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Abstract. We extend Matsuki duality to arbitrary ind-varieties of maximal

generalized flags, in other words, to any homogeneous ind-variety G/B for a
classical ind-group G and a splitting Borel ind-subgroup B ⊂ G. As a first

step, we present an explicit combinatorial version of Matsuki duality in the

finite-dimensional case, involving an explicit parametrization of K- and G0-
orbits on G/B. After proving Matsuki duality in the infinite-dimensional case,

we give necessary and sufficient conditions on a Borel ind-subgroup B ⊂ G for

the existence of open and closed K- and G0-orbits on G/B, where
(
K,G0

)
is

an aligned pair of a symmetric ind-subgroup K and a real form G0 of G.

1. Introduction

In this paper we extend Matsuki duality to ind-varieties of maximal generalized
flags, i.e., to homogeneous ind-spaces of the form G/B for G = GL(∞), SL(∞),
SO(∞), Sp(∞). In the case of a finite-dimensional reductive algebraic group G,
Matsuki duality [6, 11, 12] is a bijection between the (finite) set of K-orbits on G/B
and the set of G0-orbits on G/B, where K is a symmetric subgroup of G and G0

is a properly chosen real form of G. Moreover, this bijection reverses the inclusion
relation between orbit closures. In particular, the remarkable theorem about the
uniqueness of a closed G0-orbit on G/B, see [19], follows via Matsuki duality from
the uniqueness of a (Zariski) open K-orbit on G/B. In the monograph [7] on cycle
spaces there is a self-contained treatment of Matsuki duality. In fact, the origins of
Matsuki duality can be traced back to J. A. Wolf’s work [19].

If G = GL(∞), SL(∞), SO(∞), Sp(∞) is a classical ind-group, then its Borel
ind-subgroups are neither G-conjugate nor Aut(G)-conjugate, hence there are many
ind-varieties of the form G/B. We show that Matsuki duality extends to any ind-
variety G/B where B is a splitting Borel ind-subgroup of G for G = GL(∞),
SL(∞), SO(∞), Sp(∞). In the infinite-dimensional case, the structure of G0-orbits
and K-orbits on G/B is more complicated than in the finite-dimensional case, and
there are always infinitely many orbits.

A first study of the G0-orbits on G/B for G = GL(∞),SL(∞) was done in [9]
and was continued in [20]. In particular, in [9] it was shown that, for some real forms
G0, there are splitting Borel ind-subgroups B ⊂ G such that G/B has neither an
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open nor a closed G0-orbit. We know of no prior studies of the structure of K-
orbits on G/B of G = GL(∞),SL(∞),SO(∞),Sp(∞). The duality we establish in
this paper shows that the structure of K-orbits on G/B is a “mirror image” of the
structure of G0-orbits on G/B. In particular, the fact that G/B admits at most
one closed G0-orbit is now a corollary of the obvious statement that G/B admits
at most one Zariski-open K-orbit.

Our main result can be stated as follows. Let (G,K,G0) be one of the triples
listed in Section 2.1 consisting of a classical (complex) ind-group G, a symmetric
ind-subgroup K ⊂ G, and the corresponding real form G0 ⊂ G. Let B ⊂ G be
a splitting Borel ind-subgroup such that X := G/B is an ind-variety of maximal
generalized flags (isotropic, in types B, C, D) weakly compatible with a basis of V
adapted to the choice of K, G0 in the sense of Sections 2.1, 2.3. There are natural
exhaustions G =

⋃
n≥1Gn and X =

⋃
n≥1Xn. Here Gn is a finite-dimensional

algebraic group, Xn is the full flag variety of Gn, and the inclusion Xn ⊂ X is
in particular Gn-equivariant. The subgroups Kn := K ∩ Gn and G0

n := G0 ∩ Gn
are respectively a symmetric subgroup and the corresponding real form of Gn. See
Section 4.4 for more details.

Theorem 1. (a) For every n ≥ 1 the inclusion Xn ⊂ X induces embeddings
of orbit sets Xn/Kn ↪→ X/K and Xn/G

0
n ↪→ X/G0.

(b) There is a bijection Ξ : X/K→ X/G0 such that the diagram

(1)

Xn/Kn

Ξn
��

� � // X/K

Ξ

��
Xn/G

0
n
� � // X/G0

is commutative, where Ξn stands for Matsuki duality.
(c) For every K-orbit O ⊂ X the intersection O ∩ Ξ(O) consists of a single

K ∩G0-orbit.
(d) The bijection Ξ reverses the inclusion relation of orbit closures. In particu-

lar Ξ maps open (resp., closed) K-orbits to closed (resp., open) G0-orbits.

Actually our results are much more precise: in Propositions 7, 8, 9 we show
that X/K and X/G0 admit the same explicit parametrization which is nothing
but the inductive limit of suitable joint parametrizations of Xn/Kn and Xn/G

0
n.

This yields the bijection Ξ of Theorem 1 (b). Parts (a) and (b) of Theorem 1
are implied by our claims (39), (42), (43) below. Theorem 1 (c) follows from the
corresponding statements in Propositions 7, 8, 9. Finally, Theorem 1 (d) is implied
by Theorem 1 (a)–(b), the definition of the ind-topology, and the fact that the
duality Ξn reverses the inclusion relation between orbit closures.

As an example, if G = GL(∞) and K ⊂ G is the ind-subgroup of transfor-
mations preserving an orthogonal form ω, we show that both orbit sets X/K and
X/G0 are parametrized by the involutions w : N∗ → N∗ such that w(`) = ι(`) for
all but finitely many ` ∈ N∗, where ι is the involution induced by the matrix of ω
in a suitable basis of the natural representation of G (see Section 4.1).

Our methods are based on the classification of symmetric subgroups and real
forms of the classical simple algebraic groups. Possibly one could provide a classification-
free proof of our results in a future study.
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Organization of the paper. In Section 2 we introduce the notation for classical
ind-groups, symmetric ind-subgroups, and real forms. We recall some basic facts on
finite-dimensional flag varieties, as well as the notion of ind-variety of generalized
flags [4, 8]. In Section 3 we give the joint parametrization of K- and G0-orbits in a
finite-dimensional flag variety. This parametrization should be known in principle
(see [13, 21]) but we have not found a reference where it would appear exactly as
we present it. For the sake of completeness we provide full proofs of these results.
In Section 4 we state our main results on the parametrization of K- and G0-orbits
in ind-varieties of generalized flags. Theorem 1 above is a consequence of these
results. In Section 5 we point out some further corollaries of our main results.

In what follows N∗ stands for the set of positive integers. |A| stands for the
cardinality of a set A. The symmetric group on n letters is denoted by Sn and
S∞ = lim

−→
Sn stands for the infinite symmetric group. Often we write wk for the

image w(k) of k by a permutation w. By (k; `) we denote the transposition that
switches k and `. We use boldface letters to denote ind-varieties. An index of
notation can be found at the end of the paper.

Acknowledgement. We thank Alan Huckleberry and Mikhail Ignatyev for their
encouragement to study Matsuki duality. We also acknowledge a referee’s thought-
ful comments. The first author was supported in part by ISF Grant Nr. 797/14 and
by ANR project GeoLie (ANR-15-CE40-0012). The second author was supported
in part by DFG Grant PE 980/6-1.

2. Notation and preliminary facts

2.1. Classical groups and classical ind-groups. Let V be a complex vector
space of countable dimension, with an ordered basis E = (e1, e2, . . .) = (e`)`∈N∗ .
Every vector x ∈ V is identified with the column of its coordinates in the basis E,
and x 7→ x stands for complex conjugation with respect to E. We also consider the
finite dimensional subspace V = Vn := 〈e1, . . . , en〉C of V.

The classical ind-group GL(∞) is defined as

GL(∞) = G(E) := {g ∈ Aut(V) : g(e`) = e` for all `� 1} =
⋃
n≥1

GL(Vn).

The real forms of GL(∞) are well known and can be traced back to the work of
Baranov [1]. Below we list aligned pairs (K,G0), where G0 is a real form of G
and K ⊂ G is a symmetric ind-subgroup of G. The pairs

(
K,G0

)
we consider

are aligned in the following way: for the exhaustion of G as a union
⋃
n GL (Vn),

the subgroup Kn := K ∩ GL (Vn) is a symmetric subgroup of GL (Vn), Gn0 :=
G0∩GL (Vn) is a real form of GL (Vn), and Kn∩G0

n is a maximal compact subgroup
of G0

n.

2.1.1. Types A1 and A2. Let Ω be a N∗ × N∗-matrix of the form

(2) Ω =

 J1 (0)
J2

(0)
. . .

 where


Jk ∈

{(
0 1
1 0

)
, (1)

}
(orthogonal case,
type A1),

Jk =

(
0 1
−1 0

)
(symplectic case,
type A2).

The bilinear form
ω(x, y) := txΩy (x, y ∈ V)
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is symmetric in type A1 and symplectic in type A2, whereas the map

γ(x) := Ωx (x ∈ V)

is an involution of V in type A1 and satisfies γ2 = −idV in type A2. Let

K = G(E,ω) := {g ∈ G(E) : ω(gx, gy) = ω(x, y) ∀x, y ∈ V}

and

G0 := {g ∈ G(E) : γ(gx) = gγ(x) ∀x ∈ V}.

2.1.2. Type A3. Fix a (proper) decomposition N∗ = N+ tN− and let

(3) Φ =

 ε1 (0)
ε2

(0)
. . .


where ε` = 1 for ` ∈ N+ and ε` = −1 for ` ∈ N−. Thus

φ(x, y) := txΦy (x, y ∈ V)

is a Hermitian form of signature (|N+|, |N−|) and

δ(x) := Φx (x ∈ V)

is an involution. Finally let

K := {g ∈ G(E) : δ(gx) = gδ(x) ∀x ∈ V}

and

G0 := {g ∈ G(E) : φ(gx, gy) = φ(x, y) ∀x, y ∈ V}.

Types B, C, D. Next we describe pairs (K,G0) associated to the other classical
ind-groups SO(∞) and Sp(∞). Let G = G(E,ω) where ω is a (symmetric or
symplectic) bilinear form given by a matrix Ω as in (2). In view of (2), for every
` ∈ N∗ there is a unique `∗ ∈ N∗ such that

ω(e`, e`∗) 6= 0.

Moreover `∗ ∈ {`− 1, `, `+ 1}. The map ` 7→ `∗ is an involution of N∗.

2.1.3. Types BD1 and C2. Assume that ω is symmetric in type BD1 and symplectic
in type C2. Fix a (proper) decomposition N∗ = N+ tN− such that

∀` ∈ N∗, ` ∈ N+ ⇔ `∗ ∈ N+

and the restriction of ω on each of the subspaces V+ := 〈e` : ` ∈ N+〉C and
V− := 〈e` : ` ∈ N−〉C is nondegenerate. Let Φ, φ, δ be as in Section 2.1.2. Then we
set

K := {g ∈ G(E,ω) : δ(gx) = gδ(x) ∀x ∈ V}(4)

and

G0 := {g ∈ G(E,ω) : φ(gx, gy) = φ(x, y) ∀x, y ∈ V}.(5)
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2.1.4. Types C1 and D3. Assume that ω is symmetric in type D3 and symplectic
in type C1. Fix a decomposition N∗ = N+ tN− satisfying

∀` ∈ N∗, ` ∈ N+ ⇔ `∗ ∈ N−.

Note that this forces every block Jk in (2) to be of size 2. In this situation V+ :=
〈e` : ` ∈ N+〉C and V− := 〈e` : ` ∈ N−〉C are maximal isotropic subspaces for the
form ω. Let Φ, φ, δ be as in Section 2.1.2. Finally, we define the ind-subgroups
K,G0 ⊂ G as in (4), (5).

Finite-dimensional case. The following table summarizes the form of the inter-
sections G = G∩GL (Vn), K = K∩GL (Vn), G0 = G0∩GL (Vn), where n = 2m is
even whenever we are in types A2, C1, C2, and D3. In types A3, BD1, and C2, we
set (p, q) = (|N+ ∩ {1, . . . , n}|, |N− ∩ {1, . . . , n}|). By H we denote the skew field
of quaternions. In this way we retrieve the classical finite-dimensional symmetric
pairs and real forms (see, e.g., [2, 15, 16]).

type G := G ∩GL (Vn) K := K ∩GL (Vn) G0 := G0 ∩GL (Vn)

A1 On(C) GLn(R)

A2 GLn(C) Spn(C) GLm(H)

A3 GLp(C)×GLq(C) Up,q(C)

BD1 On(C) Op(C)×Oq(C) Op,q(C)

C1
Spn(C)

GLm(C) Spn(R)

C2 Spp(C)× Spq(C) Spp,q(C)

D3 On(C) = O2m(C) GLm(C) O∗n(C)

In each case G0 is a real form obtained from K so that K∩G0 is a maximal compact
subgroup of G0. Conversely K is obtained from G0 as the complexification of a
maximal compact subgroup.

2.2. Finite-dimensional flag varieties. Recall that V = Vn. The flag variety
X := GL(V )/B = {gB : g ∈ GL(V )} (for a Borel subgroup B ⊂ GL(V )) can as
well be viewed as the set of Borel subgroups {gBg−1 : g ∈ GL(V )} or as the set of
complete flags

(6)
{
F = (F0 ⊂ F1 ⊂ . . . ⊂ Fn = V ) : dimFk = k for all k

}
.

For every complete flag F let BF := {g ∈ GL(V ) : gF = F} denote the corre-
sponding Borel subgroup. When (v1, . . . , vn) is a basis of V we write

F(v1, . . . , vn) :=
(
0 ⊂ 〈v1〉C ⊂ 〈v1, v2〉C ⊂ . . . ⊂ 〈v1, . . . , vn〉C

)
∈ X.

Bruhat decomposition. The double flag variety X × X has a finite number of
GL(V )-orbits parametrized by permutations w ∈ Sn. Specifically, given two flags
F = (Fk)nk=0 and F ′ = (F ′`)

n
`=0 there is a unique permutation w =: w(F ,F ′) such

that

dimFk ∩ F ′` =
∣∣{j ∈ {1, . . . , `} : wj ∈ {1, . . . , k}

}∣∣.
The permutation w(F ,F ′) is called the relative position of the pair (F ,F ′) ∈ X×X.
Then

X ×X =
⊔

w∈Sn

Ow where Ow :=
{

(F ,F ′) ∈ X ×X : w(F ,F ′) = w
}
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is the decomposition of X×X into GL(V )-orbits. The unique closed orbit is Oid and
the unique open orbit is Ow0

where w0 is the involution given by w0(k) = n−k+ 1
for all k. The map Ow 7→ Ow0w is an involution on the set of orbits and reverses
inclusions between orbit closures. Representatives of Ow can be obtained as follows:
for every basis (v1, . . . , vn) of V we have(

F(v1, . . . , vn),F(vw1
, . . . , vwn)

)
∈ Ow.

Variety of isotropic flags. Let V be endowed with a nondegenerate symmetric
or symplectic bilinear form ω. For a subspace F ⊂ V , set F⊥ = {x ∈ V : ω(x, y) =
0 ∀y ∈ F}. The variety of isotropic flags is the subvariety Xω of X, where

(7) Xω = {F = (Fk)nk=0 ∈ X : F⊥k = Fn−k ∀k = 0, . . . , n}.
It is endowed with a transitive action of the subgroup G(V, ω) ⊂ GL(V ) of auto-
morphisms preserving ω.

Lemma 1. (a) For every endomorphism f ∈ End(V ), let f∗ ∈ End(V ) denote
the endomorphism adjoint to f with respect to ω. Let H ⊂ GL(V ) be a subgroup
satisfying the condition

(8) C[g∗g] ∩GL(V ) ⊂ H for all g ∈ H.
Assume that F ∈ Xω and F ′ ∈ Xω belong to the same H-orbit of X. Then they
belong to the same H ∩G(V, ω)-orbit of Xω.
(b) Let H = {g ∈ GL(V ) : g(V+) = V+, g(V−) = V−} where V = V+ ⊕ V− is a
decomposition such that (V ⊥+ , V

⊥
− ) = (V+, V−) or (V−, V+). Then (8) is fulfilled.

Proof. (a) Note that G(V, ω) = {g ∈ GL(V ) : g∗ = g−1}. Consider g ∈ H such
that F ′ = gF . The equality (gF )⊥ = (g∗)−1F⊥ holds for all subspaces F ⊂ V .
Since F ,F ′ belong to Xω we have F ′ = (g∗)−1F , hence g∗gF = F . Let g1 = g∗g.
By [10, Lemma 1.5] there is a polynomial P (t) ∈ C[t] such that P (g1)2 = g1. Set
h = P (g1). Then h ∈ GL(V ) (since h2 = g1 ∈ GL(V )), and (8) shows that actually
h ∈ H. Moreover h∗ = h (since h ∈ C[g1] and g∗1 = g1) and hF = F (as each
subspace in F is g1-stable hence also h-stable). Set h1 := gh−1 ∈ H. Then, on the
one hand,

h∗1 = (h∗)−1g∗ = h−1g1g
−1 = h−1h2g−1 = hg−1 = h−11 ,

and therefore h1 ∈ H ∩ G(V, ω). On the other hand, we have h1F = gh−1F =
gF = F ′, and part (a) is proved.
(b) The equality g∗(gF )⊥ = F⊥ (already mentioned) applied to F = V± yields
g∗ ∈ H, and thus g∗g ∈ H, whenever g ∈ H. This implies (8). �

Remark 1. The proof of Lemma 1 (a) is inspired by [10, §1.4]. We also refer to
[14, 17] for similar results and generalizations.

2.3. Ind-varieties of generalized flags. Recall that V denotes a complex vector
space of countable dimension, with an ordered basis E = (e`)`∈N∗ .

Definition 1 ([4]). Let F be a chain of subspaces in V, i.e., a set of subspaces of V
which is totally ordered by inclusion. Let F ′ (resp., F ′′) be the subchain consisting
of all F ∈ F with an immediate successor (resp., an immediate predecessor). By
s(F ) ∈ F ′′ we denote the immediate successor of F ∈ F ′.

A generalized flag in V is a chain of subspaces F such that:

(i) each F ∈ F has an immediate successor or predecessor, i.e., F = F ′ ∪ F ′′;
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(ii) for every v ∈ V \ {0} there is a unique Fv ∈ F ′ such that v ∈ s(Fv) \ Fv,
i.e., V \ {0} =

⋃
F∈F ′(s(F ) \ F ).

A generalized flag is maximal if it is not properly contained in another generalized
flag. Specifically, F is maximal if and only if dim s(F )/F = 1 for all F ∈ F ′.

Notation 1. Let σ : N∗ → (A,≺) be a surjective map onto a totally ordered set.
Let v = (v1, v2, . . .) be a basis of V. For every a ∈ A, let

F ′a := 〈v` : σ(`) ≺ a〉C, F ′′a := 〈v` : σ(`) � a〉C.

Then F = Fσ(v) := {F ′a, F ′′a : a ∈ A} is a generalized flag such that F ′ = {F ′a : a ∈
A}, F ′′ = {F ′′a : a ∈ A}, and s(F ′a) = F ′′a for all a. We call such a generalized flag
compatible with the basis v.

Moreover, Fσ(v) is maximal if and only if the map σ is bijective.
We use the abbreviation Fσ := Fσ(E).
Note that every generalized flag admits a compatible basis [4, Proposition 4.1].

A generalized flag is weakly compatible with E if it is compatible with some basis v
such that E \ (E ∩ v) is finite (equivalently, dim V/〈E ∩ v〉C <∞).

The group G(E) (as well as Aut(V)) acts on generalized flags in a natural
way. Let PF ⊂ G(E) denote the ind-subgroup of elements preserving F . It is a
closed ind-subgroup of G(E). If F is compatible with E, then PF is a splitting
parabolic ind-subgroup of G(E) in the sense that it is locally parabolic (i.e., there
exists an exhaustion of G(E) by finite-dimensional reductive algebraic subgroups
Gn such that the intersections PF∩Gn are parabolic subgroups of Gn) and contains
the Cartan ind-subgroup H(E) ⊂ G(E) of elements diagonal with respect to E.
Moreover if F is maximal, then BF := PF is a splitting Borel ind-subgroup (i.e.,
all intersections BF ∩Gn as above are Borel subgroups of Gn).

Definition 2 ([4]). Two generalized flags F ,G are called E-commensurable if F ,G
are weakly compatible with E, and there is an isomorphism φ : F → G of ordered
sets and a finite dimensional subspace U ⊂ V such that

(i) φ(F ) + U = F + U for all F ∈ F ;
(ii) dimφ(F ) ∩ U = dimF ∩ U for all F ∈ F .

E-commensurability is an equivalence relation on the set of generalized flags
weakly compatible with E. In fact, according to the following proposition, each
equivalence class consists of a single G(E)-orbit. If F is a generalized flag weakly
compatible with E we denote by X(F , E) the set of generalized flags which are
E-commensurable with F .

Proposition 1 ([4]). The set X = X(F , E) is endowed with a natural structure of
ind-variety. Moreover X is G(E)-homogeneous and the map g 7→ gF induces an

isomorphism of ind-varieties G(E)/PF
∼→ X.

Proposition 2 ([5]). Let σ : N∗ → (A,≺) and τ : N∗ → (B,≺) be maps onto two
totally ordered sets.

(a) Each E-compatible generalized flag in X(Fσ, E) is of the form Fσw for
w ∈ S∞. Moreover Fσw = Fσw′ ⇔ w′w−1 ∈ Stabσ := {v ∈ S∞ : σv = σ}.

(b) Assume that Fτ is maximal (i.e., τ is bijective) so that BFτ is a splitting
Borel ind-subgroup. Then each BFτ -orbit of X(Fσ, E) contains a unique
element of the form Fσw for w ∈ S∞/Stabσ.
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(c) In particular, if Fσ,Fτ are both maximal (i.e., σ, τ are both bijective), then

X(Fτ , E)×X(Fσ, E) =
⊔

w∈S∞

(OOOτ,σ)w

where

(OOOτ,σ)w := {(gFτ , gFσw) : g ∈ G(E)}
is a decomposition of X(Fτ , E)×X(Fσ, E) into G(E)-orbits.

Remark 2. The orbit (OOOτ,σ)w of Proposition 2 (c) actually consists of all couples of
generalized flags (Fτ (v),Fσw(v)) weakly compatible with the basis v = (v1, v2, . . .).

Assume V is endowed with a nondegenerate symmetric or symplectic form ω
whose values on the basis E are given by the matrix Ω in (2).

Definition 3. A generalized flag F is called ω-isotropic if the map F 7→ F⊥ :=
{x ∈ V : ω(x, y) = 0 ∀y ∈ F} is a well-defined involution of F .

Proposition 3 ([4]). Let F be an ω-isotropic generalized flag weakly compati-
ble with E. The set Xω(F , E) of all ω-isotropic generalized flags which are E-
commensurable with F is a G(E,ω)-homogeneous, closed ind-subvariety of X(F , E).

Finally, we emphasize that one of the main features of classical ind-groups is
that their Borel ind-subgroups are not Aut(G)-conjugate. Here are three examples
of maximal generalized flags in V, compatible with the basis E and such that their
stablizers in G(E) are pairwise not Aut(G)-conjugate. A more detailed discussion
of these examples see in [4].

Example 1. (a) Let σ1 : N∗ → (N∗, <), ` 7→ `. The generalized flag Fσ1
is an

ascending chain of subspaces Fσ1
= {0 = F0 ⊂ F1 ⊂ F2 ⊂ . . .} isomorphic to (N, <)

as an ordered set.

(b) Let σ2 : N∗ →
(
{ 1n : n ∈ Z∗}, <

)
, ` 7→ (−1)`

` . The generalized flag Fσ2 is

a chain of the form Fσ2 = {0 = F0 ⊂ F1 ⊂ . . . ⊂ F−2 ⊂ F−1 = V} and is not
isomorphic as ordered set to a subset of (Z, <).
(c) Let σ3 : N∗ → (Q, <) be a bijection. In this case no subspace F ∈ Fσ3

has both
immediate successor or immediate predecessor.

3. Parametrization of orbits in the finite-dimensional case

In Sections 3.1-3.3, we state explicit parametrizations of the K- and G0-orbits
in the finite-dimensional case. All proofs are given in Section 3.5.

3.1. Types A1 and A2. Let the notation be as in Subsection 2.1.1. The space V =
Vn := 〈e1, . . . , en〉C is endowed with the symmetric or symplectic form ω(x, y) =
tx · Ω · y and the conjugation γ(x) = Ωx which actually stand for the restrictions
to V of the maps ω, γ introduced in Section 2.1. This allows us to define two
involutions of the flag variety X:

F = (F0, . . . , Fn) 7→ F⊥ := (F⊥n , . . . , F
⊥
0 ) and F 7→ γ(F) := (γ(F0), . . . , γ(Fn))

where F⊥ ⊂ V stands for the subspace orthogonal to F with respect to ω.
Let K = {g ∈ GL(V ) : g preserves ω} and G0 = {g ∈ GL(V ) : γg = gγ}.
By In ⊂ Sn we denote the subset of involutions. If n = 2m is even, we let

I′n ⊂ In be the subset of involutions without fixed points.
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Definition 4. Let w ∈ In. Set ε := 1 in type A1 and ε := −1 in type A2. A basis
(v1, . . . , vn) of V such that

ω(vk, v`) =

 1 if wk = ` ≥ k
ε if wk = ` < k
0 if wk 6= `

for all k, ` ∈ {1, . . . , n}

is said to be w-dual. A basis (v1, . . . , vn) of V such that

γ(vk) =

{
εvwk if wk ≥ k
vwk if wk < k

for all k ∈ {1, . . . , n}

is said to be w-conjugate. Set

Ow := {F(v1, . . . , vn) : (v1, . . . , vn) is a w-dual basis},

Ow := {F(v1, . . . , vn) : (v1, . . . , vn) is a w-conjugate basis}.

Proposition 4. Let Iεn = In in type A1 and Iεn = I′n in type A2. Recall the
notation Ow and w0 introduced in Section 2.2.

(a) For every w ∈ Iεn we have Ow 6= ∅, Ow 6= ∅ and

Ow ∩Ow = {F(v1, . . . , vn) : (v1, . . . , vn) is both w-dual and w-conjugate} 6= ∅.

(b) For every w ∈ Iεn,

Ow = {F ∈ X : (F⊥,F) ∈ Ow0w} and Ow = {F ∈ X : (γ(F),F) ∈ Ow}.

(c) The subsets Ow (w ∈ Iεn) are exactly the K-orbits of X. The subsets Ow

(w ∈ Iεn) are exactly the G0-orbits of X.
(d) The map Ow 7→ Ow is Matsuki duality.

3.2. Type A3. Let the notation be as in Subsection 2.1.2: the space V = Vn =
〈e1, . . . , en〉C is endowed with the hermitian form φ(x, y) = txΦy and a conjugation
δ(x) = Φx where Φ is a diagonal matrix with entries ε1, . . . , εn ∈ {+1,−1} (the left
upper n× n-corner of the matrix Φ of Section 2.1).

Set V+ = 〈ek : εk = 1〉C and V− = 〈ek : εk = −1〉C. Then V = V+ ⊕ V−.
Let K = {g ∈ GL(V ) : δg = gδ} = GL(V+) × GL(V−) and G0 = {g ∈ GL(V ) :
g preserves φ}.

As in Section 3.1 we get two involutions of the flag variety X:

F = (F0, . . . , Fn) 7→ δ(F) := (δ(F0), . . . , δ(Fn)) and F 7→ F† := (F †n, . . . , F
†
0 )

where F † ⊂ V stands for the orthogonal of F ⊂ V with respect to φ. The hermitian
form on the quotient F/(F ∩ F †) induced by φ is nondegenerate; we denote its
signature by ς(φ : F ). Given F = (F0, . . . , Fn) ∈ X, let

ς(φ : F) :=
(
ς(φ : F`)

)n
`=1
∈ ({0, . . . , n}2)n.

Then

ς(δ : F) :=
(
(dimF` ∩ V+,dimF` ∩ V−)

)n
`=1
∈ ({0, . . . , n}2)n

records the relative position of F with respect to the subspaces V+ and V−.
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Combinatorial notation. We call a signed involution a pair (w, ε) consisting of
an involution w ∈ In and signs εk ∈ {+1,−1} attached to its fixed points k ∈ {` :
w` = `}. (Equivalently, ε is a map {` : w` = `} → {+1,−1}.)

It is convenient to represent w by a graph l(w) (called link pattern) with n
vertices 1, 2, . . . , n and an arc (k,wk) connecting k and wk whenever k < wk. The
signed link pattern l(w, ε) is obtained from the graph l(w) by marking each vertex
k ∈ {` : w` = `} with the label + or − depending on whether εk = +1 or εk = −1.

For instance, the signed link pattern (where the numbering of vertices is implicit)

• • •
+
• •− •

+
• • •

represents (w, ε) with w = (1; 4)(2; 7)(8; 9) ∈ I9 and (ε3, ε5, ε6) = (+1,−1,+1).
We define ς(w, ε) := {(p`, q`)}n`=1 as the sequence given by

p` (resp., q`) = (number of + signs (resp., − signs) and arcs among
the first ` vertices of l(w, ε)).

Assuming n = p+ q, let In(p, q) be the set of signed involutions of signature (p, q),
i.e., such that (pn, qn) = (p, q). Note that the elements of In(p, q) coincide with the
clans of signature (p, q) in the sense of [13, 21].

For instance, for the above pair (w, ε) we have (w, ε) ∈ I9(5, 4) and

ς(w, ε) =
(
(0, 0), (0, 0), (1, 0), (2, 1), (2, 2), (3, 2), (4, 3), (4, 3), (5, 4)

)
.

Definition 5. Given a signed involution (w, ε), we say that a basis (v1, . . . , vn) of
V is (w, ε)-conjugate if

δ(vk) =

{
εkvwk if wk = k
vwk if wk 6= k

for all k ∈ {1, . . . , n} .

A basis (v1, . . . , vn) such that

φ(vk, v`) =

 εk if wk = ` = k
1 if wk = ` 6= k
0 if wk 6= `

for all k, ` ∈ {1, . . . , n}

is said to be (w, ε)-dual. We set

O(w,ε) := {F(v1, . . . , vn) : (v1, . . . , vn) is a (w, ε)-conjugate basis},

O(w,ε) := {F(v1, . . . , vn) : (v1, . . . , vn) is a (w, ε)-dual basis}.

Proposition 5. In addition to the above notation, let (p, q) = (dimV+,dimV−).
Then:

(a) For every (w, ε) ∈ In(p, q) the subsets O(w,ε) and O(w,ε) are nonempty, and

O(w,ε) ∩O(w,ε) = {F(v) : v = (vk)nk=1 is (w, ε)-dual and (w, ε)-conjugate} 6= ∅.

(b) For every (w, ε) ∈ In(p, q),

O(w,ε) =
{
F ∈ X : (δ(F),F) ∈ Ow and ς(δ : F) = ς(w, ε)

}
,

O(w,ε) =
{
F ∈ X : (F†,F) ∈ Ow0w and ς(φ : F) = ς(w, ε)

}
.

(c) The subsets O(w,ε) ((w, ε) ∈ In(p, q)) are exactly the K-orbits of X. The

subsets O(w,ε) ((w, ε) ∈ In(p, q)) are exactly the G0-orbits of X.
(d) The map O(w,ε) 7→ O(w,ε) is Matsuki duality.
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3.3. Types B, C, D. In this section we assume that the space V = Vn =
〈e1, . . . , en〉C is endowed with a symmetric or symplectic form ω whose action on
the basis (e1, . . . , en) is described by the matrix Ω in (2). We consider the group
G = G(V, ω) = {g ∈ GL(V ) : g preserves ω} and the variety of isotropic flags
Xω = {F ∈ X : F⊥ = F} (see Section 2.2).

In addition we assume that V is endowed with a hermitian form φ, a conjugation
δ, and a decomposition V = V+ ⊕ V− (as in Section 3.2) such that

• in types BD1 and C2, the restriction of ω to V+ and V− is nondegenerate,
i.e., V ⊥+ = V−,
• in types C1 and D3, V+ and V− are Lagrangian with respect to ω, i.e.,
V ⊥+ = V+ and V ⊥− = V−.

Set K := {g ∈ G : gδ = δg} and G0 := {g ∈ G : g preserves φ}.

Combinatorial notation. Recall that w0(k) = n − k + 1. Let (η, ε) ∈ {1,−1}2.
A signed involution (w, ε) is called (η, ε)-symmetric if the following conditions hold

(i) ww0 = w0w (so that the set {` : w` = `} is w0-stable);
(ii) εw0(k) = ηεk for all k ∈ {` : w` = `};

and in the case where η 6= ε:

(iii) wk 6= w0(k) for all k.

Assuming n = p+ q, let Iη,εn (p, q) ⊂ In(p, q) denote the subset of signed involutions
of signature (p, q) which are (η, ε)-symmetric.

Specifically, (w, ε) is (1, 1)-symmetric when the signed link pattern l(w, ε) is
symmetric with respect to reversing the enumeration of vertices; (w, ε) is (1,−1)-
symmetric when l(w, ε) is symmetric and does not have symmetric arcs (i.e., joining
k and n− k+ 1); (w, ε) is (−1,−1)-symmetric when l(w, ε) is antisymmetric in the
sense that the mirror image of l(w, ε) is a signed link pattern with the same arcs
but opposite signs; (w, ε) is (−1, 1)-symmetric when l(w, ε) is antisymmetric and
does not have symmetric arcs. For instance:

• • •
+
• •− •

+
• • •

(w, ε) ∈ I1,19 (5, 4),

• • •
+
• •− •

+
• •− • •

(w, ε) ∈ I−1,−110 (5, 5),

• •− •
+
• •

+
•
+
• •

+
•− •

(w, ε) ∈ I1,−110 (6, 4),

• •− •
+
• •− •

+
• •− •

+
•

(w, ε) ∈ I−1,110 (5, 5).

Proposition 6. Let (p, q) = (dimV+,dimV−) (so that p = q = n
2 in types C1 and

D3). Set (η, ε) = (1, 1) in type BD1, (η, ε) = (1,−1) in type C2, (η, ε) = (−1,−1)
in types C1, and (η, ε) = (−1, 1) in type D3.

(a) For every (w, ε) ∈ Iη,εn (p, q), considering bases v = (v1, . . . , vn) of V such
that

(9) ω(vk, v`) =


0 if ` 6= n− k + 1
1 if ` = n− k + 1 and wk, w` ∈ [k, `] (k ≤ `)
ε if ` = n− k + 1 and wk, w` ∈ [`, k] (` ≤ k)
η if ` = n− k + 1 and k, ` ∈]wk, w`[
ηε if ` = n− k + 1 and k, ` ∈]w`, wk[,
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we have

Oη,ε(w,ε) := O(w,ε) ∩Xω = {F(v) : v is (w, ε)-conjugate and satisfies (9)} 6= ∅,
Oη,ε

(w,ε) := O(w,ε) ∩Xω = {F(v) : v is (w, ε)-dual and satisfies (9)} 6= ∅,
Oη,ε(w,ε) ∩Oη,ε

(w,ε)

= {F(v) : v is (w, ε)-conjugate and (w, ε)-dual and satisfies (9)} 6= ∅.
(b) The subsets Oη,ε(w,ε) ((w, ε) ∈ Iη,εn (p, q)) are exactly the K-orbits of Xω. The

subsets Oη,ε
(w,ε) ((w, ε) ∈ Iη,εn (p, q)) are exactly the G0-orbits of Xω.

(c) The map Oη,ε(w,ε) 7→ Oη,ε
(w,ε) is Matsuki duality.

3.4. Remarks. Set X0 := X in type A and X0 := Xω in types B, C, D.

Remark 3. The characterization of the K-orbits in Propositions 4–6 can be stated
in the following unified way. For F ∈ X we write σ(F) = F⊥ in types A1–A2 and
σ(F) = δ(F) in types A3, BD1, C1–C2, D3. Let P ⊂ G be a parabolic subgroup
containing K and which is minimal for this property. Two flags F1,F2 ∈ X0 belong
to the same K-orbit if and only if (σ(F1),F1) and (σ(F2),F2) belong to the same
orbit of P for the diagonal action of P on X0 ×X0.

Remark 4 (Open K-orbits). With the notation of Remark 3 the map σ0 : X0 →
X ×X, F 7→ (σ(F),F) is a closed embedding.

In types A and C the flag variety X0 is irreducible. In particular there is a unique
G-orbit Ow ⊂ X×X such that Ow∩σ0(X0) is open in σ0(X0); it corresponds to an
element w ∈ Sn maximal for the Bruhat order such that Ow intersects σ0(X0). In
each case one finds a unique K-orbit O ⊂ X0 such that σ0(O) ⊂ Ow, it is therefore
the (unique) open K-orbit of X0. This yields the following list of open K-orbits in
types A1–A3, C1–C2:

A1: Oid;
A2: Ov0 where v0 = (1; 2)(3; 4) · · · (n− 1;n);

A3: O
(w

(t)
0 ,ε)

where t = min{p, q}, ε ≡ sign(p− q), and w
(t)
0 =

t∏
k=1

(k;n− k+ 1);

C1: O−1,−1(w0,∅) ;

C2: O1,−1
(ŵ

(t)
0 ,ε)

where t = min{p, q}, ε ≡ sign(p−q), and ŵ
(t)
0 = v

(t)
0 w

(t)
0 v

(t)
0 , where

v
(t)
0 = (1; 2)(3; 4) · · · (t− 1; t).

If n = dimV is even and the form ω is orthogonal, then the variety Xω has two
connected components. In fact, for every isotropic flag F = (Fk)nk=0 ∈ Xω there

is a unique F̃ = (F̃k)nk=0 ∈ Xω such that Fk = F̃k for all k 6= m := n
2 , F̃m 6= Fm.

Then the map Ĩ : F 7→ F̃ is an automorphism of Xω which maps one component
of Xω onto the other. If F = F(v1, . . . , vn) for a basis v = (v1, . . . , vn) such that

ω(vk, v`) 6= 0⇔ ` = n− k + 1

then Ĩ(F(v)) = F(ṽ) where ṽ is the basis obtained from v by switching the two
middle vectors vm, vm+1. If v is (w, ε)-conjugate then ṽ is ĩ(w, ε)-conjugate where

ĩ(w, ε) :=
(
(m;m+1)w(m;m+1), ε◦(m;m+1)

)
. Hence Ĩ maps the K-orbit Oη,ε(w,ε)

onto Oη,ε
ĩ(w,ε)

.

In type D3, Xω has exactly two open K-orbits. More precisely, w = ŵ0 := w0v0
is maximal for the Bruhat order such that Ow∩σ0(X0) is nonempty, hence σ−10 (Oŵ0

)
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is open. The permutation ŵ0 has no fixed point if m := n
2 is even; if m := n

2 is

odd, ŵ0 fixes m and m + 1. In the former case σ−10 (Oŵ0
) = O−1,1(ŵ0,∅) is a single

K-orbit, and Ĩ(O−1,1(ŵ0,∅)) = O−1,1
ĩ(ŵ0,∅)

is a second open K-orbit. In the latter case

σ−10 (O
ŵ

(m−1)
0

) = O−1,1(ŵ0,ε)
∪ O−1,1(ŵ0,ε̃)

, where (εm, εm+1) = (ε̃m+1, ε̃m) = (+1,−1), is

the union of two distinct open K-orbits which are image of each other by Ĩ.

In type BD1 the variety Xω may be reducible but w = w
(t)
0 , for t := min{p, q},

is the unique maximal element of Sn such that Ow ∩ σ0(X0) is nonempty. Then

σ−10 (Ow) consists of a single Ĩ-stable open K-orbit, namely O1,1

(w
(t)
0 ,ε)

for ε ≡ sign(p−
q). The flag variety Xω has therefore a unique open K-orbit (which is not connected
whenever n is even).

Remark 5 (Closed K-orbits). We use the notation of Remarks 3–4. As seen from
Propositions 4–6, in each case one finds a unique wmin ∈ Sn such that Owmin ∩
σ0(X0) is closed; actually wmin = id except in type BD1 for p, q odd: in that case
wmin = (n2 ; n2 + 1). For every K-orbit O ⊂ X0 the following equivalence holds:

O is closed ⇔ σ0(O) ⊂ Owmin

(see [3, 18]). In view of this equivalence, we deduce the following complete list
of closed K-orbits of X0 for the different types. In types A1 and A2, Ow0

is
the unique closed K-orbit. In type A3 the closed K-orbits are exactly the orbits
O(id,ε) for all pairs of the form (id, ε) ∈ In(p, q); there are

(
n
p

)
such orbits. In

types B, C, D, the closed K-orbits are the orbits Oη,ε(id,ε) for all pairs of the form

(id, ε) ∈ Iη,εn (p, q), except in type BD1 in the case where n =: 2m is even and p, q

are odd; in that case the closed K-orbits are the orbits O1,1
((m;m+1),ε) for all pairs

of the form ((m;m+ 1), ε) ∈ I1,1n (p, q). There are
(b p2 c+b q2 c
b p2 c

)
closed orbits in types

BD1 and C2, and there are 2
n
2 closed orbits in types C1 and D3.

Remark 6. Propositions 4–6 show in particular that the special elements of X0,
in the sense of Matsuki [11, 12], are precisely the flags F ∈ X0 of the form F =
F(v1, . . . , vn) where (v1, . . . , vn) is a basis of V which is both dual and conjugate,
with respect to some involution w ∈ Iεn in types A1 and A2, and to some signed
involution (w, ε) ∈ In(p, q) in types A3, B–D. Indeed, in view of [11, 12] the set
S ⊂ X0 of special elements equals ⋃

O∈X0/K

O ∩Ξ(O)

where the map X0/K → X0/G
0, O 7→ Ξ(O) stands for Matsuki duality.

3.5. Proofs.

Proof of Proposition 4 (a). We write w = (a1; b1) · · · (am; bm) with a1 < . . . < am
and ak < bk for all k; let c1 < . . . < cn−2m be the elements of the set {k : wk = k}.
In type A2 we have n = 2m, and (e1, . . . , en) is both a (1; 2)(3; 4) · · · (n− 1;n)-dual
basis and a (1; 2)(3; 4) · · · (n−1;n)-conjugate basis; then the basis {e′1, . . . , e′n} given
by

e′a` = e2`−1 and e′b` = e2` for all ` ∈ {1, . . . ,m}
is simultaneously w-dual and w-conjugate. In type A1, up to replacing e` and e`∗

by e`+e`∗√
2

and e`−e`∗
i
√
2

whenever ` < `∗, we may assume that the basis (e1, . . . , en) is
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both id-dual and id-conjugate. For every ` ∈ {1, . . . ,m} and k ∈ {1, . . . , n − 2m},
we set

e′a` =
e2`−1 + ie2`√

2
, e′b` =

e2`−1 − ie2`√
2

, and e′ck = e2m+k.

Then (e′1, . . . , e
′
n) is simultaneously a w-dual and a w-conjugate basis. In both cases

we conclude that

(10) ∅ 6= {F(v1, . . . , vn) : (v1, . . . , vn) is w-dual and w-conjugate} ⊂ Ow ∩Ow.

Let us show the inverse inclusion. Assume F = (F0, . . . , Fn) ∈ Ow ∩ Ow. Let
(v1, . . . , vn) be a w-dual basis such that F = F(v1, . . . , vn). Since F ∈ Ow we have

(11) wk = min{` = 1, . . . , n : γ(Fk) ∩ F` 6= γ(Fk−1) ∩ F`}.

For all ` ∈ {0, . . . , n} we will now construct a w-dual basis (v
(`)
1 , . . . , v

(`)
n ) of V such

that

Fk = 〈v(`)1 , . . . , v
(`)
k 〉C for all k ∈ {1, . . . , n}(12)

and

γ(v
(`)
k ) =

{
εv

(`)
wk if wk ≥ k,

v
(`)
wk if wk < k

for all k ∈ {1, . . . , `}.(13)

This will then imply F = F(v
(n)
1 , . . . , v

(n)
n ) for a basis (v

(n)
1 , . . . , v

(n)
n ) both w-dual

and w-conjugate, i.e., will complete the proof of (a).

Our construction is done by induction starting with (v
(0)
1 , . . . , v

(0)
n ) = (v1, . . . , vn).

Let ` ∈ {1, . . . , n}, and assume that (v
(`−1)
1 , . . . , v

(`−1)
n ) is constructed. We distin-

guish three cases.

Case 1: w` < `.

The inequality w` < ` = w(w`) implies γ(v
(`−1)
w` ) = εv

(`−1)
` , whence γ(v

(`−1)
` ) =

v
(`−1)
w` as γ2 = εid. Therefore the basis (v

(`)
1 , . . . , v

(`)
n ) := (v

(`−1)
1 , . . . , v

(`−1)
n ) fulfills

conditions (12) and (13).

Case 2: w` = `.
This case occurs only in type A1. On the one hand, (11) yields

γ(v
(`−1)
` ) ∈ 〈v(`−1)1 , . . . , v

(`−1)
` , v(`−1)w1

, . . . , v(`−1)w`−1
〉C.

On the other hand, since the basis (v
(`−1)
1 , . . . , v

(`−1)
n ) is w-dual, we have

v
(`−1)
` ∈ 〈v(`−1)1 , . . . , v

(`−1)
`−1 , v(`−1)w1

, . . . , v(`−1)w`−1
〉⊥C .

Hence, as γ preserves orthogonality with respect to ω,

γ(v
(`−1)
` ) ∈ 〈γ(v

(`−1)
1 ), . . . , γ(v

(`−1)
`−1 ), γ(v(`−1)w1

), . . . , γ(v(`−1)w`−1
)〉⊥C

= 〈v(`−1)1 , . . . , v
(`−1)
`−1 , v(`−1)w1

, . . . , v(`−1)w`−1
〉⊥C .

Altogether this yields a nonzero complex number λ such that γ(v
(`−1)
` ) = λv

(`−1)
` .

Since γ is an involution, we have λ ∈ {+1,−1}. In addition we know that

λ = ω(γ(v
(`−1)
` ), v

(`−1)
` ) = tv

(`−1)
` v

(`−1)
` ∈ R+.

Whence γ(v
(`−1)
` ) = v

(`−1)
` , and we can put (v

(`)
1 , . . . , v

(`)
n ) := (v

(`−1)
1 , . . . , v

(`−1)
n ).

Case 3: w` > `.
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By (11) we have

γ(v
(`−1)
` ) ∈ 〈v(`−1)k : 1 ≤ k ≤ w`〉C + 〈v(`−1)wk

: 1 ≤ k ≤ `− 1〉C.
On the other hand, arguing as in Case 2 we see that

γ(v
(`−1)
` ) ∈ 〈v(`−1)1 , . . . , v

(`−1)
`−1 , v(`−1)w1

, . . . , v(`−1)w`−1
〉⊥C .

Hence we can write

(14) γ(v
(`−1)
` ) =

∑
k∈I

λkv
(`−1)
k for some λk ∈ C,

where I := {k : ` ≤ k ≤ w` and ` ≤ wk} ⊂ Î := {k : ` ≤ k and ` ≤ wk}. Using

(14), the fact that the basis (v
(`−1)
1 , . . . , v

(`−1)
n ) is w-dual, and the definition of ω

and γ, we see that

(15) λw` = ω(v
(`−1)
` , γ(v

(`−1)
` )) = ε tv

(`−1)
` v

(`−1)
` = εα

with α ∈ R, α > 0. Set

v
(`)
` :=

1√
α
v
(`−1)
` , v(`)w` :=

ε√
α
γ(v

(`−1)
` ),

v
(`)
k := v

(`−1)
k −

ω(v
(`−1)
k , γ(v

(`−1)
` ))

λw`
v
(`−1)
` for all k ∈ Î \ {`, w`},

v
(`)
k := v

(`−1)
k for all k ∈ {1, . . . , n} \ Î.

Using (14) and (15) it is easy to check that (v
(`)
1 , . . . , v

(`)
n ) is a w-dual basis which

satisfies (12) and (13). This completes Case 3. �

Proof of Proposition 4 (b)–(d). Let F ∈ Ow, so F = F(v1, . . . , vn) for some w-dual
basis (v1, . . . , vn) of V . From the definition of w-dual basis we see that

〈v1, . . . , vn−k〉⊥C = 〈vj : wj /∈ {1, . . . , n− k}〉C
= 〈vj : wj ∈ {n− k + 1, . . . , n}〉C
= 〈vj : (w0w)j ∈ {1, . . . , k}〉C .

Therefore

dim〈v1, . . . , vn−k〉⊥C ∩ 〈v1, . . . , v`〉C =
∣∣{j ∈ {1, . . . , `} : (w0w)j ∈ {1, . . . , k}

}∣∣
for all k, ` ∈ {1, . . . , n}, which yields the equality w(F⊥,F) = w0w and hence the
inclusion

(16) Ow ⊂ {F ∈ X : (F⊥,F) ∈ Ow0w}.
Let F = F(v1, . . . , vn) ∈ Ow for a w-conjugate basis (v1, . . . , vn) of V . From the

definition of w-conjugate basis we get

γ(〈v1, . . . , vk〉C) = 〈vwj : j ∈ {1, . . . , k}〉C .
Therefore

dim γ(〈v1, . . . , vk〉C) ∩ 〈v1, . . . , v`〉C =
∣∣{j ∈ {1, . . . , `} : w−1j ∈ {1, . . . , k}

}∣∣
for all k, ` ∈ {1, . . . , n}, whence w(γ(F),F) = w−1 = w (since w is an involution).
This implies the inclusion

(17) Ow ⊂ {F ∈ X : (γ(F),F) ∈ Ow}.
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It is clear that the group K acts transitively on the set of w-dual bases, hence Ow
is a K-orbit. Moreover (16) implies that the orbits Ow (for w ∈ Iεw) are pairwise
distinct. Similarly the subsets Ow (for w ∈ Iεw) are pairwise distinct G0-orbits.

We denote by Lk the k × k-matrix with 1 on the antidiagonal and 0 elsewhere.
Let v = (v1, . . . , vn) be a w0-dual basis, in other words, ω(vk, vn+1−k) =

{
1 if k ≤ n+1

2

ε if k > n+1
2

ω(vk, v`) = 0 if ` 6= n+ 1− k;

hence L := (ω(vk, v`))1≤k,`≤n is the following matrix

L = Ln (type A1) or L =

(
0 Lm
−Lm 0

)
(type A2, n = 2m).

The flag F0 := F(v1, . . . , vn) satisfies the condition F⊥0 = F0. By Richardson–
Springer [18] every K-orbit O ⊂ X contains an element of the form gF0 with g ∈ G
such that h := Lt[g]vL

−1[g]v ∈ N where [g]v denotes the matrix of g in the basis v
and N stands for the group of invertible n × n-matrices with exactly one nonzero
coefficient in each row and each column. Note that Lh = t[g]vL[g]v also belongs
to N (as L does) and is symmetric in type A1 and antisymmetric in type A2.
Consequently, there are w ∈ In and constants t1, . . . , tn ∈ C∗ such that the matrix
Lh =: (ak,`)1≤k,`≤n has the following entries:

ak,` = 0 if ` 6= wk, ak,wk =

{
tk if wk ≥ k
εtk if wk ≤ k.

Since ε = −1 in type A2, we must have wk 6= k for all k, hence w ∈ I′n. Therefore
in both cases w ∈ Iεn. For each k ∈ {1, . . . , n}, we choose sk = swk ∈ C∗ such that
s−2k = tk (note that twk = tk). Thus

gF0 = F(s1gv1, . . . , sngvn) ,

and for all k, ` ∈ {1, . . . , n} we have

ω(skgvk, s`gv`) = sks`ω(gvk, gv`) = sks`ak,` =

 1 if ` = wk ≥ k
ε if ` = wk < k
0 if ` 6= wk.

Whence gF0 ∈ Ow. This yields O = Ow.
We have shown that the subsets Ow (for w ∈ Iεw) are precisely the K-orbits of

X. In particular, X =
⋃
w∈Iεw

Ow so that the inclusion (16) is actually an equality.

By Matsuki duality the number of G0-orbits of X is the same as the number of K-
orbits, hence the subsets Ow (for w ∈ Iεw) are exactly the G0-orbits of X. Thereby
equality holds in (17). Finally we have shown parts (b) and (c) of the statement.

Part (a) implies that, for every w ∈ Iεn, the intersection Ow ∩Ow is nonempty
and consists of a single K ∩G0-orbit. This shows that the orbit Ow is the Matsuki
dual of Ow (see [12]), and part (d) of the statement is also proved. �

Proof of Proposition 5 (a). We write w as a product of pairwise disjoint transpo-
sitions w = (a1; b1) · · · (am; bm), and let cm+1 < . . . < cp be the elements of {k :
wk = k, εk = +1} and dm+1 < . . . < dq be the elements of {k : wk = k, εk = −1}.



ORBIT DUALITY IN IND-VARIETIES OF GENERALIZED FLAGS 17

Let {e1, . . . , en} = {e+1 , . . . , e+p } ∪ {e
−
1 , . . . , e

−
q } so that V+ = 〈e+` : ` = 1, . . . , p〉C

and V− = 〈e−` : ` = 1, . . . , q〉C. Setting

vak :=
e+k +e−k√

2
, vbk :=

e+k−e
−
k√

2
for all k ∈ {1, . . . ,m},

vck := e+k for all k ∈ {m+ 1, . . . , p}, and vdk := e−k for all k ∈ {m+ 1, . . . , q},

it is easy to see that (v1, . . . , vn) is a basis of V which is (w, ε)-dual and (w, ε)-
conjugate. Therefore

(18) ∅ 6= {F(v) : v is (w, ε)-dual and (w, ε)-conjugate} ⊂ O(w,ε) ∩O(w,ε).

For showing the inverse inclusion, consider F = (F0, . . . , Fn) ∈ O(w,ε) ∩O(w,ε).
On the one hand, since F ∈ O(w,ε) there is a (w, ε)-dual basis (v1, . . . , vn) such that
F = F(v1, . . . , vn). On the other hand, the fact that F ∈ O(w,ε) yields

(19) wk = min{` = 1, . . . , n : δ(Fk) ∩ F` 6= δ(Fk−1) ∩ F`} for all k ∈ {1, . . . , n}.

For all ` ∈ {0, . . . , n} we will now construct a (w, ε)-dual basis (v
(`)
1 , . . . , v

(`)
n )

such that

Fk = 〈v(`)1 , . . . , v
(`)
k 〉C for all k ∈ {1, . . . , n}(20)

and δ(v
(`)
k ) =

{
v
(`)
wk if wk 6= k,

εkv
(`)
k if wk = k

for all k ∈ {1, . . . , `}.(21)

This will then provide a basis (v
(n)
1 , . . . , v

(n)
n ) which is both (w, ε)-dual and (w, ε)-

conjugate and such that F = F(v
(n)
1 , . . . , v

(n)
n ), i.e., will complete the proof of part

(a).
The construction is carried out by induction on ` ∈ {0, . . . , n}, and is initialized

by setting (v
(0)
1 , . . . , v

(0)
n ) := (v1, . . . , vn). Let ` ∈ {1, . . . , n} be such that the basis

(v
(`−1)
1 , . . . , v

(`−1)
n ) is already constructed. We distinguish three cases.

Case 1: w` < `.

Since in this case since w` ≤ `− 1 and w(w`) = `, we get δ(v
(`−1)
w` ) = v

(`−1)
` and

hence δ(v
(`−1)
` ) = v

(`−1)
w` (as δ is an involution). Therefore the basis (v

(`)
1 , . . . , v

(`)
n ) :=

(v
(`−1)
1 , . . . , v

(`−1)
n ) satisfies conditions (20) and (21).

Case 2: w` = `.
Using (19) we have

δ(v
(`−1)
` ) ∈ 〈v(`−1)1 , v

(`−1)
2 , . . . , v

(`−1)
` 〉C + 〈v(`−1)w1

, . . . , v(`−1)w`−1
〉C .

On the other hand, the fact that the basis (v
(`−1)
1 , . . . , v

(`−1)
n ) is (w, ε)-conjugate

implies

v
(`−1)
` ∈ 〈v(`−1)1 , . . . , v

(`−1)
`−1 , v(`−1)w1

, . . . , v(`−1)w`−1
〉†C.(22)

Since δ preserves orthogonality with respect to the form φ and since δ(v
(`−1)
k ) =

v
(`−1)
wk for all k ∈ {1, . . . , `− 1} (by the induction hypothesis), (22) yields

δ(v
(`−1)
` ) ∈ 〈v(`−1)1 , . . . , v

(`−1)
`−1 , v(`−1)w1

, . . . , v(`−1)w`−1
〉†C.

Altogether we deduce that

δ(v
(`−1)
` ) = λv

(`−1)
` for some λ ∈ C∗.
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As δ is an involution, we conclude that λ ∈ {+1,−1}. Moreover, knowing that

φ(v
(`−1)
` , v

(`−1)
` ) = ε` we see that

λε` = φ(v
(`−1)
` , δ(v

(`−1)
` )) = tv

(`−1)
` ΦΦv

(`−1)
` = tv

(`−1)
` v

(`−1)
` ≥ 0.

Finally we conclude that λ = ε`. It follows that the basis (v
(`)
1 , . . . , v

(`)
n ) :=

(v
(`−1)
1 , . . . , v

(`−1)
n ) satisfies (20) and (21).

Case 3: w` > `.

Invoking (19), the fact that (v
(`−1)
1 , . . . , v

(`−1)
n ) is (w, ε)-dual, the induction hy-

pothesis, and the fact that δ preserves orthogonality with respect to φ, we see as
in Case 2 that

δ(v
(`−1)
` ) ∈

(
〈v(`−1)k : 1 ≤ k ≤ w`〉C + 〈v(`−1)wk

: 1 ≤ k ≤ `− 1〉C
)

∩ 〈v(`−1)1 , . . . , v
(`−1)
`−1 , v(`−1)w1

, . . . , v(`−1)w`−1
〉†C.

Therefore

(23) δ(v
(`−1)
` ) =

∑
k∈I

λkv
(`−1)
k with λk ∈ C,

where I := {k : ` ≤ k ≤ w`, ` ≤ wk} ⊂ Î := {k : ` ≤ k, ` ≤ wk}. This implies

λw` = φ(v
(`−1)
` , δ(v

(`−1)
` )) = tv

(`−1)
` ΦΦv

(`−1)
` = tv

(`−1)
` v

(`−1)
` ∈ R∗+.

It is straightforward to check that the basis (v
(`)
1 , . . . , v

(`)
n ) defined by

v
(`)
` :=

1√
λw`

v
(`−1)
` , v(`)w` :=

1√
λw`

δ(v
(`−1)
` ),

v
(`)
k := v

(`−1)
k −

φ(v
(`−1)
k , δ(v

(`−1)
` ))

λw`
v
(`−1)
` for all k ∈ Î \ {`, w`},

v
(`)
k := v

(`−1)
k for all k ∈ {1, . . . , n} \ Î

is (w, ε)-dual and satisfies conditions (20) and (21). �

Proof of Proposition 5 (b)–(d). Let F = F(v1, . . . , vn) where (v1, . . . , vn) is a (w, ε)-
conjugate basis. Then by definition we have

δ(〈v1, . . . , vk〉C) = 〈vwj : j ∈ {1, . . . , k}〉C ,

hence

dim δ(〈v1, . . . , vk〉C) ∩ 〈v1, . . . , v`〉C = |{j ∈ {1, . . . , `} : w−1j ∈ {1, . . . , k}}|
= |{j ∈ {1, . . . , `} : wj ∈ {1, . . . , k}}|

for all k, ` ∈ {1, . . . , n}. Moreover, for ε ∈ {+1,−1} we have

〈v1, . . . , v`〉C ∩ ker(δ − εid) = 〈vj : 1 ≤ wj = j ≤ ` and εj = ε〉C
+〈vj + εvwj : 1 ≤ wj < j ≤ `〉C .

Therefore (
dim〈v1, . . . , v`〉C ∩ V+,dim〈v1, . . . , v`〉C ∩ V−

)n
`=1

= ς(w, ε).

Altogether this yields the inclusion

(24) O(w,ε) ⊂
{
F ∈ X : (δ(F),F) ∈ Ow and ς(δ : F) = ς(w, ε)

}
.
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Now let (v1, . . . , vn) be a (w, ε)-dual basis. Then

〈v1, . . . , vn−k〉†C ∩ 〈v1, . . . , v`〉C = 〈vj : j ∈ {1, . . . , `} and wj > n− k〉C
= 〈vj : j ∈ {1, . . . , `} and (w0w)j ≤ k〉C ,

whence

dim〈v1, . . . , vn−k〉†C ∩ 〈v1, . . . , v`〉C = |{j ∈ {1, . . . , `} : (w0w)j ∈ {1, . . . , k}|

for all k, ` ∈ {1, . . . , n}. In particular we see that

〈v1, . . . , v`〉C = 〈v1, . . . , v`〉C ∩ 〈v1, . . . , v`〉†C ⊕ 〈vj : j ∈ {1, . . . , `} and wj ≤ `〉C.

It follows that the vectors vj (for 1 ≤ wj = j ≤ `) and 1√
2
(vj ± vwj ) (for 1 ≤ wj <

j ≤ `) form a basis of the quotient space 〈v1, . . . , v`〉C/〈v1, . . . , v`〉C ∩ 〈v1, . . . , v`〉†C.
This basis is φ-orthogonal and, since (v1, . . . , vn) is (w, ε)-dual, we have

φ(vj , vj) = εj if wj = j;

 φ
( vj+vwj√

2
,
vj+vwj√

2

)
= 1,

φ
( vj−vwj√

2
,
vj−vwj√

2

)
= −1

if wj < j.

Therefore the signature of φ on 〈v1, . . . , v`〉C/〈v1, . . . , v`〉C∩〈v1, . . . , v`〉†C is the pair(
|{j : wj = j ≤ `, εj = +1}|+ |{j : wj < j ≤ `}|,

|{j : wj = j ≤ `, εj = −1}|+ |{j : wj < j ≤ `}|
)

which coincides with the `-th term of the sequence ς(w, ε). Finally, we obtain the
inclusion

(25) O(w,ε) ⊂
{
F ∈ X : (F†,F) ∈ Ow0w and ς(φ : F) = ς(w, ε)

}
.

It is clear that K (resp., G0) acts transitively on the set of (w, ε)-conjugate bases
(resp., (w, ε)-dual bases). Hence the subsets O(w,ε) (resp. O(w,ε)) are K-orbits

(resp., G0-orbits). Moreover, in view of (24) and (25) these orbits are pairwise
distinct.

Let O be a K-orbit of X. Note that the basis (e1, . . . , en) of V satisfies δ(ej) =
±ej for all j, hence the flag F0 := F(e1, . . . , en) satisfies δ(F0) = F0. By [18]
the K-orbit O contains an element of the form gF0 for some g ∈ G such that
h := Φg−1Φg ∈ N where, as in the proof of Proposition 4, N ⊂ G stands for the
subgroup of matrices with exactly one nonzero entry in each row and each column.
Since Φ ∈ N we also have Φh ∈ N . Hence there is a permutation w ∈ Sn and
constants t1, . . . , tn ∈ C∗ such that the matrix Φh =:

(
ak,`

)
1≤k,`≤n has entries

ak,` = 0 if ` 6= wk, ak,wk = tk for all k, ` ∈ {1, . . . , n}.

The relation Φh = g−1Φg shows that (Φh)2 = 1n. This yields w2 = id and tktwk = 1
for all k; hence

twk = t−1k whenever wk 6= k and εk := tk ∈ {+1,−1} whenever wk = k.

In addition, since Φh is conjugate to Φ, its eigenvalues +1 and −1 have respective
multiplicities p and q, which forces

(w, ε) ∈ In(p, q).
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For each k ∈ {1, . . . , n} with wk < k, we take sk ∈ C∗ such that tk = s2k and set

swk = s−1k (so that s2wk = t−1k = twk). Moreove,r for each k ∈ {1, . . . , n} with
wk = k we set sk = 1. The equality Φg = gΦh yields

δ(g(skek)) = skΦgek = skg(Φh)ek = skg(twkewk) = s−1wkg(s2wkewk) = g(swkewk)

for all k ∈ {1, . . . , n} such that wk 6= k, and

δ(g(skek)) = δ(g(ek)) = Φgek = g(Φh)ek = g(εkek) = εkg(ek) = εkg(skek)

for all k ∈ {1, . . . , n} such that wk = k. Hence the family (g(s1e1), . . . , g(snen)) is
a (w, ε)-conjugate basis of V . Thus

gF0 = gF(e1, . . . , en) = gF(s1e1, . . . , snen) = F(g(s1e1), . . . , g(snen)) ∈ O(w,ε).

Therefore O = O(w,ε).
We conclude that the subsets O(w,ε) (for (w, ε) ∈ In(p, q)) are exactly the K-

orbits of X. Matsuki duality then guarantees that the subsets O(w,ε) (for (w, ε) ∈
In(p, q)) are exactly the G0-orbits of X. This fact implies in particular that equality
holds in (24) and (25). Altogether we have shown parts (b) and (c) of the statement.

Finally, part (a) shows that for every (w, ε) ∈ In(p, q) the intersection O(w,ε) ∩
O(w,ε) consists of a single K ∩ G0-orbit, which guarantees that the orbits O(w,ε)

and O(w,ε) are Matsuki dual (see [11, 12]). This proves part (d) of the statement.
The proof of Proposition 5 is complete. �

Proof of Proposition 6. The proof relies on the following two technical claims.

Claim 1: For every signed involution (w, ε) ∈ In(p, q) we have O(w,ε) ∩ Xω = ∅
unless (w, ε) ∈ Iη,εn (p, q).

Claim 2: For every (w, ε) ∈ Iη,εn (p, q) there is a basis v = (v1, . . . , vn) which is
simultaneously (w, ε)-dual and (w, ε)-conjugate and satisfies (9).

Assuming Claims 1 and 2, the proof of the proposition proceeds as follows. For
every (w, ε) ∈ In(p, q) the inclusions

{F(v) : v is (w, ε)-conjugate and satisfies (9)} ⊂ O(w,ε) ∩Xω,(26)

{F(v) : v is (w, ε)-dual and satisfies (9)} ⊂ O(w,ε) ∩Xω,(27)

{F(v) : v is (w, ε)-dual and (w, ε)-conjugate and satisfies (9)}(28)

⊂ O(w,ε) ∩O(w,ε) ∩Xω

clearly hold. Hence Claim 2 shows that Oη,ε(w,ε), O
η,ε
(w,ε), and Oη,ε(w,ε) ∩Oη,ε

(w,ε) are all

nonempty whenever (w, ε) ∈ Iη,εn (p, q). By Claim 1, Lemma 1, and Proposition
5 (c), the K-orbits of Xω are exactly the subsets Oη,ε(w,ε). On the other hand the

subsets O(w,ε) ∩Xω (for (w, ε) ∈ In(p, q)) are G0-stable and pairwise disjoint. By

Matsuki duality there is a bijection between K-orbits and G0-orbits. This forces
Oη,ε

(w,ε) = O(w,ε) ∩ Xω to be a single G0-orbit whenever (w, ε) ∈ Iη,εn (p, q) and

O(w,ε) ∩Xω to be empty if (w, ε) /∈ Iη,εn (p, q). This proves Proposition 6 (b).
Since the orbitsO(w,ε),O(w,ε) ⊂ X are Matsuki dual (see Proposition 5 (d)), their

intersection O(w,ε)∩O(w,ε) is compact, hence such is the intersection Oη,ε(w,ε)∩O
η,ε
(w,ε)

for all (w, ε) ∈ Iη,εn (p, q). This implies that Oη,ε(w,ε) and Oη,ε
(w,ε) are Matsuki dual (see

[6]), and therefore part (c) of the statement.
Let (w, ε) ∈ Iη,εn (p, q). Since Oη,ε(w,ε) and Oη,ε

(w,ε) are Matsuki dual, their intersec-

tion is a single K ∩G0-orbit. The set on the left-hand side in (28) is nonempty (by
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Claim 2) and K ∩G0-stable, hence equality holds in (28). Similarly, the sets on the
left-hand sides in (26) and (27) are nonempty (by Claim 2) and respectively K- and
G0-stable. Since Oη,ε(w,ε) = O(w,ε) ∩Xω and Oη,ε

(w,ε) = O(w,ε) ∩Xω are respectively a

K-orbit and a G0-orbit, equality holds in (26) and (27). This shows part (a) of the
statement.

Thus the proof of Proposition 6 will be complete once we establish Claims 1 and
2.

Proof of Claim 1. Note that for two subspaces A,B ⊂ V we have A⊥ + B⊥ =
(A ∩B)⊥, hence

(29) dimA⊥ ∩B⊥ + dimA+ dimB = dimA ∩B + dimV.

Note also that the map δ is selfadjoint (in types BD1 and C2) or antiadjoint (in
types C1 and D3) with respect to ω, hence the equality δ(A)⊥ = δ(A⊥) holds for
any subspace A ⊂ V in all types.

Let (w, ε) ∈ In(p, q) such that O(w,ε) ∩ Xω 6= ∅. Let F = (F0, . . . , Fn) ∈
O(w,ε) ∩Xω.

By applying (29) to A = δ (Fk) and B = F` for 1 ≤ k, ` ≤ n we obtain

(30) dim δ (Fn−k) ∩ Fn−` + k + ` = dim δ (Fk) ∩ F` + n.

On the other hand, since F ∈ O(w,ε) Proposition 5 (b) gives

(31) dim δ (Fn−k) ∩ Fn−` = |{j = 1, . . . , n− ` : 1 ≤ wj ≤ n− k}|

and

dim δ (Fk) ∩ F` = |{j = 1, . . . , ` : 1 ≤ wj ≤ k}|(32)

= `− |{j = 1, . . . , ` : wj ≥ k + 1}|
= `− (n− k − |{j ≥ `+ 1 : wj ≥ k + 1}|)
= `+ k − n+ |{j = 1, . . . , n− ` : w0ww0(j) ≤ n− k}|

for all k, ` ∈ {1, . . . , n}. Comparing (30)–(32) we conclude that w = w0ww0.
Let k ∈ {1, . . . , n} such that wk = k. Since ww0 = w0w, we have wn−k+1 =

n− k + 1. Applying (29) with A = Fk (resp., A = Fk−1) and B = V+, we get

1 + dimFk−1 ∩ V+ − dimFk ∩ V+ = dimFn−k+1 ∩ V− − dimFn−k ∩ V−
in types BD1 and C2 (where V ⊥+ = V−), whence

εk = 1 ⇔ dimFk ∩ V+ = dimFk−1 ∩ V+ + 1

⇔ dimFn−k+1 ∩ V− = dimFn−k ∩ V− ⇔ εn−k+1 = 1

in that case. In types C1 and D3 (where V ⊥+ = V+), we get

1 + dimFk−1 ∩ V+ − dimFk ∩ V+ = dimFn−k+1 ∩ V+ − dimFn−k ∩ V+ ,

whence also

εk = 1⇔ εn−k+1 = −1 .

At this point we obtain that the signed involution (w, ε) satisfies conditions (i)–
(ii) in Section 3.3. To conclude that (w, ε) ∈ Iη,εn (p, q), it remains to check that in
types C2 and D3 we have wk 6= n− k + 1 for all k ≤ n

2 . Arguing by contradiction,
assume that wk = n − k + 1. Since F ∈ O(w,ε) there is a (w, ε)-conjugate basis
v = (v1, . . . , vn) such that F = F(v). Thus δ(vk) = vn−k+1 so that we can write
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vk = v+k + v−k and vn−k+1 = v+k − v
−
k . In type C2 we have V ⊥+ = V− and ω is

antisymmetric, hence

ω(v+k + v−k , v
+
k − v

−
k ) = ω(v+k , v

+
k )− ω(v−k , v

−
k ) = 0− 0 = 0.

In type D3 we have V ⊥+ = V+, V ⊥− = V−, and ω is symmetric hence

ω(v+k + v−k , v
+
k − v

−
k ) = −ω(v+k , v

−
k ) + ω(v−k , v

+
k ) = 0.

In both cases we deduce

Fn−k+1 = Fn−k + 〈vn−k+1〉C ⊂ F⊥k + F⊥k−1 ∩ 〈vk〉⊥C = F⊥k = Fn−k,

a contradiction. This completes the proof of Claim 1.

Proof of Claim 2. For k ∈ {1, . . . , n} set k∗ = n− k + 1. We can write

w = (c1; c′1) · · · (cs; c′s)(c′∗1 ; c∗1) · · · (c′∗s ; c∗s)(d1; d∗1) · · · (dt; d∗t )
where c1 < . . . < cs < c∗s < . . . < c∗1, cj < c′j 6= c∗j for all j, d1 < . . . < dt < d∗t <
. . . < d∗1. Note that t = 0 in types C2 and D3. Moreover, we denote

{a1 < . . . < ap−t−2s} := {k : wk = k, εk = 1},
{b1 < . . . < bq−t−2s} := {k : wk = k, εk = −1}.

We can construct a φ-orthonormal basis

x+1 , . . . , x
+
t , y

+
1 , . . . , y

+
s , y

+∗
s , . . . , y+∗1 , z+1 , . . . , z

+
p−t−2s

of V+, and a (−φ)-orthonormal basis

x−1 , . . . , x
−
t , y

−
1 , . . . , y

−
s , y

−∗
s , . . . , y−∗1 , z−1 , . . . , z

−
q−t−2s

of V−, such that in types BD1 and C2 (where the restriction of ω on V+ and V− is
nondegenerate) we have

ω(x+j , x
+
j ) = ω(x−j , x

−
j ) = 1,

ω(y+j , y
+∗
j ) = ω(y−j , y

−∗
j ) = 1, ω(y+∗j , y+j ) = ω(y−∗j , y−j ) = ε,

ω(z+j , z
+
` ) =

{
1 if j ≤ ` = p− t− 2s+ 1− j
ε if j > ` = p− t− 2s+ 1− j,

ω(z−j , z
−
` ) =

{
1 if j ≤ ` = q − t− 2s+ 1− j
ε if j > ` = q − t− 2s+ 1− j,

and the other values of ω on the basis to equal 0. In types C1 and D3 (where
V ⊥+ = V+, V ⊥− = V−, and in particular p = q = n

2 in this case) we require that

ω(x+j , x
−
j ) = i, ω(x−j , x

+
j ) = εi,

ω(y+j , y
−∗
j ) = ω(y−j , y

+∗
j ) = 1, ω(y+∗j , y−j ) = ω(y−∗j , y+j ) = ε,

ω(z+j , z
−
` ) = εω(z−` , z

+
j ) =

{
1 if ` = j̃ := n

2 − t− 2s+ 1− j and aj < bj̃
ε if ` = j̃ := n

2 − t− 2s+ 1− j and aj > bj̃ ,

while the other values of ω on the basis are 0. In contrast to the value of ω(z±j , z
±
` ) in

types BD1,C2, the value of ω(z+j , z
−
` ) in types C1,D3 is not subject to a constraint

but is chosen so that the basis (v1, . . . , vn) below satisfies (9).
In all cases we construct a basis (v1, . . . , vn) by setting

vdj =
x+j + ix−j√

2
, vd∗j =

x+j − ix
−
j√

2
,
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vcj =
y+j + y−j√

2
, vc′j =

y+j − y
−
j√

2
, vc∗j =

y+∗j + y−∗j√
2

, vc′∗j =
y+∗j − y

−∗
j√

2
,

vaj = z+j , and vbj = z−j .

It is straightforward to check that the basis (v1, . . . , vn) is both (w, ε)-dual and
(w, ε)-conjugate and satisfies (9). This completes the proof of Claim 2. �

4. Orbit duality in ind-varieties of generalized flags

Following the pattern of Section 3, we now present our results on orbit duality
in the infinite-dimensional case. All proofs are given in Section 4.5.

4.1. Types A1 and A2. The notation is as Section 2.1.1. For every ` ∈ N∗ there
is a unique `∗ ∈ N∗ such that ω(e`, e`∗) 6= 0, and this yields a bijection ι : N∗ → N∗,
` 7→ `∗.

Let I∞(ι) be the set of involutions w : N∗ → N∗ such that w(`) = `∗ for all
but finitely many ` ∈ N∗. In particular we have wι ∈ S∞ for all w ∈ I∞(ι). Let
I′∞(ι) ⊂ I∞(ι) be the subset of involutions without fixed points (i.e., such that
w(`) 6= ` for all ` ∈ N∗).

Let σ : N∗ → (A,≺) be a bijection onto a totally ordered set, and let us consider
the ind-variety of generalized flags X(Fσ, E). In Proposition 7 below we show that
the K-orbits and the G0-orbits of X(Fσ, E) are parametrized by the elements of
I∞(ι) in type A1, and by elements of I′∞(ι) in type A2.

Definition 6. Let w ∈ I∞(ι). Let v = (v1, v2, . . .) be a basis of V such that

(33) v` = e` for all but finitely many ` ∈ N∗.
We call v w-dual if in addition to (33) v satisfies

ω(v`, vk) =

{
0 if ` 6= wk,
±1 if ` = wk

for all k, ` ∈ N∗,

and we call v w-conjugate if in addition to (33)

γ(vk) = ±vwk for all k ∈ N∗.
Set Ow := {Fσ(v) : v is w-dual} and Ow := {Fσ(v) : v is w-conjugate}, so that
Ow and Ow are subsets of the ind-variety X(Fσ, E).

Notation. (a) We use the abbreviation X := X(Fσ, E).
(b) If F is a generalized flag weakly compatible with E, then F⊥ := {F⊥ : F ∈ F}
is also a generalized flag weakly compatible with E.

Let (A∗,≺∗) be the totally ordered set given by A∗ = A as a set and a ≺∗ a′
whenever a � a′. Let σ⊥ : N∗ → (A∗,≺∗) be defined by σ⊥(`) = σ(`∗). Then
we have F⊥σ = Fσ⊥ . Note that F⊥ is E-commensurable with Fσ⊥ whenever F is
E-commensurable with Fσ. Hence the map

X→ X⊥ := X(Fσ⊥ , E), F 7→ F⊥

is well defined. We use the abbreviation OOO⊥w := (OOOσ⊥,σ)w for all w ∈ S∞.
(c) We further note that γ(Fσ) = Fσ◦ι and that γ(F) ∈ Xγ := X(Fσ◦ι, E) when-
ever F ∈ X. We abbreviate OOOγw := (OOOσ◦ι,σ)w for all w ∈ S∞.

Thus X⊥ ×X =
⊔

w∈S∞

OOO⊥w and Xγ ×X =
⊔

w∈S∞

OOOγw (see Proposition 2).

Proposition 7. Let Iε∞(ι) = I∞(ι) in type A1 and Iε∞(ι) = I′∞(ι) in type A2.
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(a) For every w ∈ Iε∞(ι),

Ow ∩Ow = {Fσ(v) : v is w-dual and w-conjugate} 6= ∅.
(b) For every w ∈ Iε∞(ι),

Ow = {F ∈ X : (F⊥,F) ∈OOO⊥wι} and Ow = {F ∈ X : (γ(F),F) ∈OOOγwι}.
(c) The subsets Ow (for w ∈ Iε∞(ι)) are exactly the K-orbits of X. The subsets

Ow (for w ∈ Iε∞(ι)) are exactly the G0-orbits of X. Moreover Ow ∩Ow

is a single K ∩G0-orbit.

4.2. Type A3. The notation is as in Section 2.1.2. In particular, we fix a partition
N∗ = N+ t N− yielding Φ as in (3) and we consider the corresponding hermitian
form φ and involution δ on V.

Let I∞(N+, N−) be the set of pairs (w, ε) consisting of an involution w : N∗ → N∗
and a map ε : {` : w` = `} → {1,−1} such that the subsets

N ′± = N ′±(w, ε) := {` ∈ N± : (w`, ε`) = (`,±1)}
satisfy

|N± \N ′±| = |{` ∈ N∓ : (w`, ε`) = (`,±1)}|+ 1

2
|{` ∈ N∗ : w` 6= `}| <∞.

In particular, w ∈ S∞.
Fix σ : N∗ → (A,≺) a bijection onto a totally ordered set. We show in Propo-

sition 8 that the K-orbits and the G0-orbits of the ind-variety X := X(Fσ, E) are
parametrized by the elements of I∞(N+, N−).

Definition 7. Let (w, ε) ∈ I∞(N+, N−). A basis v = (v1, v2, . . .) of V such that
v` = e` for all but finitely many ` ∈ N∗ is (w, ε)-conjugate if

δ(vk) =

{
vwk if wk 6= k,
εkvk if wk = k

for all k ∈ N∗,

and is (w, ε)-dual if

φ(vk, v`) =

 0 if ` 6= wk,
1 if ` = wk 6= k,
εk if ` = wk = k

for all k, ` ∈ N∗.

Set O(w,ε) := {Fσ(v) : v is (w, ε)-conjugate}, O(w,ε) := {Fσ(v) : v is (w, ε)-dual}.

Notation. (a) Note that every subspace in the generalized flag Fσ is δ-stable, i.e.,
δ(Fσ) = Fσ. The map X→ X, F 7→ δ(F) is well defined.
(b) Write F † = {x ∈ V : φ(x, y) = 0 ∀y ∈ F} and F† := {F † : F ∈ F}, which is a
generalized flag weakly compatible with E whenever F is so.

As in Section 4.1 we write (A∗,≺∗) for the totally ordered set such that A∗ = A
and a ≺∗ a′ whenever a � a′. It is readily seen that F†σ = Fσ† where σ† : N∗ →
(A∗,≺∗) is such that σ†(`) = σ(`) for all ` ∈ N∗, and we get a well-defined map

X→ X† := X(Fσ† , E), F 7→ F†.
(c) We write OOOw := (OOOσ,σ)w and OOO†w := (OOOσ†,σ)w so that

X×X =
⊔

w∈S∞

OOOw and X† ×X =
⊔

w∈S∞

OOO†w

(see Proposition 2).



ORBIT DUALITY IN IND-VARIETIES OF GENERALIZED FLAGS 25

Proposition 8. (a) For every (w, ε) ∈ I∞(N+, N−) we have

O(w,ε) ∩O(w,ε) = {Fσ(v) : v is (w, ε)-conjugate and (w, ε)-dual} 6= ∅.

(b) Let (w, ε) ∈ I∞(N+, N−) and F = {F ′a, F ′′a : a ∈ A} ∈ X. Then F ∈ O(w,ε)

(resp., F ∈O(w,ε)) if and only if

(δ(F),F) ∈ OOOw (resp., (F†,F) ∈OOO†w)

and for all ` ∈ N∗ the following condition holds:

dimF ′′σ(`) ∩V±/F
′
σ(`) ∩V± =

{
1 if σ(w`) ≺ σ(`) or (w`, ε`) = (`,±1),
0 otherwise

where V± = 〈e` : ` ∈ N±〉C (resp., for n ∈ N∗ large enough

ς(φ : F ′′σ(`) ∩ Vn) = ς(φ : F ′σ(`) ∩ Vn) +


(1, 1) if σ(w`) ≺ σ(`),
(1, 0) if (w`, ε`) = (`, 1),
(0, 1) if (w`, ε`) = (`,−1),
(0, 0) if σ(w`) � σ(`),

where Vn = 〈ek : k ≤ n〉C and ς(φ : F ) stands for the signature of φ on
F/F ∩ F †).

(c) The subsets O(w,ε) ((w, ε) ∈ I∞(N+, N−)) are exactly the K-orbits of X.

The subsets O(w,ε) ((w, ε) ∈ I∞(N+, N−)) are exactly the G0-orbits of X.

Moreover O(w,ε) ∩O(w,ε) is a single K ∩G0-orbit.

4.3. Types B, C, D. Assume that V is endowed with a nondegenerate symmetric
or symplectic form ω, determined by a matrix Ω as in (2). Let ι : N∗ → N∗, ` 7→ `∗

satisfy ω(e`, e`∗) 6= 0 for all `.
Let N∗ = N+ t N− be a partition such that N+, N− are either both ι-stable

or such that ι(N+) = N−. As before, let φ and δ be the hermitian form and the
involution of V corresponding to this partition. The following table summarizes
the different cases.

ω symmetric
ε = 1

ω symplectic
ε = −1

ι(N±) ⊂ N±
η = 1

type BD1 type C2

ι(N±) = N∓
η = −1

type D3 type C1

Let Iη,ε∞ (N+, N−) ⊂ I∞(N+, N−) be the subset of pairs (w, ε) such that

(i) ιw = wι (hence the set {` : w` = `} is ι-stable);
(ii) ει(k) = ηεk for all k ∈ {` : w` = `};

and if ηε = −1:

(iii) wk 6= ι(k) for all k ∈ N∗.
Let Fσ be an ω-isotropic maximal generalized flag compatible with E. Thus

σ : N∗ → (A,≺) is a bijection onto a totally ordered set (A,≺) endowed with
an (involutive) antiautomorphism of ordered sets ιA : (A,≺) → (A,≺) such that
σι = ιAσ. The following statement shows that the K-orbits and the G0-orbits
of the ind-variety Xω := Xω(Fσ, E) are parametrized by the elements of the set
Iη,ε∞ (N+, N−).
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Proposition 9. We consider bases v = (v1, v2, . . .) of V such that

(34) ω(vk, v`) 6= 0 if and only if ` = ι(k).

(a) For every (w, ε) ∈ Iη,ε∞ (N+, N−) we have

Oη,ε
(w,ε) := O(w,ε) ∩Xω = {Fσ(v) : v is (w, ε)-conjugate and satisfies (34)} 6= ∅,
Oη,ε

(w,ε) := O(w,ε) ∩Xω = {Fσ(v) : v is (w, ε)-dual and satisfies (34)} 6= ∅,
Oη,ε

(w,ε) ∩Oη,ε
(w,ε) = {Fσ(v) : v is (w, ε)-conjugate, (w, ε)-dual and satisfies (34)} 6= ∅.

(b) The subsets Oη,ε
(w,ε) ((w, ε) ∈ Iη,ε∞ (N+, N−)) are exactly the K-orbits of Xω.

The subsets Oη,ε
(w,ε) ((w, ε) ∈ Iη,ε∞ (N+, N−)) are exactly the G0-orbits of

Xω. Moreover Oη,ε
(w,ε) ∩Oη,ε

(w,ε) is a single K ∩G0-orbit.

4.4. Ind-variety structure. In this section we recall from [4] the ind-variety struc-
ture on X and Xω.

Recall that E = (e1, e2, . . .) is a countable ordered basis of V. Fix an E-
compatible maximal generalized flag Fσ corresponding to a bijection σ : N∗ →
(A,≺) onto a totally ordered set, and let X = X(Fσ, E).

Let Vn := 〈e1, . . . , en〉C and let Xn denote the variety of complete flags of Vn
defined as in (6). There are natural inclusions Vn ⊂ Vn+1, and

(35) GL(Vn) ∼= {g ∈ GL(Vn+1) : g(Vn) = Vn, g(en+1) = en+1} ⊂ GL(Vn+1) .

We define a GL(Vn)-equivariant embedding

ιn = ιn(σ) : Xn → Xn+1, (Fk)nk=0 7→ (F ′k)n+1
k=0

by letting

F ′k :=

{
Fk if ak ≺ σ(n+ 1)
Fk−1 ⊕ 〈en+1〉C if ak � σ(n+ 1)

where a1 ≺ a2 ≺ . . . ≺ an+1 are the elements of the set {σ(`) : 1 ≤ ` ≤ n + 1}
written in increasing order. Therefore, we get a chain of embeddings (which are
morphisms of algebraic varieties)

· · · ↪→ Xn−1
ιn−1

↪→ Xn
ιn
↪→ Xn+1

ιn+1

↪→ · · · ,
and X is obtained as the direct limit

X = X(Fσ, E) = lim
→
Xn.

In particular, for each n we get an embedding ι̂n : Xn ↪→ X and up to identifying
Xn with its image by this embedding we can view X as the union X =

⋃
n≥1Xn.

Every generalized flag F ∈ X belongs to all Xn after some rank nF . For instance
Fσ ∈ Xn for all n ≥ 1.

A basis v = (v1, . . . , vn) of Vn can be completed into the basis of V denoted by
v̂ := (v1, . . . , vn, en+1, en+2, . . .), and we have

(36) ι̂n(F(vτ1 , . . . , vτn)) = Fσ(v̂)

(using the notation of Sections 2.2–2.3) where τ = τ (n) ∈ Sn is the permutation

such that σ(τ
(n)
1 ) ≺ . . . ≺ σ(τ

(n)
n ).

Recall that the ind-topology on X is defined by declaring a subset Z ⊂ X open
(resp., closed) if every intersection Z ∩Xn is open (resp., closed).

Clearly the ind-variety structure on X is not modified if the sequence (Xn, ιn)n≥1
is replaced by a subsequence (Xnk , ι

′
k)k≥1 where ι′k := ιnk+1−1 ◦ · · · ◦ ιnk .



ORBIT DUALITY IN IND-VARIETIES OF GENERALIZED FLAGS 27

In type A3 (using the notation of Section 2.1) the subspace Vn ⊂ V is endowed
with the restrictions of φ and δ, hence we can define Kn, G

0
n ⊂ GL(Vn) as in Section

3.2, with the condition that the inclusion of (35) restricts to natural inclusions
Kn ⊂ Kn+1 and G0

n ⊂ G0
n+1.

Next assume that the space V is endowed with a nondegenerate symmetric or
symplectic form ω determined by the matrix Ω of (2). The blocks J1, J2, . . . in the
matrix Ω are of size 1 or 2. We set nk := |J1| + . . . + |Jk| so that the restriction
of ω to each subspace Vnk is nondegenerate. Hence in types A1, A2, BD1, C1, C2,
and D3 we can define the subgroups Knk , G

0
nk
⊂ GL(Vnk) as in Section 3, and so

that (35) yields natural inclusions

Knk ⊂ Knk+1
and G0

nk
⊂ G0

nk+1
.

Moreover, the subvariety (Xnk)ω ⊂ Xnk of isotropic flags (with respect to ω)
can be defined as in (7). Assuming that the generalized flag Fσ is ω-isotropic, the
embedding ι′k : Xnk ↪→ Xnk+1

maps (Xnk)ω into (Xnk+1
)ω and we have

Xω = Xω(Fσ, E) =
⋃
k≥1

(Xnk)ω and (Xnk)ω = Xω ∩Xnk for all k ≥ 1.

In particular, Xω is a closed ind-subvariety of X (as stated in Proposition 3).

4.5. Proofs.

Proof of Proposition 7. Let F = {F ′a, F ′′a : a ∈ A} = Fσ(v) for a basis v =
(v1, v2, . . .) of V. Let w ∈ Iε∞(ι). If the basis v is w-dual, then

(F ′a)⊥ = 〈v` : σ(w`) � a〉C and (F ′′a )⊥ = 〈v` : σ(w`) � a〉C ,

hence F⊥ = Fσ⊥ιw(v); this yields (F⊥,F) ∈OOO⊥wι. If v is w-conjugate, then

γ(F ′a) = 〈v` : σ(w`) ≺ a〉C and γ(F ′′a ) = 〈v` : σ(w`) � a〉C ,

whence γ(F) = Fσw(v) and (γ(F),F) ∈ OOOγwι. This proves the inclusions ⊂ in
Proposition 7 (b). Note that these inclusions imply in particular that the subsets
Ow, as well as Ow, are pairwise disjoint.

For w ∈ Iεnk we define ŵ : N∗ → N∗ by letting

ŵ(`) =

{
τwτ−1(`) if ` ≤ nk,
ι(`) if ` ≥ nk + 1

where τ = τ (nk) : {1, . . . , nk} → {1, . . . , nk} is the permutation such that σ(τ1) ≺
. . . ≺ σ(τnk). It is easy to see that we obtain a well-defined (injective) map jk :
Iεnk → Iε∞(ι), jk(w) := ŵ, and

(37) Iε∞(ι) =
⋃
k≥1

jk(Iεnk).

Moreover, given a basis v = (v1, . . . , vnk) of Vnk and the basis v̂ of V obtained by
adding the vectors e` for ` ≥ nk + 1, the implication

(vτ1 , . . . , vτnk ) is w-dual (resp., w-conjugate)(38)

⇒ v̂ is ŵ-dual (resp., ŵ-conjugate)

clearly follows from our constructions. Note that

(39) Oŵ ∩Xnk = Ow and Oŵ ∩Xnk = Ow
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where Ow,Ow ⊂ Xnk are the orbits from Definition 4; indeed, the inclusions ⊃ in
(39) are implied by (36) and (38), whereas the inclusions ⊂ follow from Proposition
4 (c) and the fact that the subsets Oŵ, as well as Oŵ, are pairwise disjoint. Parts
(a) and (c) of Proposition 7 now follow from (37)–(39) and Proposition 4 (a), (c).
By Proposition 7 (a) we deduce that equalities hold in Proposition 7 (b), and the
proof is complete. �

Proof of Proposition 8. For every n ≥ 1 we set pn = |N+ ∩ {1, . . . , n}| and qn =
|N− ∩ {1, . . . , n}|.

Let F = {F ′a, F ′′a : a ∈ A} = Fσ(v) for some basis v = (v1, v2, . . .) of V. Let
(w, ε) ∈ I∞(N+, N−). If v is (w, ε)-conjugate, then

δ(F ′a) = 〈v` : σ(w`) ≺ a〉C and δ(F ′′a ) = 〈v` : σ(w`) � a〉C
so that (δ(F),F) = (Fσw(v),Fσ(v)) ∈ OOOw. In addition,

F ′′σ(`) ∩V+/F
′
σ(`) ∩V+ = 〈v`〉C, F ′′σ(`) ∩V− = F ′σ(`) ∩V− if (w`, ε`) = (`,+1),

F ′′σ(`) ∩V−/F
′
σ(`) ∩V− = 〈v`〉C, F ′′σ(`) ∩V+ = F ′σ(`) ∩V+ if (w`, ε`) = (`,−1),

F ′′σ(`) ∩V+/F
′
σ(`) ∩V+ = 〈v` + vw`〉C ,

F ′′σ(`) ∩V−/F
′
σ(`) ∩V− = 〈v` − vw`〉C if σ(w`) ≺ σ(`),

F ′′σ(`) ∩V+ = F ′σ(`) ∩V+, F
′′
σ(`) ∩V+ = F ′σ(`) ∩V+ if σ(w`) � σ(`),

which proves the formula for dimF ′′σ(`)∩V±/F
′
σ(`)∩V± stated in Proposition 8 (b).

If v is (w, ε)-dual, then we get similarly

(F ′a)† = 〈v` : σ(w`) � a〉C and (F ′′a )† = 〈v` : σ(w`) � a〉C .

Hence (F†,F) = (Fσ†w(v),Fσ(v)) ∈ OOO†w. For n ≥ 1 large enough we have (w`, ε`) =
(`,±1) for all ` ∈ N± ∩ {n + 1, n + 2, . . .} and v` = e` for all ` ≥ n + 1. Thus the
pair (w̌, ε̌) := (w|{1,...,n}, ε|{1,...,n}) belongs to In(pn, qn) whereas by (36) we have

F = F(vτ1 , . . . , vτn).

The basis (vτ1 , . . . , vτn) of Vn is (τ−1w̌τ, ε̌τ)-dual if v is (w, ε)-dual; the last for-
mula in Proposition 8 (b) now follows from Proposition 5 (b) and this observation.
Altogether this shows the “only if” part in Proposition 8 (b), which guarantees
in particular that the subsets O(w,ε), as well as the subsets O(w,ε), are pairwise
disjoint. The “if” part of Proposition 8 (b) follows once we show Proposition 8 (a).

For (w, ε) ∈ In(pn, qn) we set

(40) ŵ(`) =

{
τwτ−1(`) if ` ≤ n,
` if ` ≥ n+ 1

for all ` ∈ N∗,

where τ = τ (n) ∈ Sn is as in (36), and

(41) ε̂(`) =

 ετ−1(`) if ` ≤ n,
1 if ` ≥ n+ 1, n ∈ N+,
−1 if ` ≥ n+ 1, n ∈ N−

for all ` ∈ N∗ such that ŵ` = `. It is easy to check that (ŵ, ε̂) ∈ I∞(N+, N−), and
that the so obtained map jn : In(pn, qn)→ I∞(N+, N−) is injective and

I∞(N+, N−) =
⋃
n≥1

jn(In(pn, qn)).
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Moreover, it follows from our constructions that, given a basis v = (v1, . . . , vn) of
Vn and the basis v̂ of V obtained by adding the vectors e` for ` ≥ n+ 1, we have:

(vτ1 , . . . , vτn) is (w, ε)-conjugate (resp., dual)

⇒ v̂ is (ŵ, ε̂)-conjugate (resp., dual).

As in the proof of Proposition 7 we derive the equalities

(42) O(ŵ,ε̂) ∩Xn = O(w,ε) and O(ŵ,ε̂) ∩Xn = O(w,ε)

where O(w,ε),O(w,ε) ⊂ Xn are as in Definition 5. Parts (a) and (c) of Proposition
8 then follow from Proposition 5 (a) and (c). �

Proof of Proposition 9. Let n ∈ {n1, n2, . . .} (where nk = |J1|+ . . .+ |Jk| as before)
and (pn, qn) = (|N+∩{1, . . . , n}|, |N−∩{1, . . . , n}|) and let τ = τ (n) : {1, . . . , n} →
{1, . . . , n} be the permutation such that σ(τ1) ≺ . . . ≺ σ(τn). Since the generalized
flag Fσ is ω-isotropic, we must have

ι(τ`) = τn−`+1 for all ` ∈ {1, . . . , n}.
This observation easily implies that the map jn defined in the proof of Proposition
8 restricts to a well-defined injective map

jn : Iη,εn (pn, qn)→ Iη,ε∞ (N+, N−)

such that

Iη,ε∞ (N+, N−) =
⋃
k≥1

jnk(Iη,εnk (pnk , qnk)).

By (42) for (ŵ, ε̂) = jn(w, ε) we get

(43) Oη,ε
(ŵ,ε̂) ∩ (Xn)ω = Oη,ε(w,ε) and Oη,ε

(ŵ,ε̂) ∩ (Xn)ω = Oη,ε
(w,ε).

Proposition 9 easily follows from this fact and Proposition 6. �

5. Corollaries

Corollary 1. The duality map Ξ from Theorem 1(b) depends only on the choice
of G, B, K and G0, but not on the particular choice of ordered basis E used to
construct G, B, K, and G0 as above. In particular, Ξ does not depend on the
exhaustion X =

⋃
n≥1 Xn determined by E and referred to in Theorem 1(b).

Proof. The statement follows immediately from the commutativity of diagram (1)
and from the observation that for any two exhaustions X =

⋃
n≥1 Xn and X =⋃

n≥1 X
′
n, and any n0 and n′0, there are n1 and n′1 such that Xn0

∪X ′n′0 ⊂ Xn1
and

Xn0
∪X ′n′0 ⊂ X

′
n′1

. �

Our second corollary states that the parametrization of K- and G0-orbits on
G/B depends in fact only on the triple

(
G,K,G0

)
and not on the choice of the

ind-variety G/B.

Corollary 2. Let E,G,K,G0 be as in Section 2.1. Let Fσj (j = 1, 2) be two
E-compatible maximal generalized flags, which are ω-isotropic in types B,C,D, and
let Xj = G/BFσj . Then there are natural bijections

X1/K ∼= X2/K and X1/G
0 ∼= X2/G

0

which commute with the duality of Theorem 1.
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Next, a straightforward counting of the parameters yields:

Corollary 3. In Corollary 2 the orbit sets Xj/K and Xj/G
0 are always infinite.

It is important to note that, despite Corollary 2, the topological properties of
the orbits on G/B are not the same for different choices of Borel ind-subgroups
B ⊂ G. The following corollary establishes criteria for the existence of open and
closed orbits on G/B = X (Fσ, E).

Corollary 4. Let E,G,K,G0 be as in Section 2.1, and let Fσ be an E-compatible
maximal generalized flag, ω-isotropic in types B,C,D, where σ : N∗ → (A,≺) is a
bijection onto a totally ordered set. Let X = G/BFσ ; i.e., X = X(Fσ, E) in type
A and X = Xω(Fσ, E) in types B,C,D.

(a1) In type A1, X has an open K-orbit (equivalently, a closed G0-orbit) if and
only if ι(`) = ` for all ` � 1 (i.e., if the matrix Ω of (2) contains finitely
many diagonal blocks of size 2).

(a2) In type A2, X has an open K-orbit (equivalently, a closed G0-orbit) if and
only if for all `� 1 the elements σ(2`− 1), σ(2`) are consecutive in A and
the number |{k < 2`− 1 : σ(k) ≺ σ(2`− 1)}| is even.

(a′12) In types A1 and A2, X has at most one closed K-orbit (equivalently, at
most one open G0-orbit). X has a closed K-orbit (equivalently, an open
G0-orbit) if and only if X contains ω-isotropic generalized flags. This latter
condition is equivalent to the existence of an involutive antiautomorphism
of ordered sets ιA : (A,≺)→ (A,≺) such that ιAσ(`) = σι(`) for all `� 1.

(a3) In type A3, X has always infinitely many closed K-orbits (equivalently,
infinitely many open G0-orbits). X has an open K-orbit (equivalently, a
closed G0-orbit) if and only if d := min{|N+|, |N−|} <∞ and Fσ contains
a d-dimensional and a d-codimensional subspace.

(bcd) In types B,C,D, X has always infinitely many closed K-orbits (equivalently,
infinitely many open G0-orbits). In types C1 and D3, X has never an
open K-orbit (equivalently, no closed G0-orbit). In types BD1 and C2,
X has an open K-orbit (equivalently, a closed G0-orbit) if and only if
d := min{|N+|, |N−|} < ∞ and Fσ contains a d-dimensional subspace (or
equivalently it has a d-codimensional subspace).

Proof. This follows from Remarks 4 and 5, Propositions 7, 8, 9, and relations (39),
(42), (43). �

Corollary 5. The only situation where X has simultaneously open and closed K-
orbits (equivalently, open and closed G0-orbits) is in types A3, BD1, C2, in the
case where d := min{|N+|, |N−|} < ∞ and Fσ contains a d-dimensional and a
d-codimensional subspace.

Index of notation

§1: N∗, |A|, Sn, S∞, (k; `)

§2.1: G(E), G(E,ω), Ω, ω, γ, Φ, φ, δ

§2.2: F(v1, . . . , vn), Ow
§2.3: Fσ(v), Fσ, PF , BF , X(F , E), (OOOτ,σ)w, Xω(F , E)

§3.1: F⊥, γ(F), In, I′n, Ow, Ow
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§3.2: δ(F), F†, ς(φ : F), ς(δ : F), ς(w, ε), In(p, q), O(w,ε), O(w,ε)

§3.3: Iη,εn (p, q), Oη,ε(w,ε), O
η,ε
(w,ε)

§4.1: ι, I∞(ι), I′∞(ι), Ow, Ow, (A∗,≺∗), σ⊥, X⊥, Xγ , OOO⊥w , OOOγw
§4.2: I∞(N+, N−), O(w,ε), O(w,ε), σ

†, X†, OOOw, OOO†w

§4.3: Iη,ε∞ (N+, N−), Oη,ε
(w,ε), O

η,ε
(w,ε)
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