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Abstract

Let K be an algebraically closed field of characteristic 0. We study a monoidal category Tα
which is universal among all symmetric K-linear monoidal categories generated by two objects
A and B such that A is equipped with a possibly transfinite filtration together with a pairing
A ⊗ B → 1. We construct Tα as a category of representations of the Lie algebra glM (V∗, V )
consisting of endomorphisms of a fixed diagonalizable pairing V∗ ⊗ V → K of vector spaces V∗
and V of dimension α. Here α is an arbitrary cardinal number. We describe explicitly the
simple and the injective objects of Tα and prove that the category Tα is Koszul. We pay special
attention to the case where the filtration on A is finite. In this case α = ℵt for t ∈ Z≥0.
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Introduction

In the last decade, monoidal categories of representations of infinite matrix algebras have been
studied from various points of view. In particular, in the paper [5] the category Tsl(∞) was intro-
duced and investigated in detail. To recall the definition of this category, fix an algebraically closed
field K of characteristic 0 together with a nondegenerate pairing (bilinear map) p : V∗×V → K for
some countable-dimensional vector spaces V∗ and V over K. Then V∗⊗V has an obvious structure
of an associative algebra (

(
(v∗)1 ⊗ v1

) (
(v∗)2 ⊗ v2

)
= p

(
(v∗)2 , v1

)
(v∗)1 ⊗ v2), and hence also of a

Lie algebra. The Lie subalgebra ker p ⊂ V∗⊗V is isomorphic to the Lie algebra sl(∞) (in fact, the
Lie algebra sl(∞) can simply be defined as ker p). A quick way to define the category Tsl(∞) is to
declare it the monoidal category of all ker p-subquotients of finite direct sums of tensor products of
the form (V∗)

⊗n ⊗ V ⊗m. In [5] three other equivalent definitions of this category are given: they
are all intrinsic to the Lie algebra sl(∞). From the point of view of a representation-theorist, Tsl(∞)

is interesting as it is the “limit as q → ∞” of the categories of finite-dimensional sl(q)-modules.
Unlike the category of finite-dimensional sl(q)-modules, Tsl(∞) is not a semisimple category. The
simple objects of Tsl(∞) are parametrized by ordered pairs (µ, ν) of Young diagrams, and, based
on earlier work [15] by K. Styrkas and the second author, in [5] the injective objects of Tsl(∞) have
been described and Koszul self-duality of Tsl(∞) has been established.

In a parallel development, the category Tsl(∞) arose in the work [17] of A. Sam and A. Snowden
who took a somewhat different point of view. In particular, they showed that Tsl(∞) is universal
among K-linear tensor categories (see Convention 5.1 below) generated by two objects A and B
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together with a morphism A⊗B → 1 into the monoidal unit 1 (the field K). It is important to note
that Tsl(∞) is not a rigid tensor category, in particular there is no nonzero morphism 1→ V∗ ⊗ V ,
and Tsl(∞) is universal as a general (nonrigid) K-linear tensor category. This universality property
of the category Tsl(∞) has been used in an essential way in the recent study [6] of abelianizations of
Deligne categories. In addition, the boson-fermion correspondence has been categorified via Tsl(∞)

in [7].
Motivated by representation theory, in [14] a larger Lie algebra, called Mackey Lie algebra,

was introduced. Let now p : V∗ × V → K be a nondegenerate pairing for some vector spaces,
not necessarily countable dimensional or having the same dimension. A pioneering study of such
pairings was undertaken by G. Mackey in his dissertation [12]. The endomorphisms of the pairing
p form a Lie algebra which we denote by glM (V∗, V ) and call the Mackey Lie algebra of p: this Lie
algebra is defined by formula (3) below, and has V∗ ⊗ V as its ideal.

As a next step, in the work [3] we showed that, if dimV∗ = dimV = ℵ0 (i.e., if V∗ and V
are countable dimensional as in [5]), a natural category of representations of glM (V∗, V ) has also
a universality property. More precisely, in [3] we consider the category T3

glM (V∗,V )
of glM (V∗, V )-

modules isomorphic to subquotients of finite sums of tensor products of the form (V ∗)⊗n ⊗ V ⊗m
for m,n ≥ 0 (V ∗ being the algebraic dual space HomK(V,K)). Our result states that T3

glM (V∗,V )
is

universal among (nonrigid) K-linear tensor categories generated by two objects A and B such that
A has a subobject A0 ↪→ A (in the case of T3

glM (V∗,V )
, we have A = V ∗ = HomK(V,K), B = V ,

and A0 = V∗, the inclusion V∗ ⊂ V ∗ being induced by p). The structure of T3
glM (V∗,V )

, both as an

abelian and a tensor category, is rather elaborate. Its simple objects are parametrized by triples
(λ, µ, ν) of Young diagrams, and in [3] we compute the Ext-groups between simple objects and
prove Koszul self-duality for T3

glM (V∗,V )
.

All of the above motivates the topic of our current study. Our main objective is to construct
and study a K-linear tensor category which is universal among abstract K-linear tensor categories
generated by two objects A and B such that A has an arbitrary fixed filtration. In fact, we allow
the filtration on A to be transfinite. As it turns out, we can construct such a universal category
as a category of tensor representations for a Mackey Lie algebra glM (V∗, V ), where the dimension
of both V∗ and V equals α = ℵa, a being the ordinal of the maximal proper subobject of A in the
fixed transfinite filtration of A.

More precisely, we consider a nondegenerate pairing p : V∗ × V → K where V∗, V are α-
dimensional for an arbitrary cardinal number α, and suppose that the pairing is splitting in the
sense that there are respective bases

{
v∗κ
}

, {vκ′} of V∗ and V such that p
(
v∗κ, vκ′

)
= δκκ′ (δκκ′

being the Kronecker delta). The category Tα is then the minimal full monoidal subcategory of the
category of g-modules which contains V and V ∗ and is closed with respect to subquotients. For
α = ℵ0, the category Tℵ0 coincides with the category T3

glM (V∗,V )
studied in [3]. We show that the

Grothendieck envelope T̄α of Tα is an ordered Grothendieck category according to a slightly more
general definition than the one given in [3], and use this in a crucial way to deduce that objects of
the form

0⊗
s=t

(
V ∗/V ∗

β+
s

)
λs
⊗ (V ∗)µ ⊗ Vν (1)

are injective in Tα. Here {βt, . . . , β1, β0} is a finite (possibly empty) set of infinite cardinal numbers
such that β0 < β1 < . . . < βt ≤ α, β+

s stands for the successor cardinal to βs, and λt, . . . , λ1, λ0, µ, ν
are Young diagrams; •λ denotes the Schur functor associated with a Young diagram λ. We show
that the objects (1) have simple socles, and that the so obtained simple modules exhaust (up to
isomorphism) the simple objects of Tα.
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In the case when α = ℵt for some nonnegative integer t , we present an explicit combinatorial
formula for the multiplicity of a simple module in an injective hull of another simple module. This
generalizes the corresponding multiplicity formulas from [15] and [3]. Our next result is that, for a
general α, the category Tα is Koszul in the sense that its Ext-algebra⊕

T ′,T simple, p≥0

Extp
(
T ′, T

)
is generated in degree one. In the last section we use the Koszulity of Tα to prove that Tα possesses
the universality property stated above.

Finally, we should mention that in Section 3 we present another application of the more general
notion of ordered tensor category introduced in this paper: we point out that the category T̃ensg
introduced and studied in [13] falls under the new definition, and we prove that its injective objects
are nothing but arbitrary direct sums of the indecomposable injectives described in [13].
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1 Background

Let K be a field. Except in Section 2, K is assumed to be algebraically closed and of characteristic 0.
All vector spaces (including Lie algebras) are assumed to be defined over K. If U is a vector space,
we set U∗ = HomK(U,K) and End(U) = EndK(U). We also abbreviate ⊗K to ⊗. All additive
categories considered are understood to be linear over K, and all additive functors are assumed to
preserve this structure.

One way to define the finitary Lie algebra sl(∞) is as the inductive limit of a chain of embeddings

g1 ↪→ g2 ↪→ . . . (2)

where gq = sl(q+1). Similarly, o(∞) and sp(∞) can be defined as the inductive limits of respective
chains (2) where gq = o(q) or gq = sp(2q).

A natural representation of sl(∞), o(∞), and sp(∞) is a direct limit of natural representations
Vq of gq. For g = o(∞) (respectively, for sp(∞)), up to isomorphism, there is a unique natural
representation V = lim

−→
Vq (respectively, V = lim

−→
V2q), while for g = sl(∞) there are two noniso-

morphic natural representations V = lim
−→

Vq+1 and V∗ = lim
−→

V ∗q+1; here, Vq+1 denotes the space of

column vectors of length q + 1, considered as an sl(q + 1)-module.
Let now V∗ and V be abstract vector spaces and p : V∗ × V → K be a nondegenerate bilinear

map, or simply pairing, of the vector spaces V∗ and V . Note that p induces injective linear operators
V∗ ↪→ V ∗ and V ↪→ (V∗)

∗. The Mackey Lie algebra glM (V∗, V ) is by definition the Lie algebra of
endomorphisms of the pairing p, i.e.,

glM (V∗, V ) =
{
x ∈ End (V∗) |x∗(V ) ⊂ V

}
=
{
y ∈ End(V ) | y∗(V∗) ⊂ V∗

}
, (3)

where here ∗ indicates dual linear operator. Note that V∗ ⊗ V is an ideal in glM (V∗, V ).
If V∗ and V are both countable dimensional, then it is a result of G. Mackey [12] that a nonde-

generate pairing p is unique up to isomorphism. In this case, the Mackey Lie algebra glM (V∗, V ) is
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isomorphic to the Lie algebra of infinite matrices with finite rows and columns. See [14] for results
concerning glM (V∗, V ) and its representations.

The above result of Mackey provides also an alternative definition of the Lie algebra sl(∞).
This definition was already mentioned in the Introduction. If dimV∗ = dimV = ℵ0, the pairing p
is unique up to isomorphism of pairings, and we can set sl(∞) = ker p. Then V and V∗ are the
two nonisomorphic natural representations of sl(∞) which were introduced above as direct limits.
In the rest of the paper we will have both of these interpretations of V and V∗ in mind. Note
also that V and V∗ admit a pair of dual bases, i.e. bases {vq} ⊂ V ,

{
v∗q
}
⊂ V∗ for q ∈ Z>0, such

that p
(
v∗q′ , vq

)
= δq′q. In what follows we will think of V∗ as a subspace of V ∗ (the embedding

V∗ ⊂ V ∗ being induced by the pairing p). If V is equipped with a nondegenerate symmetric (or
antisymmetric bilinear form, then o(∞) is defined as the Lie algebra Λ2(V ) and sp(∞) is defined
as the Lie algebra S2(V ). The spaces Λ2(V ) and S2(V ) are endowed with respective Lie algebra
structures via the corresponding forms.

Let g be any Lie algebra, M be any g-module, and k ⊂ g be a Lie subalgebra. Recall that k acts
densely on M if for any finite set of vectors m1, . . . ,mq ∈ M and any g ∈ g, there is k ∈ k such
that g ·ms = k ·ms for s = 1, . . . , q. Below we use the fact that if k acts densely on M then k acts
densely on any g-subquotient of the tensor algebra T(M) [14, Lemma 7.3].

We recall also that there is a well-defined Schur functor •λ for any Young diagram, or partition,
λ = (λ1 ≥ λ2 ≥ . . . ≥ λq),

•λ : Vect→ Vect ,

Vect being the category of vector spaces over K. By definition, Vλ is a direct summand of the
tensor power V ⊗|λ|, where |λ| = λ1 + . . .+ λq. For the precise definition see [8]. If V is a g-module
for some Lie algebra g, then Vλ has a natural structure of a g-module (as a g-submodule of V ⊗|λ|).

If C is an abelian category, a chain of objects of C is a set of objects {Aσ} such that, for any pair of
objects Aσ1 and Aσ2 , precisely one noninvertible monomorphism Aσ1 → Aσ2 or Aσ2 → Aσ1 is fixed.
This endows the set of indices {σ} with a linear order: σ1 < σ2 if a noninvertible monomorphism
Aσ1 → Aσ2 is fixed. Given an object A of C, we say that A is endowed with a transfinite filtration
if a chain of subobjects {Aσ} of A is given such that the linear order on the set of indices {σ} is a
well-order.

For background on Grothendieck categories we refer the reader to [9, §1.1] or [16, §2.8]. In
any such category every object X has a transfinite socle filtration: the socle of X, socX, is the
maximal semisimple subobject of X (the sum of all semisimple subobjects of X), and then the
socle filtration is built by transfinite induction each time taking the pullback in X of the socle of
the relevant quotient. We have

0 ⊂ socX = soc1X ⊂ soc2X = π−1
1

(
X/(socX)

)
⊂ . . . ⊂ socℵ0 X = π−1

ℵ0

(
lim
−→

(socqX)
)
⊂ . . .

where π1 : X → X/(socX) and πℵ0 : X → X/

(
lim−→
q<ℵ0

(socqX)

)
are the canonical projections. For

q ∈ Z≥1, we denote by socqX the q-th layer socqX/ socq−1X of the transfinite socle filtration of
X.

2 Ordered Grothendieck categories

Here we extend the notion of ordered Grothendieck category introduced in [3] to the infinite-length
setting.
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First, recall that a family of objects {Zκ} of an abelian category C is a family of generators

if for any two distinct morphisms A
ϕ−→ B and A

ψ−→ B in the category C, there is an object
Zκ together with a morphism γ : Zκ → A so that the compositions ϕ ◦ γ and ψ ◦ γ are distinct,
see [10, §V.7] or [16, discussion preceding Proposition 1.2.2]. Next, recall the following notion (see
[16, §5.6] or [1, §41] for a discussion in the context of module categories).

Definition 2.1 An object X in a Grothendieck category is semi-artinian if every nonzero quotient
of X has nonzero socle. A Grothendieck category is semi-artinian if it has a set of semi-artinian
generators. �

Let C be a Grothendieck category and (I,�) be a poset. Let also Xi ∈ C, i ∈ I be a collection
of semi-artinian objects, and Si be the set of isomorphism classes of simple subobjects of Xi. The
following definition generalizes Definition 2.1 in [3].

Definition 2.2 The above structure makes C an ordered Grothendieck category provided the fol-
lowing conditions hold:

(i) every object in C is isomorphic to a subquotient of a direct sum
⊕

i∈I′⊂I
X⊕γii for some subset

I ′ ⊂ I and some cardinal numbers γi;

(ii) the sets Si are disjoint, and they exhaust the isomorphism classes of simple objects of C;

(iii) simple subquotients of Xi which are not subobjects of socXi belong to Sj for j ≺ i;

(iv) each Xi decomposes as a direct sum of subobjects with simple socle;

(v) for all i�j the maximal subobject Yi�j ⊆ Xi whose simple constituents are in various Sk for
k � i, but k not satisfying k � j, is the joint kernel of a family of morphisms Xi → Xj . �

If U is a semisimple subobject in socXi, then by Ũ we denote the direct summand of Xi such
that soc Ũ = U ; the existence of Ũ is guaranteed by condition (iv).

Remark 2.3 An ordered Grothendieck category is semi-artinian. This follows from the observation
that condition (i) of Definition 2.2 together with our assumption that Xi are semi-artinian ensure
that C is semi-artinian. The proof can be found in [1, 41.10 (4)] (or in the original source [19, 27.5,
32.5] cited therein) for module categories; the general result is analogous. �

Definition 2.4 If the Xi in Definition 2.2 are of finite length (or, equivalently, if Xi satisfy Defi-
nition 2.1 in [3]), we say that C is a finite ordered Grothendieck category. �

The next proposition shows that checking the properties (i)–(v) on a set of objects {Xi} suffices
to describe, up to isomorphism, all injective hulls of simple objects in C as direct summands of Xi

(cf. [3, Proposition 2.3]).

Proposition 2.5 In the setup of Definition 2.2, for any i ∈ I and any simple object U ∈ Si the
object Ũ is an injective hull of U .

Proof Let U ⊂ J be an essential extension such that J is a subquotient of a direct sum X =⊕
j∈I′⊂I

X
⊕γj
j for some cardinal numbers γj . It suffices to show that J admits a monomorphism into

Ũ .
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Writing J as a subobject of a suitable quotient Z of X, we can factor out a direct complement
of U in socZ thus reducing to the case where Z itself has socle U . Therefore, upon substituting Z
for J , we can assume that J is a quotient of X.

Now consider the largest subobject K of X whose simple constituents lie in various Sk for
k�i. First, since no subquotient of K is in Si, K is automatically a subobject of the kernel of
the epimorphism X → J . Additionally, condition (v) in Definition 2.2 ensures the existence of a
morphism from X into a product of Xγ

i with kernel equal to K.
Condition (iii) of Definition 2.2 and the fact that the socle of J is U ∈ Si now imply that a

subobject of a single factor Xi of Xγ
i admits an epimorphism to J . Finally, this implies via the

decomposition in condition (iv) of Definition 2.2 that a subobject of Ũ ⊂ Xi admits an isomorphism
with J . �

Corollary 2.6 Under the conditions of Proposition 2.5, the indecomposable injective objects of C
are, up to isomorphism, precisely the indecomposable summands of the various objects Xi.

Proof The indecomposable injectives are injective hulls of the simple objects, and these are pre-
cisely the objects in Si, i ∈ I. The conclusion now follows from Proposition 2.5. �

One characteristic of ordered Grothendieck categories that will be important for us below is
a certain “upper triangular” character of Ext-groups between simple objects, which limits the
possibilities for such Ext-groups to be nontrivial.

In order to state the result, we need the following definition (cf. e.g. [3, §2.2]).

Definition 2.7 Let i�j be two elements in a poset (I,�). The defect d(i, j) is the supremum in
Z≥0 ∪ {∞} of the set of nonnegative integers q for which there is a chain

i = i0≺ i1 ≺ · · · ≺iq = j

in I. �

Remark 2.8 Note that for i� j �k we have d(i, j) ≥ d(i, k) + d(k, j). �

We can now state the result alluded to above.

Proposition 2.9 Let T ∈ Sj and T ′ ∈ Si be two simple objects and suppose Extp(T ′, T ) 6= 0 for
some p ≥ 0. Then i�j and d(i, j) ≥ p.

Before delving into the proof, it will be convenient to introduce a notation and a definition.

Notation 2.10 For an arbitrary object U ∈ C we denote by Ũ an injective hull of U in C. By
Proposition 2.5, this is consistent with the previous usage of the notation Ũ . �

Definition 2.11 For an object U ∈ C its corona corU in C is Ũ/U . �

Proof of Proposition 2.9 The case p = 0 is not interesting, so suppose p ≥ 1. If p = 1, then the
desired conclusion (namely, i ≺ j) follows from condition (iii) of Definition 2.2.

Now suppose p > 1. Then the long exact sequence of Ext-groups corresponding to the exact
sequence

0→ T → T̃ → corT → 0

yields an identification
Extp(T ′, T ) ∼= Extp−1(T ′, corT ). (4)
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By condition (iii) of Definition 2.2 again, all simple subquotients of corT belong to various S` for
` ≺j.

If p−1 = 1, then some of these indices ` will be strictly larger than i (because of the nonvanishing
of the right-hand side Ext1 of (4)). Therefore

i≺ ` ≺j ,

in particular, i ≺ j and d(i, j) ≥ 2. Otherwise, we can continue the process, passing to the double
corona cor(corT ), until p has been whittled down to 1. �

The reason why we referred to the result of Proposition 2.9 as ‘upper triangularity’ is the
following fragment of the statement, which we isolate for emphasis; it says that nonvanishing Ext-
functors are unidirectional with respect to the poset (I,�).

Corollary 2.12 If i�j ∈ I and T ∈ Sj, T ′ ∈ Si, then

Extp(T ′, T ) = 0 for p > 0 .

�

Note that, although all indecomposable injective objects of C are described by Corollary 2.6,
arbitrary injective objects need in general not be sums of indecomposable injectives. We now
identify some sufficient conditions that ensure that C is better behaved in this sense; we then apply
these results to specific ordered Grothendieck categories.

Proposition 2.13 If each Xi is a union of its finite-length subobjects then, up to isomorphism,
the injective objects in C are precisely arbitrary direct sums of indecomposable direct summands of
the Xi.

Before going into the proof, recall the following notions (see e.g. [16, §5.7 and §5.8]).

Definition 2.14 Let X be an object of a Grothendieck category C.

(1) X is noetherian if it satisfies the ascending chain condition on subobjects;

(2) C is locally noetherian if it has a set of noetherian generators. �

The reason why Definition 2.14 is relevant to Proposition 2.13 is that it precisely captures the
conditions that give us the kind of control over arbitrary injective objects alluded to above, as the
following result shows (this is an abbreviated version of [16, Theorems 5.8.7, 5.8.11]).

Proposition 2.15 For a Grothendieck category C the following conditions are equivalent:

(1) C is locally noetherian;

(2) the injective objects in C are precisely the arbitrary direct sums of indecomposable injective
objects.

�

Proof of Proposition 2.13 The hypothesis ensures that the finite-length subquotients of the Xi

form a set of generators, and hence C is locally noetherian. Our claim follows now from Proposi-
tion 2.15. �
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We end this section with a discussion of how the present material relates to the notion of a
highest weight category in the sense of [4, Definition 3.1]. First, note that Definition 2.2 specializes
to [3, Definition 2.1] when the poset I has the property that down-sets

I�i := {j ∈ I | j�i}

are finite. Moreover, [3, Proposition 2.16] shows that in that case an ordered Grothendieck category
is a highest weight category. That result extends virtually verbatim to the present setting provided
I is interval-finite, i.e. all intervals

[i, k] = {j ∈ I | i� j �k}, i, k ∈ I

are finite. We record the resulting statement here.

Proposition 2.16 An ordered Grothendieck category based on an interval-finite poset (I,�) is a
highest weight category. �

3 A first application

Before moving on to our main object of study, we would like to point out that the material in
Section 2 applies to an interesting category studied in [13]. Specifically, recall that for

g = sl(∞), o(∞), sp(∞)

the category T̃ensg is defined as the full subcategory of g-mod consisting of integrable modules
M of finite Loewy length such that the algebraic dual M∗ is also an integrable g-module of finite
Loewy length. It can be shown that T̃ensg is closed under dualization, taking subobjects, quotient
objects, and extensions (and hence also finite direct sums).

Definition 3.1 For g as above, we denote by Cg the smallest full, exact Grothendieck subcategory

of g-mod containing T̃ensg. �

The category Cg is simply the full subcategory of g-mod whose objects are sums of objects in

T̃ensg.

Remark 3.2 For an algebra A, the smallest Grothendieck category of modules containing a given
A-module M (constructed essentially as we have just described) is sometimes denoted by σ(M) in

the literature, e.g. [1, §41]. We can think of T̃ensg as σ(M) where A is the enveloping algebra of g
and M is the direct sum of a set of generators for Cg. �

We now explain how Cg fits into the framework of Section 2. Recall [5] that Tg is the full subcat-
egory of g-mod which consists of g-modules isomorphic to finite-length subquotients of finite direct
sums of the form T (V ⊕ V∗)⊕q for q ∈ Z>0 (for g = o(∞), sp(∞), one can replace T (V ⊕ V∗)⊕q
simply by T(V )⊕q). The category Tg is equipped with an auto-equivalence M 7→M∗ (which is the
identity in the case of g = o or sp) induced by the automorphism of g arising from switching V and
V∗. Let F denote the composition of functors

M 7→M∗ 7→(M∗)
∗ .

The poset (I,�), relevant for the category Cg, consists of all pairs (n,m) of nonnegative integers,
where

(n,m)�(n′,m′) ⇐⇒ n ≤ n′ and m ≤ m′.
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For (n,m) ∈ I we define
Xn,m := F

(
(V∗)

⊗n ⊗ V ⊗m
)
.

Then the contents of [13, §6] amount to the fact that Cg satisfies the conditions of Definition 2.2;
we leave the easy verification to the reader. Condition (v), for instance, which is perhaps the least
obvious, follows from [13, Lemma 6.6] by taking the family of morphisms required by condition (v)
to be the family of all morphisms Xi → Xj where i = (n′,m′) � j = (n,m).

The poset (I,�) is interval-finite, hence Cg is a highest-weight category according to Proposi-
tion 2.16.

Next, note that the finite-length subobjects of finite direct sums of objects Xn,m form a set of

generators for T̃ensg, and hence the same is true of Cg by the definition of the latter. This shows that
Cg is locally noetherian in the sense of Definition 2.14, and therefore according to Proposition 2.15
we have

Proposition 3.3 The injective objects in Cg are precisely arbitrary direct sums of indecomposable
injectives. �

In [13, Corollary 6.7], the indecomposable injectives in the category T̃ensg have been described
explicitly as being isomorphic to direct summands of Xn,m, and hence Proposition 3.3 classifies
the injective objects in Cg. Moreover, Proposition 3.3 is an essential improvement of Theorem 6.15

in [13] which claims the existence of a certain finite filtration on any injective object in T̃ensg.

4 The categories Tα and T̄α
We now introduce a series of ordered Grothendieck categories which we study throughout the rest
of the paper. The general setting is as follows: α is an arbitrary infinite cardinal number, V and
V∗ are α-dimensional complex vector spaces, and

p : V∗ ⊗ V → K

is a nondegenerate pairing diagonalizable in the sense that there are bases {v∗κ} of V∗ and {vκ′} of
V such that p (v∗κ, vκ′) = δκκ′ .

Fixing the bases {v∗κ} and {vκ}, and an arbitrary total order on the set Σ of indices κ, allows
us to think of the elements of V as size-α column vectors with finitely many nonzero entries, and
of the elements of V ∗ as arbitrary size-α row vectors; of those, the elements of V∗ are precisely the
row vectors with finitely many nonzero entries.

By α+ we denote the successor cardinal to α. For each infinite cardinal β ≤ α+ we denote by
V ∗β ⊂ V ∗ the subspace consisting of row vectors with strictly fewer than β nonzero entries. In this
way we have a transfinite filtration

0 ⊂ V ∗ℵ0 ⊂ . . . ⊂ V
∗
α ⊂ V ∗ . (5)

Note that V ∗α+ = V ∗ and V ∗ℵ0 = V∗ by definition.

Let glM be the Mackey Lie algebra of the pairing p. Using the bases {v∗κ} and {vκ}, and the
total order on Σ, we can identify glM (V∗, V ) with α × α-matrices with finite rows and columns.
Every infinite cardinal β ≤ α+ yields an ideal glMβ in glM : it consists of matrices in glM with at
most β nonzero rows and columns, or equivalently with strictly fewer than β nonzero entries. The
action of glM on V is nothing but multiplication of matrices. On V ∗ the action of glM is given by
the formula

g · v = −vg for g ∈ glM , v ∈ V ∗ .
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Clearly glM · V ∗β ⊆ V ∗β , i.e., the filtration (5) of V ∗ is glM -stable.
Recall that, for a Young diagram µ and an object M ∈ Tα, we denote by Mµ the image of M

through the Schur functor associated to µ. Moreover, given Young diagrams µ and ν, we denote
by Vµ,ν the space of traceless tensors in (V∗)µ ⊗ Vν , i.e. those annihilated by all compositions

(V∗)µ ⊗ Vν ⊆ (V∗)
⊗|µ| ⊗ V ⊗|ν| → (V∗)

⊗(|µ|−1) ⊗ V ⊗(|ν|−1)

where the right-hand arrow ranges over the |µ| · |ν| possible applications of p.

Definition 4.1 Tα is the smallest full monoidal subcategory (with respect to ⊗) of g-mod which
contains V and V ∗, and is closed under taking subquotients. �

We will also work with the Grothendieck envelope Tα obtained as the full subcategory of
glM -mod with objects arbitrary sums of objects in Tα (see Remark 3.2). We embark below on a
study of Tα and Tα, our first goal being to show that the latter category fits into the framework of
Section 2.

4.1 Simple objects

Our aim here is to prove the following classification of the simple objects in the category Tα.

Proposition 4.2 Let t be a nonnegative integer such that there exist infinite cardinal numbers
βt, . . . , β0 with β0 < · · · < βt ≤ α. Then, given Young diagrams

λt, · · · , λ0, µ, ν,

the object1

V(βt,λt),··· ,(β0,λ0),µ,ν :=
0⊗
s=t

(V ∗
β+
s
/V ∗βs)λs ⊗ Vµ,ν (6)

is simple over glM , and its endomorphism algebra in Tα is K. Moreover, the objects obtained for
distinct choices of cardinals or Young diagrams are mutually nonisomorphic.

We work in stages towards a proof. First, we have

Lemma 4.3 The object Vµ,ν has no nonzero proper subobjects and its endomorphism algebra over
glM is K.

Proof As a consequence of [15, Theorem 2.2] and [14, Theorem 5.5], Vµ,ν is simple over the ideal
glMℵ0 = V∗⊗V ⊂ glM : the former result handles the case of countable-dimensional V and V∗, whereas
the latter result transports this to the general case via a categorical equivalence. In conclusion,
Vµ,ν is also simple over glM .

As for the statement regarding the endomorphism algebra, we can again assume that we are
in the countable-dimensional setup of [15], as the general case follows then by [14, Theorem 5.5].
Then the Lie algebra V∗ ⊗ V is the union of a chain of upper-left-hand-corner inclusions

gl(2) ⊂ gl(3) ⊂ · · · ⊂ gl(q) ⊂ · · · ,
1Since in the expression V(βt,λt),··· ,(β0,λ0),µ,ν =

⊗0
s=t(V

∗
β+
s
/V ∗βs)λs ⊗ Vµ,ν the indices of the cardinal numbers βs

decrease from left to right, in what follows we will often see tensor product or summation formulas with indices
ranging from t > 0 to 0.
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and Vµ,ν is a direct limit of irreducible gl(q)-modules (Vµ,ν)q.

Now let ψ be an glM -endomorphism of Vµ,ν . Consider a vector 0 6= v ∈ Vµ,ν . Then, v ∈ (Vµ,ν)q
for some q. The vector ψ(v) lies in (Vµ,ν)q′ for some q′ > q, hence ψ(v) generates (Vµ,ν)q′ over

U
(
gl(q′)

)
. Consequently, ψ|(Vµ,ν)q′

is a well-defined automorphism of (Vµ,ν)q′ , and equals a constant

by Schur’s Lemma. The fact that the constants obtained in this way for all q′′ > q′ coincide is
obvious. The statement follows. �

The following result is a direct corollary of [2, Lemma 3] and [3, Lemma 3.1].

Lemma 4.4 Let G be a Lie algebra and I ⊆ G be an ideal. If W is a G-module on which I acts
densely and irreducibly with EndI(W ) = K, then the functor

• ⊗W : G/I-mod→ G-mod

is fully faithful and preserves simplicity. �

We will also need the following auxiliary Schur-Weyl-type result.

Proposition 4.5 Let W be a vector space and G ⊆ End(W ) be a Lie subalgebra which acts densely
on W . Then, for any partition λ, the G-module Wλ is simple and EndG(Wλ) ∼= K.

Proof As we noted in Section 1, G acts densely of Wλ. Moreover, it suffices to prove the statement
for the case G = End(W ), as both simplicity and the endomorphism ring are preserved by passing
to a Lie subalgebra acting densely (see [14, Lemma 7.3, Theorem 7.4]). The simplicity of Wλ

as End(W )-module is obvious as Wλ is the direct limit of all subspaces Fλ for finite-dimensional
subspaces F ⊂W , and the latter are simple End(F )-modules.

Let now ψ : Wλ → Wλ be an automorphism. Choose a decomposition W = F ⊕ F̄ where

dimF <∞. Note that, for large enough dimF , the End(F )-module Fλ is a submodule of Wλ

∣∣∣
End(F )

of multiplicity 1. Hence, ψ
∣∣
End(F )

is well defined and ψ
∣∣
Fλ

= c for some c ∈ K. The fact that c

does not depend on the choice of the decomposition F ⊕ F̄ follows from the fact that, for any
two decompositions W = F ′ ⊕ F̄ ′ = F ′′ ⊕ F̄ ′′, there is a decomposition W = F ′′′ ⊕ F̄ ′′′ with
F ′, F ′′ ⊂ F ′′′. �

The next two results highlight the relevance of Proposition 4.5 to our setup.

Lemma 4.6 The Lie algebra glM/glMα acts densely on the quotient V ∗/V ∗α .

Proof Since
glMα · V ∗ ⊆ V ∗α ,

the Lie algebra glM/glMα does indeed act on the quotient V ∗/V ∗α . We will henceforth focus on
showing that glM acts densely. For this purpose, let vs for 0 ≤ s ≤ q be linearly independent
vectors in V ∗/V ∗α , and ws ∈ V ∗/V ∗α be q other vectors. We have to show that there exists g ∈ glM

such that
g · ṽs = w̃s for any s, (7)

where tilde indicates a preimage in V ∗.
We think of ṽs and w̃s as row vectors. The coordinates of row vectors in V ∗ are indexed by

a totally ordered set Σ of cardinality α. For the duration of the proof, we identify Σ with the
well-ordered set of all ordinals b such that b < α. The matrices in glM act on row vectors in V ∗
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as −vg, where vg is the product of matrices. The linear independence of the vectors vs ∈ V ∗/V ∗α
ensures that their representatives ṽs in V ∗ have at least α nonzero entries. This implies that we
can partition the set Σ of indices of cardinality α into finite sets Σb parametrized by all ordinals
b < α, and such that each finite set {ṽs|Σb} is a linearly independent set of finite vectors; here ṽs|Σb
denotes the finite vector formed by making all entries of ṽs outside of Σb equal to zero.

The latter claim is proved by transfinite induction. We start by finding Σ0 corresponding to
the ordinal 0: a set Σ0 exists such that {ṽs|Σ0} is a linearly independent set, otherwise the images
vs of ṽs in V ∗/V ∗α will be linearly dependent. The transfinite induction step is carried out in the

same way: Let Σ′ := Σ \
⊔
b′<b Σb′ for some ordinal b < α. If the vectors

{
ṽs|Σ′b

}
are linearly

dependent for all choices of a finite set Σ′b ⊆ Σ′, then their images in V ∗/V ∗α are linearly dependent,
a contradiction.

The linear independence of the vectors ṽs|Σb means that we can select column vectors gb with
finitely many nonzero entries indexed by Σb, and such that for the product of matrices −(ṽs|Σb)gb
we have

−(ṽs|Σb)gb = the b-indexed entry of w̃s for 0 ≤ s ≤ q.

Now simply take g to be the matrix having the gb as its columns. It has finite rows and columns
by construction, and satisfies the desired condition (7). �

We can generalize Lemma 4.6 as follows.

Lemma 4.7 For every infinite cardinal number β ≤ α the quotient glMβ+/gl
M
β acts densely on

V ∗β+/V
∗
β .

Proof The case β = α is treated in Lemma 4.6. Assume β < α. We have to show that for any
choice of finitely many linearly independent vectors vs ∈ V ∗β+/V

∗
β and any choice of ws in the same

vector space, there exists g ∈ glM such that

g · vs = ws for all s.

We can lift vs and ws to row vectors in V ∗ with β nonzero entries. Having done so, denote by Σ′

the union of the sets of indices of nonzero entries of all these lifted vectors. We can now restrict
our attention to only those vectors in V and V ∗ and matrices in glM whose nonzero coordinates
have indices in Σ′.

This is equivalent to working with the pairing between the β-dimensional subspace VΣ′ ⊆ V
spanned by Σ′-entry vectors and the subspace (VΣ′)∗ ⊆ V∗, and with the corresponding Mackey Lie
algebra. To complete the proof, we simply apply Lemma 4.6 to this pairing of lower-dimensional
vector spaces. �

Lemma 4.8 For any cardinal number β ≤ α and any partition λ, the module (V ∗β+/V
∗
β )λ is irre-

ducible over glMβ+/gl
M
β , and its endomorphism ring is K.

Proof This is an immediate application of Proposition 4.5 and Lemma 4.7. �

Proof of Proposition 4.2 We split the proof into two portions.
Part 1: Simplicity and endomorphism algebra of the object (6). We prove this by

induction on t, the case t = 0 being a consequence of [14, Theorem 4.1].
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Now assume that the statement holds for t − 1 and set β = βt and λ = λt. Lemma 4.7 and
Proposition 4.5 ensure that the tensorand (V ∗β+/V

∗
β )λ of (6) is simple over glMβ+/gl

M
β with scalar

endomorphism algebra. Setting

W = V(βt−1,λt−1),··· ,(β0,λ0),µ,ν ,

we can then apply Lemma 4.4 to the ideal glMβ ⊆ glMβ+ (in the role of I ⊆ G) to finish the proof.
Part 2: The simple objects are mutually nonisomorphic. Suppose that the modules

V(βt,λt),··· ,(β0,λ0),µ,ν and V(β′q ,λ
′
q),··· ,(β′0,λ′0),µ′,ν′ are isomorphic. Restricting first to glMℵ0 = V∗⊗ V , over

which the modules are direct sums of copies of Vµ,ν and Vµ′,ν′ respectively, we get µ′ = µ and
ν ′ = ν. We can now proceed recursively in the following fashion.

Assume that for some u ≤ min(q, t) we have shown that

βs = β′s and λs = λ′s for 0 ≤ s ≤ u.

Then, setting
W = V(βu,λu),··· ,(β0,λ0),µ,ν

and
I ⊆ G to be glMβu+1

⊆ glM ,

we conclude from Lemma 4.4 that

u+1⊗
s=t

(V ∗
β+
s
/V ∗βs)λs

∼=
u+1⊗
s=q

(V ∗
β′+s
/V ∗β′s)λ′s .

Restricting this isomorphism to glMβ+/gl
M
β for β = min(βu+1, β

′
u+1) we conclude that βu+1 = β′u+1

and λu+1 = λ′u+1. We can now repeat the procedure with u in place of u + 1, until the process
terminates. This can only happen if q = t and the corresponding βs and β′s are equal, and similarly
for λs and λ′s. �

4.2 Ordering T̄α
Here we explain how the category T̄α fits into the setting of Section 2.

Our objects Xi will be finite tensor products of the form⊗
β

(
V ∗/V ∗β

)⊗nβ⊗ (V ∗)⊗n ⊗ V ⊗m (8)

for infinite cardinal numbers β ≤ α. In this way, the underlying set I of the poset indexing the
objects Xi consists of all finite tuples

(nβ, n,m)β≤α

of nonnegative integers where almost all nβ vanish. We define a partial order on I by setting

(nβ, n,m)�(n′β, n
′,m′)

if and only the following conditions hold:

(a)
∑
β≥γ

nβ ≥
∑
β≥γ

n′β ∀γ ≤ α;
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(b) n ≤ n′ and m ≤ m′;

(c)
∑

β nβ + n−m =
∑

β n
′
β + n′ −m′.

In order to show that the above choice of objects Xi for i ∈ I makes T̄α an ordered Grothendieck
category, we start with

Lemma 4.9 Let β0 < · · · < βt ≤ α be infinite cardinal numbers, and λt, . . . , λ0, µ, ν be arbitrary
Young diagrams.

Then, the object of Tα
0⊗
s=t

(V ∗/V ∗βs)λs ⊗ (V ∗)µ ⊗ Vν (9)

is an essential extension of

V(βt,λt),··· ,(β0,λ0),µ,ν =
0⊗
s=t

(V ∗
β+
s
/V ∗βs)λs ⊗ Vµ,ν . (10)

Proof Step 1. In first instance we argue that (10) is essential in

0⊗
s=t

(V ∗
β+
s
/V ∗βs)λs ⊗ (V ∗)µ ⊗ Vν . (11)

To this end, note first that it suffices to show that (10) is essential in (11) when regarded as a
module over the ideal V∗ ⊗ V of glM . Since V∗ ⊗ V annihilates

⊗0
s=t(V

∗
β+
s
/V ∗βs)λs , this in turn

reduces to showing that Vµ,ν is essential in (V ∗)µ ⊗ Vν as a module over V∗ ⊗ V .
The inclusions

(V∗)
⊗n ⊗ V ⊗m ⊂ (V ∗)⊗n ⊗ V ⊗m

are essential: for any v 6= 0 belonging to the right-hand side, the V∗ ⊗ V -module generated by v is
nonzero and contained in the left-hand side.

Now simply apply this remark to a traceless v in the image of the Young symmetrization
operator sending (V ∗)⊗n ⊗ V ⊗m to (V ∗)µ ⊗ Vν .

This concludes the proof that (10) is essential in (11).

Step 2. We next argue that (11) is essential in

1⊗
s=t

(V ∗
β+
s
/V ∗βs)λs ⊗ (V ∗/V ∗β0)λ0 ⊗ (V ∗)µ ⊗ Vν . (12)

This is very similar in spirit to the proof of Step 1: it is enough to prove that the extension in
question is essential over the Lie subalgebra glM

β+
0
⊆ glM which annihilates the s-indexed tensorands

in (12) and maps the middle tensorand (V ∗/V ∗β0)λ0 into (V ∗
β+
0

/V ∗β0)λ0 .

As before, it suffices to observe that glM
β+
0

does not annihilate any nonzero elements of (V ∗/V ∗β0)λ0⊗
(V ∗)µ ⊗ Vν .

Step 3: conclusion. We now repeat the argument in Step 2 inductively, each time replacing
one V ∗

β+
s

by V ∗ and working over the ever-larger Lie algebra glM
β+
s

. After exhausting all tensorands,

we obtain a tower of essential extensions with the simple object (9) at the bottom and the object
(8) at the top. The desired conclusion follows. �
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Corollary 4.10 The transfinite filtration (5) is the transfinite socle filtration of the object V ∗ of
Tα.

Proof This follows immediately from the simplicity of the objects V ∗β+/V
∗
β for cardinals β ≤ α and

from the fact that V ∗/V ∗β is an essential extension of V ∗β+/V
∗
β . �

Proposition 4.11 For the above choice of the poset I and the objects Xi, for i ∈ I, the Grothendieck
envelope T̄α is is an ordered Grothendieck category.

Proof Part (i) of Definition 2.2 is implicit in Definition 4.1. For part (ii), note that Xi is a direct
sum of objects of the form (9). Since (9) is an essential extension of (10) by Lemma 4.9, and the
object (10) is simple by Proposition 4.2, socXi is a direct sum of objects (10) with |λβ| = nβ,
|µ| = n, |ν| = m. This implies (ii). Now, part (iv) is also clear as the object (9) is indecomposable
with simple socle (10).

For part (iii), one has to check that any simple subquotient of an object (9) satisfies conditions
a), b), and c) from the definition of the partial order � on I. This is straightforward if we note
that the injective object (9) has a filtration obtained by tensoring the filtration of (V∗)µ ⊗ Vν from
[15, Theorem 2.2] and those of the various V ∗/V ∗βs with simple subquotients of the form V ∗

β+
r
/V ∗βr .

We leave the details to the reader. See also Example 4.32 below for a particular case where all
simple subquotients of (9) are displayed explicitly.

Finally, for part (v), it is a rather routine verification that having fixed i and j in I as in that
portion of Definition 2.2, the morphisms Xi → Xj obtained by composing and tensoring surjections
V ∗/V ∗β → V ∗/V ∗γ for γ ≥ β and contractions V ∗ ⊗ V → C will satisfy the condition. �

Our next result classifies the indecomposable injective objects of Tα; these happen to already
be contained in Tα.

Theorem 4.12 The indecomposable injectives in the category Tα are, up to isomorphism, the ob-
jects (9) with respective socles (10), where the choices range over tuples of infinite cardinal numbers
β0 < · · · < βt ≤ α and Young diagrams λt, . . . , λ0, µ, ν.

Proof This is a consequence of Proposition 4.11 and Corollary 2.6 together with the classification
of simple objects from Proposition 4.2 and the fact that (10) is essential in (9) via Lemma 4.9. �

4.3 Blocks of T̄α
We will show that the integers appearing on the two sides of the equality (c) in the definition of
(I,�) in Section 4.2 in fact parametrize the blocks of the category Tα. First, let us recall

Definition 4.13 Suppose the class Indec(C) of isomorphism classes of indecomposable objects of
an abelian category C is a set. The blocks of C are the classes of the finest equivalence relation on
Indec(C) requiring that objects Z, Y with HomC(Z, Y ) 6= 0 belong to the same class. �

Theorem 4.14 The blocks of Tα are parametrized by Z, and the simple object V(βt,λt),··· ,(β0,λ0),µ,ν

belongs to the block indexed by
0∑
s=t
|λs|+ |µ| − |ν|.

Proof For a simple object U = V(βt,λt),··· ,(β0,λ0),µ,ν as in the statement, let us refer to the integer

0∑
s=t

|λs|+ |µ| − |ν| ∈ Z
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as the content of U . We split the proof into two halves.

(1) Different content ⇒ different blocks. Since the content of a simple object U is nothing
but the expression in part c) of the definition of the partial order on I (where nβ = |λβ|, n = |µ|,
m = |ν|), the fact that T̄α is an ordered Grothendieck category (Proposition 4.11) implies that all
simple subquotients of the injective hull (9) of a simple object U as in (10) have the same content
as U .

(2) Same content ⇒ same block. Consider a simple object U of the form (10). Its injective
hull (9) surjects onto

0⊗
s=t

(V ∗/V ∗βt)λs ⊗ (V ∗/V ∗βt)µ ⊗ Vν ,

so U is in the same block as an injective object of the form

(V ∗/V ∗βt)λ ⊗ Vν , (13)

for some Young diagram λ. In turn, the object (13) is a quotient of the indecomposable injective
(V ∗)λ ⊗ Vν . Finally, the classification of blocks in Tsl(∞) from [5, Corollary 6.6], together with the
equivalence of categories

TEnd(V ) ' Tsl(∞)

established in [14], shows that the block of (V ∗)λ⊗Vν depends only on the difference |λ|− |ν|. The
result follows. �

4.4 Vanishing Ext-functors and Koszulity

Our main aim in the present subsection is to prove an analogue of [3, Theorem 3.11], improving
on Proposition 2.9 and describing necessary conditions for nonvanishing Ext-functors between the
simple objects of Tα described in Proposition 4.2.

We start with a formula for the defect d(i, j). Consider two elements i and j of I: i = (nβ, n,m)

and j =
(
n′β, n

′,m′
)

. Let
{
β′0 < β′1 < . . . < β′q′

}
be the union of all infinite cardinals for which

nβ 6= 0 or n′β′ 6= 0. Extend this set to a minimal set of cardinals which is interval-closed in the

sense that whenever βj′ is a finite iterated successor β++···+
j , all intermediate successors β+

j , β++
j ,

etc. belong to the set. Denote by {β0 < . . . < βq} the resulting finite set.

Proposition 4.15 Given i = (nβ, n,m) � j = (n′β, n
′,m′) with finite defect d(i, j), we have

d(i, j) = n′ − n+

q∑
s=0

s
(
ns − n′s

)
. (14)

Proof We argue by induction on d(i, j). If d(i, j) = 1, then there are two possibilities:

• nβ = n′β for all cardinals β and n′ − n = m′ −m = 1

or

• m′ = m, n′ = n, n′β 6= nβ for precisely two cardinals β of the form βs, βs+1 = β+
s , and

n′βs − nβs = nβs+1 − n′βs+1
= 1.
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In both cases formula (14) holds. For the induction step, consider a maximal chain

i = i0 ≺ i1 · · · ≺ iu = j

for u = d(i, j). Then d (iu−1, iu) = 1, and using the above observation and the induction assumption,
one immediately checks formula (14) for the pair (i, j). �

Corollary 4.16 (a) If d(i, j) <∞, the length of any finite chain in I linking i and j equals d(i, j).

(b) Under the assumption of (a), we have

d(i, k) = d(i, j) + d(j, k)

Proof Part (a) emerged over the course of the proof of Proposition 4.15, while part (b) is a
consequence of (a): if all maximal chains have the same length, then that common length must be
equal to the length of a chain i→ k obtained by concatenating chains i→ j and j → k. �

Remark 4.17 In the language of [18, Section 3.1], intervals [i, j] for which d(i, j) <∞ are graded
posets (some authors refer to such posets as ranked). �

Notation 4.18 For simple objects U ∈ Si and W ∈ Sj with i � j we sometimes write d(U,W ) for
d(i, j). �

We will use the following observations in the proof of Theorem 4.20 below.

Corollary 4.19 Suppose U ∈ Si and W ∈ Sj are simple objects of Tα such that d(i, j) = p.Then
for every infinite cardinal γ and any simple objects

Ũ ⊂ soc((V ∗/V ∗γ )⊗ U), W̃ ⊂ soc((V ∗/V ∗γ )⊗W )

we have d(Ũ , W̃ ) = p. Similarly, for a simple object

˜̃
U ⊂ soc((V ∗/V ∗γ+)⊗ U)

we have d

(˜̃
U, W̃

)
= p+ 1.

Proof Let i = (nβ, n,m), j =
(
n′β, n

′,m′
)

. Then Ũ ∈ Sĩ, for ĩ = (ñβ, n,m), where ñβ = nβ for

β 6= γ, and ñγ = nγ + 1. Similarly, W̃ ∈ Sj̃ for j̃ =
(
ñ′β, n

′,m′
)

, where ñ′β = n′β for β 6= γ, and

ñ′γ = n′γ + 1. Finally,
˜̃
U ∈ S˜̃i

, for ˜̃i =
(
˜̃nβ, n,m

)
, where ˜̃nβ = nβ for β 6= γ+, and ˜̃nγ+ = nγ+ + 1.

Therefore both claims follow from immediate application of Proposition 4.15. �

The first main result of the present subsection is

Theorem 4.20 Let T ′ ∈ Si and T ∈ Sj be two simple objects in Tα, and suppose Extp(T ′, T ) 6= 0
for some p ≥ 0. Then d(i, j) = p.

Before beginning the proof, we introduce
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Notation 4.21 For i = (nβ, n,m) ∈ I as in § 4.2 we denote

mi = m,ni = n, nβ,i = nβ.

when we wish to extract the components nβ, n, and m from i. �

Proof of Theorem 4.20 We already know from Proposition 2.9 that Extp(T ′, T ) 6= 0 implies i�j
and d(i, j) ≥ p; the inequality i � j will be implicit throughout the proof.

We do simultaneous induction on p and the nonnegative integer

Nj :=
∑
β

nβ,j (15)

(see Notation 4.21). For p = 0 the statement is trivial as there are no nonzero morphisms between
distinct irreducible objects. Similarly, the case Nj = 0 is also immediate, since T will then be both
simple and injective by Theorem 4.12.

We now address the induction step, assuming that both p and Nj are strictly positive. In that
case, we can find some cardinal β, which is infinite or equals zero, such that T is a direct summand
of the socle of (V ∗/V ∗β )⊗ U for some simple object U . By Lemma 4.9 the socle of (V ∗/V ∗β )⊗ U is
(V ∗β+/V

∗
β )⊗ U , and hence T is a direct summand of the latter. Consider the short exact sequence

0→ (V ∗β+/V
∗
β )⊗ U → (V ∗/V ∗β )⊗ U → (V ∗/V ∗β+)⊗ U → 0, (16)

in which we set V ∗β = 0, V ∗β+ = V∗ for β = 0.

The assumption Extp(T ′, T ) 6= 0 implies

Extp(T ′, (V ∗β+/V
∗
β )⊗ U) 6= 0,

and via the long exact sequence for Ext-groups, this entails

Extp(T ′, (V ∗/V ∗β )⊗ U) 6= 0 (17)

or
Extp−1(T ′, (V ∗/V ∗β+)⊗ U) 6= 0. (18)

Consider first the case (17). Theorem 4.12 makes it clear that tensor products of injective
objects with finite-length socle are again injective, and hence tensoring an injective resolution of U

0→ U → J0 → J1 → · · ·

with V ∗/V ∗β produces an injective resolution (V ∗/V ∗β ) ⊗ J• of (V ∗/V ∗β ) ⊗ U . Since U ∈ Sj′ with
Nj′ = Nj − 1, the induction hypothesis ensures that the socle of Jp consists of simple objects W in
various St with d(W,U) = p. Therefore, by Corollary 4.19, d (W ′, T ) = p for all simple objects W ′

in soc(V ∗/V ∗β ⊗ Jp), and the claim follows.
In the case of (18), the proof is very similar an uses the second statement of Corollary 4.19. �

We next use Theorem 4.20 to show that the Grothendieck category Tα is Koszul according to
the following definition.
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Definition 4.22 Let C be a semi-artinian Grothendieck category such that the class of isomorphism
classes of simple objects is a set. We denote by EC the Ext-algebra of C, by definition equal to⊕

Extp(T ′, T ),

made into an algebra via the Yoneda product; the summation ranges over the isomorphism classes
of simple objects T , T ′, and integers p ≥ 0. Note that EC is graded by placing Extp-groups in
degree p.

The category C is said to be Koszul if EC is generated in degree one. �

We can now state

Theorem 4.23 The category Tα is Koszul for any infinite cardinal α.

Proof We have to prove that for each nonnegative integer p the degree-p component of ETα is
contained in the span of Yoneda products of elements in the degree-1 and degree-(p−1) components.

Let T ′ and T be simple objects in Tα, with d(T ′, T ) = p (see Notation 4.18), and let T̃ be an
injective hull of T . Consider a nonzero element x ∈ Extp(T ′, T ). It is obtained, via the long exact
sequence of Exts corresponding to the exact sequence

0→ T → T̃ → corT → 0,

determined by a nonzero element of Extp−1(T ′, corT ). In turn, Theorem 4.20 implies that this is
actually a nonzero element of

Extp−1
(
T ′, soc(corT )

) ∼= ⊕Extp−1(T ′, U) , (19)

where the summation ranges over the isomorphism classes of the simple submodules U of corT .
Finally, this means that x is in the span of the Yoneda product of the space (19) and

⊕
Ext1(U, T ).

These spaces are subspaces of (ETα)p−1 and (ETα)1 respectively. �

4.5 The case α = ℵt for t ∈ Z≥0

In this section, α = ℵt for t ∈ Z≥0.

Proposition 4.24 Under the above assumption, the objects Xi have finite length, and thus T̄α is
a finite ordered Grothendieck category.

Proof Since V ∗ has finite length, the object (V ∗)⊗n has a finite filtration whose successive quotients
are direct sums of modules of the form(

V ∗/V ∗ℵt
)⊗qt ⊗ · · · ⊗ (V ∗ℵ1/V ∗ℵ0)⊗q0 ⊗ (V∗)

⊗q ⊗ V ⊗q′ .

By [14] and [15], (V∗)
⊗q ⊗ V ⊗q′ has finite length with irreducible subquotients of the form Vµ,ν .

Furthermore, modules of the form
(
V ∗/V ∗ℵt

)⊗qt ⊗ · · · ⊗ (V ∗ℵ1/V ∗ℵ0)⊗q0 have finite filtrations with
irreducible subquotients of the form Vλt,...,λ0,∅,∅ for Young diagrams λt, . . . , λ0 (some of which may
be empty). Finally, Proposition 4.2 implies that tensor products of the form Vλt,...,λ0,∅,∅ ⊗ Vµ,ν are
irreducible. The statement follows. �

Proposition 4.24 implies in particular that the discussion in [3, Section 2] applies verbatim.
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Corollary 4.25 (a) T̄ℵt is a highest weight category.

(b) The indecomposable injectives in the category T̄ℵt are (up to isomorphism)

Ṽλt,...,λ0,µ,ν =
0⊗
s=t

(V ∗/V ∗ℵs)λs ⊗ (V ∗)µ ⊗ Vν , (20)

with respective socles

Vλt,··· ,λ0,µ,ν =
0⊗
s=t

(V ∗ℵs+1
/V ∗ℵs)λs ⊗ Vµ,ν (21)

for arbitrary Young diagrams λt, . . . , λ0, µ, ν;

(c) The injective objects of T̄ℵt are precisely the direct sums of indecomposable injectives of the
form (20).

(d) The category Tℵt is equivalent to the category of comodules over a Koszul semiperfect coalgebra
C. Moreover, any such equivalence identifies Tℵt with the category of finite-dimensional C-
comodules.

Proof Part (a) follows from Proposition Proposition 2.16. Part (b) is a particular instance of
Theorem 4.12. For part (c), we note that Proposition 2.13 applies to the category T̄ℵt . Part (d) is
a consequence of Theorem 4.23 and [3, Theorem 2.13] (cf. [3, Corollary 3.17]). �

Note that the module (21) is nothing but the module (10). When α = ℵt, the infinite cardinal
βs can be read of the position of λs in the subscript of the left-hand side of (21). Therefore we can
simply write Vλt,...,λ0,µ,ν instead of V(βt,λt),...,(β0,λ0),µ,ν .

Remark 4.26 The coalgebra C in Corollary 4.25(d) is not unique, being determined only up to
Morita equivalence. Nevertheless, for a specific choice, see Remark 5.6 below. �

Our next goal is to describe the socle filtration of the injectives (20). We start with

Lemma 4.27 Fix λt, . . . , λ0, µ, ν as in Corollary 4.25. Then Vκt,...,κ0,γ,δ is a direct summand of

socs Ṽλt,...,λ0,µ,ν if and only if Vκt,...,κ0,γ,δ is a constituent of Ṽλt,...,λ0,µ,ν and d(i, j) = s − 1, where
i = (|κt|, . . . , |κ0|, |γ|, |δ|) and j = (|λt|, . . . , |λ0|, |µ|, |ν|).

Proof Theorem 4.20 implies that Vκt,...,κ0,γ,δ is a submodule of soc2 Ṽλt,...,λ0,µ,ν if and only if
Vκ1,...,κ0,γ,δ is a constituent of Ṽλt,...,λ0,µ,ν and d(i, j) = 1. The general case follows by a straightfor-
ward induction argument. �

We now describe the socle filtration of Ṽλt,...,λ0,µ,ν explicitly. Our approach is to break down
the problem into manageable pieces.

As in [3, §3.2], we use Sweedler notation ∆ : λ 7→ λ(1) ⊗ λ(2) for the comultiplication in the
Hopf algebra Sym of symmetric functions ([11]) with the usual basis consisting of Schur functions
indexed by partitions λ. This notation propagates to multiple iterations of the comultiplication, as
in

(∆⊗ id) ◦∆ : λ 7→ λ(1) ⊗ λ(2) ⊗ λ(3),

etc. We also reprise the notation for truncating such sums according to the number of boxes in the
partitions indexing the basis elements. For instance,

λq(1) ⊗ λ
|λ|−q
(2)
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denotes the sum of all of those summands in ∆(λ) = λ(1) ⊗ λ(2) whose left-hand tensorand corre-
sponds to a partition with k boxes.

Furthermore, in order to shorten the notation, we will sometimes denote the simple object
V ∗ℵu+1

/V ∗ℵu by Uu.

Lemma 4.28 Let 0 ≤ u ≤ t and let λ be a partition. Then socq
(
(V ∗/V ∗ℵu)λ

)
is isomorphic to⊕

(Ut)
λ
`t−u+1
(t−u+1)

⊗ · · · ⊗ (Uu)
λ
`1
(1)

, (22)

where the summation is over all choices of nonnegative integers `x such that

1∑
x=t−u+1

`x = |λ| (23)

and
1∑

x=t−u+1

(x− 1)`x = q − 1. (24)

Proof The fact that the simple modules in the sum (22) satisfying (23) are constituents of(
V ∗/V ∗ℵu

)
λ

follows from the general remark that given an exact sequence

0→ U →W → Y → 0

of vector spaces, Wλ admits a filtration

0 ⊆ Uλ ⊆ Uλ|λ|−1
(1)

⊗ Yλ1
(2)
⊆ · · · ⊆ Uλ1

(1)
⊗ Y

λ
|λ|−1
(2)

⊆ Yλ.

According to Lemma 4.27, the equality (24) singles out the simple constituents of socq
(
(V ∗/V ∗ℵ0)λ

)
,

see Proposition 4.15. �

We have an analogous result regarding the tensorand (V ∗)µ ⊗ Vν in (20). Before stating it, we
introduce the notation 〈•, •〉 for the bilinear form on Sym making the basis {λ} orthonormal.

Lemma 4.29 The subquotient socq ((V ∗)µ ⊗ Vν) is isomorphic to

⊕(
(Ut)

µ
`t+1
(t+1)

⊗ · · · ⊗ (U0)
µ
`1
(1)

⊗ V
µ
`t+2
(t+2)

,ν
|ν|−τ
(1)

)⊕〈µ(t+3),ν(2)〉
,

with summation over those choices of τ and `x such that

τ +

1∑
x=t+2

`x = |µ|

and

τ +
1∑

x=t+1

x`x = q − 1. (25)
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Proof First, filtering (V ∗)µ alone using the same technique as in the proof of Lemma 4.28 we
obtain a coarser filtration of (V ∗)µ ⊗ Vν by

0 = F 0 ⊆ F 1 ⊆ F 2 ⊆ · · ·

with the subquotient F q/F q−1 isomorphic to⊕
(Ut)

µ
`t+1
(t+1)

⊗ · · · ⊗ (U0)
µ
`1
(1)

⊗ (V∗)
µ
`t+2
(t+2)

⊗ Vν

for
1∑

x=t+2

`x = |µ| and
1∑

x=t+1

x`x = q − 1.

Then we filter each subobject (V∗)λ⊗Vν of one of the subquotients F q/F q−1 by its socle filtration. In
the comultiplication-based notation and language, we use [15, Theorem 2.3] says that socp((V∗)λ⊗
Vν) is isomorphic to (

V
λ
|µ|−p+1
(1)

,ν
|ν|−p+1
(1)

)⊕〈λ(2),ν(2)〉
.

Splicing together these two filtration processes produces the claimed result. Here (25) is responsible
for identifying the submodule of socq ((V ∗)µ ⊗ Vν). �

The following are more explicit versions of Lemmas 4.28 and 4.29, involving the Littlewood-
Richardson coefficients Nη

µ,ν .

Lemma 4.28 bis Let u ≤ t, and let λ and µx, 0 ≤ x ≤ t− u, be partitions with

0∑
x=t−u

|µx| = |λ| .

Set

q := 1 +
0∑

x=t−u
x|µx|.

Then, for t− u > 1, the multiplicity of the simple object

(Ut)µt−u ⊗ · · · ⊗ (Uu)µ0

in the subquotient socq((V ∗/V ∗ℵu)λ) equals∑
Nλ
µt−u,αt−u−1

Nαt−u−1
µt−u−1,αt−u−2

· · ·Nα1
µ1,µ0

with summation over repeated indices. For t− u = 1, this multiplicity equals Nλ
µ1,µ0, and for t = u,

this multiplicity equals 1 for λ = µ0, and 0 for λ 6= µ0.
No other simples appear as constituents of (V ∗/V ∗ℵu)λ.

Proof This is a reformulation of Lemma 4.28, identifying `x from that result to |µx−1| in the
present one.

Indeed, the multiplicity in question is the coefficient of

µt−u ⊗ · · · ⊗ µ0
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in
∆t−u(λ) = λ(t−u+1) ⊗ · · · ⊗ λ(1).

The very definition of the comultiplication in the ring of symmetric functions implies that this
number is the multiplicity of Uλ in the tensor product

Uµt−u ⊗ · · · ⊗ Uµ0 .

In turn, this is expressible in terms of Littlewood-Richardson coefficients as in the statement. �

Lemma 4.29 bis Let µ, ν and ηx, 0 ≤ x ≤ t, ξ, ζ be partitions, and set

q := 1 + (|ν| − |ζ|) +
t∑

x=0

(x+ 1)|ηx|.

Then the multiplicity of the simple object Vηt,··· ,η0,ξ,ζ in the subquotient socq((V ∗)µ ⊗ Vν) equals∑
Nµ
πt,ηtN

πt
πt−1,ηt−1

· · ·Nπ1
π0,η0N

π0
ξ,δN

ν
ζ,δ,

with summation over repeated indices.
No other simples appear as constituents of (V ∗)µ ⊗ Vν .

Proof The deduction of this statement from that of Lemma 4.29 is analogous to the previous
proof: once more using the definition of the comultiplication, the multiplicity we are after is the
sum ∑

δ

(multiplicity of µ in η0 · · · ηtξδ) · (multiplicity of ν in ζδ) (26)

where as before the Young diagram symbols stand for the corresponding Schur functions in Sym
and juxtaposition means multiplication therein.

In turn, (26) is expressible as a sum of products of Littlewood-Richardson coefficients as
claimed. �

Finally, the general result on the socle filtrations of the indecomposable simple objects (20) is
obtained by tensoring together instances of Lemmas 4.28 and 4.29.

Proposition 4.30 The subquotient socq(Ṽλt,··· ,λ0,µ,ν) of (20) is isomorphic to

∑
ux,y

0⊗
x=t

socux((V ∗/V ∗ℵx)λx)⊗ socy((V ∗)µ ⊗ Vν),

with summation over all choices of ux and y such that
∑0

x=t(ux − 1) + (y − 1) = q − 1.

Proof The ingredients are contained in Lemmas 4.28 and 4.29 and their proofs. �

Remark 4.31 In [3, §3.7] we show that when α = ℵ0, the category Tα is not only Koszul, but is
in fact self-dual: the quadratic algebra ETℵ0 is anti-isomorphic to its quadratic dual.

One consequence of the self-duality is that dimensions of Ext-groups can be read off from socle
filtrations of indecomposable injectives: when α = ℵ0 the simples (10) are indexed by three Young
diagrams, and [3, Corollary 3.34] then says that

dim Extq(Vλ0,µ,ν , Vλ′0,µ′,ν′)
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equals the multiplicity of Vλ0,µ⊥,ν in the socq+1 subquotient of the injective hull of Vλ′0,(µ′)⊥,ν′ ; here
⊥ indicates passage to the transposed Young diagram. In other words, in order to compute the
Ext-group Extq(Vλ0,µ,ν , Vλ′0,µ′,ν′), one simply passes to the socle filtration of Ṽλ′0,(µ′)⊥,ν′ .

For α = ℵt for t ≥ 1, no such “transposing pattern” computes Extq(Vλt,...,λ0,µ,ν , Vλ′t,...,λ′0,µ′,ν′).

Indeed, the subquotient soc3 V ∗ of the injective hull V ∗ of V∗ is nonzero, while the quotient V ∗/V∗
is injective and hence all Ext2(•, V∗) vanish. The problem of computing the Ext-groups of pairs of
simple objects in Tℵt is thus open for t ≥ 1. �

We conclude this subsection by

Example 4.32 Consider the objects Ṽ∅,(1,1),∅,∅ and Ṽ∅,∅,(1,1),(1) in Tℵ1 . They have respective socle
filtrations

V(1,1),∅,∅,(1)

V(1),(1),∅,(1) ⊕ V(1),∅,∅,∅

V(1,1),∅,∅,∅ V∅,(1,1),∅,(1) ⊕ V(1),∅,(1),(1) ⊕ V∅,(1),∅,∅

V(1),(1),∅,∅ V∅,(1),(1),(1) ⊕ V∅,∅,(1),∅

V∅,(1,1),∅,∅ V∅,∅,(1,1),(1)

where socs is displayed at level s from the bottom (the bottom being the socle). The object

Ṽ∅,(1,1),(1,1),(1) = Ṽ∅,(1,1),∅,∅ ⊗ Ṽ∅,∅,(1,1),(1)

has socle filtration

V(2,2),∅,∅,(1) ⊕ V(2,1,1),∅,∅,(1) ⊕ V(1,1,1,1),∅,∅,(1)

2V(2,1),(1),∅,(1) ⊕ 2V(1,1,1),(1),∅,(1) ⊕ V(2,1),∅,∅,∅ ⊕ V(1,1,1),∅,∅,∅

3V(1,1),(1,1),∅,(1) ⊕ V(2),(1,1),∅,(1) ⊕ V(1,1),(2),∅,(1) ⊕ V(2),(2),∅,(1)

⊕ V(2),(1),∅,∅ ⊕ 2V(1,1),(1),∅,∅ ⊕ V(2,1),∅,(1),(1) ⊕ V(1,1,1),∅,(1),(1)

V(2),(1),(1),(1) ⊕ 2V(1,1),(1),(1),(1) ⊕ V(1),(2),∅,∅ ⊕ 2V(1),(1,1),∅,∅
⊕ V(1,1),∅,(1),∅ ⊕ 2V(1),(2,1),∅,(1) ⊕ 2V(1),(1,1,1),∅,(1)

V∅,(2,1),∅,∅ ⊕ V∅,(1,1,1),∅,∅ ⊕ V(1),(2),(1),(1) ⊕ 2V(1),(1,1),(1),(1) ⊕ V(1),(1),(1),∅
⊕ V∅,(2,2),∅,(1) ⊕ V∅,(2,1,1),∅,(1) ⊕ V∅,(1,1,1,1),∅,(1) ⊕ V(1,1),∅,(1,1),(1)

V∅,(2,1),(1),(1) ⊕ V∅,(1,1,1),(1),(1) ⊕ V∅,(1,1),(1),∅ ⊕ V(1),(1),(1,1),(1)

V∅,(1,1),(1,1),(1)

5 Universality

Let (D,⊗,1D) be a K-linear, abelian, symmetric monoidal category with monoidal unit 1D, such
that all tensor functors x⊗ • are exact.

Convention 5.1 A category D as above is a tensor category, and a K-linear symmetric monoidal
functor is a tensor functor. Similarly, a tensor natural transformation is one between tensor functors
that respects all of the structure in the guessable fashion.

A tensor category has coproducts if it has arbitrary direct sums preserved by all functors of the
form a⊗ •. �

With all of this in hand, the main result of the section reads as follows.
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Theorem 5.2 Let q : A⊗B → 1D be a morphism in D and

0 ⊂ A0 ⊆ A1 ⊆ · · · ⊆ Aa ⊂ A (27)

a transfinite filtration of A indexed by ordinals from 0 to a. Set α = ℵa. Then

(a) up to tensor natural isomorphism, there exists a unique left exact tensor functor F : Tα  D
turning the pairing V ∗ ⊗ V → K into q and the transfinite socle filtration of V ∗

0 ⊂ V ∗ℵ0 ⊂ . . . ⊂ V
∗
α ⊂ V ∗

into (27);

(b) if furthermore D has coproducts in the sense of Convention 5.1, then the functor F extends
uniquely to a coproduct-preserving tensor functor Tℵt  D.

We first prove Theorem 5.2 in the case α = t for t ∈ Z≥0. The result is as follows.

Theorem 5.3 Let t be a nonnegative integer. Let q : A⊗B → 1D be a morphism in D and

0 ⊂ A0 ⊆ · · · ⊆ At ⊂ A (28)

a filtration in D by subobjects of A. Then

(a) up to tensor natural isomorphism, there exists a unique left exact tensor functor F : Tℵt  D
turning the pairing V ∗ ⊗ V → K into q and the socle filtration of V ∗

0 ⊂ V ∗ℵ0 ⊂ · · · ⊂ V
∗
ℵt ⊂ V

∗

into (28);

(b) if furthermore D has coproducts in the sense of Convention 5.1, then the functor F extends
uniquely to a coproduct-preserving tensor functor Tℵt  D.

Before we embark on the proof of Theorem 5.3, it will be convenient to slightly restate Corollary
4.25(d) in the spirit of [3, §3.4]. For this purpose, we introduce the tensor algebra

T := T

(
0⊕
s=t

(V ∗/V ∗ℵs)⊕ V
∗ ⊕ V

)
of the direct sum of the displayed “degree-1” indecomposable injectives. For r ∈ Z≥0, we denote
the degree-r truncation of T by T≤r.

Next, define

Ar = EndTℵt (T
≤r), A =

⋃
r∈Z≥0

Ar,

where the inclusions Ar ⊂ Ar+1 are the obvious ones (extension of an endomorphism by 0). We
have the following analogues of [3, Definition 3.18] and [3, Theorem 3.19] (providing an alternate
version of Corollary 4.25(d)).

Definition 5.4 An A-module is locally unitary if it is unitary over some Ar ⊂ A. �

Theorem 5.5 The functor HomTℵt (•,T) implements a contravariant equivalence between Tℵt and
the category of finite-dimensional modules over A which are locally unitary. �
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Remark 5.6 The inclusions Ar ⊂ A split naturally, and hence give rise to inclusions (Ar)∗ ⊂
(Ar+1)∗ of dual finite-dimensional coalgebras. The union

⋃
r(Ar)∗ can be chosen for our coalgebra

C from Corollary 4.25(d).
Moreover, the Koszulity of the coalgebra C translates to the fact that all algebras Ar are Koszul

and hence quadratic. �

We grade Ar as follows:

Definition 5.7 For d ≥ 0, the degree-d homogeneous component Ard is the direct sum of all spaces
of morphisms

T≤r → Y → Z → T≤r,

where

• Y and Z are indecomposable direct summands of T≤r such that socZ ∈ Si and socY ∈ Sj ;

• d(i, j) = d (the defect from Definition 2.7);

• the outer arrows are the surjection and inclusion realizing respectively Y and Z as direct
summands.

The gradings of the various algebras Ar are then compatible with the inclusions Ar ⊂ Ar+1, so A
itself acquires an Z≥0-grading.

We write deg(x) for the degree of an element x ∈ A. �

The fact that Definition 5.7 does indeed define a grading follows from the triangle property
of the defect, Corollary 4.16(b). These gradings make the algebras Ar Koszul, and the resulting
grading on A corresponds by duality to the grading on C alluded to in Corollary 4.25(d), see
Remark 5.6.

As part of our proof of Theorem 5.3, we will describe the degree-one and degree-two components
of A, as well as its relations. The latter are all quadratic by the Koszulity of the coalgebra C from
Corollary 4.25(d).

Notation 5.8 For i = (ns, n,m) we set

i` = ni = (nt, · · · , n0, n), ir = mi = m.

We also set
i− = (nt, · · · , n0, n− 1,m− 1),

is± = (nt, · · · , ns + 1, ns−1 − 1, · · · , n0, n,m)

and
is+ = (nt, · · · , ns + 1, ns−1, · · · , n0, n,m)

for 0 ≤ s ≤ t, where for the purpose of defining i0± we regard the component n as n−1. �

Notation 5.9 Let Sp be the symmetric group on p symbols. We denote multiple products Sp ×
Su × Sq × · · · by Sp,u,q,···. For i = (nt, . . . , n0, n,m) ∈ I, we set Si = Snt,...,n0,n,m. In addition, in
the rest of the paper, Hom(•, •) = HomTℵt (•, •) and End(•) = EndTℵt (•). �

As an immediate consequence of Proposition 4.2 and the classification of simple objects and
their injective envelopes given in Theorem 4.12, we have the following analogue of [3, Lemma 3.22],
describing the degree-zero component of A.
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Lemma 5.10 Let i = (nt, . . . , n0, n,m) ∈ I. The endomorphism algebra of the injective object

Xi =

0⊕
s=t

(
V ∗/V ∗ℵs

)⊗ns ⊗ (V ∗)⊗n ⊗ V ⊗m

is isomorphic to the group algebra KSi. �

According to the description of defect-one pairs j ≺ i given in the proof of Proposition 4.15, the
morphisms that make up the degree-one component A1 are qualitatively of two types (matching
the two bullet points in the proof of Proposition 4.15):

• morphisms Xi → Xi− ;

• morphisms Xi → Xis±
for some 1 ≤ s ≤ t.

Corresponding examples of such morphisms are:

• the evaluation morphism φp,q : Xi → Xi− of the pth tensorand V ∗ against the qth tensorand
V for some choice of 1 ≤ p ≤ n and 1 ≤ q ≤ m;

• the surjection morphism πsp,q : Xi → Xis±
of the pth tensorand V ∗/V ∗ℵs−1

onto the qth tensorand
V ∗/V ∗ℵs for a choice of

0 ≤ s ≤ t, 1 ≤ p ≤ ns−1, 0 ≤ q ≤ ns.

More precisely, πsp,q first implements a surjection V ∗/V ∗ℵs−1
→ V ∗/V ∗ℵs defined on the pth tensorand

V ∗/V ∗ℵs−1
in its domain, and then inserts the result of that surjection as the qth tensorand of type

V ∗/V ∗ℵs in the codomain, without altering the order of the other tensorands.

Remark 5.11 It follows from [3, Lemma 2.19] that the algebra A is generated by all evaluation
morphisms φp,q, all surjection morphisms πsp,q, and all permutations of tensorands of the objects
Xi. �

In the following discussion we will often choose i, s, p, q as above. In such a setting, the group
Si− will be understood to be embedded into Si as the group of permutations fixing

p ∈ {1, · · · , n} and q ∈ {1, · · · ,m}.

Similarly, we embed Si and Sis± into Sis+ in the obvious fashion.

Lemma 5.12 Let i = (nt, . . . , n0, n,m) ∈ I and s, p, q be as above. Then, we have the following
description for Hom-spaces of degree-one elements in A.

(a) The identification φp,q 7→ 1 extends to a bimodule isomorphism Hom(Xi, Xi−) ∼= KSi, where
both sides are equipped with standard bimodule structures over

End(Xi−) ∼= KSi− and End(Xi) ∼= KSi.

(b) The identification πsp,q 7→ 1 extends to a bimodule isomorphism

Hom(Xi, Xis±
) ∼= KSis+ ∼= Ind

Sns+1

Sns
KSi,

where both sides are equipped with standard bimodule structures over

End(Xis±
) ∼= KSis± and End(Xi) ∼= KSi.
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Proof The identifications in question give rise to morphisms of bimodules

KSi → Hom(Xi, Xi−) and KSis++
→ Hom(Xi, Xis±

)

which are surjective by Remark 5.11. The proof that the maps are also injective proceeds virtually
identically to the corresponding argument in the proof of [3, Lemma 3.24]. �

The following result provides a piecewise description of the degree-two component of the tensor
algebra of A1 over A0. It parallels and generalizes [3, Lemma 3.25], and it follows routinely from
the identifications made in Lemma 5.12.

Since we have to apply the operations i 7→ i−, i 7→ is± and is+ repeatedly, we will simply
concatenate superscripts and ± subscripts. Note that with this notation, we have is−± = is±−.

Lemma 5.13 Let i ∈ I. The tensor products of the spaces described in Lemma 5.12 are as follows.

(a) The space
Hom(Xi− , Xi−−)⊗End(Xi− ) Hom(Xi, Xi−) (29)

is isomorphic to KSi as an (Si−− , Si)-bimodule.

(b) The spaces
Hom(Xi− , Xis−±

)⊗End(Xi− ) Hom(Xi, Xi−) (30)

and
Hom(Xis±

, Xis±−
)⊗End(Xis±

) Hom(Xi, Xis±
) (31)

are both isomorphic to
KSis+ ∼= Ind

Sns+1

Sns
KSi

as (Sis±− , Si)-bimodules.

(c) Now let 0 ≤ r, s ≤ t and set j = irs±±. Then the space

Hom(Xir±
, Xj)⊗End(Xir±

) Hom(Xi, Xir±
) (32)

is isomorphic to KSrs++ as an (Srs++, Si)-bimodule. �

Next, we describe the subspaces of the tensor products from Lemma 5.13 that are annihilated
upon composing morphisms in A. We have three types of relations, corresponding to parts (a) to
(c) of Lemma 5.13.

Convention 5.14 We drop the p and q subscripts from the morphisms φp,q and πsp,q when the latter
are understood to involve only the rightmost relevant tensorands. So for instance, φ : Xi → Xi− is
the evaluation of the nth tensorand V ∗ against the mth tensorand V in Xi.

The generators of the spaces in parts (a) and (b) of Lemma 5.12 are always assumed (unless
specified otherwise) to be φ and π respectively. �

Notation 5.15 For i ∈ I and j = irr
′
±± for some r, r′ ∈ {0, · · · , t}, we denote by Θi,j the set of

those s for which
d(j, is±) = d(is±, i) = 1. �

In other words, Θi,j is the set of all s for which Xis±
can appear as an intermediate object

for morphisms Xi → Xj = X
irr
′

±±
obtained by composition from tensor products as in part (c) of

Lemma 5.13.
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Lemma 5.16 Let i = (nt, . . . , n0, n,m) ∈ I. The degree-two relations of A can be described as
follows.

(a) The map
(29)→ Hom(Xi, Xi−−)

is surjective, with kernel generated by

φ⊗ φ− (φ⊗ φ) ◦ (n, n− 1)(m,m− 1)

as an (Si−− , Si)-bimodule, where (n, n − 1) and (m,m − 1) are transpositions in the factors
Sn and Sm respectively of

Si = Snt × · · · × Sn0 × Sn × Sm.

(b) The map
(30)⊕ (31)→ Hom(Xi, Xis−±

)

is surjective, with kernel generated by

πs ⊗ φ− (φ⊗ πs) ◦ τ

as an (Sis±− , Si)-bimodule, where

τ = (n, n− 1) ∈ Sn ⊂ Si

if s = 0 and τ = id otherwise.

(c) Let j = iss
′
±± for some 0 ≤ s ≤ s′ ≤ t. The map⊕

r∈Θi,j

(32)→ Hom(Xi, Xj) (33)

is a surjective morphism of (Sj , Si)-bimodules, and we have the following cases:

(1) if s′− s ≥ 2 then Θi,j = {s, s′}, and the kernel of the bimodule map (33) is generated by

πs ⊗ πs′ − πs′ ⊗ πs;

(2) if s′ = s+ 1 then Θi,j = {s, s+ 1} again, and the kernel of (33) is generated by

πs ⊗ πs+1 − σ ◦ (πs+1 ⊗ πs), (34)

where

σ = (ns + 1, ns) ∈ Sns+1 ⊂ Siss′++
= Snt × · · · × Sns+1+1 × Sns+1 × · · · × Sn0 × Sn × Sm;

(3) if s = s′ then Θi,j = {s}, and the kernel of (33) is generated by

σ ◦ (πs ⊗ πs)− (πs ⊗ πs) ◦ τ,

where
τ = (ns−1, ns−1 − 1) ∈ Sns−1 ⊂ Si = Snt × · · · × Sn0 × Sn × Sm

and

σ = (ns + 2, ns + 1) ∈ Sns+2 ⊂ Siss++
= Snt × · · · × Sns+2 × · · · × Sn0 × Sn × Sm.
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Proof Surjectivity follows in all cases from the fact that A is generated in degree one; in turn, this
is a consequence of Theorem 4.23.

As for the description of the kernels, we will prove one of the several cases listed in the statement,
the rest being entirely analogous. Note that the types of compositions covered by parts (a) and
(b) of the lemma are qualitatively similar to those in [3, Lemma 3.26, (a) and (b)] ((a) refers to
compositions of evaluations while (b) refers to composing evaluations and surjections with source
and target of the form V ∗/V ∗• ). For this reason, we focus on part (c). Point (3) of the latter is
analogous to [3, Lemma 3.26 (c)], so the new phenomena occur in parts (1) and (2) of (c). Finally,
we will tackle part (2) as representative of the essence of the argument.

Since the kernel of (33) is easily seen to contain the (Sj , Si)-bimodule generated by (34), it
suffices to prove the opposite containment. As in [3, Lemma 3.26] we do this by a dimension count,
i.e. by proving a lower bound on the dimension of the image Hom(Xi, Xj) of (33).

The two summands of (34) belong respectively to the two direct summands of(
Hom(Xis+1

±
, Xj)⊗Hom(Xi, Xis+1

±
)
)
⊕
(

Hom(Xis±
, Xj)⊗Hom(Xi, Xis±

)
)
,

which upon making the identification from point (c) of Lemma 5.13 is isomorphic to(
KS

iss
′

++

)⊕2
= K[Snt × · · · × Sns+1+1 × Sns+1 × · · · × Sn0 × Sn × Sm]⊕2.

Under this identification, (34) is simply 1⊕ (−σ), with σ = (ns + 1, ns) in the Sns+1 factor of the
second KS

iss
′

++
summand.

The (Sj , Si)-bimodule generated by 1⊕ (−σ) coincides with the left S
iss
′

++
-module generated by

it, and hence has dimension

dim
(
KS

iss
′

++

)
= nt! · · · (ns+1 + 1)!(ns + 1)! · · ·n0!n!m!

It thus suffices to show that the dimension of the image Hom(Xi, Xj) of (33) is at least

dim
(
KS

iss
′

++

)⊕2
− dim

(
KS

iss
′

++

)
= dim

(
KS

iss
′

++

)
.

Since the tuples i and j only differ in their index-(s+ 1) and index-(s− 1)-entries, we can argue as
in Lemmas 5.10 and 5.12 that we have

Hom(Xi, Xj) ∼= K[Snt · · ·Sns+2 × Sns−2 · · ·Sn0 × Sn × Sm]⊗Hom(Xi′ , Xj′),

where i′ and j′ are the tuples obtained from i and j respectively by substituting zeros for m and
nr, r 6∈ {s, s± 1}. We can thus assume that the only possibly nonzero entries in i and j are those
with indices s− 1, s and s+ 1; in other words, we suppose that

i = (0, · · · , ns+1, ns, ns−1, · · · , 0), j = (0, · · · , ns+1 + 1, ns, ns−1 − 1, · · · , 0).

In this setting, we then have to prove

Hom(Xi, Xj) ≥ (ns+1 + 1)!(ns + 1)!(ns−1)! (35)

Now consider the (ns + 1)! elements of Hom(Xi, Xj) obtained as follows:

• surject the rightmost tensorand V ∗/V ∗ℵs−1
onto the rightmost tensorand V ∗/V ∗ℵs ;
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• apply a permutation in Sns+1 to the resulting tensorand (V ∗/V ∗ℵs)
⊗(ns+1);

• surject the rightmost tensorand V ∗/V ∗ℵs onto the rightmost tensorand V ∗/V ∗ℵs+1
.

By choosing a basis for V ∗ compatible with the filtration by the V ∗ℵr and examining the action of
Hom(Xi, Xj) on the resulting tensor product basis, it is easy to see that the (ns + 1)! morphisms
we have just described span a free (Sns+1+1, Sns−1)-sub-bimodule of Hom(Xi, Xj). This proves the
desired dimension count (35). �

Proof of Theorem 5.3 We follow the same strategy as in the proof of [3, Theorem 3.22].
First, note that the conclusion would follow from an application of [3, Theorem 2.22] provided

we can show that we can define a symmetric monoidal functor (also denoted by F by a slight
notational abuse) to D from the tensor category with objects Xi and Hom-spaces generated by the
morphisms from Lemma 5.12.

Note that such a tensor functor is constrained up to tensor natural isomorphism by the require-
ments of the statement:

F(V ) = B, F (V ∗s ) = As, F(V ∗ ⊗ V → K) = q,

as well as
F(V ∗/V ∗ℵs−1

→ V ∗/V ∗ℵs) = A/As−1 → A/As .

The only thing to check is that such a definition is consistent, i.e. that the relations satisfied in
Tℵt by the morphisms in Lemma 5.12 are satisfied by the corresponding morphisms in D.

The Koszulity result proven in Theorem 4.23, reinterpreted via Corollary 4.25(d) and Re-
mark 5.6, shows that it suffices to prove that the quadratic relations described by Lemma 5.16
are satisfied in D. But this follows directly from the definition of D as a tensor category. �

The next lemma is a small amplification of Theorem 5.3 providing necessary and sufficient
conditions for the functors F therein to be exact (rather than only left exact).

Lemma 5.17 The functor F : Tℵt  D from Theorem 5.3 is exact if and only if its restriction to
the full subcategory on the indecomposable injective objects (20) of Tℵt is exact.

Proof One implication (exactness of F ⇒ exactness of its restriction) is immediate, whereas the
other one follows from the description of the right derived functors R∗F via injective resolutions
in Tℵt : the hypothesis ensures that the injective resolution

x→ J0 → J1 → · · ·

of any object in Tℵt is turned by F into an exact sequence, hence the conclusion that the higher
derived functors RpF(x) = Hp

(
F(J•)

)
vanish. �

Finally, we are ready for the proof of Theorem 5.2.

Proof of Theorem 5.2 For each tuple s

β0 < · · · < βt ≤ α

of infinite cardinal numbers Theorem 5.3 provides a functor Tℵt  Tα that easily seen to be a full
exact embedding (exactness follows from Lemma 5.17).
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Applying Theorem 5.3 to all such finite-length subcategories Ts
∼= Tℵt ⊆ Tα we obtain functors

Fs : Ts  D turning V ∗ into A, the filtration

V ∗β0 ⊂ · · · ⊂ V
∗
βt

into
Aβ0 ⊆ · · · ⊆ Aβt

and the pairing V ∗ ⊗ V → K into q.
We regard tuples s as forming a directed system by inclusion. The assignment s → Ts is

increasing in the sense that if s′ contains s then Ts ⊂ Ts′ , and Tα can be expressed as the direct
limit

Tα = lim−→
s

Ts. (36)

The uniqueness statements in Theorem 5.3 ensure that the functors Fs are compatible, in the
sense that Fs and Fs′ are (up to tensor natural isomorphism) restrictions of Fs′′ for any tuple s′′

that contains s and s′.
The conclusion follows from (36) by taking F to be the unique (up to tensor natural isomor-

phism) tensor functor restricting to Fs on each Ts. �
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