R, up to
scalar multiplication,

ξi(t) =
∏
β∈B

t
rµi (β)

β , 1 ≤ i ≤ m, where rµi(β) =
(µi, β)

(β, β)
. (2)

The following representation-theoretic description of ξi is given in [Pa2], however, it can be found
in slightly different terms also in [LW] and [FMJ]. Let Π = {α1, . . . , αn} be the set of simple roots [Bo,
Table I–IV], and let ϖi, 1 ≤ i ≤ n, be the i-th fundamental dominant weight of Φ. We define positive
integers ki for 1 ≤ i ≤ m = |B| by the following rule:

Φ = An−1 m = [n/2] ki = 1 for 1 ≤ i ≤ m

Φ = Bn m = n for Bn ki = 1 for odd i,
or Dn m = n for Dn when n even ki = 2 for even i < m,

m = n− 1 for Dn when n odd km = 1 for even m

Φ = Cn m = n ki = 1 for 1 ≤ i ≤ m

.

Let W be the Weyl group of Φ. Denote by w0 the unique element of W such that w0(α) ∈ −Φ+

for all α ∈ Φ+. Furthermore, set ϖ′
i =

(1− w0)ϖi

ki
. Then the weights ϖ′

i’s have the following form:

Φ = An−1 ϖ′
i = 2ϵ1 + . . .+ 2ϵi−1 + ϵi for 1 ≤ i ≤ m

Φ = Bn ϖ′
i =

{
2ϵ1 + . . .+ 2ϵi for odd i < m,

ϵ1 + . . .+ ϵi otherwise
Φ = Cn ϖ′

i = 2ϵ1 + . . .+ 2ϵi for 1 ≤ i ≤ m

Φ = Dn ϖ′
i =


2ϵ1 + . . .+ 2ϵi for odd i < m− 1,

2ϵ1 + . . .+ 2ϵn−1 for i = n− 2 = m− 1 when n is odd,
ϵ1 + . . .+ ϵn−1 − ϵn for i = n− 1 = m− 1 when n is even,
ϵ1 + . . .+ ϵi otherwise

.

Now, let Vi be the i-th fundamental representation of the group G for 1 ≤ i ≤ m, and let V ∗
i be its

dual representation. Fix highest-weight vectors vi and li respectively of Vi and V ∗
i . Let Si be the regular

function on G defined by Si(g) = li(g ·vi). By exp: g → G we denote the usual exponential map. Using
the g-invariant form g ∋ x, y 7→ trxy we identify the space n− of all lower-triangular matrices from g
with n∗. Then

e∗α =


eTα if Φ = An−1, or Φ = Cn and α = 2ϵi,

eTα/4 if Φ = Bn and α = ϵi,

eTα/2 otherwise.
(3)

To each regular function S on G we assign the sequence of regular functions Sj on n− (or, equivalently,
of elements of S(n)) defined as the coefficients in the expansion

S(exp tx) = tk(S0(x) + tS1(x) + t2S2(x) + . . .), k ≥ 0, x ∈ n−.

In particular, regular functions Sj
i on G are now defined.

Theorem 2.1. [Pa2, Theorem 2.12]
i) If ki = 2 for 1 ≤ i ≤ m, then S0

i is a square in S(n).
ii) Set Ki = S0

i if ki = 1, and (Ki)
2 = S0

i if ki = 2. Then Ki is a prime H-weight polynomial of
weight ϖ′

i contained in S(n)N for 1 ≤ i ≤ m.
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Corollary 2.2. After suitable reordering of indices, we have (up to scalar multiplication) µi = ϖ′
i

and ξi = Ki for 1 ≤ i ≤ m.
Proof. It is easy to check that ϖ′

i is a dominant weight in ZB. Then our claim follows from
Kostant’s characterization of ξ1, . . ., ξm as the unique (up to scalars) prime polynomials in S(n)N

which are H-weight polynomials of dominant weights belonging to ZB. �
We now fix explicit expressions for ξi in all classical root systems.
i) Φ = An−1. Let V = Cn be the natural representation of G = SLn(C). Then Vi =

∧i V for all i
from 1 to n − 1. If e1, . . . , en is the standard basis of V , and e∗1, . . . , e

∗
n is the dual basis of V ∗, then

vi = e1 ∧ . . . ∧ ei is a highest-weight vector of Vi, and li = e∗n−i+1 ∧ . . . ∧ e∗n is a highest-weight vector
of V ∗

i . This implies that S0
i (x) is the lower left (i× i)-minor of a matrix x ∈ n−. Using (3) we can set

ξi =

∣∣∣∣∣∣∣∣∣
e1,n−i+1 . . . e1,n−1 e1,n
e2,n−i+1 . . . e2,n−1 e2,n

... . . .
...

...
ei,n−i+1 . . . ei,n−1 ei,n

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
eϵ1−ϵn−i+1 . . . eϵ1−ϵn−1 eϵ1−ϵn

eϵ2−ϵn−i+1 . . . eϵ2−ϵn−1 eϵ2−ϵn
... . . .

...
...

eϵi−ϵn−i+1 . . . eϵi−ϵn−1 eϵi−ϵn

∣∣∣∣∣∣∣∣∣ . (4)

ii) Φ = Cn. Let V = C2n be the natural representation of G = Sp2n(C). Then Vi =
∧i V for all i

from 1 to n−1 = m−1. If e1, . . . , en, e−n, . . . , e−1 is the standard basis of V , and e∗1, . . . , e
∗
n, e

∗
−n, . . . , e

∗
−1

is the dual basis of V ∗, then vi = e1 ∧ . . . ∧ ei is a highest-weight vector of Vi, and li = e∗−i ∧ . . . ∧ e∗−1

is a highest-weight vector of V ∗
i . Consequently, S0

i (x) is again the lower left (i× i)-minor of a matrix
x ∈ n−, and for 1 ≤ i ≤ m− 1 we can set

ξi =

∣∣∣∣∣∣∣∣∣∣∣

eϵ1+ϵi . . . eϵ1+ϵ3 eϵ1+ϵ2 2e2ϵ1
eϵ2+ϵi . . . eϵ2+ϵ3 2e2ϵ2 eϵ1+ϵ2

eϵ3+ϵi . . . 2e2ϵ3 eϵ2+ϵ3 eϵ1+ϵ3
... . . .

...
...

...
2e2ϵi . . . eϵ3+ϵi eϵ2+ϵi eϵ1+ϵi

∣∣∣∣∣∣∣∣∣∣∣
. (5)

We claim that ξm can also be defined via formula (5) for i = m. To verify this it is suffices to
check that ξm is proportional to the m-th canonical generator for sp2n+2(C). But the latter is obvious
because this generator is a prime N -invariant H-weight polynomial of weight ϖ′

m ∈ ZB.
iii) Φ = Dn. Let V = C2n be the natural representation of G = SO2n(C). Then Vi =

∧i V for all
i from 1 to n − 2. If e1, . . . , en, e−n, . . . , e−1 is the standard basis of V , and e∗1, . . . , e

∗
n, e

∗
−n, . . . , e

∗
−1 is

the dual basis of V ∗, then vi = e1 ∧ . . . ∧ ei is a highest-weight vector of Vi, and li = e∗−i ∧ . . . ∧ e∗−1

is a highest-weight vector of V ∗
i . First, if i ≤ n − 2 is even, then ki = 2, so S0

i = (Ki)
2. It follows

that Ki(x), for x ∈ n−, is the Pfaffian of the skew-symmetric matrix obtained from the lower left i× i
submatrix of x by reordering the columns. Therefore, for even i ≤ n− 2 we set

ξ2i = ±

∣∣∣∣∣∣∣∣∣∣∣

eϵ1+ϵi . . . eϵ1+ϵ3 eϵ1+ϵ2 0
eϵ2+ϵi . . . eϵ2+ϵ3 0 −eϵ1+ϵ2

eϵ3+ϵi . . . 0 −eϵ2+ϵ3 −eϵ1+ϵ3
... . . .

...
...

...
0 . . . −eϵ3+ϵi −eϵ2+ϵi −eϵ1+ϵi

∣∣∣∣∣∣∣∣∣∣∣
. (6)

Our normalization is such that the term eϵ1+ϵ2eϵ3+ϵ4 . . . eϵi−1+ϵi enters ξi with coefficient 1.
If i ≤ n− 2 is odd and x =

∑
α∈Φ+ xαe

T
α ∈ n−, then

Si(exp tx) =

∣∣∣∣∣∣∣∣∣
txϵ1+ϵi +O(t2) . . . txϵ1+ϵ2 +O(t2) 2t2a1(x) +O(t3)
txϵ2+ϵi +O(t2) . . . 2t2a2(x) +O(t3) −txϵ1+ϵ2 +O(t2)

... . . .
...

...
2t2ai(x) +O(t3) . . . −txϵ2+ϵi +O(t2) −txϵ1+ϵi +O(t2)

∣∣∣∣∣∣∣∣∣
= tk(S0

i (x) + tS1
i (x) + t2S2

i (x) + . . .)

(7)
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for some k ≥ 0, where as(x) =
∑n

j=s+1 xϵs−ϵjxϵs+ϵj . Let U i be the (i× i)-matrix defined by (U i)a,b =

−(U i)a,b = eϵa+ϵi−b+1
for a < i − b + 1, (U i)a,i−a+1 = 0, and U i

s be the matrix obtained from U i by
deleting the (i− s+ 1)-th row and column. Then k = i+ 1 and we can set

ξi =
∑i

s=1
as detU i

s, (8)

where as =
∑n

j=s+1 eϵs−ϵjeϵs+ϵj .
Next, assume i = m (in other words, i = n− 1 and n is odd, or i = n and n is even). As the m-th

canonical generator for so2n+2(C) is a prime N -invariant H-weight polynomial of weight ϖ′
m ∈ ZB, it

follows that ξm can be also defined via formula (6) for i = m.
Finally, assume n is even and i = m− 1 = n− 1. In this case ξm−1 can be defined by

ξ2m−1 = ±

∣∣∣∣∣∣∣∣∣∣∣

eϵ1−ϵn eϵ1+ϵn−1 . . . eϵ1+ϵ2 0
eϵ2−ϵn eϵ2+ϵn−1 . . . 0 −eϵ1+ϵ2

...
... . . .

...
...

eϵn−1−ϵn 0 . . . −eϵ2+ϵn−1 −eϵ1+ϵn−1

0 −eϵn−1−ϵn . . . −eϵ2−ϵn −eϵ1−ϵn

∣∣∣∣∣∣∣∣∣∣∣
(our normalization is such that the term eϵn−1−ϵnξm−3 enters ξm−1 with coefficient 1) as it is easy to
check that this polynomial is a prime N -invariant H-weight polynomial of weight ϖ′

m−1.
iv) Case Φ = Bn. Let V = C2n+1 be the natural representation of G = SO2n+1(C). Then

Vi =
∧i V for all i from 1 to n − 1. If e1, . . . , en, e0, e−n, . . . , e−1 is the standard basis of V , and

e∗1, . . . , e
∗
n, e

∗
0, e

∗
−n, . . . , e

∗
−1 is the dual basis of V ∗, then vi = e1 ∧ . . . ∧ ei is a highest-weight vector

of Vi, and li = e∗−i ∧ . . . ∧ e∗−1 is a highest-weight vector of V ∗
i .

First, if i ≤ n − 1 is even, then ki = 2, so S0
i = (Ki)

2. It follows that ξi can be defined via
formula (6). Second, if i = n = m is even, then, arguing as above, we can define ξm again by formula
(6) for i = n. Next, if i ≤ n− 1 is odd and x =

∑
α∈Φ+ xαe

T
α ∈ n−, then

Si(exp tx) =

∣∣∣∣∣∣∣∣∣
txϵ1+ϵi +O(t2) . . . txϵ1+ϵ2 +O(t2) 2t2b1(x) +O(t3)
txϵ2+ϵi +O(t2) . . . 2t2b2(x) +O(t3) −txϵ1+ϵ2 +O(t2)

... . . .
...

...
2t2bi(x) +O(t3) . . . −txϵ2+ϵi +O(t2) −txϵ1+ϵi +O(t2)

∣∣∣∣∣∣∣∣∣
= tk(S0

i (x) + tS1
i (x) + t2S2

i (x) + . . .)

(9)

for some k ≥ 0, where bs(x) =
∑n

j=s+1 xϵs−ϵjxϵs+ϵj +x2ϵs . It turns out that k = i+1 and we can define
ξi via formula (8) for bs =

∑n
j=s+1 eϵs−ϵjeϵs+ϵj + e2ϵs/4. Finally, assume i = n = m is odd. Arguing as

above, we see that ξm can be defined by

ξ2m = ±

∣∣∣∣∣∣∣∣∣∣∣

eϵ1 eϵ1+ϵn . . . eϵ1+ϵ2 0
eϵ2 eϵ2+ϵn . . . 0 −eϵ1+ϵ2
...

... . . .
...

...
eϵn 0 . . . −eϵ2+ϵn −eϵ1+ϵn

0 −eϵn . . . −eϵ2 −eϵ1

∣∣∣∣∣∣∣∣∣∣∣
(our normalization is such that the term eϵnξm−2 enters ξm with coefficient 1).

For An−1 and Cn, denote ∆i = σ(ξi) for 1 ≤ i ≤ m. We call ∆i the i-th canonical generator of Z(n).
Since all eα involved in ξi (i.e., eα which appear in a term of ξi) commute, we conclude that ∆i is
defined as an element of U(n) again by formulas (4), (5) for An−1, Cn respectively. For Bn and Dn,
then denote Pi/2 = σ(ξi) when i is even, and D(i+1)/2 = σ(ξi) when i is odd. If i is even, all eα involved
in ξi commute, so we can conclude that Pi is defined as an element of U(n) again by formula (6).
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2.2. Infinite-dimensional case. Let sl∞(C), so∞(C), sp∞(C) be the three simple complex finitary
countable dimensional Lie algebras as classified by A. Baranov [Ba]. Each of them can be described as
follows (see for example [DP2]). Consider an infinite chain of inclusions

g1 ⊂ g2 ⊂ . . . ⊂ gn ⊂ . . .

of simple Lie algebras, where rk gn = n and all gn are of the same type A, B, C or D. Then the union
g =

∪
gn is isomorphic to sl∞(C), so∞(C) or sp∞(C). It is always possible to choose nested Cartan

subalgebras hn ⊂ gn, hn ⊂ hn+1, so that each root space of gn is mapped to exactly one root space of
gn+1. The union h =

∪
hn acts semisimply on g, and is by definition a splitting Cartan subalgebra of g.

We have a root decomposition g = h⊕
⊕

α∈Φ gα where Φ is the root system of g with respect to h and
gα are the root spaces. The root system Φ is simply the union of the root systems of gn and equals one
of the following infinite root systems:

A∞ = ±{ϵi − ϵj , i, j ∈ Z>0, i < j},
B∞ = ±{ϵi − ϵj , i, j ∈ Z>0, i < j} ∪ ±{ϵi + ϵj , i, j ∈ Z>0, i < j} ∪ ±{ϵi, i ∈ Z>0},
C∞ = ±{ϵi − ϵj , i, j ∈ Z>0, i < j} ∪ ±{ϵi + ϵj , i, j ∈ Z>0, i < j} ∪ ±{2ϵi, i ∈ Z>0},
D∞ = ±{ϵi − ϵj , i, j ∈ Z>0, i < j} ∪ ±{ϵi + ϵj , i, j ∈ Z>0, i < j}.

A splitting Borel subalgebra of g is a subalgebra b such that for every n, bn = b ∩ gn is a Borel
subalgebra of gn. It is well-known that any splitting Borel subalgebra is conjugate via Aut g to a
splitting Borel subalgebra containing h. Therefore, in what follows we restrict ourselves to considering
only such Borel subalgebras b.

Recall [DP1] that a linear order on {0}∪{±ϵi} is Z2-linear if multiplication by −1 reverses the order.
By [DP1, Proposition 3], there exists a bijection between splitting Borel subalgebras of g containing h
and certain linearly ordered sets as follows.

For A∞: linear orders on {ϵi};
for B∞ and C∞: Z2-linear orders on {0} ∪ {±ϵi};
for D∞: Z2-linear orders on {0} ∪ {±ϵi} with the property that
a minimal positive element (if it exists) belongs to Z>0.

In the sequel we denote these linear orders by ≺. To write down the above bijection, denote ϑi = ϵi, if
i ≻ 0, and ϑi = −ϵi, if ϵi ≺ 0 (for A∞, ϑi = ϵi for all i). Then put b = h⊕ n, where n =

⊕
α∈Φ+

gα and

A+
∞ = {ϑi − ϑj , i, j ∈ Z>0, ϑi ≻ ϑj},

B+
∞ = {ϑi − ϑj , i, j ∈ Z>0, ϑi ≻ ϑj} ∪ {ϑi + ϑj , i, j ∈ Z>0, ϑi ≻ ϑj} ∪ {ϑi, i ∈ Z>0},

C+
∞ = {ϑi − ϑj , i, j ∈ Z>0, ϑi ≻ ϑj} ∪ {ϑi + ϑj , i, j ∈ Z>0, ϑi ≻ ϑj} ∪ {2ϑi, i ∈ Z>0},

D+
∞ = {ϑi − ϑj , i, j ∈ Z>0, ϑi ≻ ϑj} ∪ {ϑi + ϑj , i, j ∈ Z>0, ϑi ≻ ϑj}.

Our goal in this subsection is to describe the center Z(n) of the enveloping algebra U(n). Fix n,
i.e., fix an order ≺ as above. Define the subset N ⊆ Z>0 by setting N =

∪
k≥0Nk, where N0 = ∅ and

Nk for k ≥ 1 is defined inductively in the following table.

Φ Nk

A∞ Nk−1 ∪ {i, j} if there exists a maximal element ϑi

and a minimal element ϑj of {ϑs, s ∈ Z>0 \ Nk−1},
Nk−1 otherwise

C∞ Nk−1 ∪ {i} if there exists a maximal element ϑi of {ϑs, s ∈ Z>0 \ Nk−1},
Nk−1 otherwise

B∞, Nk−1 ∪ {i, j} if there exists a maximal element ϑi of {ϑs, s ∈ Z>0 \ Nk−1}
D∞ and a maximal element ϑj of {ϑs, s ∈ Z>0 \ (Nk−1 ∪ {i})},

Nk−1 otherwise
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Example 2.3. i) Let Φ = A∞. If ϵ1 ≻ ϵ3 ≻ . . . ≻ ϵ4 ≻ ϵ2, then N = Z>0. If ϵ1 ≻ ϵ2 ≻ ϵ3 ≻ . . .,
then N = ∅. ii) Let Φ ̸= A∞ and ϵ1 ≻ ϵ2 ≻ . . . ≻ 0 ≻ . . . ≻ −ϵ2 ≻ −ϵ1. Then N = Z>0.

Now we can define the (possibly infinite) Kostant cascade corresponding to n. Namely, to each Nk

such that Nk−1 ( Nk, we assign the root

βk =


ϑi − ϑj , if Φ = A∞ and Nk \ Nk−1 = {i, j}, i ≻ j,
ϑi + ϑj , if Φ = B∞ or D∞ and Nk \ Nk−1 = {i, j}, i ≻ j,
2ϑi, if Φ = C∞ and Nk \ Nk−1 = {i},

and put B = {βk, k ≥ 1, Nk−1 ( Nk}. Note that B is a strongly orthogonal subset of Φ+; however it
is not necessarily maximal with this property.

Definition 2.4. The subset B is called the Kostant cascade corresponding to n.

Example 2.5. i) If Φ = A∞ and ϵ1 ≻ ϵ3 ≻ . . . ≻ ϵ4 ≻ ϵ2, then B = {ϵ1 − ϵ2, ϵ3 − ϵ4, ϵ5 − ϵ6, . . .}.
ii) If Φ ̸= A∞ and ϵ1 ≻ ϵ2 ≻ . . . ≻ 0 ≻ . . . ≻ −ϵ2 ≻ −ϵ1, then

B =

{
{ϵ1 + ϵ2, ϵ3 + ϵ4, ϵ5 + ϵ6, . . .} for B∞ and D∞,

{2ϵ1, 2ϵ2, 2ϵ3, . . .} for C∞.

To each finite non-empty subset M ⊂ Z>0, one can assign a root subsystem ΦM of Φ and a
subalgebra nM of n by putting ΦM = Φ ∩ ⟨ϵi, i ∈ M⟩R, nM =

⊕
α∈Φ+

M
gα, Φ+

M = ΦM ∩Φ+. Then the
subsystem ΦM is isomorphic to the root system Φn of gn for n = |M |; we denote this isomorphism by
jM : Φn → ΦM , ϵi 7→ ϑai , where M = {a1, . . . , an}, ϑa1 ≻ . . . ≻ ϑan . Besides, nM is isomorphic as a
Lie algebra to the maximal nilpotent subalgebra nn of gn considered in the previous subsection. Note
also that n = lim−→ nM . Here, for M ⊆ M ′, the monomorphism iM,M ′ : nM ↪→ nM ′ is just the inclusion.
Further, it is easy to see that there exist isomorphisms ϕM : nn → nM , M ⊂ Z>0, n = |M |, such that,
for M ⊆ M ′, iM,M ′ ◦ϕM is just the restriction of ϕM ′ to nn ⊂ nn+1, and, for α ∈ Φ+

n , ϕM (eα) is a root
vector corresponding to the root jM (α); we denote it by fjM (α).

We are now ready to write down a set of generators of Z(n). Namely, suppose that q ≥ 1 and
|B| ≥ q. Let M be a finite subset of Z>0 such that Nq ⊆ M . The isomorphism ϕM gives rise to an
isomorphism U(nn) → U(nM ), n = |M |. Slightly abusing notation, we denote the images of ∆q and
Pq (as elements of U(nn) whenever defined) in U(nM ) by the same letters. Then for A∞ (respectively,
for C∞), ∆q ∈ U(nM ) is given by formula (4) (respectively, (5)) for i = q with fjM (α) instead of eα.
Similarly, for B∞ and D∞, Pq ∈ U(nM ) is given by formula (6) for i = 2q with fjM (α) instead of eα.
It is important that ∆q, Pq ∈ U(nM ) depend only on q but not on M . Moreover, it is clear from
the finite-dimensional theory that ∆q (respectively, Pq) belong to the center of U(n) for A∞ and C∞
(respectively, for B∞ and D∞).

Our first main result is as follows.
Theorem 2.6. If Φ = A∞, C∞(respectively, Φ = B∞, D∞), then ∆q (respectively, Pq), q ≤ |B|,

generate Z(n) as an algebra. In particular, Z(n) is a polynomial ring in |B| variables.
Proof. Let Φ = A∞, C∞, and t ∈ Z(n). We need to prove that t is a polynomial in ∆q, q ≤ |B|.

Let M be the minimal subset of Z>0 for which t ∈ U(nM ) (in particular, if Φ = A∞, then |M | is
even), and k be the maximal number such that Nk ⊆ M and Nk−1 ( Nk. If M = Nk, there is nothing
to prove as the center of U(nM ) is generated by ∆1, . . ., ∆k. Therefore, assume that Nk ( M . More
precisely, let

Nk =

{
{i1, . . . , ik, j1, . . . , jk}, if Φ = A∞,

{i1, . . . , ik}, if Φ = C∞,

M \ Nk = {s1, . . . , sr}, n = |M |, where ϑi1 ≻ . . . ≻ ϑik ≻ ϑs1 ≻ . . . ≻ ϑsr ≻ ϑjk ≻ . . . ≻ ϑj1 . In the
rest of the proof we show that the assumption Nk ( M is contradictory.
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Put l = n/2 = k + r/2 (respectively, l = n = k + r) for A∞ (respectively, for C∞) and extend the
set {∆1, . . . , ∆k} to a set {∆1, . . . , ∆k, ∆

′
k+1, ∆

′
k+2, . . . , ∆

′
l} of generators of Z(nM ) by letting ∆′

i

be the image of the i-th canonical generator of Z(nn) under the isomorphism ϕM : U(nn) → U(nM ).
For instance, let k = 2, r = 4 for A∞, or k = 2, r = 2 for C∞. Then ∆′

4 has the following form.

Φ = A∞, k = 2, r = 4 Φ = C∞, k = 2, r = 2

∣∣∣∣∣∣∣∣
fϑi1

−ϑs3
fϑi1

−ϑs4
fϑi1

−ϑj2
fϑi1

−ϑj1

fϑi2
−ϑs3

fϑi2
−ϑs4

fϑi2
−ϑj2

fϑi2
−ϑj1

fϑs1−ϑs3
fϑs1−ϑs4

fϑs1−ϑj2
fϑs1−ϑj1

fϑs2−ϑs3
fϑs2−ϑs4

fϑs2−ϑj2
fϑs2−ϑj1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
fϑi1

+ϑs2
fϑi1

+ϑs1
fϑi1

+ϑi2
2f2ϑi1

fϑi2
+ϑs2

fϑi2
+ϑs1

2f2ϑi2
fϑi1

+ϑi2

fϑs1+ϑs2
2f2ϑs1

fϑi2+ϑs1
fϑi1

+ϑs1

2f2ϑs2
fϑs1+ϑs2

fϑi2+ϑs2
fϑi1

+ϑs2

∣∣∣∣∣∣∣∣∣
Now we write t = t′ + t′′, where t′ belongs to the ideal of Z(nM ) generated by ∆′

k+1, . . ., ∆
′
l, and

t′′ belongs to the subalgebra of Z(nM ) generated by ∆1, . . ., ∆k. Note that t′′ ∈ Z(n), hence t′ ∈ Z(n).
Moreover, t′ ̸= 0 by the assumption that Nk ( M .

The definition of k implies that if Φ = C∞ then ϑs1 is not a ≺-maximal element of the set
{ϑs, s ∈ Z>0 \ Nk}. Similarly, if Φ = A∞ then at least one of the following holds: ϑs1 is not a
≺-maximal element of {ϑs, s ∈ Z>0 \Nk}, or ϑsr is not a ≺-minimal element of {ϑs, s ∈ Z>0 \Nk}. In
the sequel we assume that the former condition is satisfied (the case of the latter condition is similar).
Then, in both cases Φ = A∞ and Φ = C∞, there exists s0 ∈ Z>0\M such that ϑik ≻ ϑs0 ≻ ϑs1 . Denote
M0 = M ∪ {s0}, n0 = nM0 and N0 = exp n0. We have t′ ∈ Z(n0). Put ξ′i = σ−1

0 (∆′
i), i = k + 1, . . . , l,

where σ0 : S(n0) → U(n0) is the symmetrization map. Note that d′ = σ−1
0 (t′) ̸= 0 as t′ ̸= 0, and that

d′ belongs to the ideal of S(n0)N0 generated by ξ′k+1, . . ., ξ
′
l.

Given α ∈ Φ+, denote by f∗
α the linear form on n (or on nM , if α ∈ ΦM ) such that f∗

α(fβ) = δα,β
(the Kronecker delta). Furthermore, let R0 be the subset of n∗0 consisting of all elements of the form
λ =

∑
β∈B0

λβf
∗
β , λβ ∈ C×, where

B0 =

{
{ϑi1 − ϑj1 , . . . , ϑik − ϑjk , ϑs0 − ϑsr , ϑs1 − ϑsr−1 , . . . , ϑsr/2−1

− ϑsr/2+1
} for A∞,

{2ϑi1 , . . . , 2ϑik , 2ϑs0 , 2ϑs1 , . . . , 2ϑsr} for C∞.

Denote by X0 the union of the coadjoint N0-orbits of all linear forms from R0. As pointed out in
Subsection 2.1, X0 is a Zariski dense subset of n∗0 by a result of Kostant.

If Φ = A∞ and λ ∈ R0, then λ(fα) = 0 for each fα from the last row of ξ′i for i = k + 1, . . . , l.
Therefore, ξ′i(λ) = 0 for all λ ∈ R0. Thus, d′(λ) = 0 for all λ ∈ R0. However, since d′ is N0-invariant,
we obtain that the restriction of d′ to X0 equals zero. As X0 is Zariski dense in n∗0, we conclude that
d′ = 0, and consequently that t′ = 0. This contradiction completes the proof for Φ = A∞.

Here is an illustration of the vanishing of ξ′i on R0. Let k = 2, r = 4. On the picture below the
boxes from B0 are marked by ⊗, and the boxes corresponding to the variables involved in ξ′4 are grey:

i1

i2

s0

s1

s2

s3

s4

j2

j1

i1 i2 s0 s1 s2 s3 s4 j2 j1

⊗
⊗

⊗
⊗

ξ′4 =

∣∣∣∣∣∣∣∣
fϑi1

−ϑs3
fϑi1

−ϑs4
fϑi1

−ϑj2
fϑi1

−ϑj1

fϑi2
−ϑs3

fϑ21−ϑs4
fϑi2

−ϑj2
fϑ21−ϑj1

fϑs1−ϑs3
fϑs1−ϑs4

fϑs1−ϑj2
fϑs1−ϑj1

fϑs2−ϑs3
fϑs2−ϑs4

fϑs2−ϑj2
fϑs2−ϑj1

∣∣∣∣∣∣∣∣ .
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If Φ = C∞, we write t′ = t1 + t2 where t2 belongs to the subalgebra of Z(n0) generated by
∆1, . . ., ∆k, and t1 ̸= 0 belongs to the ideal of Z(n0) generated by all other generators of Z(n0). Then
t2 ∈ Z(n), whence t1 ∈ Z(n). Denote d1 = σ−1

0 (t1) ̸= 0, d2 = σ−1
0 (t2). By definition, d2 belongs to

the ideal of the algebra S(n0)
N0 generated by the first k canonical generators of S(n0)N0 . At the same

time, d′ depends only on the fα’s from nM . Since d1 ̸= 0, there exists λ ∈ R0 such that d1(λ) ̸= 0. On
the other hand, set λ0 = λ− λ2ϑs0

f∗
2ϑs0

. Then d′(λ) = d′(λ0) and d2(λ) = d2(λ0) by the definitions of
d′ and d2. Therefore d1(λ) = d1(λ0). However, d1(λ0) = 0, because if i > k, then the value of the i-th
canonical generator of S(n0)N0 on λ0 equals zero. This contradiction completes the proof for Φ = C∞.

Assume now that Φ = Dn and t is a central element of U(n). We claim that t belongs to the
subalgebra of U(n) generated by Pq for q ≤ |B|. Let M ⊂ Z>0 be a minimal finite set for which
t ∈ U(nM ) and |M | = 2n is even, and let k be maximal such that Nk ⊆ M and Nk−1 ( Nk. Denote
M \Nk = {ik+1, jk+1, . . . , in, jn}, where ϑik+1

≻ ϑjk+1
≻ . . . ≻ ϑin ≻ ϑjn (if n = k, then M = Nk). Set

NM = exp nM ,

BM = {ϑi1 − ϑj1 , ϑi1 + ϑj1 , . . . , ϑin − ϑjn , ϑin + ϑjn},

RM = {t =
∑

β∈B
tβf

∗
β | tβ ̸= 0 for all β}.

Let XM be the union of all NM -orbits of elements from RM . Then XM is Zariski dense in n∗M .
Denote the canonical generators of S(nM )NM by ξ1, . . ., ξ2n. Then Z(nM ) is generated as an algebra

by Pi = σM (ξ2i), Di = σM (ξ2i−1) for 1 ≤ i ≤ n, where σ : S(nM ) → U(nM ) is the symmetrization
map. Further, set for simplicity di = ξ2i−1, 1 ≤ i ≤ n. Using (8) one checks that for t ∈ RM

ds(t) = t2ϑi1
+ϑj1

. . . t2ϑis−1
+ϑjs−1

tϑis−ϑjs
tϑis+ϑjs

, 1 ≤ s ≤ n− 1,

dn(t) = tϑi1
+ϑj1

. . . tϑin−1
+ϑjn−1

tϑin−ϑjn
.

(10)

Assume b is a positive integer such that there exists a ∈ Z>0 \ M satisfying ϑjb ≻ ϑa. We can
express t as t = t′ + t′′, where t′ belongs to the ideal of Z(nM ) generated by D1, . . ., Db, and t′′

belongs to the subalgebra of Z(nM ) generated by all remaining generators of Z(nM ). Let d = σ−1
M (t),

d′ = σ−1
M (t′), d′′ = σ−1

M (t′′), so d = d′+d′′. If t′ ̸= 0, then d′ ̸= 0. Let c be the minimal among all numbers
from 1 to b such that the variable dc appears in d′. Since d′ ̸= 0, there exists λ =

∑
β∈BM

λβf
∗
β ∈ RM

for which d′(λ) ̸= 0. Consider the set Y = λ + Cf∗
ϑic−ϑjc

. Obviously, Y is a one-dimensional affine
subspace of n∗M , and the restriction of d′ to Y is a nonzero polynomial in one variable. Clearly, we can
choose λ so that this polynomial is of positive degree.

Now, put Ma = M ∪ {a}, Na = exp nMa , µ = λ + f∗
ϑic+ϑa

∈ n∗Ma
. Pick s ∈ C and put also

g = exp (sfϑjc+ϑa) ∈ Na, µ′ = g · µ. Set Φa = ΦMa . One can easily check that µ′(fα) = µ(fα) for all
α ∈ Φ+

a \ {ϑic − ϑjc}, and µ′(fϑic−ϑjc
) = µ(fϑic−ϑjc

) + s. Since d ∈ S(nMa)
Na , we obtain d(µ′) = d(µ)

for all s ∈ C. On the other hand, from the definition of d′′ we see that d′′(µ′) = d′′(µ). Therefore,
d′(µ′) = d′(µ). Define µ′′ as the restriction of µ′ to nM . Then µ′′ belongs to Y , and d′(µ′′) = d′(µ′) =
d′(µ) = d′(λ) as d′ ∈ S(nM ). Thus, the restriction of d′ to Y is constant, a contradiction. We conclude
that d′ = 0, and consequently that t′ = 0.

The above implies that it is sufficient to show that M = Nk. Indeed, if M = Nk, then b can be
chosen as k, and by the above t is a polynomial in Pi, 1 ≤ i ≤ k. Assume, to the contrary, that M ̸= Nk,
so n > k. Then there exists s0 ∈ Z>0 \M such that ϑjk ≻ ϑs0 ≻ ϑjk+1

. As we already know, t belongs
to the subalgebra of Z(nM ) generated by P1, . . ., Pk, and by Pi, Di for k + 1 ≤ i ≤ n. We can express
t as t = t̃+ t0, where t̃ ̸= 0 lies in the ideal of Z(nM ) generated by Pi, Di for k+1 ≤ i ≤ n, and t0 lies
in the subalgebra of Z(nM ) generated by P1, . . ., Pk. If M0 = M ∪{s0} and n0 = nM0 , then t̃ ∈ Z(n0).

Next, we write t̃ as t̃ = t̃1 + t̃2, where t̃2 lies in the subalgebra of Z(n0) generated by its first 2k
canonical generators, and t̃1 lies in the ideal of Z(n0) generated by the remaining generators of Z(n0).
If σ0 : S(n0) → U(n0) is the symmetrization map, we put d̃ = σ−1

0 (t̃), d̃1 = σ−1
0 (t̃1), d̃2 = σ−1

0 (t̃2). Let
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R0 be the subset of n∗0 consisting of all elements of the form λ =
∑

β∈B0
λβf

∗
β , λβ ∈ C×, where B0 is

the Kostant cascade for n0. Note that the (2k + 1)-th root in B0 equals ϑs0 + ϑik+1
.

Denote by X0 the union of the coadjoint N0-orbits of all linear forms from R0. Then X0 is a
Zariski dense subset of n∗0. Assume d̃1 ̸= 0. It is easy to check that there exists λ ∈ R0 such that
d̃1(λ) ̸= 0. Set λ0 = λ − λϑs0+ϑik+1

f∗
ϑs0+ϑik+1

. Then d̃(λ) = d̃(λ0) and d̃2(λ) = d̃2(λ0) by definition

of d′ and d2. Hence d̃1(λ) = d̃1(λ0) = 0, a contradiction. Thus, d̃1 = 0, so d̃ = d̃2 belongs to the
subalgebra of Z(n0) generated by its first 2k canonical generators. Finally, consider the affine space
Z =

∑k
r=1(Ceϑir−ϑjr

+ Ceϑir+ϑjr
) = ⟨eβ, β ∈ BM ∩ B0⟩C. Let d̃Z be the restriction of d̃ to Z. Since

d̃ = d̃2, if d̃ ̸= 0 then d̃Z is a nonzero polynomial of positive degree. But it follows from the definition
of d̃ that d̃Z is zero (see (10)). This shows that M = Nk, and the proof for Φ = D∞ is complete.

The proof for Φ = B∞ is similar and we skip it. �

3. Centrally generated ideals of U(n)

3.1. Finite-dimensional case. Throughout this subsection g and n are as in Subsection 2.1. By
definition, an ideal J ⊆ U(n) is primitive if J is the annihilator of a simple n-module. Here we describe
all primitive centrally generated ideals of U(n), i.e., all primitive ideals J generated (as ideals) by its
intersection J ∩ Z(n) with the center Z(n) of U(n).

In the 1960s A. Kirillov, B. Kostant and J.-M. Souriau discovered that the orbits of the coadjoint
action play a crucial role in the representation theory of B and N (see, e.g., [Ki1], [Ki2]). The orbit
method has a number of applications in the theory of integrable systems, symplectic geometry, etc.
Work of J. Dixmier, M. Duflo, M. Vergne, O. Mathieu, N. Conze and R. Rentschler led to the result
that the orbit method provides a nice description of primitive ideals of the universal enveloping algebra
of a nilpotent Lie algebra (in particular, of n). Let us describe this in detail.

To any linear form λ ∈ n∗ one can assign a bilinear form βλ on n by putting βλ(x, y) = λ([x, y]).
A subalgebra p ⊆ n is a polarization of n at λ if it is a maximal βλ-isotropic subspace. By [Ve],
such a subalgebra always exists. Let p be a polarization of n at λ, and W be the one-dimensional
representation of p defined by x 7→ λ(x). Then the induced representation V = U(n) ⊗U(p) W of n is
irreducible. Hence, the annihilator J(λ) = Ann U(n)V is a primitive two-sided ideal of U(n). It turns
out that J(λ) depends only on λ and not on the choice of polarization. Further, J(λ) = J(µ) if and
only if the coadjoint N -orbits of λ and µ coincide. Finally, the Dixmier map

D : n∗ → PrimU(n), λ 7→ J(λ),

induces a homeomorphism between n∗/N and PrimU(n), where the latter set is endowed with the
Jacobson topology. (See [Di2], [Di4], [BGR] for the details.)

In addition, it is well known that the following conditions on an ideal J ⊂ U(n) are equivalent [Di4,
Proposition 4.7.4, Theorem 4.7.9]:

i) J is primitive;
ii) J is maximal;
iii) the center of U(n)/J is trivial;
iv) U(n)/J is isomorphic to a Weyl algebra of finitely many variables.

(11)

Recall that the Weyl algebra Ar of r variables is the unital associative algebra with generators pi, qi for
1 ≤ i ≤ r, and relations [pi, qi] = 1, [pi, qj ] = 0 for i ̸= j, [pi, pj ] = [qi, qj ] = 0 for all i, j. Furthermore,
in condition (11) we have U(n)/J ∼= Ar where r equals one half of the dimension of the coadjoint
N -orbit of λ, given that J = J(λ).
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Recall the definition of the Kostant cascade B (Subsection 2.1) and set

B′ =


B for Φ = An−1, n odd,
B \ {ϵm − ϵn−m+1} for Φ = An−1, n even, m = n/2,∪

1≤i<n/2{ϵ2i−1 + ϵ2i+1} for Φ = Bn or Φ = Dn,

B \ {2ϵn} for Φ = Cn.

To a map ξ : B → C we assign the linear form fξ =
∑

β∈B ξ(β)e∗β ∈ n∗. We call a form fξ a Kostant
form if ξ(β) ̸= 0 for any β ∈ B′.

Let V be a simple n-module and J = Ann U(n)V be the corresponding primitive ideal of U(n). By
a version of Schur’s Lemma [Di1], each central element of U(n) acts on V as a scalar operator. For
An−1 and Cn, let ck be the scalar corresponding to ∆k. For Bn and Dn, let ck (respectively, c̃k) be the
scalar corresponding to Pk (respectively, to Dk). Note that these scalars do not depend on V and are
determined by J . Denote by Jc the ideal of U(n) generated by all ∆k − ck (respectively, by all Pk − ck
and Dk − c̃k) for An−1 and Cn (respectively, for Bn and Dn). Clearly, Jc ⊆ J . Further, since Z(n) is a
polynomial ring and the center of U(n)/J is trivial, J is centrally generated if and only if J = Jc. Put
m′ = |B′|, m = |B|.

Our second main result is as follows.

Theorem 3.1. Suppose Φ is of type An−1 or Cn. The following conditions on a primitive ideal
J ⊂ U(n) are equivalent :

i) J is centrally generated (or, equivalently, J = Jc);
ii) the scalars c1, . . . , cm′ are nonzero;
iii) J = J(fξ) for a Kostant form fξ ∈ n∗.

If these conditions are satisfied, then the map ξ is reconstructed by J :

ξ(β) = (−1)k+1ck/ck−1, (12)

where c0 = 1, and β = ϵk − ϵn−k+1 for Φ = An−1, β = 2ϵk for Φ = Cn.

We expect this theorem to be true also for Bn and Dn.
Before we prove Theorem 3.1 we prove few lemmas. We define the maps row: Φ+ → Z and

col : Φ+ → Z by putting row(ϵi − ϵj) = row(ϵi + ϵj) = row(2ϵi) = i, col(ϵi + ϵj) = col(2ϵj) = −j,
col(ϵi − ϵj) = j. Let Ri = {α ∈ Φ+ | row(α) = i}. For α ∈ Φ+, set

A(α) =



∪
j+1≤k≤n−i+1{ϵj − ϵk}, if Φ = An−1, α = ϵi − ϵj , j < n− i+ 1,∪
n−j+1≤k≤i−1{ϵk − ϵi}, if Φ = An−1, α = ϵi − ϵj , j > n− i+ 1,∪
i≤k≤j−1{ϵk + ϵj} ∪ Rj , if Φ = Cn, α = ϵi − ϵj ,∪
i≤k≤j−1{ϵk − ϵj}, if Φ = Cn, α = ϵi + ϵj ,

B(α) = {α} ∪ {β ∈ B | row(β) < row(α)},
R(α) = {row(γ), γ ∈ B(α)}, C(α) = {col(γ), γ ∈ B(α)}.

Define a matrix U with entries from U(n) by the following rule.

Φ Size of U U
An−1 n× n Ui,j = eϵi−ϵj for 1 ≤ i < j ≤ n,

Ui,j = 0 otherwise
Cn 2n× 2n Ui,j = −U−j,−i = eϵi−ϵj , Ui,−j = Uj,−i = eϵi+ϵj for 1 ≤ i < j ≤ n,

Ui,−i = 2eϵ2i, 1 ≤ i ≤ n, Ui,j = 0 otherwise
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Denote by ∆α the element of U(n), which equals the minor of U with rows R(α) and columns C(α).
Note that the variables involved in each ∆α commute. For example, let Φ = An−1, n = 8, α = ϵ3 − ϵ4.
On the picture below α is marked by •, the roots from B are marked by ⊗’s, and the roots γ such that
eγ is involved in ∆α are grey:

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

⊗
⊗

• ⊗
⊗

∆ϵ3−ϵ4 =

∣∣∣∣∣∣
eϵ1−ϵ4 eϵ1−ϵ7 eϵ1−ϵ8

eϵ2−ϵ4 eϵ2−ϵ7 eϵ2−ϵ8

eϵ3−ϵ4 eϵ3−ϵ7 eϵ3−ϵ8

∣∣∣∣∣∣ .

Lemma 3.2. Let α ∈ Φ+ \ B. If γ /∈ A(α) then [∆α, eγ ] = 0. If γ ∈ A(α) then [∆α, eγ ] = ±∆α+γ.
More precisely, for An−1, if j < n− i+1 then [∆ϵi−ϵj , eϵj−ϵs ] = ∆ϵi−ϵs for all ϵj − ϵj ∈ A(ϵi − ϵj), and
if j > n − i + 1 then [eϵr−ϵi ,∆ϵi−ϵj ] = ∆ϵr−ϵj for all ϵr − ϵi ∈ A(ϵi − ϵj). For Cn, if α = ϵi ± ϵj then
[∆α, eγ ] = ∓∆α+γ for all γ ∈ A(α).

Proof. Let Φ = An−1 (the proof for Cn is similar). Suppose α = ϵi − ϵj . Consider the case
j < n − i + 1 (the case j > n − i + 1 can be considered similarly). If eϵp−ϵq is involved in ∆α then
p ∈ {1, 2, . . . , i} = R(α) and q ∈ {j, n− i+ 2, n− i+ 3, . . . , n} = C(α). Assume that eϵr−ϵs and eϵp−ϵq

do not commute. Then either s ∈ R(α) or r ∈ C(α). Consider these two cases separately.
First, if s ∈ R(α), i.e., 1 ≤ s ≤ i, then also r ∈ R(α) as r < s. Denote by Ap,q the algebraic

complement in ∆α to an element eϵp−ϵq . Then

∆α = eϵs−ϵjAs,j + eϵs−ϵn−i+2As,n−i+2 + eϵs−ϵn−i+3As,n−i+3 . . .+ eϵs−ϵnAs,n.

Since eϵr−ϵs commutes with each eγ involved in each algebraic complement, we have

[eϵr−ϵs ,∆α] = [eϵr−ϵs , eϵs−ϵj ]As,j + [eϵr−ϵs , eϵs−ϵn−i+2 ]As,n−i+2 + . . .+ [eϵr−ϵs , eϵs−ϵn ]As,n

= eϵr−ϵjAs,j + eϵr−ϵn−i+2Aϵs−ϵn−i+2 + . . .+ eϵr−ϵnAs,n.

In other words, [eϵr−ϵs ,∆α] equals the minor obtained from ∆α by replacing the s-th row by the r-th
row. Thus [eϵr−ϵs ,∆α] = 0.

Second, assume r ∈ C(α) = {j, n− i+ 2, n− i+ 3, . . . , n}. Clearly,

∆α = eϵ1−ϵrA1,r + eϵ2−ϵrA2,r + . . .+ eϵi−ϵrAi,r,

so

[∆α, eϵr−ϵs ] = [eϵ1−ϵr , eϵr−ϵs ]A1,r + [eϵ2−ϵr , eϵr−ϵs ]A2,r + . . .+ [eϵi−ϵr , eϵr−ϵs ]Ai,r

= eϵ1−ϵsA1,r + eϵ2−ϵsA2,r + . . .+ eϵi−ϵsAi,r.

Hence [∆α, eϵr−ϵs ] equals the minor obtained from ∆α by replacing its r-th column by the column
eϵ1−ϵs , eϵ2−ϵs , . . . , eϵi−ϵs . If r ̸= j, then the latter column is a column of ∆α, so the commutator
[∆α, eϵr−ϵs ] is zero. If r = j (and so ϵr − ϵs = ϵj − ϵs ∈ A(α)), then the commutator equals ∆ϵi−ϵs as
required. �

Denote ∆0 = 1.

Lemma 3.3. Let α, β ∈ Φ+. Then [∆α,∆β] = 0, except the following cases:

[∆ϵi−ϵj ,∆ϵj−ϵn−i+1 ] = (−1)i+1∆i∆i−1 if Φ = An−1, j < n− i+ 1,

[∆ϵi−ϵj ,∆ϵi+ϵj ] = (−1)i+1∆i∆i−1 if Φ = Cn.
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Proof. Suppose Φ = An−1 (the proof for Cn is similar). Consider the case j < n− i+ 1 (the case
j > n − i + 1 can be considered similarly). If β = ϵr − ϵs ∈ B, then ∆β = ∆r belongs to Z(n), hence
∆α and ∆β commute. So we may assume that β /∈ B, i.e., s ̸= n− r + 1. According to Lemma 3.2, if
[∆α, eγ ] ̸= 0 then γ ∈ A(α). This implies that if [∆α,∆β] ̸= 0 then β ∈ A(α), because if β /∈ A(α) then
no eγ involved in ∆β are contained in A(α). Hence β = ϵj−ϵs for some s such that j+1 ≤ s ≤ n−i+1.

Suppose ∆α and ∆β do not commute. Then, arguing as above, we see that α = ϵi − ϵj ∈ A(β).
If s < n − j + 1 then B(β) consists of certain roots of the form ϵs − ϵt for s < t, but i < j < s so
α /∈ A(β). If s = n − j + 1, then ∆β = ∆j is a central element of U(n), so it commutes with ∆α.
Finally, if s > n− j + 1, then A(β) consists of certain roots of the form ϵk − ϵj , n− s+ 1 ≤ k ≤ j − 1.
Hence n− s+ 1 ≤ i, but s ≤ n− i+ 1, so s = n− i+ 1. Thus, if β ̸= ϵj − ϵn−i+1 then [∆α,∆β] = 0.

It remains to compute [∆α,∆ϵj−ϵn−i+1 ]. One has

∆α = eϵ1−ϵjA1,j + eϵ2−ϵjA2,j + . . .+ eϵi−ϵjAi,j .

The minor ∆ϵj−ϵn−i+1 commutes with all variables involved in this expression except for eϵi−ϵj . Since
Ai,j = (−1)i+1∆i−1, we obtain

[∆α,∆ϵj−ϵn−i+1 ] = [(−1)i+1eϵi−ϵj∆i−1,∆ϵj−ϵn−i+1 ] = (−1)i+1[eϵi−ϵj ,∆ϵj−ϵn−i+1 ]∆i−1.

By Lemma 3.2,
[eϵi−ϵj ,∆ϵj−ϵn−i+1 ] = ∆ϵi−ϵn−i+1 = ∆i.

This concludes the proof. �

Lemma 3.4. Suppose that ci ̸= 0 for 1 ≤ i ≤ m′ = |B′|. Then the ideal Jc is primitive.
Proof. Consider the case Φ = An−1 (the proof for Cn is similar). Put A = U(n)/Jc. Given

x ∈ U(n), denote by x̃ its image in A under the canonical projection. There is a natural partial order
on Φ+: α > β if α− β is a sum of positive roots. Note that for k ≥ 2 we have

∆k = ±eϵk−ϵn−k+1
∆k−1 + terms containing only eα for α > ϵk − ϵn−k+1.

It follows that in A we can write any ẽβ for β ∈ B as a polynomial in ẽα for α ∈ Φ+ \ B. In other
words, A is generated as an algebra by ẽα for α ∈ Φ+ \ B.

Similarly, given α = ϵi − ϵj ∈ Φ+ \ B, we have

∆α = ±eα∆k−1 + terms containing only eγ for γ > α, where

k =

{
i, if j < n− i+ 1,

n− j + 1, if j > n− i+ 1.

This implies that in A one can write ẽα as a polynomial in ∆̃γ for γ ∈ Φ+ \B. Thus, ∆̃γ for γ ∈ Φ+ \B
generate A as an algebra.

Now, given α = ϵi − ϵj ∈ Φ+ \ B, j < n− i+ 1, let

pα = ∆̃α, qα = (−1)i+1c−1
i c−1

i−1∆̃ϵj−ϵn−i+1 .

Lemma 3.3 shows that [pα, qγ ] = 0 for α ̸= γ, [pα, pγ ] = [qα, qγ ] = 0 for all α, γ, and [pα, qα] = 1. Hence
A is a quotient algebra of the Weyl algebra AN for

N = (n− 2) + (n− 4) + . . . = #{ϵi − ϵj ∈ Φ+ \ B | j < n− i+ 1}.

But the Weyl algebra AN is simple, and A ̸= 0, so A ∼= AN . Thus Jc is primitive (see (11)). �
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Proof of Theorem 3.1. (ii) =⇒ (iii). Put c0 = 1 and define ξ(β), β ∈ B, by formula (12).
Denote p = ⟨eϵi−ϵj , j ≤ n − i + 1⟩C for An−1, and p = ⟨eα, col(α) < 0⟩C for Cn. By [Pa1, Theorem
1.1] and [Ig1, Theorem 1.1] the space p is a polarization of n at fξ. Let Vξ be the simple n-module
corresponding to the linear form fξ and the polarization p, i.e., Vξ = U(n) ⊗U(p) Wξ, where Wξ is a
one-dimensional representation of p defined by x 7→ fξ(x). Then ∆k acts on Vξ via the scalar ck for
1 ≤ k ≤ m. Consequently J = Jc ⊆ J(fξ), and so J = J(fξ).

(iii) =⇒ (i). Let p, Vξ be as in the previous paragraph. Let βk be the k-th root from B, i.e.,
βk = ϵk − ϵn−k+1 for An−1, and βk = 2ϵk for Cn. Then ck ̸= 0 for 1 ≤ k ≤ m′. Moreover,
ξ(β) = (−1)k+1ck/ck−1 for 1 ≤ k ≤ m, where c0 = 1, because ∆k acts on Vξ via the scalar
(−1)k+1ξ(β1) . . . ξ(βk). By Lemma 3.4, the ideal Jc is primitive. Since Jc ⊆ J = J(fξ), we have
J = Jc = J(fξ), so J is centrally generated.

(i) =⇒ (ii). Assume, to the contrary, that some scalars ck equal zero. Suppose that i1 ≤ m′ is the
minimal number such that ci1 = 0. Now, define inductively two (finite) sequences {ij} and {kj} of
positive integers by the following rule. If ij is already defined and there exists k such that ij < k ≤ m
and ck ̸= 0, then set kj to be the minimal among all such k. Similarly, if kj is already defined and
there exists i such kj < i ≤ m′ and ci = 0, then set ij+1 to be the minimal among all such i.

To each j for which ij exists we assign the root

γj =


ϵij − ϵn−ij , if Φ = An−1,

ϵij + ϵij+2, if Φ = Cn and ij < m′ = m− 1 = n− 1,

ϵn−1 − ϵn, if Φ = Cn and ij = m′.

To each j such that both ij and kj exist we assign the set of roots

Γj =

{
{ϵij − ϵn−kj+1, ϵkj − ϵn−ij+1}, if Φ = An−1,

{ϵij + ϵkj}, if Φ = Cn.

Denote the lengths of the sequences {ij}, {kj} by lI , lK respectively, and put

X =


(
B \

(∪r
j=1{βij , βkj} ∪

∪m
j=ir+1

βj

))
∪
∪r

j=1 Γj ∪ {γr+1}, if lI = r + 1, lK = r,(
B \

(∪r
j=1{βij , βkj}

))
∪
∪r

j=1 Γj , if lI = lK = r.

Let φ : X → C be a map. Put µφ =
∑

α∈X φ(α)e∗α. By [Di4, 6.6.9 (c)], ∆k−c′k ∈ J(µφ), 1 ≤ k ≤ m,
where c′k = ξk(f) = σ−1(∆k)(f). By the definition of ∆k there exist at least two distinct maps φ1,
φ2 such that c′k = ck for 1 ≤ k ≤ m. It follows from [Pa1, Theorem 1.4] and from the proof of [Ig2,
Theorem 3.1] that the orbits of µφ1 and µφ1 are disjoint, so J(µφ1) ̸= J(µφ2). On the other hand, both
J(µφ1) and J(µφ2) contain J = Jc, and this contradicts the maximality of J . The equivalence of (i),
(ii), (iii) is now proved. The fact that the map ξ is reconstructed by J via formula (12) follows from
the proof of the implication (iii) =⇒ (i). �

Recall that λ ∈ n∗ is regular if the N -orbit Ωλ ⊂ n∗ of λ has maximal possible dimension. It follows
from [Ko1, Theorem 2.3] that all Kostant forms are regular. Moreover, for Φ = An−1, a form λ ∈ n∗

is a Kostant form if and only if it is regular. Since it is known that an orbit Ωλ contains at most one
Kostant form, Theorem 3.1 that the Dixmier map establishes a bijection between Kostant forms and
centrally generated ideals of U(n) for Φ = An−1, Cn.

For Φ = An−1, Theorem 3.1 implies that a primitive ideal J(λ) of U(n) is centrally generated if
and only if it is “minimal” in the sense that the orbit Ωλ has maximal dimension. This reminds us of
Duflo’s famous theorem that if a is a semi-simple Lie algebra, then any minimal primitive ideal of U(a)
is centrally generated [Du]. However, for Φ = Cn, this analogy no longer holds as there exist regular
forms λ such that J(λ) is not centrally generated (due to the fact that not every regular form λ is a
Kostant form).
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3.2. Infinite-dimensional case. Throughout this subsection we use the notation from Subsec-
tion 2.2. We now restrict ourselves to the case N = Z>0. This means that, up to isomorphism, n can
be chosen to correspond to the linear order ϵ1 ≻ ϵ3 ≻ ϵ5 ≻ . . . ≻ ϵ6 ≻ ϵ4 ≻ ϵ2 for A∞ (respectively, to
the linear order ϵ1 ≻ ϵ2 ≻ ϵ3 ≻ . . . ≻ 0 ≻ . . . ≻ −ϵ2 ≻ −ϵ1 for all other root systems). In particular,
ϑi = ei for all i ∈ Z>0, and fα = eα for all M ⊂ Z>0, α ∈ Φ+

M . For α ∈ Φ+, denote by e∗α the linear
form on n such that e∗α(eβ) = δα,β (the Kronecker delta) for all β ∈ Φ+. In this subsection we describe
all centrally generated ideals of U(n) for A∞ and C∞.

For our choice of n, the Kostant cascade has the following form:

B =


{ϵ1 − ϵ2, ϵ3 − ϵ4, . . .} for A∞,

{ϵ1 + ϵ2, ϵ3 + ϵ4, . . .} for B∞ and D∞,

{2ϵ1, 2ϵ2, . . .} for C∞.

The forms fξ =
∑

β∈B ξ(β)e∗β ∈ n∗ for all maps ξ : B → C× are by definition the Kostant forms on n.
Our goal is to construct a partial Dixmier map, which attaches to each Kostant form a primitive

ideal of U(n). As in Subsection 3.1, define the maps row: Φ → Z and col : Φ → Z by putting
row(ϵi − ϵj) = row(ϵi + ϵj) = row(2ϵi) = i, col(ϵi + ϵj) = col(2ϵj) = −j, col(ϵi − ϵj) = j, and set
Rk = {α ∈ Φ+ | row(α) = k}. Put p = ⟨eα, α ∈ Φ+ \M⟩C, where

M =


{ϵi − ϵj , i odd, j even, j < i} for A∞,

Ri, i even for B∞ and D∞,

{ϵi − ϵj , 1 ≤ i < j ≤ n} for C∞.

Put also pn = p ∩ nn, where nn = nM for M = {1, . . . , n}. Fix a Kostant form f = fξ. By [Ig1,
Theorem 1.1], pn is a polarization of nn at the linear form fn = f |nn . Thus, p = lim−→ pn is a polarization
of n at f . Moreover, denote

Vξ = U(n)⊗U(p) W, V n
ξ = U(nn)⊗U(pn) W

n, (13)

where W (respectively, Wn) is the one-dimensional representation of p (respectively, of pn) given by
x 7→ fξ(x). The nn-modules V ξ

n are simple and form a natural chain whose union is Vξ. Hence, Vξ is a
simple n-module. We denote its annihilator in U(n) by J(fξ).

Remark 3.5. Let P(fξ) be the set of all polarizations a of n at fξ such that an = a ∩ nn is a
polarization of nn at fn for large enough n. Define Vξ,a and V n

ξ,a by formula (13) in which p and pn are
replaced by a ∈ P (fξ) and an respectively. Then Vξ,a = lim−→V n

ξ,a is a simple n-module. As the annihilator
of V n

ξ,a in U(nn) does not depend on an, we conclude that the annihilator of Vξ,a does not depend on a.
This shows that J(fξ) can be defined via any polarization a ∈ P(fξ).

Lemma 3.6. For A∞ and C∞, the primitive ideal J(fξ) is generated by ∆k − ck for k ≥ 1.
Proof. It follows from the definition of p that ∆k acts on Vξ and on each V n

ξ for n ≥ k via the
scalar ck. Let Jn be the annihilator of V n

ξ in U(nn), n ≥ 1. Theorem 3.1 implies that Jn is generated
by ∆k − ck for 1 ≤ k ≤ m, where m = [n/2] for A∞ and m = n for C∞. Hence Jn = J(fξ) ∩ U(nn).
The result follows. �

Now let V be a simple n-module and J be its annihilator. By [Di1], for A∞ and C∞ (respectively,
for B∞ and D∞), each ∆k (respectively, Pk) acts on V via some scalar ck for k ≥ 1.

Our third main result is as follows.
Theorem 3.7. Let Φ = A∞, C∞, and n be as above. The following conditions on a primitive ideal

J ⊂ U(n) are equivalent:

i) J is centrally generated;
ii) all scalars ck are nonzero;
iii) J = J(fξ) for a Kostant form fξ.

If these conditions are satisfied, then the scalars ck reconstruct ξ(β) exactly as in Theorem 3.1.
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Proof. (ii) =⇒ (iii). Define ξ by formula (12). Then J(fξ) ⊆ J by Lemma 3.6. On the other
hand, consider Jn = J(fξ) ∩ U(nn) for n ≥ 1. The ideal Jn of U(nn) contains ∆k − ck for 1 ≤ k ≤ m,
where m = [n/2] for A∞ and m = n for C∞. Hence, according to Theorem 3.1, Jn is a maximal ideal
of U(nn) contained in J ∩ U(nn). Thus, Jn = J ∩ U(nn) for n ≥ 1, i.e., J = J(fξ).

(iii) =⇒ (i). Follows from Lemma 3.6.
(i) =⇒ (ii). Assume, to the contrary, that some scalars ck are zero. Let i1 be the minimal number

for which ci1 = 0. Define two (possibly, infinite) sequences {ij} and {kj} of positive integers inductively
by the following rule. If ij is already defined and there exists k > ij such that ck ̸= 0, then set kj to be
the minimal number for which ckj ̸= 0. Similarly, if kj is already defined and there exists i > kj such
that ci = 0, then set ij+1 to be the minimal number such that cij+1 = 0.

To each j for which ij exists we assign the root

γj =

{
ϵ2ij−1 − ϵ2ij+2, if Φ = A∞,

ϵij + ϵij+1, ifΦ = C∞.

To each j such that both ij and kj exist we assign the set of roots

Γj =

{
{ϵ2ij−1 − ϵ2kj , ϵ2kj−1 − ϵ2ij}, if Φ = A∞,

{ϵij + ϵkj}, if Φ = C∞.

Next, we define the subset X ⊂ Φ+ as in the proof of Theorem 3.1. Namely, let βk be the k-th root
from B (i.e., βk = ϵ2k−1− ϵ2k for A∞, and βk = 2ϵk for C∞). Denote the lengths of the sequences {ij},
{kj} by lI , lK respectively, and put

X =


(
B \

(∪
j≤r{βij , βkj} ∪

∪
j≥ir+1

βj

))
∪
∪

j≤r Γj ∪ {γr+1}, if lI = r + 1, lK = r,(
B \

(∪
j≤r{βij , βkj}

))
∪
∪

j≤r Γj , if lI = lK = r,(
B \

(∪
j≥1{βij , βkj}

))
∪
∪

j≥1 Γj , if lI = lK = ∞.

Let µφ =
∑

α∈X φ(α)e∗α, where φ : X → C× is a map. To each α ∈ Φ+ we assign the subset
S(α) ⊂ Φ+ as follows:

S(α) =

{∪
ϵl≻ϵi

{ϵl − ϵj}, if α = ϵi − ϵj ,∪j−1
l=i+1{ϵl + ϵj} ∪ Rj , if Φ = C∞, α = 2ϵi.

We then set M =
∪

β∈X Mβ where Mβ = {γ ∈ S(β) | γ, β−γ /∈
∪

Mα}, the latter union being taken
over all α ∈ X such that row(α) < row(β). Note that if β ∈ X, α, γ ∈ Φ+, α /∈ M and α+γ = β, then
γ ∈ M. This implies that µφ([x, y]) = 0 for all x, y ∈ a = ⟨eα, α ∈ Φ+ \M⟩C. Moreover, it is easy to
see that a is a subalgebra of n, hence we can consider the n-module Vφ = U(n)⊗U(a) Wφ, where Wφ is
the one-dimensional representation of a given by x 7→ µφ(x). Let Jφ be the annihilator of Vφ in U(n)
(we do not assert that Jφ is a primitive ideal as we do not discuss the irreducibility of Vφ). One can
check that the map φ can be chosen so that J ⊆ Jφ, so we assume in the rest of the proof that this
condition is satisfied.

Let α be the unique root from Ri1 ∩X. Explicitly,

α =


ϵ2i1−1 − ϵ2i1+2, if Φ = A∞ and ck = 0 for all k ≥ i1,

ϵ2i1−1 − ϵ2k1 , if Φ = A∞ and k1 > i1 is the minimal such that ck1 ̸= 0,

ϵi1 + ϵi1+2, if Φ = C∞ and ck = 0 for all k ≥ i1,

ϵi1 + ϵk1 , if Φ = C∞ and k1 > i1 is the minimal such that ck1 ̸= 0.
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Given γ ∈ Φ+, let M be a finite subset of Z>0 such that γ ∈ Φ+
M , n = |M |. Recall the definition

of jM and ϕM from Subsection 2.2. Let ∆γ be the image in U(nM ) of ∆j−1
M (γ) ∈ U(nn) under the

isomorphism ϕM . Note that ∆γ depends only on γ and not on M . We now show that ∆α − c ∈ J
for some scalar c. We prove this for Φ = A∞ (the proof for Φ = C∞ is similar). First, suppose
col(α) = 2i1 + 2. By Lemma 3.2, ∆α commutes with all eγ , except γ = βi1 − α, and in the latter case
[∆α, eγ ] = ±∆α+γ = ±∆βi1

= ±∆i1 . Hence the image of ∆α belongs to the center of the image of
U(n) in the algebra EndCV . By [Di1], there exist c ∈ C such that ∆α − c ∈ J .

Now we apply induction on col(α) (the base is col(α) = 2i1 + 2). By Lemma 3.2, for any α, ∆α

commutes with all eγ for γ /∈ A(α). On the other hand, if γ ∈ A(α) then [∆α, eγ ] = ±∆α+γ . But
γ + α ∈ Ri1 and 2i1 ≤ col(γ + α) < col(α). If col(γ + α) = 2i1, then ∆γ+α = ∆i1 ∈ J . By the
inductive assumption, if col(γ + α) ≥ 2i1 + 2 then there exists c′ ∈ C such that ∆α+γ − c′ ∈ J ⊆ Jφ.
It follows from the definition of Vφ that for δ ∈ Ri1 , where col(δ) ≥ 2i1, ∆δ acts on Vφ via the scalar
cδ = ±µφ(eδ)

∏
k<i1

φ(βk). In other words, ∆δ − cδ ∈ Jφ. In particular, ∆α+γ − cα+γ ∈ Jφ. Since cδ in
uniquely determined by Jφ, we conclude that c′ = cα+γ = 0 because µφ(eγ+δ) = 0. Thus the image of
∆α belongs to the center of the image of U(n) in the algebra EndCV . By [Di1] there exists c ∈ C such
that ∆α − c ∈ J .

Further, we see that c = ±φ(α)
∏

k<i1
φ(βk) because J ⊆ Jφ and µφ(eα) = φ(α). Note also that

∆k acts on Vφ be the scalar c′k = (−1)k+1
∏

i≤k φ(βi). Thus there exist at least two maps φ1, φ2 from
X to C× such that φ1(α) ̸= φ2(α) and c′k = ck for all k ∈ Z>0. This implies that both Jφ1 and Jφ2

contain J , which contradicts the uniqueness of c. The proof is complete. �
Denote by A∞ the Weyl algebra with countably many generators pi, qi for i ∈ Z>0, and relations

[pi, qi] = 1, [pi, qj ] = 0 for i ̸= j, [pi, pj ] = [qi, qj ] = 0 for all i, j. (14)

Note that the center of A∞ is trivial because the center of Ar is trivial for any r ≥ 1. Similarly, A∞
is a simple algebra. We have the following corollary (cf. (11)).

Corollary 3.8. Let Φ = A∞, C∞, n be as above, and J be a primitive centrally generated ideal
of U(n). Then

i) J is maximal ;
ii) the center of U(n)/J is trivial ;
iii) U(n)/J is isomorphic to the Weyl algebra A∞.

Proof. (i) By Theorem 3.7, J = Jfξ for some Kostant form fξ. It follows from the proof of
Lemma 3.6 that J ∩ U(nn) is maximal for all n ≥ 1. Hence J is maximal.

(ii) This follows immediately from (iii).
(iii) One can construct a set of generators of U(n)/J satisfying (14) as in the proof of Lemma 3.4.

Since A∞ is simple, we have U(n)/J ∼= A∞. �
We expect Theorem 3.7 and Corollary 3.8 to hold also for B∞ and D∞. Finally, we note that

Theorem 3.7 establishes a one-to-one correspondence between centrally generated primitive ideals of
U(n) for Φ = A∞, C∞ and Kostant forms.
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