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ABSTRACT. We study the center of U(n), where n is the locally nilpotent radical of a splitting Borel
subalgebra of a simple complex Lie algebra g = sl (C), $05(C), 5p,,(C). There are infinitely many
isomorphism classes of Lie algebras n, and we provide explicit generators of the center of U(n) in all
cases. We then fix n with “largest possible” center of U(n) and characterize the centrally generated
primitive ideals of U(n) for g = sl (C), sp.(C) in terms of the above generators. As a preliminary
result, we provide a characterization of the centrally generated primitive ideals in the enveloping
algebra of the nilradical of a Borel subalgebra of sl,,(C), sp,,, (C).

Keywords: locally nilpotent Lie algebra, Dixmier map, Kostant cascade, center of enveloping
algebra, centrally generated primitive ideal.

AMS subject classification: 17B65, 17B35, 17B10.

1. Introduction

The theory of primitive ideals in enveloping algebras of Lie algebras has its roots in the re-
presentation theory of Lie algebras. However, classifying irreducible representations of Lie algebras
is not feasible except in few very special cases, while a classification of annihilators of irreducible
representations, i.e., of primitive ideals, can be achieved in much greater generality. This idea goes
back to J. Dixmier and his seminar, and for semisimple or solvable finite-dimensional Lie algebras
there is an extensive theory of primitive ideals.

In the case when n is a finite-dimensional nilpotent Lie algebra, the primitive ideals in the universal
enveloping algebra U(n) can be described in terms of the Dixmier map assigning to any linear form
f € n* a primitive ideal J(f) of U(n). If n is abelian, J(f) is simply the annihilator of f. For a general
finite-dimensional nilpotent Lie algebra n, the theory of primitive ideals retains many properties from
the abelian case: in particular, J(f) is always a maximal ideal and every primitive ideal in U(n) is of
the form J(f) for some f € n*. Moreover, J(f) = J(f’) if and only if f and f’ belong to the same
coadjoint orbit in n*.

The idea of classifying primitive ideals rather then irreducible representations makes even more
sense for infinite-dimensional Lie algebras, and in this paper we make some first steps in this direction
for a natural class of locally nilpotent infinite-dimensional Lie algebras. These are the locally nilpotent
radicals n of splitting Borel subalgebras of the three simple finitary complex Lie algebras sl.(C),
505 (C), spo.(C).

A comprehensive theory of primitive ideals in U(n) remains to be built. In this paper we concentrate
on centrally generated primitive ideals in U(n). We first provide a description of the center of the
enveloping algebra U (n) for any locally nilpotent radical n as above, and then use the result to describe
the centrally generated primitive ideals in U(n) for some interesting choices of n.
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The splitting Borel subalgebras of g = sl(C), 50,,(C), sp,(C) are not conjugate, and there
are infinitely many isomorphism classes of locally nilpotent radicals n. In the finite-dimensional case
Kostant cascades of orthogonal roots play an important role in describing the center of U(n). In the
infinite-dimensional case the center of U(n) is described in terms of a possibly infinite Kostant cascade.
A significant difference with the finite-dimensional case is that the Kostant cascade depends in an
essential way on the isomorphism class of n, and that in most cases the cascade is finite rather than
infinite.

In order to obtain an explicit form of the generators of the center of U(n), we first recall such an
explicit form of the generators in the finite-dimensional case due to A. Joseph, F. Fauquant-Millet,
R. Lipsman, J.A. Wolf, and A. Panov. This enables us to give an explicit description of the center of
U(n) in all cases.

We then concentrate on the case when g = sl (C), sp,(C) and U(n) has the “largest possible”
center. This latter requirement singles out only one isomorphism class of subalgebras n for a fixed g.
For such n we construct a Dixmier map defined for certain linear forms f € n*, closely related to
the Kostant cascade of n. We refer to these forms as Kostant forms. Our main result implies then
that the Dixmier map establishes a one-to-one correspondence between Kostant forms and centrally
generated primitive ideals in U(n). This provides an explicit description of the centrally generated
primitive ideals of U(n). As a corollary we obtain that centrally generated primitive ideals J of U(n)
are maximal ideals, and that the quotient U(n)/J is a Weyl algebra with infinitely many generators.

To the best of our knowledge, the analogous description, via Kostant forms, of the centrally
generated primitive ideals in U(n) for n C sl,,(C), sp,,(C) is also new.

We thank A. Joseph and A. Panov for helpful discussions.

2. The center of U(n)

2.1. Finite-dimensional case. Let n € Z~(. Throughout this subsection g denotes one of the
Lie algebras sl,,(C), 502, (C), 502,1+1(C) or sp,,,(C). The algebra so02,(C) (respectively, s02,11(C) and
§Po,, (C)) is realized as the subalgebra of sla, (C) (respectively, sla,+1(C) and slz,(C)) consisting of all x
such that B(u, xv) + B(xu,v) = 0 for all u,v in C?"* (respectively, in C?*"*1 and C*"), where

Yo (uv—s + u_iv;) for s09,(C),
B(u,v) = § ugvg + >y (ujv—; + u—_;v;)  for $02,41(C),
> iy (wiv—i — u—v;) for sp,,, (C).
Here for s09,(C) (respectively, for so2,+1 and sp,,(C)) we denote by e1,...,en,e_n,...,e_1 (respec-
tively, by e1,...,€n,€0,€-n,...,e_1 and e1,...,€n,€_n,...,e_1) the standard basis of C2" (respec-

tively, of C2"*! and C?"), and by x; the coordinate of a vector = corresponding to e;.

The set of all diagonal matrices from g is a Cartan subalgebra of g; we denote it by h. Let ® be
the root system of g with respect to h. Note that ® is of type A,_; (respectively, D,, B, and C,)
for sl,,(C) (respectively, for s02,(C), 5025,11(C) and sp,,,(C)). The set of all upper-triangular matrices
from g is a Borel subalgebra of g containing bh; we denote it by b. Let ® be the set of positive roots
with respect to b. As usual, we identify ®* with the following subset of R™:

A:_lz{ei—ej, 1<i<j<n},
Bf={e—¢, 1<i<ji<n}u{e+e, 1<i<j<n}uU{e, 1<i<n},
Ctr={e—¢, 1<i<j<n}U{e+e, 1<i<ji<n}u{2, 1<i<n},
Df ={e—€j, 1<i<j<n}U{e+e, 1<i<j<n}.

Here {¢;}}", is the standard basis of R".



Denote by n the algebra of all strictly upper-triangular matrices from g. Then n has a basis consisting
of root vectors e,, o € ®*, where

e, = V2(epi — €_i0); €2¢; = €i—is

)

e . €i,5 for An—h
€—€: =
L €ij — €—j,—i for Bn, Cn and Dn,

e = ei—j —ej—; for By and Dy,
€4 Ej
€i—j + €j,—i for C,,

and e; j are the usual elementary matrices. For s0s,(C) (respectively, for s02,11(C) and sp,,(C)) we
index the rows (from left to right) and the columns (from top to bottom) of matrices by the numbers
1,...,n,—n,...,—1 (respectively, by the numbers 1,...,n,0,—n,...,—1 and 1,...,n,—n,...,—1).
Note that g = h@n®n_, wheren_ = (e_,, a € ®T)¢, and, by definition, e_,, = e.. (The superscript T
always stands for transposed.) The set {e,, a € ®} can be extended to a unique Chevalley basis of g.

Let G be one of the following classical Lie groups: SLy,(C), SO2y,(C), SO2,+1(C) or Sp,,,(C). The
group SO2, (C) (respectively, SO2,,11 and Sp,,, (C)) is realized as the subgroup of SLy, (C) (respectively,
of SLa,+1(C) and SLg, (C)) which preserves the form . Let H (respectively, B and N) be the set of all
diagonal (respectively, upper-triangular and upper-triangular with 1 on the diagonal) matrices from G.
Then H is a maximal torus of G, B is a Borel subgroup of G containing H, N is the unipotent radical
of B, and g (respectively, b, b and n) is the Lie algebra of G (respectively, of H, B and N).

Denote by U(n) the enveloping algebra of n, and by S(n) the symmetric algebra of n. Then n and
S(n) are B-modules as B normalizes N. Denote by Z(n) the center of U(n). It is well-known that the
restriction of the symmetrization map

o:S(n) = Un), 2*—2F, zen, ke Zs,
to the algebra S(n)" of N-invariants is an algebra isomorphism between S(n)Y and Z(n).
We next present a canonical set of generators of Z(n) (or, equivalently, of S(n)"), whose description
goes back to J. Dixmier, A. Joseph and B. Kostant [Di3], [Jo], [Kol], [Ko2|. Denote by B the following
subset of ®*:

U1§i§[n/2]{6i — €n—it1} for An—1,
Ulgign/Q{EQi—l — €2, €21+ €2i} for By, n even,
B = Ulgig[n/2]{€2i—1 — €9, €2i—1 + €2;} U{ey} for By, n odd,
U1§z‘§n{2€i} for Cp,
\Ulgig[n/g]{EQi—l — €2, €2;-1 + €2} for Dy,.

Note that B is a maximal strongly orthogonal subset of ®T, i.e., B is maximal with the property that
if o, B € B then neither o — 3 nor a + 3 belongs to ®. We call B the Kostant cascade of orthogonal
roots in ®+.

We can consider Z®, the Z-linear span of ®, as a subgroup of the group X of rational multiplicative
characters of H by putting +¢;(h) = hgtil, where h; ; is the i-th diagonal element of a matrix h € H.
Recall that a vector A € R" is called a weight of H if cla, A) = 2(a, \)/(a, ) is an integer for any
a € ®T, where (-, -) is the standard inner product on R™. A weight X is called dominant if c(a, \) > 0
for all & € ®. An element a of an H-module is called an H-weight vector, if there exists v € X such
that h-a = v(h)a for all h € H. By [Ko2, Theorems 6, 7|, there exist unique (up to scalars) prime
polynomials &1, ..., &, € S(n)Y, m = |B|, such that each &; is an H-weight polynomial of a dominant
weight u; belonging to the Z-linear span ZB of B. A remarkable fact is that

€1, ..., & are algebraically independent generators of S(n), (1)

so S(n)Y and Z(n) are polynomial rings. We call &; the i-th canonical generator of S(n)".



Let n* be the dual space of n, and let {e, o € ®*} be the basis of n* dual to the basis {e,, o € &}
of n. Put R = {t =Y pentpeh, tp € CX} and denote by X the union of all N-orbits in n* of elements
of R. In fact, X is a single B-orbit in n*, and the N-orbits of two distinct point of R are disjoint.
Kostant [Ko3, Theorems 1.1, 1.3] proves that X is a Zariski dense subset of n*, and for ¢t € R, up to

scalar multiplication,

(i, B)
(B,6)

&Gt =1] t;ui(ﬂ)7 1 <i <m, where r,,(8) =
BeB

(2)

The following representation-theoretic description of &; is given in [Pa2|, however, it can be found
in slightly different terms also in [LW| and [FMJ]. Let IT = {ay, ..., oy} be the set of simple roots [Bo,
Table I-1V], and let w;, 1 < i < n, be the i-th fundamental dominant weight of ®. We define positive
integers k; for 1 < i < m = |B| by the following rule:

b=A4,1 | m=[n/2] ki=1forl1<i<m

® =B, m = n for B, k; = 1 for odd 1,

or D, m = n for D,, when n even k; = 2 for even i < m,

m =mn — 1 for D,, when n odd | k,, = 1 for even m
d=C, m=n k,i=1forl1<i<m
Let W be the Weyl group of ®. Denote by wg the unique element of W such that wg(a) € —®T
1 _ .
for all « € ®*. Furthermore, set @] = (:)O)wl. Then the weights w}’s have the following form:
i

P=A, 1 |wi=261+...+2¢_1+¢for1<i<m
o—B, - {261+...+26i for odd 7 < m,

€1+...+¢€ otherwise
®=C, w, =261+ ...+2¢ for 1 <i<m
2€1 + ...+ 2¢; forodd i <m — 1,
2¢1 + ...+ 2€51 for i =n —2=m — 1 when n is odd,

=D, wl = ) )
€e1+...+€p-1—¢€, fori=n—1=m—1 when n is even,

€e1+...+¢€ otherwise

Now, let V; be the ¢-th fundamental representation of the group G for 1 <4 < m, and let V;* be its
dual representation. Fix highest-weight vectors v; and [; respectively of V; and V;*. Let S; be the regular
function on G defined by S;(g) = l;(g-v;). By exp: g — G we denote the usual exponential map. Using
the g-invariant form g > x,y — tray we identify the space n_ of all lower-triangular matrices from g
with n*. Then

el if®=A4,_1, or ®=C, and a = 2¢,

er =1el/4 if =B, and a = ¢, (3)

el /2 otherwise.

To each regular function S on G we assign the sequence of regular functions S/ on n_ (or, equivalently,
of elements of S(n)) defined as the coefficients in the expansion

S(exptx) = t*(S%(x) + tS (z) + t25%(x) +...), k>0, z €n_.
In particular, regular functions Sg on G are now defined.

Theorem 2.1. [Pa2, Theorem 2.12]

i) If ki =2 for 1 <i < m, then S? is a square in S(n).

i) Set K; = SY if ki = 1, and (K;)> = S if ki = 2. Then K; is a prime H-weight polynomial of
weight w! contained in S(n)N for 1 <i < m.



Corollary 2.2. After suitable reordering of indices, we have (up to scalar multiplication) p; = w,

and & = K; for 1 <i<m.

PROOF. It is easy to check that @] is a dominant weight in ZB. Then our claim follows from
Kostant’s characterization of &;, ..., &, as the unique (up to scalars) prime polynomials in S(n)"
which are H-weight polynomials of dominant weights belonging to ZB. (I

We now fix explicit expressions for &; in all classical root systems.

i) ® = A, 1. Let V = C" be the natural representation of G = SL,,(C). Then V; = A*V for all i
from 1 ton — 1. If ey,..., e, is the standard basis of V, and e, ..., e}, is the dual basis of V*, then
v; = e1 A ... Ae;is a highest-weight vector of V;, and [; = ey _, | A... Ae} is a highest-weight vector
of V;*. This implies that S?(x) is the lower left (i x 4)-minor of a matrix = € n_. Using (3) we can set

€1n—i+l --- €ln-1 €ln €e1—€n—it1 -+ Cer—en—1 Cer—en

€2n—i+1 --- €2n—1 €2 eez—en_i_H v €Eeg—epq1 Ceg—en
§i = : . : T : . : : ) (4)

€in—i+l --- €in-1 €Ein €ei—€n—iv1 -+ Ce—en—1  Cei—en
ii) ® = C,,. Let V = C?" be the natural representation of G = Sp,,(C). Then V; = A\'V for all i
fromlton—1=m—1.Ife,..., ey, e_p,...,e_; is the standard basisof V, and e], ... ey, e, ... ",

is the dual basis of V*, then v; = e1 A ... Ae; is a highest-weight vector of V;, and [; =e*, A... Ae’;
is a highest-weight vector of V;*. Consequently, S?(x) is again the lower left (i x i)-minor of a matrix
zen_,and for 1 <i<m —1 we can set

Certe; -+ Ceates Ceater 262
Certe; -+ Cextes 2€2¢;  Ceiten

& = |Cester - 2€2¢;5  €extes  Ceites). (5)
2€2¢; .- €ezte; Certe; Cate

We claim that &, can also be defined via formula (5) for i = m. To verify this it is suffices to
check that &,, is proportional to the m-th canonical generator for spy,,o(C). But the latter is obvious
because this generator is a prime N-invariant H-weight polynomial of weight w/, € ZB.

iii) ® = D,,. Let V = C?" be the natural representation of G = SOs,(C). Then V; = A"V for all

tfrom1ton—2 Ifey,...,eyp,e_pn,...,e_; is the standard basis of V, and e],... e}, e, ..., e*  is

b (B
the dual basis of V*, then v; = e; A ... Ae; is a highest-weight vector of V;, and [; = e*, A ... Ae¥,
is a highest-weight vector of V;*. First, if i < n — 2 is even, then k; = 2, so 5’? = (K;)%. Tt follows
that K;(x), for x € n_, is the Pfaffian of the skew-symmetric matrix obtained from the lower left i x 4

submatrix of z by reordering the columns. Therefore, for even i < n — 2 we set

€eite; - Certes €ei+ea 0
€Ceote; -+ Ceotes 0 —Certer
5@2 = 4 |Ces+e; - 0 “Certez3  TCeptez|. (6)
0 ceo TCe34e;  TCerte; TCetg

Our normalization is such that the term ec, 4e,€es4¢y - - - €¢;, 1+¢ €nters & with coefficient 1.
Ifi<n-—-2isoddand z =) .o+ Tael € n_, then

tTepte; T OH?) . tTejre, +O(t2)  2t%a1(z) + O(t3)
tTeyre, +Ot?) ... 2t%a(x) + O(t3) —txe ey + O(?)

Si(exptz) = : g} : : -
2t%a;(z) + O(t?) ... —tTeyre; + O(t?) —txeyye, + O(t?)

= t*(SV(x) + tS} (x) + 252 (x) +...)

b}



for some k > 0, where as(z) = 3°7_ 1) Te,—e;Te +e;- Let U’ be the (i x i)-matrix defined by (U, =
—(L{i)a,b = Ceqtepy fOra <i—b+1, U ai—at+1 = 0, and U be the matrix obtained from U* by
deleting the (¢ — s + 1)-th row and column. Then k£ =i+ 1 and we can set

&= asdetld], (8)

where ag = E?:s+1 Ceo—e;Cente;-

Next, assume ¢ = m (in other words, i = n — 1 and n is odd, or i = n and n is even). As the m-th
canonical generator for 509,12(C) is a prime N-invariant H-weight polynomial of weight w/, € ZB, it
follows that &, can be also defined via formula (6) for i = m.

Finally, assume n is even and i = m — 1 = n — 1. In this case &,,_1 can be defined by

€Ce1—en €e1ten—1 cee €e1+teo 0
Cer—en Certen—1 v 0 “Certer
72n71 =+ : : :
€epn_1—€n 0 s TCeten 1 TCeteni
0 —Cep_1—€n - —Ceg—ep —Cer1—en

(our normalization is such that the term e., ,_¢,&m—3 enters &,,—1 with coefficient 1) as it is easy to
check that this polynomial is a prime N-invariant H-weight polynomial of weight w/ ;.

iv) Case ® = B,. Let V = C?"*! be the natural representation of G = SOg,.1(C). Then
Vi = /\iV for all 4 from 1 to n — 1. If e1,...,e,,€0,6_p,...,e_1 is the standard basis of V', and
€l,....en, ey, e, ...,er is the dual basis of V*, then v; = e; A ... Ae; is a highest-weight vector
of V;, and [; = e*; A ... Ae’ is a highest-weight vector of V*.

First, if ¢ < n — 1 is even, then k; = 2, so S’io = (K;)*. It follows that & can be defined via
formula (6). Second, if i = n = m is even, then, arguing as above, we can define &,, again by formula

(6) for i =n. Next, if i <n —1is odd and z = Y ¢+ Ta€l € n_, then

tTeyre, T O(?) . treye, +O(t?) 2201 (x) + O(#3)
tTeyre; + O ... 28203(2) + O(t3)  —txeytey + O(t?)
Si(exptz) = . ) ) .

: - : : 9)

262b;(x) + O(t3) ... —tTeyie, + O(t?) —txe ye, + O(t?)

= tF(S2(2) + S} (z) + 252 (z) +...)

for some k > 0, where bs(z) = E?:SH Tey—e;Tegte; + :L‘?S. It turns out that & = ¢4+ 1 and we can define
§i via formula (8) for by = Y0\ €c,—¢;€eite; + e? /4. Finally, assume i = n = m is odd. Arguing as

above, we see that &, can be defined by

€e;  Ceiden - Celten 0
€y Cexten - - 0 —€eiteo
€2 — 4] . .
€ep 0 cio —Ceyte, —Ceiten
0 —€, —€e¢y —€¢q

(our normalization is such that the term e, &,—2 enters &, with coefficient 1).

For A,,_1 and C,,, denote A; = o(§;) for 1 < i < m. We call A; the i-th canonical generator of Z(n).
Since all e, involved in &; (i.e., e, which appear in a term of &) commute, we conclude that A; is
defined as an element of U(n) again by formulas (4), (5) for A,,_1, C), respectively. For B,, and D,
then denote P;/p = 0(§;) when i is even, and D(;;1)/o = 0(§;) when i is odd. If i is even, all e, involved
in & commute, so we can conclude that P; is defined as an element of U(n) again by formula (6).
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2.2. Infinite-dimensional case. Let 5[ (C), s0,(C), sp(C) be the three simple complex finitary
countable dimensional Lie algebras as classified by A. Baranov [Ba|. Each of them can be described as
follows (see for example [DP2]). Consider an infinite chain of inclusions

g1 CgaC...C¢gp C...

of simple Lie algebras, where rk g, = n and all g,, are of the same type A, B, C or D. Then the union
g = U gn is isomorphic to sl (C), 505,(C) or sp.(C). It is always possible to choose nested Cartan
subalgebras b, C gn, bn C bn+1, so that each root space of g, is mapped to exactly one root space of
On+1- The union h = (Jbh,, acts semisimply on g, and is by definition a splitting Cartan subalgebra of g.
We have a root decomposition g = h @ @, 9¢ where ® is the root system of g with respect to b and
g@ are the root spaces. The root system @ is simply the union of the root systems of g,, and equals one
of the following infinite root systems:

Aoo = :|:{€i — €5, i,j S Z>0, 1< ]},

B = £{€; — €, 1,J € Lo, 1< jrut{e + €5, 1,J € Lo, 1 < JrUt{e, i € Zso},
Cr = :|:{€Z' — €5, 1,] € Lo, t < ]} U :|:{€i + €5, 1, € Zso, @ < j} U i{2€i, 1€ Z>0},

Dy = :|:{€Z' — €5, 1,] € Lo, © <]} U:l:{éi + €5, 1, € Zso, © < j}

A splitting Borel subalgebra of g is a subalgebra b such that for every n, b, = bN g, is a Borel
subalgebra of g,. It is well-known that any splitting Borel subalgebra is conjugate via Autg to a
splitting Borel subalgebra containing h. Therefore, in what follows we restrict ourselves to considering
only such Borel subalgebras b.

Recall [DP1] that a linear order on {0}U{=%¢;} is Zs-linear if multiplication by —1 reverses the order.
By |DP1, Proposition 3|, there exists a bijection between splitting Borel subalgebras of g containing b
and certain linearly ordered sets as follows.

For Ao: linear orders on {¢;};
for Boo and Coo: Zo-linear orders on {0} U {+e;};
for Doo: Zs-linear orders on {0} U {£¢;} with the property that
a minimal positive element (if it exists) belongs to Zq.
In the sequel we denote these linear orders by <. To write down the above bijection, denote ¥; = ¢;, if
i >0, and ¥; = —¢;, if ¢, < 0 (for A, ¥; = ¢; for all ). Then put b =bh @ n, where n= @ g* and
acdt
A;ro = {19% — 19]‘, i,j S Z>0, ’192‘ - 19]'},
B;ro = {191 — 19]‘, 1,7 € Z>o, ¥ = 19]} U {191 + 19]‘, 1,7 € Z>o, W = 19]} U {191, 1€ Z>0},
C;ro = {191 — ﬁj, 1,7 € Z>o, ¥ = ﬂj} U {191 + 19]‘, 1,7 € Z>o, 9 = 19]} U {22%‘, 1€ Z>0},
D:O = {1% — 19]‘, 1,7 € Z>o, ¥ = ﬂj} U {191 + 19]‘, 1,7 € Z>o, ¥ = 19]}

Our goal in this subsection is to describe the center Z(n) of the enveloping algebra U(n). Fix n,
i.e., fix an order < as above. Define the subset N' C Z+ by setting N = | J,~ Nk, where Ny = & and
N for k > 1 is defined inductively in the following table.

KR |
Ao | Nik—1U{i,j} if there exists a maximal element 9,
and a minimal element 9; of {5, s € Z>o \ Nj_1},
N}._1 otherwise
Coo | Nik_1U{i} if there exists a maximal element ¥; of {5, s € Z~o \ Nx_1},
Nj._1 otherwise
00> | Nk—1U{i,j} if there exists a maximal element ¢; of {Js, s € Z~o \ Nk_1}

and a maximal element 9; of {05, s € Zso \ (Nxg—1 U {i})},
Nj._1 otherwise

S ™
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Example 2.3. i) Let ® = A, If €1 = €3> ... = €4 = €3, then N = Z-o. lf €1 = €2 = €3 = ...,
then N =@.ii) Let ® £ A and €1 = €2 = ... = 0= ... = —e3 = —€1. Then N' = Z~,.

Now we can define the (possibly infinite) Kostant cascade corresponding to n. Namely, to each N
such that N1 C N, we assign the root

ﬂi—ﬁj, if®d=A, ande\Nk_lz{i,j},i>-j,
Br =1 i+, if ®= By or Do and N \ Ny—1 = {4,j}, i > J,
2’[91‘, if ® = Coo and Nk \Nk—l = {’l},

and put B = {B, k> 1, Ny_1 € Ni}. Note that B is a strongly orthogonal subset of ®*; however it
is not necessarily maximal with this property.

Definition 2.4. The subset B is called the Kostant cascade corresponding to n.

Example 2.5. 1) If ® = A and €1 = €3> ... > €4 > €2, then B = {e1 — €2, €3 — €4, €5 — €6, ...}
) If®#Acand e =€ ... = 0> ... > —€y > —eq, then

B {€1+ €2, e3+ €4, €5+ €6, ...} for Bo and Dy,
B {2€1, 2€9, 2€3, ...} for Cwp.

To each finite non-empty subset M C Z-q, one can assign a root subsystem ®,; of ® and a
subalgebra nys of n by putting 3y = & N (e, i € M)g, npy = @aeqm g%, @1, = &), N ®T. Then the
subsystem ®j; is isomorphic to the root system ®,, of g,, for n = |M|; we denote this isomorphism by
gy @ — Pur, € — Vg, where M = {ai,...,an}, Ua, > ... = U, Besides, nys is isomorphic as a
Lie algebra to the maximal nilpotent subalgebra n,, of g, considered in the previous subsection. Note
also that n = limny,. Here, for M C M’, the monomorphism ¢ MM : My < e is just the inclusion.
Further, it is easy to see that there exist isomorphisms ¢ : n, — np, M C Zsg, n = |M|, such that,
for M C M, ipr v 0 ds is just the restriction of ¢y to ny, C nyq1, and, for oo € @)F, Par(eq) is a root
vector corresponding to the root ju(a); we denote it by f;, (a)-

We are now ready to write down a set of generators of Z(n). Namely, suppose that ¢ > 1 and
|B| > gq. Let M be a finite subset of Zs( such that N; C M. The isomorphism ¢pys gives rise to an
isomorphism U(ny,) — U(nys), n = |M|. Slightly abusing notation, we denote the images of A, and
P, (as elements of U(n,,) whenever defined) in U(nys) by the same letters. Then for Ay, (respectively,
for Cx), Ay € U(nyy) is given by formula (4) (respectively, (5)) for i = ¢ with f;, (,) instead of eq.
Similarly, for Bs and D, Py € U(nyy) is given by formula (6) for i = 2¢ with f;, (,) instead of e,.
It is important that A,, P, € U(nps) depend only on g but not on M. Moreover, it is clear from
the finite-dimensional theory that A, (respectively, P;) belong to the center of U(n) for Ay and Cu
(respectively, for By, and D).

Our first main result is as follows.

Theorem 2.6. If & = Ay, Coo(respectively, ® = Boo, Do), then Ay (respectively, P,), g < |B|,
generate Z(n) as an algebra. In particular, Z(n) is a polynomial ring in |B| variables.

PROOF. Let ® = Ay, C, and t € Z(n). We need to prove that ¢ is a polynomial in Ay, ¢ < |B|.
Let M be the minimal subset of Z-( for which ¢ € U(nys) (in particular, if & = A, then |M] is
even), and k be the maximal number such that NV, C M and Ny_1 C Ni. If M = Ny, there is nothing
to prove as the center of U(nys) is generated by Aq, ..., Ag. Therefore, assume that Ny C M. More
precisely, let

N o {ilv ceey ika jlv"‘7 jk}7 1f(I):AOO7
{i1, - o ik}, if ® =Cy,

MA\N, = {s1,...,8}, n=|M|, where ¥;; = ... = 0, = Vs, = ... = Vs = Vj, = ... = ;. In the
rest of the proof we show that the assumption Ny C M is contradictory.



Put | =n/2 =k + r/2 (respectively, | = n =k + r) for Ay (respectively, for C) and extend the
set {A1, ..., Apttoaset {A1, ..., A, ALy, ALy, ..., A7} of generators of Z(nys) by letting A}
be the image of the i-th canonical generator of Z(n,) under the isomorphism ¢ps: U(ny,) — U(nag).
For instance, let k = 2, r = 4 for Ay, or k =2, r = 2 for C. Then A} has the following form.

| P=A o, k=2r=4 \ P=Cy, k=2,r=2 |

foi 00 Foi 00, foi,-05 Fou—0;| | |00 +0sy  Foivos Foi0i,  2f20,
foiy—00,  foi,—05, [foi,—0;, foi,-0;, Joiy100y  Josy+0s 2020,  foi 40,
fou—00 T —0s, fos,—0,, Foo -0, | | |fost0s,  2f20.  Foiyp0,  Jou 49,

fog, 00y foo,—0., [foo,—0;, fo.,-v; 2f200,  Foo 00 Joiio.,  Joi 404,
Now we write ¢ = t' 4+ t”, where ' belongs to the ideal of Z(nys) generated by A}, ..., A, and

t” belongs to the subalgebra of Z(ny) generated by Ay, ..., Ag. Note that t” € Z(n), hence ¢’ € Z(n).
Moreover, t' # 0 by the assumption that N C M.

The definition of k implies that if & = Cy then ¥ is not a <-maximal element of the set
{¥s, s € Z~o \ Ni}. Similarly, if & = A, then at least one of the following holds: ¥, is not a
<-maximal element of {s, s € Zo\ Ny}, or ¥, is not a <-minimal element of {Us, s € Z~o\Ni}. In
the sequel we assume that the former condition is satisfied (the case of the latter condition is similar).
Then, in both cases ® = Ay, and ® = Co, there exists sg € Zso\ M such that 9;, > U5, > Js,. Denote
My = M U {so}, ng = npy, and Ny = expng. We have ¢ € Z(ng). Put & = Ual(A;), it=k+1,...,1,
where o: S(ng) — U(ng) is the symmetrization map. Note that d’ = o5 (') # 0 as ¢’ # 0, and that
d’ belongs to the ideal of S(ng)™° generated by Elgtr - &

Given a € @7, denote by fZ the linear form on n (or on nyy, if a € ®57) such that f2(fz) = da
(the Kronecker delta). Furthermore, let Ry be the subset of nfj consisting of all elements of the form
A= ZﬂeBo Asfi, Ag € C*, where

D e R N L L TU UL SRS WAL MY S
(20, ...,20;,, 204,20, ..., 20, } for Che.

Denote by Xg the union of the coadjoint Ng-orbits of all linear forms from Ry. As pointed out in
Subsection 2.1, Xy is a Zariski dense subset of nj by a result of Kostant.

If ® = Ay and A € Ry, then A(f,) = 0 for each f, from the last row of & for i = k+1, ..., L.
Therefore, (A) = 0 for all A € Ry. Thus, d’(A\) = 0 for all A € Ry. However, since d’ is Ny-invariant,
we obtain that the restriction of d’ to Xy equals zero. As X is Zariski dense in n§, we conclude that
d" = 0, and consequently that ¢ = 0. This contradiction completes the proof for ® = A.

Here is an illustration of the vanishing of £/ on Ry. Let k = 2, 7 = 4. On the picture below the
boxes from By are marked by ®, and the boxes corresponding to the variables involved in &) are grey:

i1 92 S0 S1 S2 83 S4 J2 J1
11 &
12 &

: 2 2 fo,,—0sg  Joi,—vs,  Joi,-v,,  Jo, -0,

. - foi,=tsy  Joo =00y Joi—0;,  fo2,-0; |
foo,—00y  fo.,—0., fo.,—0;, Jo., -0

Jooy—0ey  Jooy—vs, JOoy—0;, Joo,—v,,

S3

J2
S4

J2
J1




If ® = Cy, we write t' = t1 + to where t5 belongs to the subalgebra of Z(ng) generated by
Ay, ..., Ay, and t; # 0 belongs to the ideal of Z(ngy) generated by all other generators of Z(ng). Then
ty € Z(n), whence t; € Z(n). Denote dy = o, (t1) # 0, d2 = o '(t2). By definition, da belongs to
the ideal of the algebra S(ng)™° generated by the first & canonical generators of S(ng)™*o. At the same
time, d’ depends only on the f,’s from ny;. Since d; # 0, there exists A € Ry such that d;(\) # 0. On
the other hand, set Ao = A — Mgy, f;ﬁso' Then d'(A\) = d'(\o) and da(A\) = d2(\o) by the definitions of
d' and dy. Therefore di(\) = di(\g). However, di(Aog) = 0, because if i > k, then the value of the i-th
canonical generator of S(ng)™o on \g equals zero. This contradiction completes the proof for ® = Cy.

Assume now that ® = D,, and t is a central element of U(n). We claim that ¢ belongs to the
subalgebra of U(n) generated by P, for ¢ < |B|. Let M C Z-( be a minimal finite set for which
t € U(nys) and |M| = 2n is even, and let k& be maximal such that N € M and Nj,_1 € N. Denote
M\Nk = {ik+1,jk+1, R ,’in,jn}, where ﬂik+1 ~ ﬁjk+1 . 19“, ~ ﬁjn (ifn =k, then M = Nk) Set
NM = expny,

By = {191'1 _79]'17 192'1 +19j17 B 791'71 _29]'71,7 19'5'77, +1‘9jn}7
Ry = {t= deg tafs | tg #0 for all B}

Let Xjs be the union of all Ny;-orbits of elements from Rj;. Then X, is Zariski dense in nj,.

Denote the canonical generators of S(ny)¥™ by &1, .. ., &o,,. Then Z(nyy) is generated as an algebra
by P; = opm(&2:i), Di = on(&i—1) for 1 < i < n, where o: S(nps) — U(nyps) is the symmetrization
map. Further, set for simplicity d; = £2;—1, 1 < i < n. Using (8) one checks that for ¢t € Ry

2 2
ds(t) = tﬂil"”gh .. 'tﬁis_l'f‘ﬁjs_ltﬁis —9;, tﬁis"rﬂjs’ 1<s<n—1, (10)

dn(t) = t§i1+19j1 . tﬂin71+ﬁjn71 tgin —j,

Assume b is a positive integer such that there exists a € Z~o \ M satisfying 9;, > ¥,. We can
express t as t = t' + t”, where ¢ belongs to the ideal of Z(nys) generated by Di, ..., Dy, and t”
belongs to the subalgebra of Z(nys) generated by all remaining generators of Z(ny). Let d = o} (t),
d =0y (t),d" = oy (t"),s0d = d'+d". Ift' # 0, then d’ # 0. Let ¢ be the minimal among all numbers
from 1 to b such that the variable d. appears in d'. Since d' # 0, there exists A =3 5.5 Agff € Ry
for which d’(\) # 0. Consider the set Y = A+ C f:;ic v, Obviously, Y is a one-dimensional affine
subspace of n},, and the restriction of d’' to Y is a nonzero polynomial in one variable. Clearly, we can
choose A so that this polynomial is of positive degree.

Now, put M, = M U{a}, N, = expny,, o = A+ fsic+19a € nj, . Pick s € C and put also
g =exp(sfy; +9,) € Na, ' = g - p. Set &, = ®py,. One can easily check that p'(fo) = p(fa) for all
o€ B\ (D, — 0.}, and 1 (fo,, -9,,) = #lfo,, 0, ) + 5. Since d € S(nar,)™e, we obtain d(u) = d(s1)
for all s € C. On the other hand, from the definition of d” we see that d”(yu') = d”(u). Therefore,
d' (i) = d(u). Define p’ as the restriction of p’ to nys. Then u” belongs to Y, and d' (") = d'(i') =
d'(pn) =d'(\) as d € S(nypr). Thus, the restriction of d’ to Y is constant, a contradiction. We conclude
that d’ = 0, and consequently that ¢’ = 0.

The above implies that it is sufficient to show that M = N. Indeed, if M = Ny, then b can be
chosen as k, and by the above t is a polynomial in P;, 1 < ¢ < k. Assume, to the contrary, that M # N,
so n > k. Then there exists sg € Z~o \ M such that 9;, = ¥, = 9;,,,. As we already know, ¢ belongs
to the subalgebra of Z(nys) generated by Pi, ..., Py, and by P;, D; for k+ 1 < i < n. We can express
tast =t +to, where ¢t # 0 lies in the ideal of Z(nyr) generated by Py, D; for k+1 <i <n, and ¢g lies
in the subalgebra of Z(nys) generated by Pi, ..., Py. If My = M U{s¢} and ny = nyy,, then te Zn).

Next, we write ¢ as t = t; + t2, where 5 lies in the subalgebra of Z (ng) generated by its first 2k
canonical generators, and 1 lies in the ideal of Z(ng) generated by the remaining generators of Z(ny).

If og: S(ng) — Ul(ng) is the symmetrization map, we put d = oy ' (), di = o '(t1), da = oy *(t2). Let
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Ry be the subset of nfj consisting of all elements of the form A = ) BeBy M8 f;, Ag € C*, where By is
the Kostant cascade for ng. Note that the (2& + 1)-th root in By equals 9, + U5, -

Denote by Xy the union of the coadjoint Np-orbits of all linear forms from Rp. Then Xy is a
Zariski dense subset of nj. Assume d; # 0. It is easy to check that there exists A € Ry such that

di(\) # 0. Set Ao = A= Ao, 4o, Ji .40, Then d()) = d(Xo) and da(\) = da(\o) by definition

of d and ds. Hence Jl()\) = Jl(Ag) = 0, a contradiction. Thus, Jl =0, so d = Jg belongs to the
subalgebra of Z(ng) generated by its first 2k canonical generators. Finally, consider the affine space
7 = fo:l((Ceigir —9;, + Cey, +o, ) = (eg, B € By N By)c. Let dz be the restriction of d to Z. Since
d :~£lvg, if élv # 0 then d, 7 is a nonzero polynomial of positive degree. But it follows from the definition
of d that dz is zero (see (10)). This shows that M = N}, and the proof for ® = D, is complete.

The proof for & = B is similar and we skip it. [l

3. Centrally generated ideals of U(n)

3.1. Finite-dimensional case. Throughout this subsection g and n are as in Subsection 2.1. By
definition, an ideal J C U(n) is primitive if J is the annihilator of a simple n-module. Here we describe
all primitive centrally generated ideals of U(n), i.e., all primitive ideals J generated (as ideals) by its
intersection J N Z(n) with the center Z(n) of U(n).

In the 1960s A. Kirillov, B. Kostant and J.-M. Souriau discovered that the orbits of the coadjoint
action play a crucial role in the representation theory of B and N (see, e.g., [Kil], [Ki2]). The orbit
method has a number of applications in the theory of integrable systems, symplectic geometry, etc.
Work of J. Dixmier, M. Duflo, M. Vergne, O. Mathieu, N. Conze and R. Rentschler led to the result
that the orbit method provides a nice description of primitive ideals of the universal enveloping algebra
of a nilpotent Lie algebra (in particular, of n). Let us describe this in detail.

To any linear form A\ € n* one can assign a bilinear form Sy on n by putting Sx(z,y) = [z, y]).
A subalgebra p C n is a polarization of n at A if it is a maximal [j-isotropic subspace. By [Ve|,
such a subalgebra always exists. Let p be a polarization of n at A\, and W be the one-dimensional
representation of p defined by x +— A(z). Then the induced representation V' = U(n) @) W of n is
irreducible. Hence, the annihilator J(A) = Ann )V is a primitive two-sided ideal of U(n). It turns
out that J(A) depends only on A and not on the choice of polarization. Further, J(\) = J(u) if and
only if the coadjoint N-orbits of A and u coincide. Finally, the Dizmier map

D:n* = PrimU(n), A J(A),

induces a homeomorphism between n*/N and Prim U(n), where the latter set is endowed with the
Jacobson topology. (See |Di2|, [Di4|, [BGR] for the details.)

In addition, it is well known that the following conditions on an ideal J C U(n) are equivalent [Di4,
Proposition 4.7.4, Theorem 4.7.9|:

i) J is primitive;

ii) J is maximal;

iii) the center of U(n)/J is trivial;

iv) U(n)/J is isomorphic to a Weyl algebra of finitely many variables.

(11)

Recall that the Weyl algebra A, of r variables is the unital associative algebra with generators p;, g; for
1 <i <7, and relations [p;, ¢;] = 1, [pi, q;] = 0 for i # 4, [pi,p;] = (@i, q;] = 0 for all i, j. Furthermore,
in condition (11) we have U(n)/J = A, where r equals one half of the dimension of the coadjoint
N-orbit of A, given that J = J(\).

11



Recall the definition of the Kostant cascade B (Subsection 2.1) and set

B for ® = A,_1, n odd,

B B\ {eém — €n—m+1} for ® = A,—1, n even, m =n/2,
U1§i<n/2{621’_1 + egi41} for ® =B, or & = D,
B\ {2¢,} for ® = C,.

To a map &: B — C we assign the linear form fe = > 5.5£(8)e; € n*. We call a form fe a Kostant

form if £(B) # 0 for any 5 € B'.
Let V' be a simple n-module and J = Ann )V be the corresponding primitive ideal of U (n). By

a version of Schur’s Lemma [Dil], each central element of U(n) acts on V as a scalar operator. For
Ap—1 and Cp, let ¢ be the scalar corresponding to Ag. For B,, and D, let ¢ (respectively, ¢) be the
scalar corresponding to Py (respectively, to Dy). Note that these scalars do not depend on V' and are
determined by J. Denote by J. the ideal of U(n) generated by all Ay — ¢ (respectively, by all Py — ¢
and Dy — ¢x) for A,—1 and C,, (respectively, for B,, and D,,). Clearly, J. C J. Further, since Z(n) is a
polynomial ring and the center of U(n)/J is trivial, J is centrally generated if and only if J = J.. Put
m' = |B'|, m = |B|.

Our second main result is as follows.

Theorem 3.1. Suppose ® is of type An—1 or Cy. The following conditions on a primitive ideal
J C U(n) are equivalent:

i) J is centrally generated (or, equivalently, J = J.);
ii) the scalars ¢y, ..., cp are nonzero,
ili) J = J(fe) for a Kostant form fe € n*.

If these conditions are satisfied, then the map & is reconstructed by J:

§(8) = (1) e /ey, (12)
where cog = 1, and B = €, — €p_gy1 for ® = Ap_1, B = 2¢;, for & = C,,.

We expect this theorem to be true also for B,, and D,,.

Before we prove Theorem 3.1 we prove few lemmas. We define the maps row: ®+ — Z and
col: T — Z by putting row(e; — ¢;) = row(e; + €j) = row(2¢;) = i, col(e; + €;) = col(2¢;) = —j,
col(e; — €;) = j. Let R; = {a € @ | row(a) = i}. For a € &7, set

Uj+1§k§n—i+1{€j —€p}, HP=A, 1, a=¢—¢,j<n—i+]1,
Ala) = Un—j+1§k§i—1{€k — €}, %f O=A,1,a=¢—¢€,j>n—1+1,
Uick<j-1ler + € UR;, i@ =Ch, a=¢ —¢j,
Uigkgjfl{ek — €}, if®=0C, a=c¢+e¢j,
B(a) ={a}U{p € B|row(f) < row(a)},
R(a) = {row(v), v € B(a)}, C(a) ={col(7), v € B(a)}.

Define a matrix U with entries from U(n) by the following rule.

d Size of U | U

A1 | nxn Uij=ec—e; for 1 <i<j<mn,

U; j = 0 otherwise

Ch 2nX2n | Upj=—U—j_i=€ec;, Ui—j =Uj—i = €e;te; for1 <i<j<mn,
Ui—i = 2€cyi, 1 <1 < m, U; j =0 otherwise
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Denote by A, the element of U(n), which equals the minor of ¢ with rows R(«) and columns C(«).
Note that the variables involved in each A, commute. For example, let ® = A, 1, n =8, a = €3 — e4.
On the picture below « is marked by e, the roots from 5 are marked by ®’s, and the roots  such that
ey is involved in A, are grey:

1 2 3 4 5 6 7 8
2

®

€1— €e1— €e1—
Ce1—ey €1—€7 €1—€
® 8

Aez—es = |€eg—es  Cea—er  Cer—eg| -

€es—es  Cez—er  Cegz—es

0 I S Ot e W N

Lemma 3.2. Let a € @7\ B. If v ¢ A(a) then [Ay,ey] = 0. If v € A(a) then [Aqy,eq] = £Aq.
More precisely, for A1, if j <n—i+1 then [Ag,—¢;,€c;—c,] = De;—c, for all ¢; —¢j € A(e; —¢;), and
ifj>mn—i+1then [ec, ¢ Aci—e;] = Aep—e; for all €, — €; € Ae; — €;). For Cp, if a = ¢; T ¢; then
[Aq,ey] = FAaqy for all v € A(a).

PROOF. Let ® = A,_; (the proof for C,, is similar). Suppose o = ¢; — ¢;. Consider the case
j <n—i+1 (the case j > n — i+ 1 can be considered similarly). If €e,—e, 18 involved in A, then
pe{l,2,...;i} =R(a) and g € {j,n—i+2,n—i+3,...,n} = C(a). Assume that e, _, and ec,_,
do not commute. Then either s € R(«) or r € C(«). Consider these two cases separately.

First, if s € R(a), i.e., 1 < s < 4, then also r € R(a) as r < s. Denote by A,, the algebraic
complement in A, to an element €ep—e,- Lhen

Ay = Ces—e; As,j + Ces—€n—ita As,n7i+2 + 6657€n71+3A3,n7i+3 oot Cei—e, As,n
Since e, ., commutes with each e, involved in each algebraic complement, we have
[ecr—cor Dal = [€e,—es) ees—ej]ASJ + [eer_€s7ees_en—i+2]A57n_i+2 + ot e ees—en]Asyn
= Cer—¢; AS,j + eEr—En—i+2A€s—€n—i+2 +...+ eET—EnASﬂl'

In other words, [ee,—,, Aqs] equals the minor obtained from A, by replacing the s-th row by the r-th
row. Thus [e,—c,, Aq] = 0.
Second, assume r € C(a) = {j,n—i+2,n—1i+3,...,n}. Clearly,

Ay = eelfeTAl,r + 6627ETA2,7" +...+ eeiferAi,ra
SO

[Aa; €e,—e] = [€e1—err Cer—ea | ALr + [Cer—ers Cep—es| A2 + oo+ [€e—ers Cepmes ] Air
= eelfesAl,r + 662763A2,r +...+ eeifeSAi,r

Hence [Ag, €, —c.] equals the minor obtained from A, by replacing its r-th column by the column

€ei—ess Cep—egy -+ -3 €ei—es- 1 T # j, then the latter column is a column of A,, so the commutator

[Aq,ec,—c,] is zero. If r = j (and so €, — €, = €; — €5 € A(a)), then the commutator equals A, _, as

required. O
Denote Ag = 1.

Lemma 3.3. Let o, 8 € ®F. Then [A,, Ag] = 0, except the following cases:

[Aﬁi—€j7 AEj—En_i+1] (_1)l+1AlAl—1 Zf q) = An—b .] < n— 7’ + 17
[Aei—Gja Aei-‘rﬁj] = (_1)i+1AiAi—1 if & =Cp.
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PROOF. Suppose & = A,,_; (the proof for C,, is similar). Consider the case j < n —i+ 1 (the case
j >n —i+1 can be considered similarly). If 5 =€, — e, € B, then Ag = A, belongs to Z(n), hence
A, and Ag commute. So we may assume that 3 ¢ B, i.e., s #n —r + 1. According to Lemma 3.2, if
[Aq,e,] # 0 then v € A(«). This implies that if [A,, Ag] # 0 then 8 € A(a), because if 5 ¢ A(«) then
no e, involved in Ag are contained in A(«). Hence 3 = €; — €, for some s such that j+1 < s <n—i+1.

Suppose A, and Ag do not commute. Then, arguing as above, we see that a = ¢; — ¢; € A().
If s <n—7+1 then B(fS) consists of certain roots of the form e; — ¢; for s < t, but i < j < s so
a ¢ AB). If s =n—j+1, then Ag = A, is a central element of U(n), so it commutes with A,.
Finally, if s > n — j + 1, then A(J) consists of certain roots of the form e, —€j, n —s+1 <k <j—1.
Hence n —s+1 <4, but s <n—i+1,s0s=mn—i+1 Thus, if 3 # €; — €441 then [Ay, Ag] =0.

It remains to compute [Aq, A¢; ¢, _,,,]. One has

A, = e€1—€j.A17j + 652_5].1427]' + ...+ 661._6in7]'.

The minor A, ¢, _,, commutes with all variables involved in this expression except for e, ;. Since
Ai,j = (—1)Z+1AZ‘_1, we obtain

[Aa, Aej_en—i+1] = [(_1)i+1eﬁi_5in_1’ Aéj—En—i+1] = (_1)“_1[661‘—63'7Aﬁj—ﬁn—¢+1]Ai—1'
By Lemma 3.2,
[eei_€j7 Aej—en—iJrJ =Aci—euitn = A
This concludes the proof. O

Lemma 3.4. Suppose that ¢; # 0 for 1 <i <m' = |B'|. Then the ideal J. is primitive.

PROOF. Consider the case & = A,_; (the proof for C, is similar). Put A = U(n)/J.. Given
x € U(n), denote by T its image in A under the canonical projection. There is a natural partial order
on ®T: a > B if o — B is a sum of positive roots. Note that for k£ > 2 we have

Ap = *ee—e,_j 1 Ak—1 + terms containing only e, for a > € — €, g1

It follows that in A we can write any €g for 8 € B as a polynomial in €, for « € ®* \ B. In other
words, A is generated as an algebra by e, for a € &\ B.
Similarly, given o = ¢, — ¢; € & \ B, we have

Ay = £eqAp_1 + terms containing only e, for v > a, where
L ifj<n—itl,
n—j+1, ifj>n—i+1.
This implies that in A one can write €, as a polynomial in ﬁw for v € &1\ B. Thus, ﬁv for v € @7\ B

generate A as an algebra.
Now, given a = ¢; —¢; € ®T\ B, j <n—i+1, let

_ A _ i+1 -1 -1 A
Pa = AOH qo = (_]—) CZ- ci—lAEj_Enf’iJrl‘

Lemma 3.3 shows that [pa, gy] = 0 for a # 7, [pa; Py] = [¢a, ¢4] = 0 for all o, v, and [pa, ¢a] = 1. Hence
A is a quotient algebra of the Weyl algebra Ay for

N=(n—-2)+(n—-4)+...=#{e;—¢, €@ " \B|j<n—i+1}.

But the Weyl algebra Ay is simple, and A # 0, so A = Ay. Thus J. is primitive (see (11)). O
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PrROOF OF THEOREM 3.1. (ii) = (iii). Put ¢¢ = 1 and define £(8), 8 € B, by formula (12).
Denote p = (e¢;—¢;, j <n—i+1)c for A, 1, and p = (e, col(a) < 0)c for Cp. By [Pal, Theorem
1.1] and [Igl, Theorem 1.1] the space p is a polarization of n at fe. Let V¢ be the simple n-module
corresponding to the linear form f¢ and the polarization p, i.e., Ve = U(n) Qu(p) We, where We is a
one-dimensional representation of p defined by x — f¢(x). Then Ay acts on Vg via the scalar ¢, for
1 <k <m. Consequently J = J. C J(fe), and so J = J(fe).

(ili) = (i). Let p, V¢ be as in the previous paragraph. Let (8 be the k-th root from B, i.e.,
Br = €x — €n_ky1 for A,_q, and By = 2¢; for C,. Then ¢, # 0 for 1 < k < m’. Moreover,
EB) = (—1)**ey/ep_y for 1 < k < m, where ¢g = 1, because Ay acts on Ve via the scalar
(=D)FHLE(B1) ... &(Bk). By Lemma 3.4, the ideal J. is primitive. Since J. € J = J(f¢), we have
J =J.=J(fe), so J is centrally generated.

(i) = (ii). Assume, to the contrary, that some scalars ¢; equal zero. Suppose that i; < m' is the
minimal number such that ¢;; = 0. Now, define inductively two (finite) sequences {i;} and {k;} of
positive integers by the following rule. If ¢; is already defined and there exists k such that i; <k <m
and ¢, # 0, then set k; to be the minimal among all such k. Similarly, if k; is already defined and
there exists i such k; <1i < m' and ¢; = 0, then set ij+1 to be the minimal among all such 7.

To each j for which i; exists we assign the root

Eij—én_ij, if(I):An_l,
Vi =€, +é€i42, if®=Chandij<m'=m-1=n-1,

€n—1 — €n, if ®=Cp and i; =m/'.

To each j such that both i; and k; exist we assign the set of roots

_ {ei; — €n—kjr1, €y — €n—ijr1}, if ©= A, 1,
! {ei; +en; b if ® =C,,.

Denote the lengths of the sequences {i;}, {k;} by l1, Ik respectively, and put

B\ (Uj=i{8i, B,y VUL, Bj)) VUi Ty Uy}, iflr=r+1, lg=m,
B\ ngl{ﬁiﬂ ’Bkj}>> UU;:l Fj? lf l] = lK =7r.

Let ¢: X — Cbe amap. Put pu, = > oy ¢(a)e). By [Di4, 6.6.9 (c)], Ap—c, € J(uy), 1 <k <m,
where ¢}, = &(f) = o7 (Ag)(f). By the definition of Ay there exist at least two distinct maps 1,
2 such that ¢}, = ¢, for 1 < k < m. It follows from [Pal, Theorem 1.4] and from the proof of [Ig2,
Theorem 3.1] that the orbits of u,, and pu,, are disjoint, so J(pe,) # J (e, ). On the other hand, both
J(pp,) and J(piyp,) contain J = J., and this contradicts the maximality of J. The equivalence of (i),
(ii), (iii) is now proved. The fact that the map ¢ is reconstructed by J via formula (12) follows from
the proof of the implication (iii) = (i). O

Recall that A € n* is reqular if the N-orbit 2y C n* of A has maximal possible dimension. It follows
from [Kol, Theorem 2.3| that all Kostant forms are regular. Moreover, for & = A,,_1, a form A € n*
is a Kostant form if and only if it is regular. Since it is known that an orbit {2, contains at most one
Kostant form, Theorem 3.1 that the Dixmier map establishes a bijection between Kostant forms and
centrally generated ideals of U(n) for ® = A,,_1, Cp,.

For ® = A,_1, Theorem 3.1 implies that a primitive ideal J(X) of U(n) is centrally generated if
and only if it is “minimal” in the sense that the orbit 2, has maximal dimension. This reminds us of
Duflo’s famous theorem that if a is a semi-simple Lie algebra, then any minimal primitive ideal of U (a)
is centrally generated [Du|. However, for ® = C),, this analogy no longer holds as there exist regular
forms A such that J(A) is not centrally generated (due to the fact that not every regular form A is a
Kostant form).
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3.2. Infinite-dimensional case. Throughout this subsection we use the notation from Subsec-
tion 2.2. We now restrict ourselves to the case N' = Z~¢. This means that, up to isomorphism, n can
be chosen to correspond to the linear order €1 > €3 = €5 > ... = €5 = €4 > €3 for A (respectively, to
the linear order €1 > €2 = €3 > ... = 0 = ... = —ea > —e; for all other root systems). In particular,
¥; = e; for all © € Z~g, and f, = ey for all M C Z~g, a € @}\F/l. For o € &1, denote by e}, the linear
form on n such that e’ (eg) = 4,5 (the Kronecker delta) for all # € ®*. In this subsection we describe
all centrally generated ideals of U(n) for Ay and Cu.

For our choice of n, the Kostant cascade has the following form:

{€1 — €2, €3 — €4, ...} for Ay,
B=1q{e1+¢€, es+e€4, ...} for By and Dy,
{2€1, 2¢€9, ...} for C.

The forms fe = Zﬂer(ﬁ)eg € n* for all maps &: B — C* are by definition the Kostant forms on n.

Our goal is to construct a partial Dixmier map, which attaches to each Kostant form a primitive
ideal of U(n). As in Subsection 3.1, define the maps row: ® — Z and col: & — Z by putting
row(e; — €;) = row(e; + €;) = row(2¢;) = 14, col(e; + €j) = col(2¢;) = —j, col(e; — €j) = j, and set
Ri ={a € &1 | row(a) = k}. Put p = (e, a € @\ M)¢, where

{€ei —€j, i 0dd, j even, j < i} for A,
M =< R;, i even for By and D,
{ei—¢€, 1<i<j<n} for C.

Put also p, = p Nn,, where n, = nyr for M = {1,...,n}. Fix a Kostant form f = f;. By [Igl,
Theorem 1.1], p,, is a polarization of n,, at the linear form f,, = f|nn Thus, p = liglpn is a polarization
of n at f. Moreover, denote

Ve=Um) @ue W, V' =U,) @up,) W", (13)

where W (respectively, W) is the one-dimensional representation of p (respectively, of p,) given by
x — fe(x). The ny-modules V$ are simple and form a natural chain whose union is V¢. Hence, V¢ is a
simple n-module. We denote its annihilator in U(n) by J(f).

Remark 3.5. Let P(f¢) be the set of all polarizations a of n at f¢ such that a, = anmn, is a
polarization of n, at f, for large enough n. Define V¢ ; and Vg}u by formula (13) in which p and p,, are
replaced by a € P(f¢) and a,, respectively. Then Vg o = hg Vgna is a simple n-module. As the annihilator
of V' in U(n,) does not depend on a,,, we conclude that the annihilator of V¢ 4 does not depend on a.
This shows that J(f¢) can be defined via any polarization a € P(f).

Lemma 3.6. For Ay, and Cu, the primitive ideal J(f¢) is generated by Ay — ¢, for k > 1.

PRrROOF. It follows from the definition of p that Aj acts on V¢ and on each Ve for n > k via the
scalar ¢j. Let J,, be the annihilator of VS” in U(ny,), n > 1. Theorem 3.1 implies that J, is generated
by Ay — ¢ for 1 < k < m, where m = [n/2] for Ay, and m = n for C. Hence J, = J(fe) NU(ny,).
The result follows. ]

Now let V' be a simple n-module and J be its annihilator. By [Dil], for Ao, and Cy (respectively,
for By, and D), each Ay (respectively, Py) acts on V' via some scalar ¢ for k > 1.

Our third main result is as follows.

Theorem 3.7. Let & = A, Coo, and n be as above. The following conditions on a primitive ideal
J C U(n) are equivalent:

i) J is centrally generated,
ii) all scalars ¢y, are nonzero;
ili) J = J(fe) for a Kostant form fe.

If these conditions are satisfied, then the scalars cy, reconstruct £(5) exactly as in Theorem 3.1.
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PROOF. (ii) = (iii). Define £ by formula (12). Then J(f¢) € J by Lemma 3.6. On the other
hand, consider J,, = J(f¢) NU(ny,) for n > 1. The ideal J,, of U(n,) contains Ay — ¢, for 1 <k <m,
where m = [n/2] for Ao and m = n for C. Hence, according to Theorem 3.1, J,, is a maximal ideal
of U(n,) contained in J N U(ny,). Thus, J, = JNU(n,) forn > 1, ie., J = J(fe).

(iii) = (i). Follows from Lemma 3.6.

(i) = (ii). Assume, to the contrary, that some scalars ¢, are zero. Let i; be the minimal number
for which ¢;; = 0. Define two (possibly, infinite) sequences {i;} and {k;} of positive integers inductively
by the following rule. If ¢; is already defined and there exists k > ¢; such that ¢, # 0, then set k; to be
the minimal number for which cx; # 0. Similarly, if k; is already defined and there exists ¢ > k; such
that ¢; = 0, then set ;41 to be the minimal number such that Cijpq = 0.

To each j for which i; exists we assign the root

i = €2i;—1 — €2i;42, if &= A,
j = .
€i; T €41, if¢ = Cx.

To each j such that both i; and k; exist we assign the set of roots

r - {€2i;—1 — €an;, €ok;—1 —€2i;}, if @ = An,
T Ue, +en s if & = Cso.

Next, we define the subset X C ®* as in the proof of Theorem 3.1. Namely, let 35 be the k-th root
from B (i.e., B = €ap—1 — €1, for A, and S, = 2¢;, for C). Denote the lengths of the sequences {i;},
{k;} by I, Ik respectively, and put

B\ (U< 85> B, U Ujs4, ., ﬁj)) UUjo, TjU{vrpa}, iflr=r+1, k=
X = B\ Ujgr{ﬂijv /Bk]} U UJST F]a if l[ = lK =T,
B\ szl{ﬁij’ ﬁkj} UUjerja if l]:lK:oo.

Let py = > hex @(a)es, where p: X — C* is a map. To each o € &+ we assign the subset
S(a) C T as follows:

S(O[) = U;lflez{el - 6j}7 ]f o =€ — €j7
—ivila T EIUR;, i @ =Cu, a =26

We then set M = [Jge x Mp where Mg = {y € S(B) | v,8—7 ¢ U M.}, the latter union being taken
over all @ € X such that row(«) < row(3). Note that if 3 € X, o,y € T, « ¢ M and a+~ = 3, then
v € M. This implies that p,([z,y]) =0 for all z,y € a = (eq, @ € T\ M)c. Moreover, it is easy to
see that a is a subalgebra of n, hence we can consider the n-module V,, = U(n) ®p(q) Wi, where W, is
the one-dimensional representation of a given by x +— g (x). Let J, be the annihilator of V,, in U(n)
(we do not assert that J,, is a primitive ideal as we do not discuss the irreducibility of V,,). One can
check that the map ¢ can be chosen so that J C J,, so we assume in the rest of the proof that this
condition is satisfied.
Let « be the unique root from R;, N X. Explicitly,

€2i,—1 — €2i,42, if ® = Ay and ¢ =0 for all k > iy,

€2i1—1 — €2k if ® = A and ki > 41 is the minimal such that ¢, # 0,
o =

€, + €i1+2, if ® =Cy and ¢ =0 for all k > iq,

€, + €k, if ® = Cy and k; > ¢; is the minimal such that ¢, # 0.
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Given v € ®*, let M be a finite subset of Z~q such that v € ®,, n = |M|. Recall the definition
of ju and ¢pr from Subsection 2.2. Let A, be the image in U(nyps) of Aj;f(v) € U(ny,) under the
isomorphism ¢3;. Note that A, depends only on v and not on M. We now show that A, —c € J
for some scalar ¢. We prove this for ® = A, (the proof for ® = Cy is similar). First, suppose
col(a) = 2i; + 2. By Lemma 3.2, A, commutes with all e, except v = 8;; — «, and in the latter case
[Aq,eq] = £A04y = +Ag, = +A;,. Hence the image of A, belongs to the center of the image of
U(n) in the algebra End¢cV. By [Dil], there exist ¢ € C such that A, —c € J.

Now we apply induction on col(a) (the base is col(a) = 2i; + 2). By Lemma 3.2, for any o, A,
commutes with all e, for v ¢ A(a). On the other hand, if v € A(«) then [Ay,e,] = £Aq4+. But
v+ o € Ry and 2i; < col(y + a) < col(a). If col(y + o) = 24y, then A, = A;; € J. By the
inductive assumption, if col(y 4+ a) > 2i; + 2 then there exists ¢’ € C such that Ayyy — ¢ € J C J,.
It follows from the definition of V,, that for 6 € R;,, where col(d) > 2i1, As acts on V,, via the scalar
cs = Fpp(es) [Tr<i, 9(Bk). In other words, As —cs5 € J,. In particular, Ayiy — catry € Jy. Since cs in
uniquely determined by J,,, we conclude that ¢’ = cq4y = 0 because fi,(€ey45) = 0. Thus the image of
A, belongs to the center of the image of U(n) in the algebra EndcV. By [Dil] there exists ¢ € C such
that A, —c e J.

Further, we see that ¢ = £p(a) [[};, ¢(Bk) because J C J, and pyp(eq) = p(a). Note also that
Ay acts on V,, be the scalar ¢}, = (—1)*"1[]._, (8;). Thus there exist at least two maps 1, 2 from
X to C* such that ¢1(a) # p2(a) and ¢}, = ¢ for all k € Z~o. This implies that both J,, and J,,
contain J, which contradicts the uniqueness of c¢. The proof is complete. O

Denote by Ay the Weyl algebra with countably many generators p;, ¢; for ¢ € Z~, and relations

Note that the center of Ay is trivial because the center of A, is trivial for any » > 1. Similarly, A
is a simple algebra. We have the following corollary (cf. (11)).

Corollary 3.8. Let & = Ay, Coo, 1 be as above, and J be a primitive centrally generated ideal
of U(n). Then

i) J is mazimal,
ii) the center of U(n)/J is trivial;
iii) U(n)/J is isomorphic to the Weyl algebra As.

PROOF. (i) By Theorem 3.7, J = Jy, for some Kostant form fe. It follows from the proof of
Lemma 3.6 that J N U(n,) is maximal for all n > 1. Hence J is maximal.

(ii) This follows immediately from (iii).

(iii) One can construct a set of generators of U(n)/J satisfying (14) as in the proof of Lemma 3.4.
Since A is simple, we have U(n)/J = Ax. O

We expect Theorem 3.7 and Corollary 3.8 to hold also for By, and Ds. Finally, we note that

Theorem 3.7 establishes a one-to-one correspondence between centrally generated primitive ideals of
U(n) for ® = Ay, C and Kostant forms.
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