
A Koszul category of representations of finitary Lie

algebras

Elizabeth Dan-Cohena,1,∗, Ivan Penkova,2, Vera Serganovab,3

aJacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
bUniversity of California Berkeley, Berkeley CA 94720, USA

Abstract

We find for each simple finitary Lie algebra g a category Tg of integrable
modules in which the tensor product of copies of the natural and conatural
modules are injective. The objects in Tg can be defined as the finite length
absolute weight modules, where by absolute weight module we mean a mod-
ule which is a weight module for every splitting Cartan subalgebra of g. The
category Tg is Koszul in the sense that it is antiequivalent to the category
of locally unitary finite-dimensional modules over a certain direct limit of
finite-dimensional Koszul algebras. We describe these finite-dimensional al-
gebras explicitly. We also prove an equivalence of the categories To(∞) and
Tsp(∞) corresponding respectively to the orthogonal and symplectic finitary
Lie algebras o(∞), sp(∞).

Keywords: Koszul duality, finitary Lie algebra
2000 MSC: 17B65, 17B10, 16G10

∗Corresponding author. Fax: +49 421 200-3103
Email addresses: elizabeth.dancohen@gmail.com (Elizabeth Dan-Cohen),

i.penkov@jacobs-university.de (Ivan Penkov), serganov@math.berkeley.edu (Vera
Serganova)

1Partially supported by DFG grants PE 980/2-1 and PE 980/3-1 (DFG SPP1388).
2Partially supported by DFG grants PE 980/2-1 and PE 980/3-1 (DFG SPP1388).
3Partially supported by DFG grants PE 980/2-1 and PE 980/3-1 (DFG SPP1388), as

well as NSF grant 0901554.

Preprint submitted to Advances in Mathematics September 15, 2015



1. Introduction

The classical simple complex Lie algebras sl(n), o(n), sp(2n) have sev-
eral natural infinite-dimensional versions. In this paper we concentrate on
the “smallest possible” such versions: the direct limit Lie algebras sl(∞) :=
lim−→ (sl(n))n∈Z>2 , o(∞) := lim−→ (o(n))n∈Z≥3

, sp(∞) := lim−→ (sp(2n))n∈Z≥2
.

From a traditional finite-dimensional point of view, these Lie algebras are
a suitable language for various stabilization phenomena, for instance stable
branching laws as studied by R. Howe, E.-C. Tan and J. Willenbring [HTW].
The direct limit Lie algebras sl(∞), o(∞), sp(∞) admit many characteriza-
tions: for instance, they represent (up to isomorphism) the simple finitary
(locally finite) complex Lie algebras [B, BSt]. Alternatively, these Lie al-
gebras are the only three locally simple locally finite complex Lie algebras
which admit a root decomposition [PStr].

Several attempts have been made to build a basic representation the-
ory for g = sl(∞), o(∞), sp(∞). As the only simple finite-dimensional
representation of g is the trivial one, one has to study infinite-dimensional
representations. On the other hand, it is still possible to study represen-
tations which are close analogs of finite-dimensional representations. Such
a representation should certainly be integrable, i.e. it should be isomorphic
to a direct sum of finite-dimensional representations when restricted to any
simple finite-dimensional subalgebra.

The first phenomenon one encounters when studying integrable represen-
tations of g is that they are not in general semisimple. This phenomenon
has been studied in [PStyr] and [PS], but it had not previously been placed
within a known more general framework for non-semisimple categories. The
main purpose of the present paper is to show that the notion of Koszulity
for a category of modules over a graded ring, as defined by A. Beilinson, V.
Ginzburg and W. Soergel in [BGS], provides an excellent tool for the study
of integrable representations of g = sl(∞), o(∞), sp(∞).

In this paper we introduce the category Tg of tensor g-modules. The
objects of Tg are defined at first by the equivalent abstract conditions of
Theorem 3.4. Later we show in Corollary 4.6 that the objects of Tg are
nothing but finite length submodules of a direct sum of several copies of
the tensor algebra T of the natural and conatural representations. In the
finite-dimensional case, i.e. for sl(n), o(n), or sp(2n), the appropriate tensor
algebra is a cornerstone of the theory of finite-dimensional representations
(Schur-Weyl duality, etc.). In the infinite-dimensional case, the tensor al-
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gebra T was studied by Penkov and K. Styrkas in [PStyr]; nevertheless
its indecomposable direct summands were not understood until now from a
categorical point of view.

We prove that these indecomposable modules are precisely the indecom-
posable injectives in the category Tg. Furthermore, the category Tg is Koszul
in the following sense: Tg is antiequivalent to the category of locally unitary
finite-dimensional modules over an algebra Ag which is a direct limit of finite-
dimensional Koszul algebras (see Proposition 5.1 and Theorem 5.5).

Moreover, we prove in Corollary 6.4 that for g = sl(∞) the Koszul dual
algebra (A!

g)
opp is isomorphic to Ag. This together with the main result of

[PStyr] allows us to give an explicit formula for the Ext group between any
two simple objects of Tg when g = sl(∞). For the cases of g = o(∞) and g =
sp(∞) we discover another interesting fact: the algebras Ao(∞) and Asp(∞)

are isomorphic. This yields an equivalence of categories To(∞) ' Tsp(∞),
which is Corollary 6.11.

In summary, the results of the present paper show how the non-semisimplicity
of tensor modules arising from the limit process n→∞ falls strikingly into
the general Koszul pattern discovered by Beilinson, Ginzburg and Soergel.
This enables us to uncover the structure of the category of tensor represen-
tations of g.

Since the present paper has been submitted there have been several devel-
opments. First, in [SS] the categories Tg have been studied from a different
perspective. In particular, it is shown there that these categories satisfy im-
portant universality properties in the class of abelian symmetric monoidal
categories.

In [PS1] categories of tensor modules have been introduced for a larger
class of infinite-dimensional Lie algebras, and it has been shown that these
categories are equivalent to Tg for appropriate g. In [Sr] results from the
present paper are generalized to the case of classical Lie superalgebras.

Finally, in [FPS] the category Tsl(∞) has been used to categorify the
boson-fermion correspondence.
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2. Preliminaries

The ground field is C. By Sn we denote the n-th symmetric group, and
by C[Sn] its group algebra. The sign ⊗ stands for ⊗C, and the sign E stands
for the semidirect sum of Lie algebras. We denote by ( · )∗ the algebraic dual,
i.e. HomC( · ,C).

Let g be one of the infinite-dimensional simple finitary Lie algebras,
sl(∞), o(∞), or sp(∞). Here sl(∞) = lim−→ sl(n), o(∞) = lim−→ o(n), sp(∞) =

lim−→ sp(2n), where in each direct limit the inclusions can be chosen as “left
upper corner” inclusions. We consider the “exhaustion” g = lim−→ gn to be

fixed, taking gn = sl(n) for g = sl(∞), gn = o(2n) or gn = o(2n + 1) for
g = o(∞), and gn = sp(2n) for g = sp(∞). By Gn we denote the ad-
joint group of gn It is clear that {Gn} forms a direct system and defines an
ind-group G = lim−→ Gn. As mentioned in the introduction, the Lie algebras

sl(∞), o(∞), and sp(∞) admit several equivalent intrinsic descriptions, see
for instance [B, BSt, PStr].

It is clear from the definition of g = sl(∞), o(∞), sp(∞) that the no-
tions of semisimple or nilpotent elements make sense: an element g ∈ g is
semisimple (respectively, nilpotent) if g is semisimple (resp., nilpotent) as an
element of gn for some n. In [NP, DPS], Cartan subalgebras of g have been
studied. In the present paper we need only the notion of a splitting Cartan
subalgebra of g: this is a maximal toral (where toral means consisting of
semisimple elements) subalgebra h ⊂ g such that g is an h-weight module,
i.e.

g =
⊕
α∈h∗

gα,

where gα = {g ∈ g | [h, g] = α(h)g for all h ∈ h}. The set ∆ := {α ∈
h∗ \ {0} | gα 6= 0} is the set of h-roots of g. More generally, if h is a splitting
Cartan subalgebra of g and M is a g-module, M is an h-weight module if

M =
⊕
α∈h∗

Mα,

where Mα := {m ∈M | h ·m = α(h)m for all h ∈ h}.
By V we denote the natural representation of g; that is, V = lim−→ Vn,

where Vn is the natural representation of gn. We set also V∗ = lim−→ V ∗n ; this

is the conatural representation of g. For g = o(∞), sp(∞), V ' V∗, whereas
V 6' V∗ for g = sl(∞). Note that V∗ is a submodule of the algebraic dual
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V ∗ = HomC(V,C) of V . Moreover, g ⊂ V ⊗ V∗, and sl(∞) can be identified
with the kernel of the contraction φ : V ⊗ V∗ → C, while

g ' Λ2(V ) ⊂ V ⊗ V = V ⊗ V∗ for g = o(∞),

g ' S2(V ) ⊂ V ⊗ V = V ⊗ V∗ for g = sp(∞).

Let G̃ be the subgroup of AutV consisting of those automorphisms for
which the induced automorphism of V ∗ restricts to an automorphism of V∗.
Then clearly G ⊂ G̃ ⊂ Aut g, and moreover G̃ = Aut g for g = o(∞), sp(∞)
[BBCM, Corollary 1.6 (b)]. For g = sl(∞), the group G̃ has index 2 in
Aut g: the quotient Aut g/G̃ is represented by the automorphism

g 7→ −gt

for g ∈ sl(∞) [BBCM, Corollary 1.2 (a)].
It is essential to recall that if g = sl(∞), sp(∞), all splitting Cartan

subalgebras of g are G̃-conjugate, while there are two G̃-conjugacy classes
for g = o(∞). One class comes from the exhaustion of o(∞) as lim−→ o(2n),

and the other from the exhaustion of the form lim−→ o(2n + 1). For further

details we refer the reader to [DPS]. Here are the explicit forms of the root
systems of g:

{εi − εj | i 6= j ∈ Z>0} for g = sl(∞), gn = sl(n),

{±εi ± εj | i 6= j ∈ Z>0} ∪ {±2εi | i ∈ Z>0} for g = sp(∞), gn = sp(2n),

{±εi ± εj | i 6= j ∈ Z>0} for g = o(∞), gn = o(2n),

{±εi ± εj | i 6= j ∈ Z>0} ∪ {±εi | i ∈ Z>0} for g = o(∞), gn = o(2n+ 1).

Our usage of εi ∈ h∗ is compatible with the standard usage of εi as a linear
function on h ∩ gn for all n > i.

In the present paper we study integrable g-modules M for g ' sl(∞),
o(∞), sp(∞). By definition, a g-module M is integrable if dim{m, g ·m, g2 ·
m, ...} <∞ for all g ∈ g, m ∈M . More generally, if M is any g-module, the
set g[M ] of M -locally finite elements in g, that is

g[M ] := {g ∈ g | dim{m, g ·m, g2 ·m, . . .} <∞ for all m ∈M},

is a Lie subalgebra of g. This follows from the analogous fact for finite-
dimensional Lie algebras, discovered and rediscovered by several mathemati-
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cians [GQS, F, K]. We refer to g[M ] as the Fernando-Kac subalgebra of
M .

By g-mod we denote the category of all g-modules, and following the
notation of [PS], we let Intg denote the category of integrable g-modules.
We have the functor

Γg : g-mod→ Intg

which takes an arbitrary g-module to its largest integrable submodule.

3. The category Tg

If γ ∈ Aut g and M is a g-module, let Mγ denote the g-module twisted by
γ: that is, Mγ is equal to M as a vector space, and the g-module structure
on Mγ is given by γ(g) ·m for m ∈Mγ and g ∈ g.

Definition 3.1. 1. A g-module M is called an absolute weight module if
M is an h-weight module for every splitting Cartan subalgebra h ⊂ g.

2. A g-module M is called G̃-invariant if for any γ ∈ G̃ there is a g-
isomorphism Mγ 'M .

3. A subalgebra of g is called finite corank if it contains the commutator
subalgebra of the centralizer of some finite-dimensional subalgebra of
g.

Proposition 3.2. Any absolute weight g-module is integrable.

Proof. Let M be an absolute weight g-module. Every semisimple element
h of g lies in some splitting Cartan subalgebra h of g, and since M is an
h-weight module, we see that h acts locally finitely on M . As g is generated
by its semisimple elements, the Fernando-Kac subalgebra g[M ] equals g, i.e.
M is integrable.

We define the category of absolute weight modules as the full subcategory
of g-mod whose objects are the absolute weight modules. Proposition 3.2
shows that the category of absolute weight modules is in fact a subcategory
of Intg.

Lemma 3.3. For each n one has G̃ = G · G̃′n, where

G̃′n := {γ ∈ G̃ | γ(g) = g for all g ∈ gn}.
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Proof. Let g be o(∞) or sp(∞), and let γ ∈ G̃. Fix a basis {wi} of Vn.
There exists γ′′ ∈ G such that (γ′′)−1(γ(wi)) = wi for all 1 ≤ i ≤ 2n. Since
g ⊂ V ⊗ V and gn = g ∩ (Vn ⊗ Vn), we see that (γ′′)−1γ ∈ G̃′n.

For g = sl(∞), the analogous statement is as follows. In this case one has
gn = g∩ (Vn⊗V ∗n ). Fix dual bases {wi} and {w∗i } of Vn and V ∗n , respectively.
Then for any γ ∈ G̃, there is an element γ′′ ∈ G such that (γ′′)−1(γ(wi)) = wi
and (γ′′)−1(γ(w∗i )) = w∗i for each 1 ≤ i ≤ n. Therefore (γ′′)−1γ ∈ G̃′n.

Theorem 3.4. The following conditions on a g-module M of finite length
are equivalent:

1. M is an absolute weight module.

2. M is a weight module for some splitting Cartan subalgebra h ⊂ g and
M is G̃-invariant.

3. M is integrable and Anngm is finite corank for all m ∈M .

Proof. Let us show that (1) implies (3). We already proved in Proposition 3.2
that a g-module M satisfying (1) is integrable. Furthermore, it suffices to
prove that Anngm is finite corank for all m ∈M under the assumption that
the g-module M is simple. This follows from the observation that a finite
intersection of finite corank subalgebras is finite corank.

Fix a splitting Cartan subalgebra h of g such that h ∩ gn is a Cartan
subalgebra of gn; let b = h E n be a Borel subalgebra of g whose set of
roots (i.e. positive roots) is denoted by ∆+. For each positive root α, let eα,
hα, fα be a standard basis for the corresponding root sl(2)-subalgebra. Fix
additionally a nonzero h-weight vector m ∈M .

Choose a set of commuting mutually orthogonal positive roots Y ⊂ ∆+.
The set of semisimple elements {hα + eα | α ∈ Y } is G̃-conjugate to the set
{hα | α ∈ Y }, and can thus be extended to a splitting Cartan subalgebra
h′ of g. Since M is an absolute weight module, there is a nonzero h′-weight
vector m′ ∈ M . As M is simple, it must be that m ∈ U(g) ·m′. Moreover,
one has m ∈ U(gn) ·m′ for some n. For almost all α ∈ Y , hα and eα commute
with gn, in which case m is an eigenvector for hα+eα. Thus eα ·m is a scalar
multiple of m. Since M is integrable, eα acts locally nilpotently, and we
conclude that eα ·m = 0 for all but finitely many α. By considering the set
{hα+fα | α ∈ Y } in place of {hα+eα | α ∈ Y }, we see that fα ·m = 0 for all
but finitely many α, and hence eα ·m = fα ·m = 0 for all but finitely many
α ∈ Y .
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We now consider separately each of the three possible choices of g. For
g = sl(∞), we may assume that the simple roots of b are of the form {εi −
εi+1 | i ∈ Z>0}. We first choose the set of commuting mutually orthogonal
positive roots to be Y1 = {ε2i−1 − ε2i | i ∈ Z>0} and obtain in this way that
eεi−εi+1

·m = fεi−εi+1
·m = 0 for almost all odd indices i. By choosing the set of

commuting mutually orthogonal positive roots as Y2 = {ε2i−ε2i+1 | i ∈ Z>0},
we have eεi−εi+1

· m = fεi−εi+1
· m = 0 for almost all even indices i, hence

for almost all i. Since it contains eεi−εi+1
and fεi−εi+1

for almost all i, the
subalgebra Anngm is a finite corank subalgebra of g = sl(∞).

For g = o(∞), one may assume that the set of simple roots of g is {−ε1−
ε2}∪{εi−εi+1 | i ∈ Z>0}. In this case in addition to the two sets Y1 = {ε2i−1−
ε2i | i ∈ Z>0} and Y2 = {ε2i − ε2i+1 | i ∈ Z>0}, one considers also the set of
commuting mutually orthogonal positive roots Y3 = {−ε2i− ε2i+1 | i ∈ Z>0}.
For g = sp(∞), the set of simple roots can be chosen as {−2ε1} ∪ {εi− εi+1 |
i ∈ Z>0}, and one considers the following three sets of commuting mutually
orthogonal positive roots:

Y1 ={ε2i−1 − ε2i | i ∈ Z>0}
Y2 ={ε2i − ε2i+1 | i ∈ Z>0}
Y3 ={−2εi | i ∈ Z>0}.

In both cases Anngm contains eα, fα for all but finitely many α ∈ Y1∪Y2∪Y3.
Hence we conclude that the subalgebra Anngm is a finite corank subalgebra
of g; that is, (1) implies (3).

Next we prove that (3) implies (2).
We first show that a g-module M satisfying (3) is a weight module for

some splitting Cartan subalgebra h ⊂ g. Fix a finite set {m1, . . . ,ms} of
generators of M . Let g′n be the commutator subalgebra of the centralizer in
g of gn. There exists a finite corank subalgebra that annihilates m1, . . . ,ms,
and hence g′n annihilates m1, . . . ,ms for some n. Let h′n be a splitting Cartan
subalgebra of g′n. Obviously M is semisimple over h′n. One can find k and
a Cartan subalgebra hk ⊂ gk such that h = h′n + hk is a splitting Cartan
subalgebra of g. (If g = o(∞) or sp(∞) one can choose k = n; if g = sl(∞),
one can set k = n + 1). Since M is integrable, M is semisimple over hk.
Hence M is semisimple over h.

To finish the proof that (3) implies (2), we need to show that M is G̃-
invariant. For each n one has G̃ = G · G̃′n by Lemma 3.3. Fix γ ∈ G̃
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and m ∈ M . Then for some n, the vector m is fixed by g′n. We choose
a decomposition γ = γ′′γ′ so that γ′ ∈ G̃′n and γ′′ ∈ G. We then set
γ(m) := γ′′(m), and note that the action of G on M is well defined because M
is assumed to be integrable. This yields a well-defined G̃-module structure on
M since, for any other decomposition γ = γ̄′′γ̄′ as above, one has (γ̄′′)−1γ′′ =
γ̄′(γ′)−1 ∈ G̃′n ∩ G = {γ ∈ G | γ(g) = g for all g ∈ gn} which must preserve
m.

Fix now γ ∈ G̃ and consider the linear operator

ϕγ : Mγ →M, m 7→ γ−1(m).

We claim that ϕγ is an isomorphism. For this we need to check that g ·
ϕγ(m) = ϕγ(γ(g) ·m) for any g ∈ g and m ∈ M . We have g · ϕγ(m) = g ·
(γ−1(m))) = ϕγ(γ(g ·γ−1(m))), hence it suffices to check that γ(g ·γ−1(m)) =
γ(g)·m for every g ∈ g and m ∈M . After choosing a decomposition γ = γ′′γ′

such that γ′′ ∈ G and γ′ fixes m, g and g · m, all that remains to check is
that

γ′′(g · (γ′′)−1(m)) = γ′′(g) ·m

for all g ∈ g. This latter equality is the well-known relation between the
G-module structure on M and the adjoint action of G on g.

To complete the proof of the theorem we need to show that (2) implies
(1). What is clear is that (2) implies a slightly weaker statement, namely
that M is a weight module for any splitting Cartan subalgebra belonging to
the same G̃-conjugacy class as the given splitting Cartan subalgebra h. For
g = sl(∞), sp(∞), this proves (1), as all splitting Cartan subalgebras are
conjugate under G̃.

Consider now the case g = o(∞). In this case there are two G̃-conjugacy
classes of splitting Cartan subalgebras [DPS]. Note that if M is semisimple
over every Cartan subalgebra from one G̃-conjugacy class, then (3) holds as
follows from the proof of the implication (1) ⇒ (3). Furthermore, the proof
that a g-module of finite length M satisfying (3) is a weight module for some
splitting Cartan subalgebra involves a choice of gn. For g = o(∞) there
are two different possible choices, namely gn = o(2n) and gn = o(2n + 1),
which in turn produce splitting Cartan subalgebras from the two G̃-conjugacy
classes. This shows that in each G̃-conjugacy class there is a splitting Cartan
subalgebra of g for which M is a weight module, and hence we may conclude
that (2) implies (1) also for g = o(∞).
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Corollary 3.5. Let M be a module satisfying the conditions of Theorem 3.4.
Then M =

⋃
n>0M

g′n, where g′n is the commutator of the centralizer of gn in
g.

Proof. Any submodule of M with the property that the annihilator of each
of its elements contains g′n for some n is clearly contained in

⋃
n>0M

g′n .
Condition (3) of Theorem 3.4 states that Anngm is finite corank for all
m ∈M , which is to say that M has this property.

Corollary 3.6. Let g = o(∞) and M be a finite length g-module which is
an h-weight module for all splitting Cartan subalgebras h ⊂ g in either of
the two G̃-conjugacy classes. Then M is an h-weight module for all splitting
Cartan subalgebras h of g.

Proof. Let h be a Cartan subalgebra of g, and let M be a finite length g-
module which is a weight module for all splitting Cartan subalgebras in the
G̃-conjugacy class of h. Then M is integrable, by the same argument as in
the proof of Proposition 3.2. Finally, (3) holds by the same proof as that of
(1)⇒(3) in Theorem 3.4.

We denote by Tg the full subcategory of g-mod consisting of finite length
modules satisfying the equivalent conditions of Theorem 3.4. Then Tg is an
abelian category and a monoidal category with respect to the usual tensor
product of g-modules, and Tg is a subcategory of the category of absolute
weight modules. In addition, for g = sl(∞), Tg has an involution

( · )∗ : Tg → Tg,

which one can think of as “restricted dual.” Indeed, in this case any outer
automorphism w ∈ Aut g induces the autoequivalence of categories

wg : Tg → Tg

M 7→Mw.

Since, however, any object of Tg is G̃-invariant, the functor wg does not
depend on the choice of w and is an involution, i.e. w2

g = id. We denote
this involution by ( · )∗ in agreement with the fact that it maps V to V∗. For
g = o(∞), sp(∞), we define ( · )∗ to be the trivial involution on Tg.
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4. Simple objects and indecomposable injectives of Tg

Next we describe the simple objects of Tg. For this we need to recall some
results about tensor representations from [PStyr].

By T we denote the tensor algebra T (V ⊕ V∗) for g = sl(∞), and T (V )
for g = o(∞), sp(∞). That is, we have

T :=
⊕

p≥0, q≥0

T p,q for g = sl(∞),

and

T :=
⊕
p≥0

T p for g = o(∞), sp(∞),

where T p,q := V ⊗p ⊗ (V∗)
⊗q and T p := V ⊗p. In addition, we set

T≤r :=
⊕
p+q≤r

T p,q for g = sl(∞),

and

T≤r :=
⊕
p≤r

T p for g = o(∞), sp(∞).

By a tensor module we mean any g-module isomorphic to a subquotient of a
finite direct sum of copies of T≤r for some r.

By a partition we mean a non-strictly decreasing finite sequence of pos-
itive integers µ = (µ1, µ2, . . . , µs) with µ1 ≥ µ2 ≥ · · · ≥ µs. The empty
partition is denoted by 0.

Given a partition µ = (µ1, µ2, . . . , µs) and a classical finite-dimensional
Lie algebra gn of rank n ≥ s, the irreducible gn-module (Vn)µ with highest
weight µ is always well defined. Moreover, for a fixed µ and growing n,
the modules (Vn)µ are naturally nested and determine a unique simple (g =
lim−→ gn)-module Vµ := lim−→ (Vn)µ. For g = sl(n), there is another simple

g-module naturally associated to µ, namely (Vµ)∗.
In what follows we will consider pairs of partitions for g = sl(∞) and

single partitions for g = o(∞), sp(∞). Given λ = (λ1, λ2) for g = sl(∞), we
set Ṽλ := Vλ1 ⊗ (Vλ2)∗. For g = o(∞), sp(∞) and for a single partition λ, the
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g-module Ṽλ is similarly defined: we embed g into sl(∞) so that both the
natural sl(∞)-module and the conatural sl(∞)-module are identified with V
as g-modules, and define Ṽλ as the irreducible sl(∞)-module Vλ correspond-
ing to the partition λ as defined above. Then Ṽλ is generally a reducible
g-module.

It is easy to see that for g = sl(∞),

T =
⊕
λ

dλṼλ (4.1)

where λ = (λ1, λ2), dλ := dλ1dλ2 , and dλi is the dimension of the simple Sn-
module corresponding to the partition λi for n = |λi|. For g = o(∞), sp(∞),
Equation (4.1) also holds, with λ taken to stand for a single partition. Both
statements follow from the obvious infinite-dimensional version of Schur-Weyl
duality for the tensor algebra T considered as an sl(∞)-module (see for
instance [PStyr]). Moreover, according to [PStyr, Theorems 3.2, 4.2],

soc(Ṽλ) = Vλ (4.2)

for g = o(∞), sp(∞), while soc(Ṽλ) is a simple g-module for g = sl(∞)
[PStyr, Theorem 2.3]. Here soc( · ) stands for the socle of a g-module. We
set Vλ := soc(Ṽλ) also for g = sl(∞), so that (4.2) holds for any g. It is
proved in [PStyr] that Ṽλ (and consequently T≤r) has finite length.

It follows also from [PStyr] that any simple tensor module is isomorphic
to Vλ for some λ. In particular, every simple subquotient of T is also a simple
submodule of T .

For any partition µ = (µ1, µ2, . . . , µs), we set #µ := s and |µ| :=
∑s

i=1 µi.
In the case of g = sl(∞), when λ = (λ1, λ2), we set #λ := #λ1 + #λ2 and
|λ| := |λ1|+ |λ2|.

We are now ready for the following lemma.

Lemma 4.1. Let g = sl(∞) and λ = (λ1, λ2) with #λ = k > 0. Then
(Vk)λ1 ⊗ (V ∗k )λ2 generates Ṽλ.

Let g = o(∞), sp(∞), and let λ be a partition with #λ = k > 0. Then
the sl(Vk)-submodule (Vk)λ of Ṽλ generates Ṽλ.

Proof. Set M := Ṽλ. Let g = sl(∞). Then M = Vλ1 ⊗ (V∗)λ2 , and let
Mn := (Vn)λ1 ⊗ (V ∗n )λ2 . It is easy to check that the length of Mn as a gn-
module stabilizes for n ≥ k, and moreover it coincides with the length of M ;
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a formula for the length of M is implied by [PStyr, Theorem 2.3]. Hence
(Vk)λ1 ⊗ (V ∗k )λ2 generates M .

For g = o(∞), sp(∞) the length of the sl(Vn)-module (Vn)λ considered
as a gn-module equals the length of M as a g-module when 2k ≤ dimVn (see
Theorems 3.3 and 4.3 in [PStyr]). Hence (Vk)λ generates M .

Theorem 4.2. A simple absolute weight g-module is a simple tensor module.

Proof. Let M be a simple absolute weight g-module. Then M is integrable
by Proposition 3.2, and it also satisfies Theorem 3.4 (3). Fix 0 6= m ∈ M
and choose k such that the commutator subalgebra g′k of the centralizer of
gk annihilates m. In the orthogonal case we assume that gk = o(2k). We will
prove that M is the unique simple quotient of a parabolically induced module
for a parabolic subalgebra p of the form p = l E m, where m is the nil-radical
of p and l is a locally reductive subalgebra. Define p ⊂ g as follows:

• If g = sl(∞), we identify g with the subspace of traceless elements
in V∗ ⊗ V . Consider the decomposition V = Vk ⊕ V ′, where Vk is
the natural gk-module and V ′ is the natural g′k-module. Furthermore,
V∗ = V ⊥k ⊕ (V ′)⊥, where (V ′)⊥ = V ∗k and V ⊥k = V ′∗ . We define the
subalgebra l of p to be equal the traceless part of V ∗k ⊗ Vk ⊕ V ′∗ ⊗ V ′,
and we set m := V ∗k ⊗ V ′.

• If g = o(∞), we use the identification g ' Λ2(V ). Let Vk ⊂ V be the
copy of the natural representation of gk. Consider the decomposition
Vk = W ⊕W ∗ for some maximal isotropic subspaces W , W ∗ of Vk and
set V ′ = V ⊥k . Then p := l E m, where l := W ∗ ⊗ W ⊕ Λ2(V ′) and
m := W ⊗ V ′ E Λ2(W ).

• If g = sp(∞), we use the identification g ' S2(V ). Then Vk, W , W ∗

and V ′ are defined in the same way as for g = o(∞), and p := l E m,
where l := W ∗ ⊗W ⊕ S2(V ′) and m := W ⊗ V ′ E S2(W ).

Note that g′k is a subalgebra of finite codimension in l. In the orthogonal
and symplectic cases l = gl(W ) ⊕ g′k. If g = sl(∞), then l = sl(Vk) ⊕ g̃k,
where g̃k is the centralizer of gk in g:

g̃k = {−trX

k
IdVk ⊕X |X ∈ V ′∗ ⊗ V ′}.

Clearly g̃k is isomorphic to the Lie algebra V ′∗ ⊗ V ′.
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We claim that the m-invariant part of M , denoted Mm, is nonzero. Note
that m is abelian for g = sl(∞). For g = o(∞) or sp(∞), we have a de-
composition m = m1 E m2 such that m2 = [m1,m1] is a finite-dimensional
abelian subalgebra: m2 = Λ2(W ) in the orthogonal case and m2 = S2(W ) in
the symplectic case. Since M is integrable, m2 acts locally nilpotently on M .
Hence without loss of generality we may assume that m2 · m = 0. We put
m1 := m in the case g = sl(∞).

Next observe that U(m)·m = S·(m1)·m and that S·(m1) is isomorphic as a
g′k-module to a direct sum of (Ṽ ′)λ for some (infinite) set of λ satisfying #λ ≤
k. By Lemma 4.1, there exists a finite-dimensional subspace X ⊂ m1 such
that S·(X) generates S·(m1) as a g′k-module. Since M is integrable, X acts
locally nilpotently on M . Hence S>p(X) ·m = 0 for some p. This, together
with our assumption that g′k ·m = 0, allows us to conclude S>p(m) ·m = 0,
which in turn implies Mm 6= 0.

Since M is irreducible, it is generated by Mm and is therefore the unique
irreducible quotient of the parabolically induced module U(g)⊗U(p)M

m. Fur-
thermore, the irreducibility of M implies the irreducibility of Mm as an
l-module (otherwise a proper submodule of Mm would generate a proper
submodule of M). Note also that the argument of the previous paragraph
implies that as a g′k-module Mm is isomorphic to a subquotient of S·(m1);
that is, Mm is isomorphic to a subquotient of a finite direct sum of some
tensor powers of V ′.

Let us first consider the case g = o(∞) or sp(∞). Recall that Mm is
irreducible as an l-module and is a tensor module over g′k. This, together
with the integrability of Mm as an l-module, implies the existence of an
isomorphism of l-modules Mm ' L ⊗ (V ′)ν , where L is some irreducible
finite-dimensional gl(W )-module and ν = (ν1, ν2, . . . , νr) is some partition.
Let (µ1, . . . , µk) denote the highest weight of L with respect to some Borel
subalgebra of bk of gl(W ). Consider a Borel subalgebra b of g such that
bk ⊂ b ⊂ p. Without loss of generality, we may assume that the roots of b
are

{εi ± εj | i < j ∈ Z>0} for g = o(∞),

{εi ± εj | i < j ∈ Z>0} ∪ {2εi | i ∈ Z>0} for g = sp(∞).
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The roots of bk will then be

{εi ± εj | 0 < i < j ≤ k} for g = o(∞),

{εi ± εj | 0 < i < j ≤ k} ∪ {2εi | 0 < i ≤ k} for g = sp(∞).

Observe that M is a highest weight module with respect to b, and its highest
weight equals λ := µ1ε1 + · · · + µkεk + ν1εk+1 + · · · + νrεk+r. Furthermore,
the integrability of M as a g-module implies that µk ≥ ν1 and all µi are
integers. In other words, the weight λ can be identified with the partition
(µ1, . . . , µk, ν1, . . . , νr). Next, consider the simple tensor g-module Vλ (where
λ is considered as a partition), and note that both M and Vλ are simple
g-modules with the same highest weight with respect to b. Therefore M and
Vλ are isomorphic as g-modules.

Now let g = sl(∞). Then by the same argument as above we see that
Mm is isomorphic to L1⊗L2, where L1 is a simple finite-dimensional sl(Vk)-
module and L2 is a simple integrable g̃k-module. Since, however, L2 is iso-
morphic to a submodule of the tensor algebra T (V ′) as a g′k-module, we check
immediately that as a g′k-module L2 must be isomorphic to (V ′)ν for some
partition ν = (ν1, ν2, . . . , νr). There is a g̃k-submodule of (V ′)⊗|ν| (i.e. a ten-
sor module of g̃k ∼= V ′∗ ⊗ V ′) with the same restriction to g′k as L2; abusing
notation slightly, we denote it also by (V ′)ν . Next, using the inclusions

sl(Vk)⊕ g′k ⊂ l ⊂ gl(Vk)⊕ g̃k

and the fact that gl(Vk) ⊕ g̃k is a direct sum of l and the abelian one-
dimensional Lie algebra (namely the center of gl(Vk)), we conclude that Mm

must be isomorphic to the restriction to l of a gl(Vk)⊕ g̃k-module of the form
L⊗ (V ′)ν , where the gl(Vk)-module L is simple and uniquely determined up
to isomorphism. Denote by µ = (µ1, . . . , µk) the highest weight of L. It is
easy to check in this case that the integrability of M as a g-module implies
that µ1 ≥ µ2 ≥ · · · ≥ µk are nonpositive integers. Consider the pair of
partitions

λ := ((ν1, ν2, . . . , νr), (−µk, . . . ,−µ1))

and the corresponding tensor g-module Vλ. Then we clearly have an iso-
morphism of p-modules V m

λ ' Mm. Therefore, being the unique irreducible
quotients of the corresponding parabolically induced modules, M and Vλ are
isomorphic as g-modules.
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Remark 4.3. In [PS] certain categories Tensg and T̃ensg are introduced and

studied in detail. The simple objects of both Tensg and T̃ensg are the same as
the simple objects of Tg, and in fact these three categories form the following
chain:

Tg ⊂ Tensg ⊂ T̃ensg.

However, the objects of the categories Tensg and T̃ensg generally have infinite
length. In the present paper we will not make use of the categories Tensg

and T̃ensg, and refer the interested reader to [PS].

Let us denote by C the category of g-modules which satisfy Condition (3)
of Theorem 3.4. Consider the functor B from Intg to C given by

B(M) =
⋃
n>0

M g′n .

It is clear that B does not depend on the choice of fixed exhaustion g = lim−→ gn.

Lemma 4.4. For any M ∈ Intg, the module B(Γg(M
∗)) is injective in the

category C. Furthermore, any finite length injective module in the category C
is injective in Tg.

Proof. First, let us note that B is a right adjoint to the inclusion functor
C ⊂ Intg. To see this, consider that the image of any homomorphism from
a module M ∈ C to a module Y ∈ Intg is automatically contained in B(Y ).
Since it is a right adjoint to the inclusion functor, B takes injective modules
to injective modules, and the lemma follows from the fact that Γg(M

∗) is
injective for any integrable g-module M , which is [PS, Proposition 3.2]. The
second statement is clear.

Proposition 4.5. For each r, the module T≤r is injective in the category of
absolute weight modules and in Tg.

Proof. We consider the case g = sl(∞), and note that the other cases are
similar. It was shown in [PS] that (T q,p)∗ is an integrable g-module. We
will show B

(
(T q,p)∗

)
is a finite-length module, and furthermore that it has a

direct summand isomorphic to T p,q. Since any direct summand of an injective
module is itself injective, it will follow immediately that T p,q is injective in
the category Tg.
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We start with calculating
(
(T q,p)∗

)g′n . Consider the decomposition

V = Vn ⊕ V ′, V∗ = V ∗n ⊕ V ′∗ ,

where V ′ and V ′∗ are respectively the natural and conatural g′n-modules. If
we use the notation

T r,sn := V ⊗rn ⊗ (V ∗n )⊗s, (T ′)r,s := (V ′)⊗r ⊗ (V ′∗)
⊗s,

then we have the following isomorphism of gn ⊕ g′n-modules

T q,p '
⊕

r≤q,s≤p

(
(T ′)r,s ⊗ T q−r,p−sn

)⊕br,s
,

where br,s =
(
q
r

)(
p
s

)
.

Therefore(
(T q,p)∗

)g′n ' ⊕
r≤q,s≤p

Homg′n((T ′)r,s,C)⊗
(
T p−s,q−rn

)⊕br,s
.

Since g′n ' g, we can use the results of [PStyr]. In particular,

Homg′n((T ′)r,s,C) =

{
0 if r 6= s

Cr! if r = s.

The degree r! appears for the following reason. For any σ ∈ Sr we define
ϕσ ∈ Homg′n((T ′)r,r,C) by

ϕσ(v1 ⊗ · · · ⊗ vr ⊗ u1 ⊗ · · · ⊗ ur) =
r∏
i=1

〈ui, vσ(i)〉.

Then ϕσ for all σ ∈ Sr form a basis in Homg′n((T ′)r,r,C). Thus we obtain(
(T q,p)∗

)g′n ' ⊕
r≤min(p,q)

(
T p−s,q−rn

)⊕br,rr!
,

which implies

B
(
(T q,p)∗

)
'

⊕
r≤min(p,q)

(
T p−s,q−r

)⊕br,rr!
.

17



Hence the statement.

Corollary 4.6. 1. Ṽλ is injective in Tg.

2. Ṽλ is an injective hull of Vλ in Tg.

3. Every indecomposable injective module in Tg is isomorphic to Ṽλ for
some λ.

4. Every module M ∈ Tg is isomorphic to a submodule of the direct sum
of finitely many copies of T≤r for some r.

5. A g-module M is a tensor module if and only if M ∈ Tg.

Proof. 1. Each module Ṽλ is a direct summand of T≤r for some r, and a
direct summand of an injective module is injective.

2. Any indecomposable injective module is an injective hull of its socle,
and soc(Ṽλ) = Vλ by (4.2).

3. Every indecomposable injective module in Tg has a simple socle, which
must be isomorphic to Vλ for some λ by Theorem 4.2.

4. Let M ∈ Tg. Then soc(M) admits an injective homomorphism into a
direct sum of finitely many copies of T≤r for some r. Since the latter
is injective in Tg, this homomorphism factors through the inclusion
soc(M) ↪→M . The resulting homomorphism must be injective because
its kernel has trivial intersection with soc(M).

5. A tensor module is by definition a subquotient of a direct sum of finitely
many copies of T≤r for some r, hence it is clearly finite length. Fur-
thermore, any subquotient of an absolute weight module must be an
absolute weight module, so any tensor module must be in Tg. The
converse was seen in (4).

5. Koszulity of Tg

For r ∈ Z≥0, let Trg be the full abelian subcategory of Tg whose simple
objects are submodules of T≤r. Then Tg = lim−→ Trg. Moreover, T≤r is an
injective cogenerator of Trg. Consider the finite-dimensional algebra Arg :=
Endg T

≤r and the direct limit algebra Ag = lim−→ A
r
g.

LetArg-mof denote the category of unitary finite-dimensionalArg-modules,
and Ag-mof the category of locally unitary finite-dimensional Ag-modules.

Proposition 5.1. The functors Homg( · , T≤r) and HomAr
g
( · , T≤r) are mu-

tually inverse antiequivalences of the categories Trg and Arg-mof.
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Proof. Consider the opposite category (Trg)opp. It has finitely many simple
objects and enough projectives, and any object has finite length. Moreover,
T≤r is a projective generator of (Trg)opp. By a well-known result of Gabriel
[G], the functor

Hom(Tr
g)opp(T≤r, · ) = Homg( · , T≤r) : (Trg)opp → Arg-mof

is an equivalence of categories.
We claim that HomAr

g
( · , T≤r) is an inverse to Homg( · , T≤r). For this it

suffices to check that Hom(Tr
g)opp(T≤r, · ) is a right adjoint to HomAr

g
( · , T≤r),

i.e. that

HomAr
g
(X,Hom(Tr

g)opp(T≤r,M)) ' Hom(Tr
g)opp(HomAr

g
(X,T≤r),M)

for any X ∈ Arg-mof and any M ∈ Trg. We have

HomAr
g
(X,Hom(Tr

g)opp(T≤r,M)) = HomAr
g
(X,Homg(M,T≤r))

Ψ' HomAr
g⊗U(g)(X ⊗M,T≤r)

= HomU(g)⊗Ar
g
(M ⊗X,T≤r)

Θ' Homg(M,HomAr
g
(X,T≤r))

= Hom(Tr
g)opp(HomAr

g
(X,T≤r),M),

where Ψ(ϕ)(x⊗m) = ϕ(x)(m) and (Θ(x)(m))(ψ) = ψ(m⊗x) for x ∈ X, m ∈
M , ϕ ∈ HomAr

g
(X,Homg(M,T≤r)), and ψ ∈ HomU(g)⊗Ar

g
(M ⊗X,T≤r).

In order to relate the category Ag-mof with the categories Arg-mof for all
r ≥ 0, we need to establish some basic facts about the algebra Ag. Note first
that by [PStyr] Homsl(∞)(T

p,q, T r,s) = 0 unless p− r = q− s ∈ Z≥0, and for
g = o(∞), sp(∞), Homg(T

p, T q) = 0 unless p− q ∈ 2Z≥0. Furthermore, put

(Ag)
p,q
i = Homg(T

p,q, T p−i,q−i) for g = sl(∞)

and

(Ag)
p
i = Homg(T

p, T p−2i) for g = o(∞), sp(∞).
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Then one can define a Z≥0-grading on Arg by setting

(Arg)i =
⊕
p+q≤r

(Ag)
p,q
i for g = sl(∞)

and

(Arg)i =
⊕
p≤r

(Ag)
p
i for g = o(∞), sp(∞).

It also follows from the results of [PStyr] that

(Arg)0 =
⊕
p+q≤r

Endg(T
p,q) =

⊕
p+q≤r

C[Sp × Sq] for g = sl(∞)

and

(Arg)0 =
⊕
p≤r

Endg(T
p) =

⊕
p≤r

C[Sp] for g = o(∞), sp(∞).

Hence (Arg)0 is semisimple.
In addition, we have

(Ag)
p,q
i (Ag)

r,s
j = 0 unless p = r − j, q = s− j for g = sl(∞)

and

(Ag)
p
i (Ag)

r
j = 0 unless p = r − 2j for g = o(∞), sp(∞).

This shows that for each r,

Ārg :=
⊕
p+q>r

⊕
i≥0

(Ag)
p,q
i for g = sl(∞)

or

Ārg :=
⊕
p>r

⊕
i≥0

(Ag)
p
i for g = o(∞), sp(∞)
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is a Z≥0-graded ideal in Ag such that Arg ⊕ Ārg = Ag. Hence each unitary
Arg-module X admits a canonical Ag-module structure with ĀrgX = 0, and
thus becomes a locally unitary Ag-module. This allows us to claim simply
that

Ag-mof = lim−→ (Arg-mof).

Moreover, Proposition 5.1 now implies the following.

Corollary 5.2. The functors Homg( · , T ) and HomAg( · , T ) are mutually
inverse antiequivalences of the categories Tg and Ag-mof.

We now need to recall the definition of a Koszul ring. See [BGS], where
this notion is studied extensively, and, in particular, several equivalent defini-
tions are given. According to Proposition 2.1.3 in [BGS], a Z≥0-graded ring
A is Koszul if A0 is a semisimple ring and for any two graded A-modules
M and N of pure weight m,n ∈ Z respectively, extiA(M,N) = 0 unless
i = m − n, where extiA denotes the ext-group in the category of Z-graded
A-modules.

In the rest of this section we show that Arg is a Koszul ring.
We start by introducing the following notation: for any partition µ, we

set

µ+ := {partitions µ′ | |µ′| = |µ|+ 1 and µ′i 6= µi for exactly one i},
µ− := {partitions µ′ | |µ′| = |µ| − 1 and µ′i 6= µi for exactly one i}.

For any pair of partitions λ = (λ1, λ2), we define

λ+ := {pairs of partitions η | η1 ∈ λ1+
, η2 = λ2},

λ− := {pairs of partitions η | η1 = λ1, η2 ∈ λ2−}.

Lemma 5.3. For any simple object Vλ of Tg, there is an exact sequence

0→ V +
λ → V ⊗ Vλ → V −λ → 0,
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where

V +
λ =

⊕
η∈λ+

Vη

V −λ =
⊕
η∈λ−

Vη.

Moreover, V +
λ = soc(V ⊗ Vλ).

Proof. We will prove the statement for g = sl(∞). The other cases are
similar. The fact that the semisimplification of V ⊗ Vλ is isomorphic to
V +
λ ⊕ V

−
λ follows from the classical Pieri rule.

To prove the equality V +
λ = soc(V ⊗ Vλ), observe that

V ⊗ Vλ ⊂ V ⊗ Ṽλ = T |λ
1|+1,|λ2| ∩ (V ⊗ Ṽλ).

On the other hand [PStyr, Theorem 2.3] implies directly that

V +
λ = soc(T |λ

1|+1,|λ2|) ∩ (V ⊗ Ṽλ).

Hence V +
λ = soc(V ⊗ Vλ).

It remains to show that the quotient (V ⊗ Vλ)/V +
λ is semisimple. This

follows again from [PStyr, Theorem 2.3], since all simple subquotients of
V −λ = (V ⊗ Vλ)/V +

λ lie in soc1(T |λ
1|+1,|λ2|).

Proposition 5.4. If ExtiTg
(Vλ, Vµ) 6= 0, then

|µ1| − |λ1| = |µ2| − |λ2| = i for g = sl(∞)

and

|µ| − |λ| = 2i for g = o(∞), sp(∞).

Proof. Let g = sl(∞). We will prove the statement by induction on |µ|. The
base of induction µ = (0, 0) follows immediately from the fact that V(0,0) = C
is injective. We assume ExtiTg

(Vλ, Vµ) 6= 0. Without loss of generality we

may assume that |µ1| > 0. Then there exists a pair of partitions η such that
µ ∈ η+. Since Vµ is a direct summand of V +

η , we have ExtiTg
(Vλ, V

+
η ) 6= 0.
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Consider the short exact sequence from Lemma 5.3

0→ V +
η → V ⊗ Vη → V −η → 0.

The associated long exact sequence implies that either ExtiTg
(Vλ, V ⊗Vη) 6= 0

or Exti−1
Tg

(Vλ, V
−
η ) 6= 0. In the latter case, the inductive hypothesis implies

that
|η1| − |λ1| = (|η2| − 1)− |λ2| = i− 1.

The condition in the statement of the proposition follows, as |η1| = |µ1| − 1
and |η2| = |µ2|.

Now assume that ExtiTg
(Vλ, V ⊗ Vη) 6= 0. Let

0→ Vη →M0 →M1 → . . .

be a minimal injective resolution of Vη in Tg. By the inductive hypothesis,
ExtjTg

(Vν , Vη) 6= 0 implies

|η1| − |ν1| = |η2| − |ν2| = j. (5.1)

We claim that by the minimality of the resolution, Ṽν appears as a direct
summand of Mj only if (5.1) holds, that is Mj = ⊕Ṽν for some set of ν such
that |ν1| = |η1| − j and |ν2| = |η2| − j. Indeed, otherwise the sequence

Homg(Vν ,Mj−1)→ Homg(Vν ,Mj)→ Homg(Vν ,Mj+1)

would be exact, and replacing Mj by Mj/Ṽν , and Mj+1 by Mj+1/Ṽν or Mj−1

by Mj−1/Ṽν , we would obtain a “smaller” resolution.
Furthermore, since the functor V ⊗ (·) is obviously exact (vector spaces

are flat), the complex

0→ V ⊗ Vη → V ⊗M0 → V ⊗M1 → . . .

is an injective resolution of V ⊗ Vη. Thus Homg(Vλ, V ⊗Mi) 6= 0 implies
|λ1| = |η1|− i+1 and |λ2| = |η2|− i, and the proof for g = sl(∞) is complete.

The proof for g = o(∞), sp(∞) is similar, and we leave it to the reader.
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Recall that any g-module W has a well-defined socle filtration

0 ⊂ soc0(W ) = soc(W ) ⊂ soc1(W ) ⊂ · · ·

where soci(W ) := π−1
i−1(soc(W/ soci−1(W )) and πi−1 : W → W/ soci−1(W ) is

the projection. Similarly, any Ag-module X has a radical filtration

· · · ⊂ rad1(X) ⊂ rad0(X) = rad(X) ⊂ X

where rad(X) is the joint kernel of all surjective Ag-homomorphisms X → X ′

with X ′ simple, and radi(X) = rad(radi−1(X)).
Note furthermore that the Ext’s in the category Tg differ essentially from

the Ext’s in g-mod. In particular, as shown in [PS], Ext1
g(Vλ, Vµ) is uncount-

able dimensional whenever nonzero, whereas Ext1
Tg

(Vλ, Vµ) is always finite
dimensional by Corollary 5.2. Here are two characteristic examples.

1. Consider the exact sequence of g-modules

0→ V → (V∗)
∗ → (V∗)

∗/V → 0.

The g-module (V∗)
∗/V is trivial, and any vector in Ext1

sl(∞)(C, V ) de-
termines a unique 1-dimensional subspace in (V∗)

∗/V . On the other
hand, Ext1

Tsl(∞)
(C, V ) = 0 by Proposition 5.4.

2. Each nonzero vector of Ext1
sl(∞)(C, sl(∞)) corresponds to a 1-dimensional

trivial quotient of soc1((sl(∞)∗)
∗) (see [PS]). The nonzero vectors of

the 1-dimensional space Ext1
Tsl(∞)

(C, sl(∞)) on the other hand corre-

spond to the unique 1-dimensional quotient of soc1((sl(∞)∗)
∗) which

determines an absolute weight module, namely ˜sl(∞)/sl(∞) = (V ⊗
V∗)/sl(∞).

The following is the main result of this section.

Theorem 5.5. The ring Arg is Koszul.

Proof. According to [BGS, Proposition 2.1.3], it suffices to prove that unless
i = m − n, one has extiAr

g
(M,N) = 0 for any pure Arg-modules M , N of

weights m, n respectively. We will prove that unless i = m − n, one has
extiAg

(M,N) = 0 for any simple pure Ag-modules M , N of weights m, n
respectively. Since any Arg-module admits a canonical Ag-module structure,
it will follow that extiAr

g
(M,N) = 0 for any simple pure Arg-modules M , N
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of weights m, n respectively unless i = m− n. The analogous statement for
arbitrary Arg-modules of pure degree will also follow, since all such modules
are semisimple.

Let Xλ (respectively, X̃λ) be the Ag-module which is the image of Vλ
(resp., Ṽλ) under the antiequivalence of Corollary 5.2. Then X̃λ is a projective
cover of the simple module Xλ. Proposition 5.4 implies that ExtiAg

(Xµ, Xλ) =

0 unless |µ1| − |λ1| = |µ2| − |λ2| = i. We consider a minimal projective
resolution of Xµ

· · · → P 1 → P 0 → 0 (5.2)

and claim that it must have the property P i ' ⊕X̃ν for some set of ν with
|µ1| − |ν1| = |µ2| − |ν2| = i. This follows from the similar fact for a minimal
injective resolution of Vµ in Tg (see the proof of Proposition 5.4) and the
antiequivalence of the categories Tg and Ag-mof.

On the other hand, by [PStyr] if Vν is a simple constituent of soci(Ṽµ),
or if under the antiequivalence Xν is a simple constituent of radi X̃µ, then
|µ1| − |ν1| = |µ2| − |ν2| = i. Therefore we see that in the above resolution
the image of radj(P i) lies in radj+1(P i−1). Now it is clear that we can
endow the resolution (5.2) with a Z-grading by setting the degree of Xµ to
be an arbitrary integer n. Indeed, one should assign to each simple (Ag)0-
constituent of P i which lies in radj(P i) and not in radj+1(P i) the degree
n + i + j + 1. This immediately implies that extiAg

(Xµ, Xλ) = 0 unless the
difference between the weights of Xλ and Xµ is i.

6. On the structure of Ag

It is a result of [BGS] that for any r the Koszulity of Arg implies that
Arg is a quadratic algebra generated by (Arg)0 and (Arg)1. That is, Arg '
T(Ar

g)0((Arg)1)/(Rr), where (Rr) is the two-sided ideal generated by some
(Arg)0-bimodule Rr in (Arg)1 ⊗(Ar

g)0 (Arg)1. Moreover, it is easy to see that
Ag is isomorphic to the quotient T(Ag)0((Ag)1)/(R), where R = lim−→ Rr. In

this section we describe (Ag)1 and R.
In what follows we fix inclusions Sn ⊂ Sn+1 such that Sn+1 acts on the set

{1, 2, . . . , n+ 1} and Sn is the stabilizer of n+ 1. We start with the following
lemma.

Lemma 6.1. If g = sl(∞), then Homg(T
p,q, T p−1,q−1) as a left module over
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C[Sp−1 × Sq−1] is generated by the contractions

φi,j : T p,q → T p−1,q−1,

v1 ⊗ · · · ⊗ vp ⊗ w1 ⊗ · · · ⊗ wq 7→ 〈vi, wj〉(v1 ⊗ · · · v̂i · · · ⊗ vp ⊗ w1 ⊗ · · · ŵj · · · ⊗ wq).

If g = o(∞) or sp(∞), then Homg(T
p, T p−2) as a left module over C[Sp−2]

is generated by the contractions

ψi,j : T p → T p−2,

v1 ⊗ · · · ⊗ vp 7→ 〈vi, vj〉(v1 ⊗ · · · v̂i · · · ⊗ · · · v̂j · · · ⊗ vp),

where 〈· , ·〉 stands for the symmetric bilinear form on V for g = o(∞), and
the symplectic bilinear form on V for g = sp(∞).

Proof. Let g = sl(∞) and ϕ ∈ Homg(T
p,q, T p−1,q−1). Theorem 3.2 in [PStyr]

claims that soc(T p,q) = ∩i≤p,j≤q kerφi,j; moreover, the same result implies
that soc(T p,q) ⊂ kerϕ. Define

Φ : T p,q →
⊕

i≤p,j≤q

T p−1,q−1

as the direct sum
⊕

i,j φi,j. Then there exists α :
⊕

i≤p,j≤q T
p−1,q−1 →

T p−1,q−1 such that ϕ = α◦Φ. But α =
⊕

i,j αi,j for some αi,j ∈ C[Sp−1×Sq−1].
Therefore ϕ =

∑
i,j αi,jφi,j. This proves the lemma for g = sl(∞).

We leave the proof in the cases g = o(∞), sp(∞) to the reader.

Let g = sl(∞). Recall that (Ag)
p,q
i = Homg(T

p,q, T p−i,q−i) and that
(Ag)

p,q
0 = C[Sp × Sq].

Lemma 6.2. Let g = sl(∞).

1. (Ag)
p,q
1 is isomorphic to C[Sp × Sq] as a right (Ag)

p,q
0 -module, and the

structure of a left (Ag)
p−1,q−1
0 -module is given by left multiplication via

the fixed inclusion

(Ag)
p−1,q−1
0 = C[Sp−1 × Sq−1] ⊂ C[Sp × Sq] = (Ag)

p,q
0 .

2. We have

(Ag)1 ⊗(Ag)0 (Ag)1 =
⊕
p,q

((Ag)
p−1,q−1
1 ⊗(Ag)p−1,q−1

0
(Ag)

p,q
1 ),
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where (Ag)
p−1,q−1
1 ⊗(Ag)p−1,q−1

0
(Ag)

p,q
1 is isomorphic to C[Sp×Sq]. More-

over, (Ag)
p−1,q−1
1 ⊗(Ag)p−1,q−1

0
(Ag)

p,q
1 is a (C[Sp−2 × Sq−2],C[Sp × Sq])-

bimodule via the embeddings C[Sp−2×Sq−2] ⊂ C[Sp−1×Sq−1] ⊂ C[Sp×
Sq].

Proof. It is clear that all contractions φi,j ∈ (Ag)
p,q
1 can be obtained from

φp,q via the right C[Sp × Sq]-module structure of (Ag)
p,q
1 . Thus by Lemma

6.1, as a C[Sp × Sq]-bimodule, (Ag)
p,q
1 is generated by the single contraction

φp,q. Moreover, (Ag)
p,q
1 is a free right C[Sp×Sq]-module of rank 1. Indeed, if

for some aσ ∈ C ∑
σ∈Sp×Sq

aσφp,qσ = 0,

then for all v1 ⊗ · · · ⊗ vp ⊗ w1 ⊗ · · · ⊗ wq ∈ T p,q

0 =
∑

σ∈Sp×Sq

aσφp,qσ(v1 ⊗ · · · ⊗ vp ⊗ w1 ⊗ · · · ⊗ wq)

=
∑

σ=(σ1,σ2)
∈Sp×Sq

aσ〈vσ1(p), wσ2(q)〉(vσ1(1) ⊗ · · · ⊗ vσ1(p−1) ⊗ wσ2(1) ⊗ · · · ⊗ wσ2(q−1)),

and hence aσ = 0 for all σ ∈ Sp × Sq. Finally, for any σ ∈ Sp−1 × Sq−1 we
have

σφp,q = φp,qσ.

This implies part (1). Part (2) is a direct corollary of part (1).

Lemma 6.3. Let g = sl(∞). Let S ' S2×S2 denote the subgroup of Sp×Sq
generated by (p, p− 1)l and (q, q − 1)r, where (i, j)l and (i, j)r stand for the
transpositions in Sp and Sq, respectively. Then R =

⊕
p,q R

p,q, where

Rp,q = (triv � sgn ⊕ sgn� triv)⊗C[S] C[Sp × Sq],

and triv and sgn denote respectively the trivial and sign representations of
S2.

Proof. The statement is equivalent to the equality ofRp,q and the right C[Sp×
Sq]-module

(1+(p, p−1)l)(1−(q, q−1)r)C[Sp×Sq]⊕(1−(p, p−1)l)(1+(q, q−1)r)C[Sp×Sq].
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We have the obvious relations in Asl(∞)

φp−1,q−1φp,q = φp−1,q−1φp,q(p, p− 1)l(q, q − 1)r,

φp−1,q−1φp,q(p, p− 1)l = φp−1,q−1φp,q(q, q − 1)r.

Therefore Rp,q contains the module

(1+(p, p−1)l)(1−(q, q−1)r)C[Sp×Sq]⊕(1−(p, p−1)l)(1+(q, q−1)r)C[Sp×Sq],

which has dimension p!q!
2

. On the other hand, it is easy to see that

dimRp,q = dim
(

(Ag)
p−1,q−1
1 ⊗(Ag)p−1,q−1

0
(Ag)

p,q
1

)
− dim(Ag)

p,q
2

=
(p− 1)!(q − 1)!p!q!

(p− 1)!(q − 1)!
− p!q!

2

=
p!q!

2
.

Hence the statement.

Corollary 6.4. Let g = sl(∞). Then Arg is Koszul self-dual, i.e. Arg '
((Arg)!)opp. Furthermore, Ag ' (A!

g)
opp, where A!

g := lim−→ (Arg)!.

Proof. By definition, we have (Arg)! = T(Ar
g)0((Arg)∗1)/(Rr⊥), where (Arg)∗1 =

Hom(Ar
g)0((Arg)1, (Arg)0), [BGS]. Note that ((Ag)

p,q
1 )∗ is a ((Ag)

p,q
0 , (Ag)

p−1,q−1
0 )-

bimodule. Moreover, Lemma 6.2 (1) implies an isomorphism of bimodules

((Ag)
p,q
1 )∗ ' C[Sp × Sq].

Hence we have an isomorphism of ((Arg)!)opp
0 -bimodules

((Arg)!)opp
1 ' (Arg)1.

One can check that R⊥ = R̄, where R̄ := ⊕R̄p,q, and the modules R̄p,q

are defined via the decomposition of (Ag)
p,q
0 -modules

(Ag)
p−1,q−1
1 ⊗(Ag)p−1,q−1

0
(Ag)

p,q
1 = Rp,q ⊕ R̄p,q.

Therefore ((Ar)!
g)

opp ' T(Ar
g)0((Arg)1)/(R̄r). Now consider the automorphism

σ of C[Sp × Sq] defined for all p and q by σ(s, t) = sgn(t)(s, t) for all s ∈ Sp,
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t ∈ Sq. Recall that (Ag)0 =
⊕

p,q C[Sp × Sq]. Extend σ to an automorphism
of T(Ag)0((Ag)1) by setting σ(x) = x for any x ∈ (Ag)1. One immediately ob-
serves that σ(Rp,q) = R̄p,q, hence σ induces an isomorphism Arg ' ((Arg)!)opp,
and clearly also an isomorphism Ag ' (A!

g)
opp.

For a partition µ = (µ1, µ2, . . . , µs), we set µ⊥ := (s = #µ,#(µ1−1, µ2−
1, . . .), . . .), or in terms of Young diagrams, µ⊥ is the conjugate partition
obtained from µ by interchanging rows and columns.

Corollary 6.5. Let g = sl(∞), and for a pair of partitions ν = (ν1, ν2) take
ν⊥ := (ν1, (ν2)⊥). Then dim ExtiTg

(Vλ, Vµ) equals the multiplicity of Vλ⊥ in

soci(Ṽµ⊥)/ soci−1(Ṽµ⊥), as computed in [PStyr, Theorem 2.3].

Proof. The statement follows from [BGS, Theorem 2.10.1] applied to Arg for
sufficiently large r. Indeed, this result implies that ExtAg((Ag)0, (Ag)0) is
isomorphic to (A!

g)
opp as a graded algebra. Moreover, the simple Ag-module

Xλ (which is the image of Vλ under the antiequivalence of Corollary 5.2) is
isomorphic to (Ag)0Yλ, where Yλ is the product of Young projectors cor-
responding to the partitions λ1 and λ2. This follows immediately from the
fact that Yλ is a primitive idempotent in (Ag)0 and hence also in Ag, see for
example [CR, Theorem 54.5]. The projective cover X̃λ of Xλ is isomorphic
to AgYλ. Therefore we have

dim ExtiTg
(Vλ, Vµ) = dim ExtiAg

(Xµ, Xλ) = dimYλ(A!
g)

opp
i Yµ.

By Corollary 6.4,

dimYλ(A!
g)

opp
i Yµ = dimYλ⊥(Ag)iYµ⊥ .

Furthermore, dimYλ⊥(Ag)iYµ⊥ equals the multiplicity of Xλ⊥ in the mod-

ule radi−1 X̃µ⊥/ radi X̃µ⊥ [CR, Theorem 54.15]), which coincides with the

multiplicity of Vλ⊥ in soci(Ṽµ⊥)/ soci−1(Ṽµ⊥).

Corollary 6.6. The blocks of the category Tsl(∞) are parametrized by Z. In
particular,

1. Vλ and Vµ belong to the block Tsl(∞)(i) for i ∈ Z if and only if |λ1| −
|λ2| = |µ1| − |µ2| = i.

2. Two blocks Tsl(∞)(i) and Tsl(∞)(j) are equivalent if and only if i = ±j.
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Proof. 1. The fact that Ṽ(µ1,µ2) is an injective hull of V(µ1,µ2), together
with Theorem 2.3 in [PStyr], implies that Ext1

Tg
(V(µ1,µ2), V(λ1,λ2)) 6= 0

iff µ1 ∈ (λ1)+ and µ2 ∈ (λ2)+. More precisely, Theorem 2.3 in [PStyr]
computes the multiplicities of the constituents of the socle of Ṽλ/Vλ, and
a simple module has nonzero Ext1

Tg
with Vλ if and only if it is isomorphic

to a submodule of Ṽλ/Vλ. Consider the minimal equivalence relation
on pairs of partitions for which (λ1, λ2) and (µ1, µ2) are equivalent
whenever µ1 ∈ (λ1)+ and µ2 ∈ (λ2)+. It is a simple exercise to show
that then λ = (λ1, λ2) and µ = (µ1, µ2) are equivalent if and only if
|λ1| − |λ2| = |µ1| − |µ2|. The first assertion follows.

2. The functor ( · )∗ establishes an equivalence of Tsl(∞)(i) and Tsl(∞)(−i).
To see that Tsl(∞)(i) and Tsl(∞)(j) are inequivalent for i 6= ±j, as-
sume without loss of generality that i > 0, j ≥ 0. Then the isomor-
phism classes of simple injective objects in Tsl(∞)(i) are parametrized
by the partitions of i, since {V(λ1,0) | |λ1| = i} represents the set of
isomorphism classes of simple injective objects in Tsl(∞)(i). As the sets
{V(λ1,0) | |λ1| = i} and {V(λ1,0) | |λ1| = j} have different cardinalities for
i 6= j except the case i = 1, j = 0, the assertion follows in other cases.
Each of the blocks Tsl(∞)(0) and Tsl(∞)(1) has a single simple injective
module, up to isomorphism. However, V has nontrivial extensions by
both V((2),(1)) and V((1,1),(1)), whereas C has a nontrivial extension only
by V((1),(1)). This completes the proof.

Now we proceed to describing the structure of Ag for g = o(∞) and
sp(∞). Recall that (Ag)

p
i = Homg(T

p, T p−2i). and (Ag)
p
0 = C[Sp]. Let Sp−2 ⊂

Sp denote the stabilizer of p and p − 1, and let S ′ ⊂ Sp be the subgroup
generated by the transposition (p− 1, p).

Lemma 6.7. We have

(Ag)
p
1 ' triv ⊗C[S′] C[Sp] for g = o(∞)

and

(Ag)
p
1 ' sgn⊗C[S′] C[Sp] for g = sp(∞).

30



In both cases left multiplication by C[Sp−2] is well defined, as S ′ centralizes
Sp−2.

Proof. Lemma 6.1 implies that the contraction ψp−1,p generates (Ag)
p
1 as a

right C[Sp]-module. Then the statement follows from the relation

ψp−1,p = ±ψp−1,p(p, p− 1),

where the sign is + for g = o(∞) and − for g = sp(∞).

Corollary 6.8. Let g = o(∞) or sp(∞). Then

(Ag)
p−2
1 ⊗(Ag)p−2

0
(Ag)

p
1 ' Lg ⊗C[S] C[Sp],

where S ' S2 × S2 is the subgroup generated by (p, p− 1) and (p− 2, p− 3)
and

Lg =

{
triv for g = o(∞)

sgn� sgn for g = sp(∞).

To describe R, write R =
⊕

pR
p, where Rp ⊂ (Ag)

p−2
1 ⊗(Ag)p−2

0
(Ag)

p
1.

We will need the following decompositions of S4-modules:

triv ⊗C[S] C[S4] = X(2,1,1) ⊕X(2,2) ⊕X(4), (6.1)

(sgn� sgn)⊗C[S] C[S4] = X(3,1) ⊕X(2,2) ⊕X(1,1,1,1). (6.2)

Lemma 6.9. Let S ′′ ⊂ Sp be the subgroup isomorphic to S4 that fixes 1,
2,. . . , p− 4. Then

Rp ' X(2,1,1) ⊗C[S′′] C[Sp] for g = o(∞),

and

Rp ' X(3,1) ⊗C[S′′] C[Sp] for g = sp(∞).

Proof. Let us deal with the case of o(∞). We consider the following Young
projectors in S ′′ ' S4

Y(2,1,1) = (1+(p−1, p))(1−(p, p−2)−(p, p−3)−(p−2, p−3)+(p, p−2, p−3)+(p, p−3, p−2)),
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Y(2,2) = (1 + (p, p− 1))(1 + (p− 2, p− 3))(1− (p− 2, p))(1− (p− 1, p− 3)),

and
Y(4) =

∑
s∈S′′

s.

By Equation (6.1) we have

Rp ⊂ (Ag)
p−2
1 ⊗(Ag)p−2

0
(Ag)

p
1 = Y(2,1,1)C[Sp]⊕ Y(2,2)C[Sp]⊕ Y(4)C[Sp].

By direct inspection one can check that

ψp−3,p−2ψp−1,pY(2,1,1) = 0,

ψp−3,p−2ψp−1,pY(2,2) = 2ψp−3,p−2ψp−1,p − 2ψp−3,pψp−1,p−2,

ψp−3,p−2ψp−1,pY(4) = 4ψp−3,p−2ψp−1,p.

The statement follows for o(∞).
We leave the case of sp(∞) to the reader.

Corollary 6.10. Asp(∞) ' Ao(∞).

Proof. We use the automorphism σ of C[Sp] which sends s to sgn(s)s.

Corollary 6.11. The categories To(∞) and Tsp(∞) are equivalent.

In [Sr] a tensor functor To(∞) → Tsp(∞) establishing an equivalence of
tensor categories is constructed using the Lie superalgebra osp(∞,∞).

Proposition 6.12. To(∞) and Tsp(∞) have two inequivalent blocks Tevg and
Toddg generated by all Vλ with |λ| even and odd, respectively.

Proof. Due to the previous corollary it suffices to consider the case g = o(∞).
As follows from [PStyr], Ext1

Tg
(Vµ, Vλ) 6= 0 if and only if µ ∈ λ++, where

λ++ := {partitions λ′ |λi ≤ λ′i for all i, |λ′| = |λ|+ 2,

λ′j 6= λj and λ′k 6= λk for j 6= k implies λj 6= λk}.

Note that the partitions in λ++ are those which arise from λ via the Pieri
rule for tensoring with S2(V ). Consider the minimal equivalence relation on
partitions for which λ and µ are equivalent whenever µ ∈ λ++. One can
check that there are exactly two equivalence classes which are determined by
the parity of |λ|.

32



To show that Tevg and Toddg are not equivalent observe that all simple
injective modules in Tg correspond to partitions µ with µ1 = · · · = µs = 1,
or equivalently are isomorphic to the exterior powers Λs(V ) of the standard
module. If s ≥ 1 then Λs(V ) has nontrivial extensions by two non-isomorphic
simple modules, namely V(3,1,...,1) and V(2,1,1,...,1). The trivial module on the
other hand has a nontrivial extension by only S2(V ) = V(2). Therefore Tevg
contains a simple injective module admitting a nontrivial extension with only
one simple module, whereas Toddg does not contain such a simple injective
module.
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