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ABSTRACT. We extend Matsuki duality to arbitrary ind-varieties of maximal
generalized flags, in other words, to any homogeneous ind-variety G/B for a
classical ind-group G and a splitting Borel ind-subgroup B C G. As a first
step, we present an explicit combinatorial version of Matsuki duality in the
finite-dimensional case, involving an explicit parametrization of K- and GO°-
orbits on G/B. After proving Matsuki duality in the infinite-dimensional case,
we give necessary and sufficient conditions on a Borel ind-subgroup B C G for
the existence of open and closed K- and G?-orbits on G/B, where (K, GO) is
an aligned pair of a symmetric ind-subgroup K and a real form G° of G.

1. INTRODUCTION

In this paper we extend Matsuki duality to ind-varieties of maximal generalized
flags, i.e., to homogeneous ind-spaces of the form G/B for G = GL(00), SL(c0),
SO(0), Sp(co). In the case of a finite-dimensional reductive algebraic group G,
Matsuki duality [6, 11, 12] is a bijection between the (finite) set of K-orbits on G/B
and the set of G%-orbits on G/B, where K is a symmetric subgroup of G and G°
is a properly chosen real form of G. Moreover, this bijection reverses the inclusion
relation between orbit closures. In particular, the remarkable theorem about the
uniqueness of a closed G%-orbit on G/B, see [19], follows via Matsuki duality from
the uniqueness of a (Zariski) open K-orbit on G/B. In the monograph [7] on cycle
spaces there is a self-contained treatment of Matsuki duality. In fact, the origins of
Matsuki duality can be traced back to J. A. Wolf’s work [19].

If G = GL(00), SL(c0), SO(c0), Sp(o0) is a classical ind-group, then its Borel
ind-subgroups are neither G-conjugate nor Aut(G)-conjugate, hence there are many
ind-varieties of the form G/B. We show that Matsuki duality extends to any ind-
variety G/B where B is a splitting Borel ind-subgroup of G for G = GL(c0),
SL(00), SO(00), Sp(co). In the infinite-dimensional case, the structure of G-orbits
and K-orbits on G/B is more complicated than in the finite-dimensional case, and
there are always infinitely many orbits.

A first study of the G%orbits on G/B for G = GL(0), SL(cc) was done in [9]
and was continued in [20]. In particular, in [9] it was shown that, for some real forms
GV, there are splitting Borel ind-subgroups B C G such that G /B has neither an
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open nor a closed G%orbit. We know of no prior studies of the structure of K-
orbits on G/B of G = GL(c0), SL(c0), SO(0), Sp(c0). The duality we establish in
this paper shows that the structure of K-orbits on G/B is a “mirror image” of the
structure of G%-orbits on G/B. In particular, the fact that G/B admits at most
one closed G%orbit is now a corollary of the obvious statement that G/B admits
at most one Zariski-open K-orbit.

Our main result can be stated as follows. Let (G, K, GY) be one of the triples
listed in Section 2.1 consisting of a classical (complex) ind-group G, a symmetric
ind-subgroup K C G, and the corresponding real form G° ¢ G. Let B C G be
a splitting Borel ind-subgroup such that X := G/B is an ind-variety of maximal
generalized flags (isotropic, in types B, C, D) weakly compatible with a basis of V
adapted to the choice of K, G° in the sense of Sections 2.1, 2.3. There are natural
exhaustions G = (J,,~; Gn and X = (J,,»; X,,. Here G,, is a finite-dimensional
algebraic group, X, is the full flag variety of G,,, and the inclusion X,, C X is
in particular G,,-equivariant. The subgroups K, := KNG, and G% := G°N G,
are respectively a symmetric subgroup and the corresponding real form of G,,. See
Section 4.4 for more details.

Theorem 1. (a) For every n > 1 the inclusion X,, C X induces embeddings
of orbit sets X,,/ K, — X/K and X,,/G% — X/GP.
(b) There is a bijection = : X/K — X /G such that the diagram

X, /K,“— X/K

1) |= E

X, /G0 X /GO

is commutative, where =, stands for Matsuki duality.

(¢) For every K-orbit © C X the intersection O N Z(O) consists of a single
K N GO-orbit.

(d) The bijection = reverses the inclusion relation of orbit closures. In particu-
lar Z maps open (resp., closed) K-orbits to closed (resp., open) GO-orbits.

Actually our results are much more precise: in Propositions 7, 8, 9 we show
that X/K and X/G" admit the same explicit parametrization which is nothing
but the inductive limit of suitable joint parametrizations of X,,/K, and X,,/G9.
This yields the bijection = of Theorem 1(b). Parts (a) and (b) of Theorem 1
are implied by our claims (39), (42), (43) below. Theorem 1 (c) follows from the
corresponding statements in Propositions 7, 8, 9. Finally, Theorem 1 (d) is implied
by Theorem 1 (a)—(b), the definition of the ind-topology, and the fact that the
duality =), reverses the inclusion relation between orbit closures.

As an example, if G = GL(0c0) and K C G is the ind-subgroup of transfor-
mations preserving an orthogonal form w, we show that both orbit sets X/K and
X /GO are parametrized by the involutions w : N* — N* such that w(f) = ¢(¢) for
all but finitely many ¢ € N*, where ¢ is the involution induced by the matrix of w
in a suitable basis of the natural representation of G (see Section 4.1).

Our methods are based on the classification of symmetric subgroups and real
forms of the classical simple algebraic groups. Possibly one could provide a classification-
free proof of our results in a future study.
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Organization of the paper. In Section 2 we introduce the notation for classical
ind-groups, symmetric ind-subgroups, and real forms. We recall some basic facts on
finite-dimensional flag varieties, as well as the notion of ind-variety of generalized
flags [4, 8]. In Section 3 we give the joint parametrization of K- and G°-orbits in a
finite-dimensional flag variety. This parametrization should be known in principle
(see [13, 21]) but we have not found a reference where it would appear exactly as
we present it. For the sake of completeness we provide full proofs of these results.
In Section 4 we state our main results on the parametrization of K- and G°-orbits
in ind-varieties of generalized flags. Theorem 1 above is a consequence of these
results. In Section 5 we point out some further corollaries of our main results.

In what follows N* stands for the set of positive integers. |A| stands for the
cardinality of a set A. The symmetric group on n letters is denoted by &,, and
G = th G,, stands for the infinite symmetric group. Often we write wy for the

image w(k) of k by a permutation w. By (k;£) we denote the transposition that
switches k and £. We use boldface letters to denote ind-varieties. An index of
notation can be found at the end of the paper.

Acknowledgement. We thank Alan Huckleberry and Mikhail Ignatyev for their
encouragement to study Matsuki duality. We also acknowledge a referee’s thought-
ful comments. The first author was supported in part by ISF Grant Nr. 797/14 and
by ANR project GeoLie (ANR-15-CE40-0012). The second author was supported
in part by DFG Grant PE 980/6-1.

2. NOTATION AND PRELIMINARY FACTS

2.1. Classical groups and classical ind-groups. Let V be a complex vector
space of countable dimension, with an ordered basis E = (e1,ea,...) = (€p)ren+-
Every vector z € V is identified with the column of its coordinates in the basis F,
and z — T stands for complex conjugation with respect to E. We also consider the
finite dimensional subspace V =V, := (e1,...,e,)c of V.

The classical ind-group GL(o0) is defined as

GL(0) = G(E) :={g € Aut(V) : g(eg) = e for all £ > 1} = U GL(V,,).

n>1

The real forms of GL(c0) are well known and can be traced back to the work of
Baranov [1]. Below we list aligned pairs (K, G°), where G is a real form of G
and K C G is a symmetric ind-subgroup of G. The pairs (K,GO) we consider
are aligned in the following way: for the exhaustion of G as a union (J,, GL (V,),
the subgroup K, := K N GL(V;,) is a symmetric subgroup of GL (V,,), G§ =
G°NGL (V) is a real form of GL (V},), and K,,NGY is a maximal compact subgroup
of GO.

2.1.1. Types A1 and A2. Let {2 be a N* x N*-matrix of the form

0 1 (orthogonal case,
1 J ) i € {(1 0) ’(1)} type A1),
(2) 2= 2 where
0 . g 0 1 (symplectic case,
(0) ' F=\-1 0 type A2).

The bilinear form
w(z,y):="2Qy (r,y e V)
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is symmetric in type Al and symplectic in type A2, whereas the map
v(x):=02F (xe€V)
is an involution of V in type Al and satisfies v = —idv in type A2. Let
K=G(E,w):={g9<€G(E): w(gr,gy) = w(z,y) Y,y € V}
and

G":={g € G(E) : y(gx) = g7(x) V& € V}.

2.1.2. Type A3. Fix a (proper) decomposition N* = N, LU N_ and let

€1 (0)
(3) @ = £

where ¢ =1 for £ € Ny and ¢y = —1 for £ € N_. Thus
o(x,y) :=="Tdy (r,y€V)
is a Hermitian form of signature (|N|,|N_]|) and
O0(z):=dx (zeV)
is an involution. Finally let
K:={g€G(E):d(gx) =gd(z) Vx € V}
and

G° = {g € G(E) : ¢(g7,gy) = p(x,y) Yo,y € V}.

Types B, C, D. Next we describe pairs (K, G") associated to the other classical
ind-groups SO(c0) and Sp(cc). Let G = G(E,w) where w is a (symmetric or
symplectic) bilinear form given by a matrix 2 as in (2). In view of (2), for every
{ € N* there is a unique £* € N* such that

w(eg,ep) # 0.
Moreover ¢* € {£ —1,¢,£+ 1}. The map ¢ — ¢* is an involution of N*.

2.1.3. Types BD1 and C2. Assume that w is symmetric in type BD1 and symplectic
in type C2. Fix a (proper) decomposition N* = N, U N_ such that
VeeN", fe N, 0" Ny

and the restriction of w on each of the subspaces Vi := (ey : £ € Ni)¢c and
V_ :={ey: L€ N_)c is nondegenerate. Let @, ¢, J be as in Section 2.1.2. Then we
set

(4) K:={g€ G(E,w):d(gx) =go(z) Vx € V}
and

(5) G’ :={g € G(E,w): ¢(9z,9y) = ¢(z,y) Yo,y € V}.
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2.1.4. Types C1 and D3. Assume that w is symmetric in type D3 and symplectic
in type C1. Fix a decomposition N* = N, U N_ satisfying

VleN' feN, ("€ N_.

Note that this forces every block Jj in (2) to be of size 2. In this situation V :=
(e¢ : £ € Ny)c and V_ := (e, : £ € N_)¢ are maximal isotropic subspaces for the
form w. Let @,¢,J be as in Section 2.1.2. Finally, we define the ind-subgroups
K,G°% C G as in (4), (5).

Finite-dimensional case. The following table summarizes the form of the inter-
sections G = GNGL (V,,), K = KNGL(V,), G° = G’ NCL(V,), where n = 2m is
even whenever we are in types A2, C1, C2, and D3. In types A3, BD1, and C2, we
set (p,q) = (|N+ N{1,...,n}|,|N-n{1,...,n}|). By H we denote the skew field
of quaternions. In this way we retrieve the classical finite-dimensional symmetric
pairs and real forms (see, e.g., [2, 15, 16]).

type | G:= GNGL(V,) | K . =KNGL(V,) | G°:= G°NGL (V,)
Al 0,(C) GL,(R)

A2 GL,(C) Sp,,(C) GL,,(H)

A3 GL,(C) x GL4(C) U, 4(C)

BDI| 0,0 0,(C) x 04(C) 0ya(C)

C1 Sp, (C) GL,,(C) Sp,,(R)

o2 Sp,(C) X Spy(C) | Sp,(©)

D3 | 0,(C) = 02,(C) GL,,(C) 0:(C)

In each case GO is a real form obtained from K so that KNGP is a maximal compact
subgroup of G°. Conversely K is obtained from G° as the complexification of a
maximal compact subgroup.

2.2. Finite-dimensional flag varieties. Recall that V' = V,;. The flag variety
X :=GL(V)/B = {¢B : g € GL(V)} (for a Borel subgroup B C GL(V)) can as
well be viewed as the set of Borel subgroups {gBg~': g € GL(V)} or as the set of
complete flags

(6) {F=(FyCcFh C...CF,=V):dimF, =k for all k}.
For every complete flag F let Br := {g € GL(V) : ¢F = F} denote the corre-
sponding Borel subgroup. When (v1,...,v,) is a basis of V' we write

F(vyy...,0,) = (0 C (v1)c C {v1,v2)c C ... C (vl,...,vn>(c) e X.

Bruhat decomposition. The double flag variety X x X has a finite number of
GL(V)-orbits parametrized by permutations w € &,,. Specifically, given two flags
F = (Fy)p_, and F' = (F})}_, there is a unique permutation w =: w(F,F’) such
that

dimF, N Fy = |[{j e {1,...,0} rw; € {1,...,k}}|.
The permutation w(F, F’) is called the relative position of the pair (F, F') € X x X.
Then

XxX= |_| Oy where Oy, = {(F,F) € X x X : w(F,F) =w}
weS,



6 LUCAS FRESSE AND IVAN PENKOV

is the decomposition of X x X into GL(V')-orbits. The unique closed orbit is Qjq and
the unique open orbit is Q,,, where wy is the involution given by wo(k) =n—k+1
for all k. The map O, +— Oy, is an involution on the set of orbits and reverses
inclusions between orbit closures. Representatives of Q,, can be obtained as follows:
for every basis (vi,...,v,) of V we have

(f(vl,...,vn)7,7:(vwl,...,vwn)) € 0.

Variety of isotropic flags. Let V be endowed with a nondegenerate symmetric
or symplectic bilinear form w. For a subspace FF C V,set F+ ={x c V : w(x,y) =
0 Yy € F'}. The variety of isotropic flags is the subvariety X,, of X, where

(7) X, ={F=(F )X :Fr=F, ,Vk=0,...,n}.

It is endowed with a transitive action of the subgroup G(V,w) C GL(V) of auto-
morphisms preserving w.

Lemma 1. (a) For every endomorphism f € End(V), let f* € End(V) denote
the endomorphism adjoint to f with respect to w. Let H C GL(V) be a subgroup
satisfying the condition

(8) Clg"g)NGL(V)C H forallge H.

Assume that F € X, and F' € X,, belong to the same H-orbit of X. Then they
belong to the same H N G(V,w)-orbit of X,,.

(b) Let H={g € GL(V) : g(V4) = V4, g(V_) = V_} where V. =V, ®V_ is a
decomposition such that (Vi-,V2Y) = (V4,V_) or (V_,V4). Then (8) is fulfilled.

Proof. (a) Note that G(V,w) = {g € GL(V) : g* = g~'}. Consider g € H such
that 7' = gF. The equality (¢F)* = (¢*)~'F* holds for all subspaces F' C V.
Since F, F' belong to X, we have 7' = (¢*)~1F, hence g*gF = F. Let g1 = g*g.
By [10, Lemma 1.5] there is a polynomial P(t) € C[t] such that P(g1)? = g1. Set
h = P(g1). Then h € GL(V) (since h? = g; € GL(V)), and (8) shows that actually
h € H. Moreover h* = h (since h € Clg1] and g7 = ¢1) and hF = F (as each
subspace in F is g;-stable hence also h-stable). Set h; := gh~* € H. Then, on the
one hand,

hi=h) g =hTlggT =T R = kg =Ryt
and therefore hy € H N G(V,w). On the other hand, we have hiF = gh™1F =
gF = F', and part (a) is proved.
(b) The equality g*(gF)t = F* (already mentioned) applied to F = V4 yields
g* € H, and thus g*g € H, whenever g € H. This implies (8). O

Remark 1. The proof of Lemma 1 (a) is inspired by [10, §1.4]. We also refer to
[14, 17] for similar results and generalizations.

2.3. Ind-varieties of generalized flags. Recall that V denotes a complex vector
space of countable dimension, with an ordered basis E = (eg)sen--

Definition 1 ([4]). Let F be a chain of subspaces in V| i.e., a set of subspaces of V
which is totally ordered by inclusion. Let F’ (resp., F”’) be the subchain consisting
of all F' € F with an immediate successor (resp., an immediate predecessor). By
s(F) € F' we denote the immediate successor of F' € F'.

A generalized flag in 'V is a chain of subspaces F such that:

(i) each F € F has an immediate successor or predecessor, i.e., F = F' U F";
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(ii) for every v € V' \ {0} there is a unique F, € F’ such that v € s(F,) \ Fy,
e, VA{0} = Uper (s(F) \ F).
A generalized flag is mazimalif it is not properly contained in another generalized
flag. Specifically, F is maximal if and only if dims(F)/F =1 for all F € F.

Notation 1. Let o : N* — (A, <) be a surjective map onto a totally ordered set.
Let v = (v1,vs,...) be a basis of V. For every a € A, let

Fl:=(vg:0(l) <a)e, F.:=(v:0(l)=a)c.

Then F = F,(v) := {F,,F) : a € A} is a generalized flag such that 7/ = {F/ : a €
A}, F" ={F) :a € A}, and s(F.) = F for all a. We call such a generalized flag
compatible with the basis v.

Moreover, F,(v) is maximal if and only if the map o is bijective.

We use the abbreviation F, := F,(E).

Note that every generalized flag admits a compatible basis [4, Proposition 4.1].
A generalized flag is weakly compatible with E if it is compatible with some basis v
such that E'\ (E'Nuv) is finite (equivalently, dim V/(ENuv)c < 00).

The group G(E) (as well as Aut(V)) acts on generalized flags in a natural
way. Let Px C G(E) denote the ind-subgroup of elements preserving F. It is a
closed ind-subgroup of G(E). If F is compatible with E, then Pz is a splitting
parabolic ind-subgroup of G(F) in the sense that it is locally parabolic (i.e., there
exists an exhaustion of G(FE) by finite-dimensional reductive algebraic subgroups
G, such that the intersections P NG, are parabolic subgroups of G,,) and contains
the Cartan ind-subgroup H(E) C G(E) of elements diagonal with respect to E.
Moreover if F is maximal, then Bx := Px is a splitting Borel ind-subgroup (i.e.,
all intersections Bx N G,, as above are Borel subgroups of G,,).

Definition 2 ([4]). Two generalized flags F, G are called E-commensurable if F,G
are weakly compatible with F, and there is an isomorphism ¢ : 7 — G of ordered
sets and a finite dimensional subspace U C V such that

(i) ¢(F)+U=F+U for all F € F;

(ii) dim¢(F)NU =dim FNU for all F € F.

FE-commensurability is an equivalence relation on the set of generalized flags
weakly compatible with E. In fact, according to the following proposition, each
equivalence class consists of a single G(F)-orbit. If F is a generalized flag weakly
compatible with F we denote by X(F, F) the set of generalized flags which are
FE-commensurable with F.

Proposition 1 ([4]). The set X = X(F, E) is endowed with a natural structure of
ind-variety. Moreover X is G(E)-homogeneous and the map g — gF induces an
isomorphism of ind-varieties G(E)/Pz = X.

Proposition 2 ([5]). Let 0 : N* = (A, <) and 7 : N* — (B, <) be maps onto two
totally ordered sets.
(a) Each E-compatible generalized flag in X(Fy, E) is of the form Fgy for
w € Guo. Moreover Fpy = Fpu & w'w™! € Stab, := {v € G : 0v =0},
(b) Assume that F, is mazimal (i.e., T is bijective) so that Bx_ is a splitting
Borel ind-subgroup. Then each Bg, -orbit of X(Fy, E) contains a unique
element of the form Fy, for w € G /Stab,.
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(¢) In particular, if Fo, F, are both mazimal (i.e., o, are both bijective), then

X(Fr, E) x X(Fp, B) = | | ©@r0)w
wWeES o

where

(O7.0)w = 1{(9Fr, 9Fow) : g € G(E)}
is a decomposition of X(F,, E) x X(F,, E) into G(E)-orbits.

Remark 2. The orbit (0, ), of Proposition 2 (c) actually consists of all couples of
generalized flags (F,(v), Fyw(v)) weakly compatible with the basis v = (v1, va, .. .).

Assume V is endowed with a nondegenerate symmetric or symplectic form w
whose values on the basis F are given by the matrix {2 in (2).

Definition 3. A generalized flag F is called w-isotropic if the map F — F* :=
{r € V:w(x,y) =0Vy € F} is a well-defined involution of F.

Proposition 3 ([4]). Let F be an w-isotropic generalized flag weakly compati-
ble with E. The set X, (F,E) of all w-isotropic generalized flags which are E-
commensurable with F is a G(E,w)-homogeneous, closed ind-subvariety of X(F, E).

Finally, we emphasize that one of the main features of classical ind-groups is
that their Borel ind-subgroups are not Aut(G)-conjugate. Here are three examples
of maximal generalized flags in V, compatible with the basis E and such that their
stablizers in G(F) are pairwise not Aut(G)-conjugate. A more detailed discussion
of these examples see in [4].

Example 1. (a) Let 07 : N* — (N*, <), ¢ — £. The generalized flag F,, is an
ascending chain of subspaces F,, = {0 = Fy C F} C F3 C ...} isomorphic to (N, <)
as an ordered set. ,

(b) Let o3 : N* — ({% in € 2} < ), 0 (771) The generalized flag F,, is
a chain of the form F,, = {0 =Fy C F; C ... C F.o C F-1 = V} and is not
isomorphic as ordered set to a subset of (Z, <).

(c) Let 03 : N* — (Q, <) be a bijection. In this case no subspace F' € F,, has both
immediate successor or immediate predecessor.

3. PARAMETRIZATION OF ORBITS IN THE FINITE-DIMENSIONAL CASE

In Sections 3.1-3.3, we state explicit parametrizations of the K- and G%-orbits
in the finite-dimensional case. All proofs are given in Section 3.5.

3.1. Types Al and A2. Let the notation be as in Subsection 2.1.1. The space V =
V. := (e1,...,en)c is endowed with the symmetric or symplectic form w(z,y) =
ty - 2 -y and the conjugation y(z) = 2T which actually stand for the restrictions
to V of the maps w,~ introduced in Section 2.1. This allows us to define two
involutions of the flag variety X:

F = (Foveo Fo) o Fh o= (FE L FE) and F s A(F) 1= (1(Fo), -1 (F))
where F- C V stands for the subspace orthogonal to F' with respect to w.

Let K = {g € GL(V) : g preserves w} and G = {g € GL(V) : vg = g7}

By 73, C 6,, we denote the subset of involutions. If n = 2m is even, we let
7!, C J,, be the subset of involutions without fixed points.
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Definition 4. Let w € J,,. Set € := 1 in type Al and € := —1 in type A2. A basis
(v1,...,v,) of V such that

1 ifw,=0>k
w(vg,ve) =< € fwy=~0<k forallk,£e{l,...,n}
0 ifwg#Y
is said to be w-dual. A basis (v1,...,v,) of V such that

if w, <k

U
Y(vk) = { :

Vg,

forall k € {1,...,n}

is said to be w-conjugate. Set

Oy = {F(v1,...,0,) : (v1,...,v,) is a w-dual basis},

Oy = {F(v1,...,0n) : (v1,...,0,) is a w-conjugate basis}.
Proposition 4. Let 35 = J,, in type Al and TS, = J) in type A2. Recall the
notation Q,, and wq introduced in Section 2.2.

(a) For every w € J5 we have O, # 0, O, # 0 and

OwNOy ={F(v1,...,0n) : (v1,...,0,) s both w-dual and w-conjugate} # (.
(b) For every w € 3¢,
Op ={F € X :(F',F) €Oup} and Oy ={FeX:(y(F),F) ey}

(¢) The subsets Oy, (w € TS ) are exactly the K-orbits of X. The subsets O,
(w € 3¢,) are exactly the G°-orbits of X.
(d) The map O, — O, is Matsuki duality.

3.2. Type A3. Let the notation be as in Subsection 2.1.2: the space V =V, =
{e1,...,¢en)c is endowed with the hermitian form ¢(z,y) = 'T®y and a conjugation
d(z) = Px where P is a diagonal matrix with entries ey, ..., e, € {+1, —1} (the left
upper n X n-corner of the matrix ¢ of Section 2.1).

Set Vi = (e : e = l)c and V_ = (e : ¢ = —1)¢c. Then V =V, & V_.
Let K = {g € GL(V) : g = g6} = GL(Vy) x GL(V_) and G° = {g € GL(V) :
g preserves ¢}.

As in Section 3.1 we get two involutions of the flag variety X:

F=(Fo,...,F,) = 6(F) = (6(Fy),...,6(F,)) and Fws Fl=(Fl ... F})

where FT C V stands for the orthogonal of F' C V with respect to ¢. The hermitian
form on the quotient F/(F N F') induced by ¢ is nondegenerate; we denote its
signature by <(¢ : F'). Given F = (Fp,...,F,) € X, let

S(¢:F) = (s(¢: F)),_, € ({0,...,n}*)".
Then
$(0:F) == ((dim F, N Vy,dim F, nV2)),_, € ({0,...,n}*)"

records the relative position of F with respect to the subspaces V; and V_.
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Combinatorial notation. We call a signed involution a pair (w,e) consisting of
an involution w € J, and signs ¢ € {+1, —1} attached to its fixed points k € {¢:
we = £}. (Equivalently, ¢ is a map {¢: wy = £} — {+1,-1}.)

It is convenient to represent w by a graph [(w) (called link pattern) with n
vertices 1,2,...,n and an arc (k,wy) connecting k and wy, whenever k < wy,. The
signed link pattern l(w,€) is obtained from the graph [(w) by marking each vertex
k € {¢:wy = £} with the label 4+ or — depending on whether ¢, = +1 or g, = —1.

For instance, the signed link pattern (where the numbering of vertices is implicit)

o o « e
+

represents (w,e) with w = (1; 4)(2 7)(8;9) € Jg and (e3,¢5,¢6) = (+1,—1,+1).
We define ¢(w, €) := {(pe, qe)}}_, as the sequence given by

pe (resp., q¢) = (number of + signs (resp., — signs) and arcs among
the first £ vertices of [(w,€)).

Assuming n = p+ g, let J,,(p, ¢) be the set of signed involutions of signature (p, q),
i.e., such that (pn,q.) = (p,q). Note that the elements of J,,(p, q) coincide with the
clans of signature (p,¢q) in the sense of [13, 21].

For instance, for the above pair (w,e) we have (w,e) € Jg(5,4) and

s(w,e) = ((0,0),(0,0),(1,0),(2,1),(2,2),(3,2), (4,3), (4,3), (5,4)).
Definition 5. Given a signed involution (w,€), we say that a basis (vy,...,v,) of

V is (w, €)-conjugate if

| ervy, fwp=k
6(vk)—{ Vo, i wy, 2 k forall ke {1,...,n}.

A basis (vy,...,v,) such that

Ek ifwkzézk
d(vg,ve) =< 1 ifwp=L0+#FKk forallk,le{l,...,n}
0 ifwy#L

is said to be (w, e)-dual. We set
Ow,ey = {F(v1,...,vn) : (v1,...,v,) is a (w, €)-conjugate basis},
Ow,ey = AF(v1,...,0) 1 (v1,...,v,) is a (w,e)-dual basis}.

Proposition 5. In addition to the above notation, let (p,q) = (dim Vy,dim V_).
Then:

(a) For every (w,e) € J,(p, q) the subsets O, oy and Oy, o) are nonempty, and
Otw,e) MO (w,e) = {F () : v = (vi)j_y is (w,€)-dual and (w,e)-conjugate} # .
(b) For every (w,¢) € J,(p,q),
Ow,e) ={F € X :(6(F),F) €0y and <(5 : F) = g(w,¢)},
Ow,e) = {.7: €X:(FI,F) € Ouyw and s(¢p: F) = g(w,&t)}.

(c) The subsets O(yey ((w,e) € Tn(p,q)) are exactly the K-orbits of X. The
subsets O (y,e) ((w,€) € Tn(p,q)) are exactly the GO-orbits of X.
(d) The map Oy ey = O(w,e) is Matsuki duality.
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3.3. Types B, C, D. In this section we assume that the space V =V, =
(e1,...,en)c is endowed with a symmetric or symplectic form w whose action on
the basis (eq,...,ep) is described by the matrix {2 in (2). We consider the group
G = G(V,w) = {g € GL(V) : g preserves w} and the variety of isotropic flags
X, ={F € X :F*+=F} (see Section 2.2).

In addition we assume that V' is endowed with a hermitian form ¢, a conjugation
0, and a decomposition V =V, & V_ (as in Section 3.2) such that

e in types BD1 and C2, the restriction of w to V; and V_ is nondegenerate,
; 1
ie, Vi =V_,
e in types Cl and D3, V; and V_ are Lagrangian with respect to w, i.e.,
Vi=V,and V- =V_.
Set K :={g € G :gd=20dg} and G° := {g € G : g preserves ¢}.

Combinatorial notation. Recall that wq(k) =n —k + 1. Let (n,¢) € {1,—1}2.
A signed involution (w, €) is called (n, €)-symmetric if the following conditions hold
(i) wwy = wow (so that the set {¢ : w, = £} is wop-stable);
(i) we(r) = nex for all k € {£ 1wy = £};
and in the case where 1 # €:

(iil) wy # wo(k) for all k.

Assuming n = p+gq, let 37¢(p, q) C J,,(p, q) denote the subset of signed involutions
of signature (p, q) which are (7, €)-symmetric.

Specifically, (w,¢) is (1,1)-symmetric when the signed link pattern I(w,¢) is
symmetric with respect to reversing the enumeration of vertices; (w,¢) is (1, —1)-
symmetric when [(w, ) is symmetric and does not have symmetric arcs (i.e., joining
kand n—k+1); (w,e) is (—1, —1)-symmetric when [(w, €) is antisymmetric in the
sense that the mirror image of [(w,¢) is a signed link pattern with the same arcs
but opposite signs; (w,e) is (—1,1)-symmetric when [(w,e) is antisymmetric and
does not have symmetric arcs. For instance:

A s
(w,e) € 397 (5,4), (w,e) € I35 1(5,5),
c/oo\o o o u/oo\o o/oo\- o o c/oo\o
- F + ¥ + = -+ -+ -+
(w,e) € 31571(6,4), (w,e) € 37571 (5,5).

Proposition 6. Let (p,q) = (dim V. ,dimV_) (so that p = q = % in types C1 and
D‘?) Set (nue) = (17 1) in type BD17 (7776) = (17 _1) in type CQ: (7776) = (_]—7 _1)

in types C1, and (n,e) = (=1,1) in type DS3.

(a) For every (w,e) € J1¢(p,q), considering bases v = (v1,...,v,) of V such
that
0 fl#n—k+1
1 ifl=n—k+1andwg,we €k, {] (k<{)
(9) wk,ve) =X € fl=n—k+1and wg,w, €[, k] ((<k)
n fl=n—k+1 andk,l €lwg, we

ne ifl=n—k+1 and k,? €lw,, wi],
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we have
(’)Z’;E) = Ow,e) N Xy = {F(v) : v is (w,e)-conjugate and satisfies (9)} # 0,
Ol o) = Ow,e) N X ={F(v) : v is (w,e)-dual and satisfies (9)} # 0,

7,€ n,€
Otne) MO ie)

= {F(v) : v is (w,¢e)-conjugate and (w,)-dual and satisfies (9)} # 0.

(b) The subsets OZ’; o ((w,€) € 37(p,q)) are exactly the K-orbits of X,,. The
subsets DZ’;’E) ((w,e) € 37<(p,q)) are ezactly the G°-orbits of X,,.

(¢) The map OZ’U:) — 07 ©is Matsuki duality.

(w,e)

3.4. Remarks. Set X := X in type A and X, := X, in types B, C, D.

Remark 3. The characterization of the K-orbits in Propositions 4—6 can be stated
in the following unified way. For F € X we write o(F) = F= in types A1-A2 and
o(F) = 0(F) in types A3, BD1, C1-C2, D3. Let P C G be a parabolic subgroup
containing K and which is minimal for this property. Two flags F1, F2 € X belong
to the same K-orbit if and only if (o(F1), F1) and (o(Fz), F2) belong to the same
orbit of P for the diagonal action of P on Xy x Xj.

Remark 4 (Open K-orbits). With the notation of Remark 3 the map og : Xo —
X x X, Fw (o(F),F) is a closed embedding.

In types A and C the flag variety X is irreducible. In particular there is a unique
G-orbit Q,, C X x X such that O, Noo(Xp) is open in g¢(Xp); it corresponds to an
element w € &,, maximal for the Bruhat order such that Q,, intersects oo(Xp). In
each case one finds a unique K-orbit O C X such that o¢(O) C Q,, it is therefore
the (unique) open K-orbit of Xj. This yields the following list of open K-orbits in
types A1-A3, C1-C2:

Al: Oyg;

A2: O,, where vg = (1;2)(3;4) -+ (n — 1;n);

t
A3: O(w(t) 9 where ¢t = min{p, ¢}, ¢ = sign(p — ¢), and w(()t) =[] (ksn—Ek+1);
(U —
Cc1: o b b =
(t) (t), (t), ()

C2: Ol’f(tl) where ¢ = min{p, ¢}, € = sign(p—q), and Wy’ = vy wg vy, where
w, I

ol = (1;2)(3:4) - (£ — 1;0).

If n =dimV is even and the form w is orthogonal, then the variety X, has two
connected components. In fact, for every isotropic flag F = (Fj)p_, € X., there
is a unique F = (Fy)j_y € X, such that Fj, = Fy for all k # m = §, F,,, # Fy,.
Then the map I:F— Fisan automorphism of X, which maps one component
of X, onto the other. If F = F(vq,...,v,) for a basis v = (v1,...,v,) such that

wg,v) 20 l=n—k+1
then I(F(v)) = F(0) where @ is the basis obtained from v by switching the two
middle vectors vy, V1. If v is (w,€)-conjugate then o is i(w, £)-conjugate where
i(w,€) := ((m;m+1)w(m;m+1),e0(m;m+1)). Hence I maps the K-orbit (9?1’;,5)
onto (’)%7(’; o

In typey D3, X, has exactly two open K-orbits. More precisely, w = wg := wgvg
is maximal for the Bruhat order such that Q,,Nog(Xy) is nonempty, hence o * (0, )
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is open. The permutation g has no fixed point if m := 3 is even; if m := 7 is

odd, 1y fixes m and m + 1. In the former case o, '(Qy,) = (’)(_wlo’l@) is a single
K-orbit, and f(O(_mlgl@)) = 025" is a second open K-orbit. In the latter case

i(o,0)
00_1(@11)[()7”71)) = O(_wlo”la) U (’)(_11}10’715), where (€, ema1) = Ema1,ém) = (+1,—1), is

the union of two distinct open K-orbits which are image of each other by I.
In type BD1 the variety X, may be reducible but w = w,gt), for t := min{p, ¢},
is the unique maximal element of &,, such that Q,, N o¢(Xp) is nonempty. Then

o5 1(0,,) consists of a single I-stable open K-orbit, namely (9(1’1“> ) for e = sign(p—
we €
q). The flag variety X, has therefore a unique open K-orbit (which is not connected

whenever n is even).

Remark 5 (Closed K-orbits). We use the notation of Remarks 3-4. As seen from
Propositions 4-6, in each case one finds a unique wpyin, € &, such that Q,_, N
00(Xo) is closed; actually wy,i, = id except in type BD1 for p,q odd: in that case
Wmin = (5; 5 +1). For every K-orbit O C Xy the following equivalence holds:

Oisclosed < 09(0)CO

(see [3, 18]). In view of this equivalence, we deduce the following complete list
of closed K-orbits of Xy for the different types. In types Al and A2, O,, is
the unique closed K-orbit. In type A3 the closed K-orbits are exactly the orbits
O(id,e) for all pairs of the form (id,e) € J,(p,q); there are (Z) such orbits. In
types B, C, D, the closed K-orbits are the orbits Og’ia) for all pairs of the form
(id,e) € 32¢(p, q), except in type BD1 in the case where n =: 2m is even and p, q

are odd; in that case the closed K-orbits are the orbits O(l(’;,mﬂ) o) for all pairs
of the form ((m;m + 1),e) € 311 (p, q). There are (L%JLZJL%J) closed orbits in types
2

BD1 and C2, and there are 2% closed orbits in types C1 and D3.

Wmin

Remark 6. Propositions 4-6 show in particular that the special elements of Xy,
in the sense of Matsuki [11, 12], are precisely the flags F € X of the form F =
F(vi,...,v,) where (v1,...,v,) is a basis of V which is both dual and conjugate,
with respect to some involution w € J¢, in types Al and A2, and to some signed
involution (w,e) € J,(p,q) in types A3, B-D. Indeed, in view of [11, 12] the set
S C Xy of special elements equals

J onz0)
0eXy/K
where the map Xo/K — Xo/G°, O — Z(0) stands for Matsuki duality.
3.5. Proofs.

Proof of Proposition 4 (a). We write w = (a1;b1) -+ (@m; b)) with a1 < ... < ap
and ay < by, for all k; let ¢; < ... < ¢;—2m be the elements of the set {k : wy = k}.
In type A2 we have n = 2m, and (eq,...,e,) is both a (1;2)(3;4) - - - (n — 1;n)-dual
basis and a (1;2)(3;4) - - - (n—1; n)-conjugate basis; then the basis {e], ..., e, } given
by
€y, =€2—1 and e, =ey forallle{l,...,m}

is simultaneously w-dual and w-conjugate. In type Al, up to replacing e, and ey«
by ”'\;g” and eegg* whenever ¢ < £*, we may assume that the basis (e1,...,e,) is
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both id-dual and id-conjugate. For every £ € {1,...,m} and k € {1,...,n — 2m},
we set

;€1 tiey ;€201 — i€y d o —
ew = T7 ebf = T7 an eck = €2m+k-

Then (€}, ..., el,) is simultaneously a w-dual and a w-conjugate basis. In both cases

e n

we conclude that
(10) O #{F(v1,...,vn): (v1,...,0y,) is w-dual and w-conjugate} C Oy N Oy

Let us show the inverse inclusion. Assume F = (Fp,...,F,) € O, NO,,. Let
(v1,...,v,) be a w-dual basis such that F = F(v1,...,v,). Since F € O,, we have

(11) wp=min{l =1,...,n:vy(Fy) N Fy # v(Fr—1) N Fy}.
For all ¢ € {0,...,n} we will now construct a w-dual basis (vy), . ,v%)) of V such
that
(12) Fo=0" . o forallke{l,...,n}
and
(13) 4 (w®) = oil wezko g (1.0
k o) ifwy <k ol

This will then imply F = ]-'(vgn), ce v,&")) for a basis (v§n), e 7vﬁbn)) both w-dual
and w-conjugate, i.e., will complete the proof of (a).

Our construction is done by induction starting with (vio), . ,vﬁo)) = (V1,...,0p).
Let ¢ € {1,...,n}, and assume that (v%e_l), . ,vg_l)) is constructed. We distin-
guish three cases.

Case 1: wy < £.

The inequality wy < ¢ = w(wy) implies fy(v,(fﬂ_l)) = evy—l), whence y(véz_l)) =
o8 as 42 = eid. Therefore the basis (v\?, ..., v{?) == (V... oY) fulfills
conditions (12) and (13).

Case 2: wy = £.
This case occurs only in type Al. On the one hand, (11) yields
o o o - -
'y(vé 1)) € (vg b ,vé b, vffl oo 7U7(1;[g_11)>0
On the other hand, since the basis (v%zfl), e 71),(1271)) is w-dual, we have
vézfl) € (vngl), - ,vél:ll), vffl_l)7 ... ,v%‘_?)l .

Hence, as y preserves orthogonality with respect to w,

0— 0— — - -
@Y e (), ) YD),y (DA

_ <U§471) oD (=1 U(£—1)>L

yeeesUp_q ,le yors Uy /C -

Altogether this yields a nonzero complex number A such that ’y(vyfl)) = )\vyfl).

Since v is an involution, we have A € {+1,—1}. In addition we know that

A= w(’y(vée_l))mée_l)) = tvée_l)vée_l) eRT.

Whence ’y(vyfl)) = inl), and we can put (vg), ... ,vg)) = (vyfl), ... ,v%il)).

Case 3: wy > £.
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By (11) we have

7(02271)) € <v,(6471) 1<k <wy)c+ (vffk_l) 1<k<l-1)c.
On the other hand, arguing as in Case 2 we see that
v(vy—l)) € <v§z_l), .. ,vy:ll), vqffl*l), o ,v&f;?)é‘.
Hence we can write
(14) 'y(vée_l)) = Z )\kv,(f_l) for some A\, € C,
kel

where I := {k : £ < k < wpand { < wy} cl:= {k: ¢ < kand ¢ < wg}. Using
(14), the fact that the basis (vge_l), e vg_l)) is w-dual, and the definition of w
and v, we see that

(15) Aw, = w(vézil),’y(vyfl))) = etvy*l)vyfl) = e
with a € R, a > 0. Set
1 _ _
Uéf) — (=1 O . LW(U(E 1)),

ﬁve o Pwe T TR
(£-1) (1)
vl(f) = v,(f*l) _ o /{V(W ))vélfl) for all k € T\ {¢,w,},
we

v,(f) = U,(ffl) for all k € {1,...,n}\ I.

Using (14) and (15) it is easy to check that (U%E), . ,vg)) is a w-dual basis which

satisfies (12) and (13). This completes Case 3. O
Proof of Proposition 4 (b)—(d). Let F € Oy, so F = F(vy,...,v,) for some w-dual
basis (v1,...,v,) of V. From the definition of w-dual basis we see that

(W1, Un_p)E = (vjrw; ¢ {1,...,n—k})c

= (vjrwje{n—k+1,...,n})c
= (vj: (wow); €{1,...,k})c.
Therefore
dim(vy, ..., v, k)& N (v, ..., v)c = {je{l,....0} - (wow); € {1,...,k}}|

for all k,¢ € {1,...,n}, which yields the equality w(F*,F) = wow and hence the
inclusion

(16) Op C{FEX: (FLF)€Quu}

Let F = F(vy,...,v,) € O, for a w-conjugate basis (v1,...,v,) of V. From the
definition of w-conjugate basis we get

Y({(vi,. . vk)e) = (v, 1§ €{L,... k})c.

Therefore
dim y((v1, ..., ve)c) N (v, ..., ve)e = |{j € {1,...,6}:111]-_1 e{1,...,k}}|
for all k,¢ € {1,...,n}, whence w(y(F),F) =w~! = w (since w is an involution).

This implies the inclusion

(17) Ow C{F e X : (v(F), F) € Oy}
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It is clear that the group K acts transitively on the set of w-dual bases, hence O,,
is a K-orbit. Moreover (16) implies that the orbits O, (for w € J¢)) are pairwise
distinct. Similarly the subsets O,, (for w € J¢) are pairwise distinct G°-orbits.

We denote by Lj the k£ x k-matrix with 1 on the antidiagonal and 0 elsewhere.
Let v = (v1,...,v,) be a wp-dual basis, in other words,

1 if k<ot
Ok, Unr1-) = e ifk>nH
w(vg,v) =0 iflL#An+1—k;

hence L := (w(vk,v¢));<p y<,, 15 the following matrix

L=1L, (typeAl) or L= <_2 Lé”) (type A2, n = 2m).

The flag Fo := F(v1,...,v,) satisfies the condition F5- = Fy. By Richardson-
Springer [18] every K-orbit O C X contains an element of the form gFg with g € G
such that h := L[g],L~[g], € N where [g], denotes the matrix of g in the basis v
and N stands for the group of invertible n x n-matrices with exactly one nonzero
coefficient in each row and each column. Note that Lh = [g],L[g], also belongs
to N (as L does) and is symmetric in type Al and antisymmetric in type A2.
Consequently, there are w € J,, and constants t¢1,...,t, € C* such that the matrix

Lh =: (ak,¢); <), y<,, has the following entries:
-0 ot ifwp >k
Akt = 0 if £ 7& Wk Wheywi, = { etk if wi < k.
Since e = —1 in type A2, we must have wy, # k for all k, hence w € J],. Therefore
in both cases w € J¢,. For each k € {1,...,n}, we choose s; = s,, € C* such that

s; 2 =ty (note that t,, = tx). Thus
9Fo = F(81901, ..., 8,9Vn) ,
and for all k,¢ € {1,...,n} we have

1 ifl=wy >k
ifl=wy <k
0 ifﬁ#wk.

)}

W(SkGUk, Segve) = SpSew(guk, gUe) = SkSeak =

Whence gFy € O,,. This yields O = O,,.
We have shown that the subsets O,, (for w € 7)) are precisely the K-orbits of
X. In particular, X = J,,c5. Ou so that the inclusion (16) is actually an equality.

By Matsuki duality the number of G%-orbits of X is the same as the number of K-
orbits, hence the subsets O,, (for w € J¢,) are exactly the G%-orbits of X. Thereby
equality holds in (17). Finally we have shown parts (b) and (c) of the statement.
Part (a) implies that, for every w € J¢, the intersection O, N O, is nonempty
and consists of a single K N G°-orbit. This shows that the orbit 9., is the Matsuki
dual of O,, (see [12]), and part (d) of the statement is also proved. O

Proof of Proposition 5(a). We write w as a product of pairwise disjoint transpo-
sitions w = (a1;01) -+ - (@m; by ), and let ¢q1 < ... < ¢, be the elements of {k :
wg =k, € = +1} and dq1 < ... < dq be the elements of {k: wy =k, e = —1}.
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Let {e1,....en} = {ef,....ef} U{er,...,e ) sothat Vi = (e : £ =1,...,p)c
and V_ = (e, : £=1,...,q)c. Setting

4 4
Vay = ekjg’“ , Vb, i= e’“\/gk forall k € {1,...,m},

Vep, 1= eZ forall k€ {m+1,...,p}, and vg, :=¢, forallke{m+1,...,q},
it is easy to see that (vi,...,v,) is a basis of V which is (w,e)-dual and (w,¢)-
conjugate. Therefore

(18) 0 #{F(v):vis (w,e)-dual and (w,e)-conjugate} C O(y,e) N O (w,c)-

For showing the inverse inclusion, consider F = (Fp, ..., F,) € Oy ) N O e)-
On the one hand, since F € Oy, ) there is a (w, ¢)-dual basis (v1, ..., v,) such that
F = F(v1,...,v,). On the other hand, the fact that 7 € O(y . yields

(19) wp=min{f=1,...,n:6(F;)NFp # §(Fr—1) N F;} forall k€ {1,...,n}.

For all £ € {0,...,n} we will now construct a (w,¢e)-dual basis (vie), ... ,vg))
such that
(20) Fo=0" o forallke{1,... ,n}

O iy, £k,

(21) and (5(1),(5)) = { Uw"(g) for all k € {1,...,¢}.

epvy, . ifwy =

This will then provide a basis (v§n), e ,v&n)) which is both (w, )-dual and (w, &)-

(n) (n)
1 »

conjugate and such that F = F(v; ’,..., vy ), i.e., will complete the proof of part

(a).

The construction is carried out by induction on £ € {0,...,n}, and is initialized
by setting (U§O), . ,vﬁlo)) = (v1,...,0p). Let £ € {1,...,n} be such that the basis
(vy_l), e ,v%_l)) is already constructed. We distinguish three cases.

Case 1: wy < /.

Since in this case since wy < £ — 1 and w(wy) = £, we get (5(1}55;1 ) = oY and
hence 5(11&6_1)) = vﬁfe_l) (as d is an involution). Therefore the basis (vge)7 . ,v,(f)) =
(vge_l), . ,vgf_l)) satisfies conditions (20) and (21).

Case 2: wy = £.
Using (19) we have
5(7}%71)) € (v§[71), vy*l), - ,U££71)><{j + <vl(,fl_1)7 ce v&i‘_?k )
On the other hand, the fact that the basis (v?*”, e 7vf(ffl)) is (w, €)-conjugate
implies
-1 -1 -1 - _
(22) vé ) ¢ (vg ), . ,vé_l ), vffl 1), o ,vq(fzill)ﬁ:.

. . . . -1
Since § preserves orthogonality with respect to the form ¢ and since § (U,(C )) =
vff,:l) for all k € {1,...,¢ — 1} (by the induction hypothesis), (22) yields

-1 -1 -1 - _
5(vé )) € (vg ), e ,vé_l ), vffl 1), .. ,vfflill)%.

Altogether we deduce that

5(1);@_1)) = /\véé_l) for some A € C*.
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As § is an involution, we conclude that A € {+1,—1}. Moreover, knowing that
(=1)  (£=1)y _
¢(v, v, ) =€ we see that

)\Egz(b(vy*l),é(vy*l))):t oDy (5 D _t (5 1) (5 D>,
Finally we conclude that A = ¢,. It follows that the basis (vgg),...,u,(f)) =
(viz_l), e ,w(f_l)) satisfies (20) and (21).

Case 3: wy > /.

Invoking (19), the fact that (v; (&= 1), o 1)) is (w, €)-dual, the induction hy-
pothesis, and the fact that § preserves orthogonality with respect to ¢, we see as
in Case 2 that

SW ) e (Vi1 <k <wde+ (Y 1<k <L 1))

-1 -1
ﬁ(v% ),... (_1),1)1(51 1),..., 1(5@ 11)>(C'
Therefore
(23) @) =3 Mol ™Y with A € C,
kel

where I :={k : £ <k <wyp, { <wi} C I:= {k: ¢ <k, £ <wg}. This implies
Aw, = ¢(v§£71), 6(1}%71))) = tv§£71)¢¢vy71) = tvyfl)vyfl) eRL.

It is straightforward to check that the basis (Uy), e ,v,(f)) defined by

N o

£— l—
O _ e _ o8 1)))#71)

1 _ 1 _
vy) = —— O 5(véé 1)),

forall k € I \ {¢, we},

Ve = Uk Moy
vl(f) = v,(ffl) for all k € {1,...,n}\ I
is (w, e)-dual and satisfies conditions (20) and (21). O

Proof of Proposition 5(b)—(d). Let F = F(vy,...,v,) where (v1,...,v,)isa (w,&)-
conjugate basis. Then by definition we have

O((vi, ..., ve)c) = (v, 17 €1{1,...,k})c,
hence
dim((v1, ..., v)c) N (v1, - ov)e = Hie{l,.... 0wy Ye{1,...,k}}
= |{je {1,...,6}:w3 € {1,...,k}}|
for all k,¢ € {1,...,n}. Moreover, for ¢ € {+1,—1} we have
(v1,...,ve)cNker(6 —eld) = (v;:1<w;j=j<lande; =¢)c

+(vj +evy, 11 <w; <j<{)c

Therefore

(dim(vy, ..., ve)c N V4, dim(vy, ..., v)c N V_)Zzl = ¢(w,e).
Altogether this yields the inclusion
(24) Oww,e) C{F € X :(0(F),F) €0y and (0 : F) = s(w,e)}.
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Now let (v1,...,v,) be a (w,e)-dual basis. Then
(W1, v )N (o, e = (v ije{l,..., 0} and w; > n — k)¢
= (vj:je{l,...,¢} and (wow); < k)¢,
whence
dim(vy, ..., v k) O (o1, v = [{F € {1, ..., 0} (wow); € {1,..., Kk}
for all k,¢ € {1,...,n}. In particular we see that
(v1,...,v)c = {v1,...,ve)c N <’U1,...,’Ug>:(r:@ (vj:je{l,..., ¢} and w; < ¥)c.

It follows that the vectors v; (for 1 < w; = j < {) and %(vj +vy,;) (for 1 <wj; <

>
j < {) form a basis of the quotient space (v1,...,ve)c/(v1,...,ve)c N {v1,..., w);{:.
This basis is ¢-orthogonal and, since (vy,...,v,) is (w,€)-dual, we have

Vj+Vw,;  VitUw;\
¢( 7 i, 7 .7) — 1’

¢(Uj7vj) =¢&j if W :]7 V=V, V=V, if W < ]
J i) —
(7 %) =
Therefore the signature of ¢ on (vy,...,ve)c/{v1,...,ve)cN{vy,. .., W}I: is the pair

( Hjrwj=7<t ej=+1}+1{j: w; <j<t},
G iwj=4<t ej=—-1}+|{j:w; <j<e}| )

which coincides with the ¢-th term of the sequence ¢(w,e). Finally, we obtain the
inclusion

(25) Ow,e) C {.7: eX: (]-'T,]-') € Oyow and g(¢p: F) = g(w,s)}.

It is clear that K (resp., G°) acts transitively on the set of (w, €)-conjugate bases
(resp., (w,e)-dual bases). Hence the subsets O(y ) (resp. O(y)) are K-orbits
(resp., G%-orbits). Moreover, in view of (24) and (25) these orbits are pairwise
distinct.

Let O be a K-orbit of X. Note that the basis (eq,...,e,) of V satisfies d(e;) =
+e; for all j, hence the flag Fy := F(eq,...,e,) satisfies 6(Fy) = Fo. By [18]
the K-orbit O contains an element of the form gFy for some g € G such that
h := &g~ 1dg € N where, as in the proof of Proposition 4, N C G stands for the
subgroup of matrices with exactly one nonzero entry in each row and each column.
Since ¢ € N we also have ®h € N. Hence there is a permutation w € &,, and

constants tq,...,t, € C* such that the matrix ®h =: (ak,g)1<k 1<, Das entries

age =0 if £ # wy, Okw, =tr forall k0 ¢ {1,...,71}.

The relation ®h = g~ 1Pg shows that (®h)? = 1,,. This yields w? = id and txt,, = 1
for all k; hence

ty, = t,:l whenever wy, 2k and e :=ty € {+1,—1} whenever wy = k.

In addition, since @h is conjugate to @, its eigenvalues +1 and —1 have respective
multiplicities p and ¢, which forces

(w,€) € Tn(p, q).
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For each k € {1,...,n} with wy < k, we take s, € C* such that ¢, = s7 and set
Swe = S, (so that s2 = ty' = tu,). Moreove,r for each k € {1,...,n} with
wg = k we set s = 1. The equality &g = gPh yields

6(g(s/€ek)) = spPgey, = Skg(éh)ek = Skg(twk ewk) = S;;g(sfﬂk ewk) = g(swkewk)

for all k € {1,...,n} such that wy # k, and

6(g(sker)) = d(glex)) = Pgex = g(Ph)ex, = glexer) = exg(ex) = erg(sker)

for all k € {1,...,n} such that w, = k. Hence the family (g(sie1),...,9(snexn)) is
a (w, e)-conjugate basis of V. Thus

gFo = gF(e1,...,en) = gF(s1€1,...,8n6n) = F(g(s1€1),...,9(5n€n)) € Oru,c)-
Therefore O = O, ¢)-

We conclude that the subsets O(,, ) (for (w,e) € Jn(p,q)) are exactly the K-
orbits of X. Matsuki duality then guarantees that the subsets O, ) (for (w,e) €
J,.(p,q)) are exactly the G°-orbits of X. This fact implies in particular that equality
holds in (24) and (25). Altogether we have shown parts (b) and (c¢) of the statement.

Finally, part (a) shows that for every (w, ) € J,(p,q) the intersection Oy, ) N
O (w,e) consists of a single K N GO-orbit, which guarantees that the orbits O(w,e)
and O, ) are Matsuki dual (see [11, 12]). This proves part (d) of the statement.
The proof of Proposition 5 is complete. O

Proof of Proposition 6. The proof relies on the following two technical claims.

Claim 1: For every signed involution (w,e) € J,(p,q) we have O, ) N X, = 0
unless (w,e) € TT<(p, q).

Claim 2: For every (w,e) € J1¢(p,q) there is a basis v = (v1,...,v,) which is
simultaneously (w, €)-dual and (w, €)-conjugate and satisfies (9).

Assuming Claims 1 and 2, the proof of the proposition proceeds as follows. For
every (w,e) € J,(p, q) the inclusions

(26) {F(v) : v is (w,e)-conjugate and satisfies (9)} C Oy,c) N X,
(27) {F(v) : vis (w,e)-dual and satisfies (9)} C Oy o) N Xo,
(28) {F(v) : vis (w,e)-dual and (w,e)-conjugate and satisfies (9)}

C O(w,a) N D(U,’E) NXy,
clearly hold. Hence Claim 2 shows that O?vf & D’gwe ¢ and OZ’; 9N D?we o) are all
nonempty whenever (w,e) € J7¢(p,q). By Claim 1, Lemma 1, and Proposition
5(c), the K-orbits of X,, are exactly the subsets OZ’l’: o). On the other hand the

subsets O (,,,-) N Xy, (for (w,e) € J,(p,q)) are GO-stable and pairwise disjoint. By
Matsuki duality there is a bijection between K-orbits and G°-orbits. This forces
Oe ) = Ow,e) N Xy to be a single G-orbit whenever (w,e) € J7¢(p,q) and

(w,e
O w,e) N Xy to be empty if (w, ) ¢ J7¢(p, q). This proves Proposition 6 (b).
Since the orbits O(y,¢), O (w,e) C X are Matsuki dual (see Proposition 5 (d)), their

intersection Oy, )N (w,e) is compact, hence such is the intersection (9?1’:’5) DD?{;E)

for all (w,e) € 37¢(p, q). This implies that O] ) and D?ﬂf -y are Matsuki dual (see

(w,e
[6]), and therefore part (c¢) of the statement.
Let (w,e) € 37“(p, ). Since O, and O]

(w,e) €

tion is a single K N G%-orbit. The set on the left-hand side in (28) is nonempty (by

) are Matsuki dual, their intersec-
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Claim 2) and K NGY-stable, hence equality holds in (28). Similarly, the sets on the
left-hand sides in (26) and (27) are nonempty (by Claim 2) and respectively K- and
G-stable. Since (92’1’;’5) = Oyp,e) N X, and D?j,e) = O (w,e) N X, are respectively a
K-orbit and a G-orbit, equality holds in (26) and (27). This shows part (a) of the
statement.

Thus the proof of Proposition 6 will be complete once we establish Claims 1 and

2.

Proof of Claim 1. Note that for two subspaces A,B C V we have At + B+ =
(AN B)*, hence

(29) dim A* N B+ + dim A + dim B = dim AN B + dim V.

Note also that the map 0 is selfadjoint (in types BD1 and C2) or antiadjoint (in
types C1 and D3) with respect to w, hence the equality §(A)* = §(AL) holds for
any subspace A C V in all types.

Let (w,e) € Jn(p,q) such that Oy, ) N X, # 0. Let F = (Fo,...,F,) €

O(w,e) N Xo.

By applying (29) to A = ¢ (Fy) and B = F; for 1 < k,¢ < n we obtain
(30) dim§ (F—g) N Fr—g + k + ¢ = dim § (Fy) N Fy +n.
On the other hand, since F € Oy, ) Proposition 5 (b) gives
(31) dimé (Fr—p)NFy=|{j=1,....n—€:1<w; <n—k}
and
(32) dimé (Fp)NF, = Hj=1,...,0:1<w; <k}

= 4-|{j=1,...,0:w; > k+1}
= {—(n—k—|{j>0+1:w; >k+1})
= A+k—-n+|{j=1,...,n—L: wowwy(j) <n—k}|
for all k,¢ € {1,...,n}. Comparing (30)—(32) we conclude that w = wowwy.
Let k € {1,...,n} such that wy = k. Since wwy = wow, we have wy,_p41 =
n—k+ 1. Applying (29) with A = F}, (resp., A = F_1) and B =V, we get
1+ dimF_y NVy —dim Fr NV, = dim Fy_p1 N V. — dim F,_j, N V_
in types BD1 and C2 (where Vi = V_), whence
er=1 & dmFNVy=dmF_ 1NV +1
&S dimFy_ 1 NV =dimE, yNV_ S eppq1 =1
in that case. In types C1 and D3 (where Vi- = V), we get
1+ dim Fj_y NV — dim F, NV, = dim Fy_g1 N Vi — dim Fpy_j, NV, |
whence also
er=1¢ep_p41=-1.

At this point we obtain that the signed involution (w, ) satisfies conditions (i)—
(ii) in Section 3.3. To conclude that (w,e) € J1<(p, q), it remains to check that in
types C2 and D3 we have wy, # n — k + 1 for all k < . Arguing by contradiction,
assume that wy = n — k + 1. Since F € O, ) there is a (w, €)-conjugate basis
v = (v1,...,v,) such that F = F(v). Thus 6(vg) = vn—g+1 so that we can write



22 LUCAS FRESSE AND IVAN PENKOV
v = v + v, and vy_gp1 = v — v . In type C2 we have V5 = V_ and w is
antisymmetric, hence

wvf + v, 08 — o) =wvh, o) —wlvy, vy ) =0-0=0.
In type D3 we have V+ =V, , V+ = V_, and w is symmetric hence

wf + v, =) = —w(l,vy) +wlvg vl = 0.
In both cases we deduce
Fropp1=Fnp+ Wn_iy1)e CFE+FE 0 (u)g = FF = Fuy,

a contradiction. This completes the proof of Claim 1.
Proof of Claim 2. For k € {1,...,n} set k* =n — k+ 1. We can write

W= (e156) o (s )5 el) o (5 ) (s ) -« (o )

where ¢; < ... <cs <cf <...<c], ¢ <c;.7éc;f forall j,dy < ... < dy < df <
... <dj. Note that ¢t = 0 in types C2 and D3. Moreover, we denote

{a1 < ... <ap_p—os}i={k:wy =k, e =1},
{1 <...<bg_t—ost ={k:wp =k, ey = —1}.

We can construct a ¢-orthonormal basis

+ + .t ot +5 4 +
T Y Y Y YT 2 2o
of Vi, and a (—¢)-orthonormal basis
_ - R - _
T ooy Ty YT s s Ys 3 Ys see s UL 2L s Bgt—2s

of V_, such that in types BD1 and C2 (where the restriction of w on V. and V_ is
nondegenerate) we have

w(:z:j,xj') =w(zj,z;) =1,
wly,u7) =wlyy,u; ") =1, wly " yf) =wly; ;) =€
e fj>l=p—t—2s+1—7,
S 1 ifj<l=q—t—2s4+1—}
w(z; ’Ze)—{ € ifj>l=q—t—25+1—j,
and the other values of w on the basis to equal 0. In types Cl and D3 (where
Vj‘ =V,, V+ =V_, and in particular p = g = % in this case) we require that
w(xj',xj_) =1, w(xj_,x;') = €i,
wlyfyy ) =wlyy,u) =1, wly ") =wy; " y)) =€

N +):{1 if=j:=%—t—2s+1—janda; <b;

+ _ ' ) =3
Wiz z) = ewlz 7 e ifl=j:=%—-t—2s+1—janda; > b;,

2

while the other values of w on the basis are 0. In contrast to the value of w(zj-[, zgi) in

types BD1,C2, the value of w(zf7 z; ) in types C1,D3 is not subject to a constraint

but is chosen so that the basis (v1,...,v,) below satisfies (9).
In all cases we construct a basis (v1,...,v,) by setting
Jr e + -
T, +1T; T, —1T;
vy = 2 I g =2 j

v R
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S ek /NS et /S it TR it /M
j \/i ) c; \/§ ) c; \/5 ) c; \/i )
Va; = zj', and vy, =25
It is straightforward to check that the basis (v1,...,v,) is both (w,e)-dual and
(w, €)-conjugate and satisfies (9). This completes the proof of Claim 2. O

4. ORBIT DUALITY IN IND-VARIETIES OF GENERALIZED FLAGS

Following the pattern of Section 3, we now present our results on orbit duality
in the infinite-dimensional case. All proofs are given in Section 4.5.

4.1. Types Al and A2. The notation is as Section 2.1.1. For every ¢ € N* there
is a unique £* € N* such that w(ey, es+) # 0, and this yields a bijection ¢ : N* — N*,
e A

Let Joo(t) be the set of involutions w : N* — N* such that w(¢) = ¢* for all
but finitely many ¢ € N*. In particular we have wit € S, for all w € T (1). Let
J.(t) C Jx(t) be the subset of involutions without fixed points (i.e., such that
w(l) # £ for all £ € N*).

Let o : N* — (A, <) be a bijection onto a totally ordered set, and let us consider
the ind-variety of generalized flags X(F,, E). In Proposition 7 below we show that
the K-orbits and the GC-orbits of X(F,, E) are parametrized by the elements of
Joo(t) in type Al, and by elements of J7_(¢) in type A2.

Definition 6. Let w € J(¢). Let v = (v1,va,...) be a basis of V such that
(33) vy = ep for all but finitely many ¢ € N*.
We call v w-dual if in addition to (33) v satisfies

0 il wy, X

w(vg,vk)—{ IR for all k,/ € N*,

and we call v w-conjugate if in addition to (33)

v(vi) = £, for all k € N*.
Set Oy = {Fs(v) : vis w-dual} and O,, := {F,(v) : v is w-conjugate}, so that
0O, and O, are subsets of the ind-variety X(F,, E).
Notation. (a) We use the abbreviation X := X(F,, F).
(b) If F is a generalized flag weakly compatible with E, then F+ := {F+ : F € F}
is also a generalized flag weakly compatible with F.

Let (A*, <*) be the totally ordered set given by A* = A as a set and a <* o
whenever a = a’. Let o : N* — (A*, <*) be defined by o+(¢) = o(¢*). Then
we have F;- = F,.. Note that F* is E-commensurable with F,. whenever F is
E-commensurable with F,. Hence the map

X = Xt :=X(F,.,E), F—>F*
is well defined. We use the abbreviation Oy := (0, ), for all w € S.

(c) We further note that v(F,) = Fpo, and that y(F) € X := X(Fyo,, F) when-
ever F € X. We abbreviate O, := (Qyo,,0)y for all w € G

Thus X+ x X = |_| 0} and X” x X = |_| O}, (see Proposition 2).
WES oo WES o

Proposition 7. Let 5 (1) = Too(2) in type A1 and TS (1) = T (1) in type A2.
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(a) Foreverywejé (1),
= {F,(v) : v is w-dual and w-conjugate} # 0.
(b) For every w € J5 (1),
Op,={FeX: (FL,F) 0L} and O, ={FecX:(y(F),F)e0],}

(¢) The subsets O, (forw € T (1)) are exactly the K-orbits of X. The subsets
Oy, (for w € I (1)) are exactly the GP-orbits of X. Moreover O, N O,
is a single K N GC-orbit.

4.2. Type A3. The notation is as in Section 2.1.2. In particular, we fix a partition
N* = Ny U N_ yielding @ as in (3) and we consider the corresponding hermitian
form ¢ and involution § on V.
Let Joo (N4, N_) be the set of pairs (w, €) consisting of an involution w : N* — N*
and a map € : {£: wy = £} — {1,—1} such that the subsets
N, = N (w,e) :={f € Ny : (wg,e0) = (¢, £1)}

satisfy
1
N2\ NE| = [{€.€ Ny« (wee0) = (64D} 4+ 5|{L € N* 2y £ )] < oo,

In particular, w € G

Fix 0 : N* — (4, <) a bijection onto a totally ordered set. We show in Propo-
sition 8 that the K-orbits and the G%-orbits of the ind-variety X := X (F,, E) are
parametrized by the elements of T, (N4, N_).

Definition 7. Let (w,e) € Joo (N4, N_). A basis v = (v, v2,...) of V such that
vg = ey for all but finitely many ¢ € N* is (w, )-conjugate if

] vy, ifwg £k,
5(Uk) o { ELVE if Wg = k

for all k£ € N*,
and is (w, €)-dual if

0 if ¢ 75 Wi,

d(vg,ve) =< 1 ifl=wy#k, forall k,¢e N~

Ek if £ = WE = k
Set O(w,e) := {Fo(v) : v is (w,e)-conjugate}, Oy, ) = {Fs(v) : v is (w,e)-dual}.
Notation. (a) Note that every subspace in the generalized flag F, is d-stable, i.e.,
(F,) = Fy. The map X — X, F — §(F) is well defined.
(b) Write F' = {z € V: ¢(x,y) =0Vy € F} and F' := {FT : F € F}, which is a
generalized flag weakly compatible with E whenever F is so.

As in Section 4.1 we write (A*, <*) for the totally ordered set such that A* = A
and a <* a’ whenever a = a’. It is readily seen that | = F,+ where of : N* —
(A*, <*) is such that of(£) = o(¢) for all £ € N*, and we get a well-defined map

X — X' :=X(F,t,E), F Fl.
(c) We write Oy, := (0., ), and O], := (0, 4)w so that

XxX=|] 0, and XIxX= || O],
WES o wWES

(see Proposition 2).
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Proposition 8. (a) For every (w,e) € Joo(Ny, N_) we have
O (w,e) MO (w,e) = {Fo(v) : v is (w,e)-conjugate and (w,e)-dual} # 0.

(b) Let (w,e) € Joo (N4, N_) and F = {F,,F}/ :a € A} € X. Then F € O, )
(resp., F € Do) if and only if

(6(F),F) €0y (resp., (FI,F) €0},
and for all £ € N* the following condition holds:

1 ifo(we) < o(l) or (we,e) = (¢, £1),

. i / —
dim £ N Vi/FG(Z) NVy= { 0 otherwise

where Vo = (eg: £ € Ny)¢ (resp., for n € N* large enough
(1,1) ifo(we) < o(f),
) =

S0l 114) =062 Fyg OV 4 0 320 = (6,
(0,0) if o(we) = a(£),

where V,, = (e, : k < n)c and s(¢ : F
F/FNFT)

(c) The subsets Oy oy ((w,e) € Too(Ny, N_)) are exactly the K-orbits of X.
The subsets O () ((w,€) € TJoo(Ny,N_)) are exactly the G®-orbits of X.
Moreover O, oy N O (y,e) 5 a single KN GO-orbit.

~

stands for the signature of ¢ on

4.3. Types B, C, D. Assume that V is endowed with a nondegenerate symmetric
or symplectic form w, determined by a matrix {2 as in (2). Let ¢ : N* — N* £ — ¢*
satisfy w(eg, ep+) # 0 for all £.

Let N* = N4 U N_ be a partition such that N, N_ are either both (-stable
or such that ¢(Ny) = N_. As before, let ¢ and ¢ be the hermitian form and the
involution of V corresponding to this partition. The following table summarizes
the different cases.

w symmetric w symplectic
e=1 e=—1
L(qu;lclNi type BD1 type C2
Lu:;i_)ileF type D3 type Cl1

Let J2¢(Ny, N_) C J5(N4, N_) be the subset of pairs (w, €) such that
(i) tw = we (hence the set {£ : wy = £} is t-stable);
(ii) e,k) = nex for all k € {£: wy = £};
and if ne = —1:
(iii) wg # (k) for all k € N*.
Let F, be an w-isotropic maximal generalized flag compatible with . Thus
o : N* — (A, <) is a bijection onto a totally ordered set (A, <) endowed with
an (involutive) antiautomorphism of ordered sets 14 : (A, <) — (A, <) such that
ot = 140. The following statement shows that the K-orbits and the GC-orbits

of the ind-variety X,, := X, (Fy, E) are parametrized by the elements of the set
(N, N-).
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Proposition 9. We consider bases v = (v1,vs,...) of V such that
(34) w(vg,ve) Z0  if and only if €= (k).
(a) For every (w,e) € JL (N4, N_) we have
(97(7575) = Ou,e) N Xy = {Fs(v) : v is (w, €)-conjugate and satisfies (34)} # 0,

O =D o) N Xy = {Fo(v) : v is (w,e)-dual and satisfies (34)} # 0,

(w,e)
O?uf 9N }D?we o = {Fo(v) 1 v is (w, &)-conjugate, (w,e)-dual and satisfies (34)} # 0.

(b) The subsets (’)’gwE o ((w,€) € TL(N4, N_)) are exactly the K-orbits of X.,.
The subsets D¢ . (w,e) € ILE(Ny,N_)) are exactly the GY-orbits of

(w,e)
X,,. Moreover 01(77; 9N )37(77; o) s a single KN G- orbit.

4.4. Ind-variety structure. In this section we recall from [4] the ind-variety struc-
ture on X and X,,.

Recall that E = (e, ez,...) is a countable ordered basis of V. Fix an E-
compatible maximal generalized flag F, corresponding to a bijection o : N* —
(A, <) onto a totally ordered set, and let X = X(F,, E).

Let V,, := (e1,...,en)c and let X,, denote the variety of complete flags of V,
defined as in (6). There are natural inclusions V,, C V41, and

(35) GL(Vy) = {g € GL(Vit1) : 9(Va) = Vi, g(€n+1) = ent1} C GL(Viya) -
We define a GL(V},)-equivariant embedding
tn = tn(0) : Xn = Xny1, (Fi)i=o — (FI;)ZI(%

by letting
I :{Fk ifag <o(n+1)

k- Fk—1@<en+1>C if ay, t(f(ﬂ#*].)
where a1 < as < ... < an+1 are the elements of the set {c(¢) : 1 < ¢ < n+ 1}
written in increasing order. Therefore, we get a chain of embeddings (which are
morphisms of algebraic varieties)

ln—1 ln41

ey Xl = chanH — e
and X is obtained as the direct limit

X = X(F,,E) = lim X,,.
—

In particular, for each n we get an embedding i, : X,, — X and up to identifying
X, with its image by this embedding we can view X as the union X = J,,~; Xn.
Every generalized flag F € X belongs to all X,, after some rank nr. For instance
Fy € X, for alln > 1.

A basis v = (v1,...,v,) of V,, can be completed into the basis of V denoted by
D:= (V1. Uny€ntl,€nta,-...), and we have
(36) in(F(vrysoy05,)) = Fo(D)
(using the notation of Sections 2.2-2.3) where 7 = 7(") € &,, is the permutation
such that O’(Tl(n)) <= O’(T7(Ln)).

Recall that the ind-topology on X is defined by declaring a subset Z C X open
(resp., closed) if every intersection Z N X,, is open (resp., closed).

Clearly the ind-variety structure on X is not modified if the sequence (X, tn)n>1
is replaced by a subsequence (Xnk,b;c)k21 where L;C = Ly, —10°° Olp,.
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In type A3 (using the notation of Section 2.1) the subspace V;, C V is endowed
with the restrictions of ¢ and &, hence we can define K,,, G C GL(V},) as in Section
3.2, with the condition that the inclusion of (35) restricts to natural inclusions
K, CKpy1and G2 C GY ;.

Next assume that the space V is endowed with a nondegenerate symmetric or
symplectic form w determined by the matrix {2 of (2). The blocks Ji, Ja, ... in the
matrix {2 are of size 1 or 2. We set ny := |J1| + ... + |Jg| so that the restriction
of w to each subspace V,,, is nondegenerate. Hence in types Al, A2, BD1, C1, C2,
and D3 we can define the subgroups K, ,G% C GL(V,,) as in Section 3, and so
that (35) yields natural inclusions

K, CK, and sz c @GO

k+1 Ng4+1°

Moreover, the subvariety (X, )., C Xp, of isotropic flags (with respect to w)
can be defined as in (7). Assuming that the generalized flag F, is w-isotropic, the
embedding ¢}, : X, — X maps (X, ), into (X, ., ). and we have

Nkg+1

X, = X, (F,, E) = U (Xpn,)o and (X, )e =X, NX,, forall k> 1.

k>1

In particular, X, is a closed ind-subvariety of X (as stated in Proposition 3).
4.5. Proofs.

Proof of Proposition 7. Let F = {F.,F) : a € A} = F,(v) for a basis v =
(v1,v2,...) of V. Let w € TS (¢). If the basis v is w-dual, then

(F))Y = (v : o(wg) = a)e and  (F/): = (vg : o(wy) = a)c,
hence F+ = F,1,,(v); this yields (F+,F) € OL,. If v is w-conjugate, then

Y(FY) = (v : o(we) < a)c and  y(FY) = (vy: o(wye) < a)c,

whence v(F) = Fpu(v) and (y(F),F) € OF,. This proves the inclusions C in
Proposition 7 (b). Note that these inclusions imply in particular that the subsets
O, as well as ©O,,, are pairwise disjoint.

For w € 77, we define w : N* — N* by letting

o TwrTH ) if 4 < ny,
w(g)_{ L(0) if 0>y + 1
where 7 = 7(") = {1,...,nx} — {1,...,ns} is the permutation such that o(7y) <

... < 0(m,). It is easy to see that we obtain a well-defined (injective) map ji :
T, — 3¢ (1), Jr(w) := W, and

(37) 35.(0) = | 3k (35,)-
k>1

Moreover, given a basis v = (v1,...,v,, ) of V,,, and the basis © of V obtained by
adding the vectors ey for £ > ny + 1, the implication

(38) (Ury, -+ -5 Vg, ) is w-dual (resp., w-conjugate)
= ¢ is w-dual (resp., W-conjugate)

clearly follows from our constructions. Note that

(39) O;NX,, =0, and Ou;NX,, =9,
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where O,,, O,, C X,,, are the orbits from Definition 4; indeed, the inclusions D in
(39) are implied by (36) and (38), whereas the inclusions C follow from Proposition
4 (c) and the fact that the subsets Oy, as well as Oy, are pairwise disjoint. Parts
(a) and (c) of Proposition 7 now follow from (37)—(39) and Proposition 4 (a), (c).
By Proposition 7 (a) we deduce that equalities hold in Proposition 7 (b), and the
proof is complete. O

Proof of Proposition 8. For every n > 1 we set p, = [Ny N{1,...,n}| and ¢, =
IN_N{1,...,n}.

Let F = {F.,F! :a € A} = F,(v) for some basis v = (v1,vq,...) of V. Let

(w,€) € Too (N4, N_). If v is (w, €)-conjugate, then
S(F)) = (v :o(we) <a)e and §(F)) = (ve: o(we) < a)c
so that (§(F),F) = (Fow(v), Fo(v)) € Q. In addition,

(Z) ﬂV+/F ﬁ V.= <vg><c, H([) NV_ = F/(é) NV_ if (wg,{:‘g) = (€,+1),
F(/I/(Z) ﬂV,/FU(Z) NV_ = (v)c, F ( ) NV, = ( ) NV, if (we,e0) = (¢, -1),
F!(Z) ﬂV+/F(;(e) N V+ = <'U£ + Uw[>c,

F”(Z)QV,/F/ z)ﬂV,=<Ug—’Uw/>(C ifU(’er)-<(7(f)7

(Z) ﬂV+ = (@) ﬂV+, F”(@) ﬂV+ = (@) ﬂV+ if O'(’wg) - U(é),

which proves the formula for dim F ,, "'V1/F] )NV stated in Proposition 8 (b).
If v is (w,€)-dual, then we get similarly

(F))' = (vg: o(we) = a)e and (F/)' = (vy: o(wy) > a)c
Hence (F', F) = (Ft(v), Fy(v)) € Of . Forn > 1 large enough we have (wy,&¢) =

(6, £1) forall L e NyN{n+1,n+2,...} and vy = e, for all £ > n + 1. Thus the
pair (W, €) := (wl{1,... .n},€l{1,...,n}) belongs to Ty, (pn, ¢n) whereas by (36) we have

F=F(r,-.,0r,).

The basis (vry,...,v,,) of V,, is (7717, &7)-dual if v is (w,e)-dual; the last for-

mula in Proposition 8 (b) now follows from Proposition 5 (b) and this observation.

Altogether this shows the “only if” part in Proposition 8 (b), which guarantees

in particular that the subsets O, ., as well as the subsets O, ), are pairwise

disjoint. The “if” part of Proposition 8 (b) follows once we show Proposition 8 (a).
For (w,€) € 3,,(pn, qn) we set

o TwrTH ) if £ <, .
(40) w(f)—{é 0> a1 for all £ € N*,

where 7 = 7(") € &,, is as in (36), and

er 1(0) if ¢ <n,
(41) El)=< 1 ifl>n+1,ne Ny,
-1 if¢>n+1,ne N_

for all £ € N* such that w, = ¢. It is easy to check that (,é) € Joo (N4, N_), and
that the so obtained map j, : J, (pn, Gn) = Joo (N4, N_) is injective and

Joo(N4, N. U Jn(Tn(Prs qn))-

n>1
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Moreover, it follows from our constructions that, given a basis v = (v1,...,v,) of
V,, and the basis © of V obtained by adding the vectors e, for £ > n + 1, we have:

(Urys ..., 0, ) is (w,€)-conjugate (resp., dual)
= 0 is (W, £&)-conjugate (resp., dual).

As in the proof of Proposition 7 we derive the equalities

(42) O(ﬁ)7é) nxX,= O(w,e) and D(Ug7g) NnxX,= D(w,e)
where O(y,e), O(w,e) C Xp are as in Definition 5. Parts (a) and (c) of Proposition
8 then follow from Proposition 5 (a) and (c). O

Proof of Proposition 9. Let n € {ni,ne,...} (where ng, = [J1|+...+|J;| as before)
and (pn,qn) = (|N+ 0 {1,...,n},|IN_n{1,...,n})) and let 7 = 7" : {1,...,n} —
{1,...,n} be the permutation such that o(m1) < ... < (7). Since the generalized
flag F, is w-isotropic, we must have

(1¢) = Tp—es1 forallle{1,...,n}.

This observation easily implies that the map j, defined in the proof of Proposition
8 restricts to a well-defined injective map
jn : 72’6(1%7 Qn) - jgée(N-H N—)

such that

I (N, N2) = | i (T2 (P @)
k>1

By (42) for (w0,€) = jn(w,e) we get
(43) Ol N(Xn)w =00 and O N (Xn)w =00

(w,e)’

Proposition 9 easily follows from this fact and Proposition 6. O

5. COROLLARIES

Corollary 1. The duality map Z from Theorem 1(b) depends only on the choice
of G, B, K and G°, but not on the particular choice of ordered basis E used to
construct G, B, K, and G° as above. In particular, = does not depend on the
exhaustion X = J,,~,; Xn determined by E and referred to in Theorem 1(b).

Proof. The statement follows immediately from the commutativity of diagram (1)

and from the observation that for any two exhaustions X = (J,,»; X, and X =

Un>1 X5, and any ng and ng, there are nq and nf such that X,,, U X;L() C Xp, and

XnUX), CX/,. O
0 1

Our second corollary states that the parametrization of K- and GP-orbits on
G/B depends in fact only on the triple (G, K, G’) and not on the choice of the
ind-variety G/B.

Corollary 2. Let E,G,K,G° be as in Section 2.1. Let Fo; (7 = 1,2) be two
E-compatible mazximal generalized flags, which are w-isotropic in types B,C,D, and
let X; = G/B}}j- Then there are natural bijections

X, /K=2X,/K and X;/G°=X,/G°

which commute with the duality of Theorem 1.
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Next, a straightforward counting of the parameters yields:
Corollary 3. In Corollary 2 the orbit sets X;/K and X;/G° are always infinite.

It is important to note that, despite Corollary 2, the topological properties of
the orbits on G/B are not the same for different choices of Borel ind-subgroups
B C G. The following corollary establishes criteria for the existence of open and
closed orbits on G/B = X (F,, E).

Corollary 4. Let E,G,K,G° be as in Section 2.1, and let F, be an E-compatible
mazimal generalized flag, w-isotropic in types B,C,D, where o : N* — (A, <) is a
bijection onto a totally ordered set. Let X = G/Bx,; i.e., X = X(Fy, E) in type
A and X = X, (Fo, E) in types B,C,D.

(a1) In type A1, X has an open K-orbit (equivalently, a closed G°-orbit) if and
only if L() = € for all £ > 1 (i.e., if the matriz 2 of (2) contains finitely
many diagonal blocks of size 2).

(ag) In type A2, X has an open K-orbit (equivalently, a closed G-orbit) if and
only if for all € > 1 the elements o(2¢ — 1), 0(2¢) are consecutive in A and
the number [{k < 20 —1:0(k) < o(2¢ —1)}| is even.

(aly) In types A1 and A2, X has at most one closed K-orbit (equivalently, at
most one open GY-orbit). X has a closed K-orbit (equivalently, an open
GP-orbit) if and only if X contains w-isotropic generalized flags. This latter
condition is equivalent to the existence of an involutive antiautomorphism
of ordered sets v : (A, <) = (A, <) such that tao(£) = ou({) for all £ >> 1.

(ag) In type A3, X has always infinitely many closed K-orbits (equivalently,
infinitely many open GY-orbits). X has an open K-orbit (equivalently, a
closed GY-orbit) if and only if d := min{|N|,|N_|} < oo and F, contains
a d-dimensional and a d-codimensional subspace.

(bed) In types B,C,D, X has always infinitely many closed K-orbits (equivalently,
infinitely many open GC-orbits). In types C1 and D3, X has never an
open K-orbit (equivalently, no closed G%-orbit). In types BD1 and C2,
X has an open K-orbit (equivalently, a closed G°-orbit) if and only if
d := min{|N4|,|N_|} < 00 and F, contains a d-dimensional subspace (or
equivalently it has a d-codimensional subspace).

Proof. This follows from Remarks 4 and 5, Propositions 7, 8, 9, and relations (39),
(42), (43). (]

Corollary 5. The only situation where X has simultaneously open and closed K-
orbits (equivalently, open and closed G°-orbits) is in types A3, BD1, C2, in the
case where d ;= min{|Ny|,|N_|} < oo and F, contains a d-dimensional and a
d-codimensional subspace.
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