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Formulation of the problem

Let
I G0 – connected real semisimple Lie group with finite center;
I K0 – a maximal compact subgroup of G0;
I T0 – a maximal torus in K0;
I g, k and t – complexified Lie algebras of G0, K0 and T0

respectively.
We assume that G0 and K0 have equal rank, i.e., T0 is a compact
Cartan subgroup of G0.
Let

I b – a Borel subalgebra containing t;
I n = [b, b] - nilpotent radical of b.



Let V be an irreducible Harish-Chandra module for G0. Then the
Lie algebra homology Hp(n,V ), 0 ≤ p ≤ dim n, are
finite-dimensional representations of T0.
Let

I R – the root system of (g, t) in t∗;
I R+ – the set of positive roots such that their root subspaces

span n;
I ρ – half-sum of roots in R+;
I W – the Weyl group of R .

Then, by a result of Casselman-Osborne, we have

Hp(n,V ) =
⊕
w∈W

Hp(n,V )(wλ+ρ)

for some λ ∈ t∗. Hence, one has to determine just
dimHp(n,V )(wλ+ρ) for w ∈W and p ∈ Z+.



Special cases
I If G0 is compact and V a finite-dimensional representation,

this is a famous result of Kostant;
I if V is a discrete series representation, this is a result of

Schmid;
I if V is a nondegenerate limit of discrete series, Williams

observed that Schmid’s argument still works;
I if n is holomorphic, and V arbitrary limit of discrete series,

Mirković proved that n-homology vanishes;
I Soergel published a proof of a result for arbitrary limits of

discrete series, but his published proof is incorrect.

We are going to discuss ongoing joint work with Wilfried Schmid on
n-homology of limits of discrete series. Since the theme of this
conference is geometric, we will discuss the approach based on
D-module theory, which should contain all above results as special
cases.
This work was inspired by a question by Phillip Griffiths to Schmid.



Localization of modules

Let
I U(g) – the enveloping algebra of g;
I Z(g) – the center of U(g).

Let X be the flag variety of g, i.e., the variety of all Borel
subalgebras of g. Then X is a smooth projective variety.
For any x ∈ X we denote by bx the corresponding Borel subalgebra
in g.
Let B be the vector subbundle of the trivial bundle X × g over X
such that the fiber over x is equal to {x} × bx .
Let nx = [bx , bx ] and N the vector subbundle of B such that the
fiber over x is equal to {x} × nx .
The vector bundle B/N is trivial, therefore it has the form X × h.
We call h the abstract Cartan algebra of g.



Let x ∈ X . Let c be a Cartan subalgebra of g such that c ⊂ bx .
Then we have the natural isomorphism c −→ h. The dual map
h∗ −→ c∗ is called the specialization at x .
There exists a reduced root system Σ in h∗ which by specialization
corresponds to the root system of the pair (g, c).
Also, there exists a set of positive roots Σ+ in Σ such that the span
of root subspaces for the corresponding positive roots of (g, c)
spans nx .
The pair (Σ,Σ+) is independent of the choice of x . We call Σ the
abstract root system of g.
Let W be the Weyl group of Σ.



Harish-Chandra homomorphism γ : Z(g) −→ S(h) establishes an
isomorphism of Z(g) with the Weyl group invariants S(h)W of
S(h).
We can view elements of S(h)W as W -invariant polynomials on h∗.
Therefore, to any orbit θ of W in h∗ we attach a unique maximal
ideal Iθ of Z(g) which corresponds to invariant polynomials which
vanish on θ. We put

Uθ = U(g)/IθU(g).

Denote byM(Uθ) the category of Uθ-modules.



Beilinson and Bernstein constructed a family Dλ, λ ∈ h∗, of twisted
sheaves of differential operators on X together with natural
homomorphisms U(g) −→ Γ(X ,Dλ) which induce isomorphisms

Uθ = Γ(X ,Dλ)

for θ = W · λ.
Denote byM(Dλ) the category of (quasicoherent) Dλ-modules.
We define the functors

M(Dλ)
Γ(X ,−)

--M(Uθ)
∆λ

mm

where Γ(X ,−) is the functor of global sections and

∆λ(V ) = Dλ ⊗Uθ V

for a module V inM(Uθ).
The functor ∆λ is called the localization at λ. The functor ∆λ is a
left adjoint of Γ(X ,−).



Let Σˇbe the dual root system of Σ. Let αˇbe the dual root of α.
We say that λ ∈ h∗ is antidominant if α (̌λ) /∈ {1, 2, . . . } for all
α ∈ Σ+.
We say that λ ∈ h∗ is regular if α (̌λ) 6= 0 for any α ∈ Σ.

Theorem (Equivalence of Categories)
Let λ ∈ h∗ be antidominant and regular. Then the functors

M(Dλ)
Γ(X ,−)

--M(Uθ)
∆λ

mm

are (mutually quasi-inverse) equivalences of categories.
This is a vast generalization of the Borel-Weil theorem.



A formula for n-homology
The geometric fibers of the localization of a Uθ-module V are

Tx(∆λ(V )) = H0(nx ,V )(λ+ρ)

for any x ∈ X .
Let B be the Borel subgroup of Int(g) corresponding to b. The
Bruhat cells, i.e. B-orbits in X , are parametrized by the Weyl group
W .

I C (w) – the Bruhat cell attached to w ∈W ;
I ` : W −→ Z – the length function on W; we have

dimC (w) = `(w).
I iw : C (w) −→ X – the inclusion of C (w) into X ;
I πw : C (w) −→ {pt} – the projection of C (w) into a point.

The above formula translates in

H0(n,V )(λ+ρ) = i+1 (∆λ(V )).



This generalizes to

Lemma
Let λ be antidominant and regular. Let θ = W · λ. For any
Uθ-module V we have

Hp(n,V )(wλ+ρ) = H−p(πw ,+(Li+w (D(∆λ(V )))))

for all p ∈ Z.
Here,

I D :M(Dλ) −→ Db(Dλ) – the natural functor attaching to a
module U the complex which is U in degree 0 and 0 elsewhere;

I Li+w : Db(Dλ) −→ Db(DC(w)) – derived D-module inverse
image corresponding to iw ;

I πw ,+ : Db(DC(w)) −→ Db(C) – the D-module direct image of
πw .



An example

Let F be the irreducible finite-dimensional representation of g with
lowest weight λ. Then its infinitesimal character is χλ−ρ and

∆λ−ρ(F ) = O(λ).

We have
Li+w (D(O(λ))) = D(OC(w))

and
πw ,+(D(OC(w))) = D(C)[`(w)].

Hence, we have

Hp(n,F )(w(λ−ρ)+ρ) =

{
C if p = `(w);

0 if p 6= `(w).

for any w ∈W . This is the theorem of Kostant.



The n-homology of discrete series

Now we discuss the case of discrete series. Let
I K – complexification of K0. Acts on X with finitely many

orbits.
Let λ be antidominant and regular. Let

I Q – a closed orbit of K in X ;
I τ – an irreducible K -equivariant connection on Q compatible

with λ+ ρ;
I iQ : Q −→ X – the inclusion of Q into X ;
I I(Q, τ) = iQ,+(τ) – the standard Harish-Chandra sheaf on Q

– D-module direct image of τ .
Localizations of discrete series with infinitesimal character χλ are
exactly standard Harish-Chandra sheaves I(Q, τ).



Let x ∈ Q. Then bx ∩ k is a Borel subalgebra of k.
The map x 7−→ bx ∩ k is an isomorphism of the orbit Q and the
flag variety XK of k.
Let BK be the subgroup of B corresponding to the Borel
subalgebra b ∩ k.
A root α ∈ R is called compact, if the root subspace corresponding
to it is in k. Compact roots form a root subsystem of the root
system R .

I WK – the Weyl group of K , i.e., the subgroup of W generated
by compact reflections;

I `K : WK −→ Z – the length function on WK ;
I CK (w) – Bruhat cell, i.e., BK -orbit in XK corresponding to

w ∈WK ;
I DQ(w) – the corresponding BK -orbit in Q under above

K -equivariant isomorphism.



Clearly, for any w ∈W , Q ∩ C (w) is BK -invariant. Hence it is
either empty or a union of DQ(v).

Lemma (Geometric Lemma)
There exists v ∈W such that Q ∩ C (v) = DQ(1).
Moreover, we have

DQ(w) = Q ∩ C (wv)

for all w ∈WK .
This allows the calculation of n-homology for the discrete series
representation V = Γ(X , I(Q, τ)).



Theorem (Schmid)
We have

Hp(n,V )(uλ+ρ) = 0

if u /∈WKv .
For w ∈WK , we have

Hp(n,V )(wvλ+ρ) =

{
0 if p 6= dimX − dimXK − `(wv) + 2`K (w);

C if p = dimX − dimXK − `(wv) + 2`K (w).

If G0 is compact this result specializes to the result of Kostant.
We see that the homology classes correspond to the elements of
WK . We want a geometric explanation of this.



Trauber resolution
Let

I NK – the unipotent radical of BK .
Then DQ(w) admits unique irreducible NK -equivariant connection
ODQ(w).

I J (w , λ) – the standard Dλ-module attached to DQ(w);
I WK (q) – the subset of WK consisting of elements of length
`K (w) = q.

The Cousin resolution of I(Q, τ) is a complex D· such that

Dp =
⊕

w∈WK (dimQ−p)

J (w , λ)

for any 0 ≤ p ≤ dimXK , with explicitly given differentials.
In Db(Dλ), the complex D(I(Q, τ)) is isomorphic to

· · · → 0→ D0 → D1 → · · · → DdimXK → 0→ . . .



Since the functor Γ is exact for antidominant λ, D · = Γ(X ,D·) is
isomorphic to D(V ) in Db(Uθ), i.e., we get a resolution of V by
modules Dp, 0 ≤ p ≤ dimXK .
This is the Trauber resolution of the discrete series V .
If G0 is compact, this is just the dual of the BGG-resolution of an
irreducible finite-dimensional representation.
Put

I J(w , λ) = Γ(X ,J (w , λ)) for any w ∈WK .
Then we have

Lemma
Let λ be an antidominant and regular. Then

Hp(n, J(w , λ)) =

{
Cwvλ+ρ if p = dimX − `(wv) + `K (w);

0 if p 6= dimX − `(wv) + `K (w).



Therefore, the n-homology of V is given by the hypercohomology
of the n-homology functor for the complex D ·. Since λ is regular,
all weights wvλ+ ρ, for w ∈WK , are different. Hence, all
differentials in E 1 term of the hypercohomology spectral sequence
for D · vanish — the spectral sequence collapses. This immediately
implies Schmid’s theorem.
Moreover, this calculation shows that each module J(w , λ) in the
Trauber resolution contributes exactly one cohomology class in
n-homology of V .



Limits of discrete series

If λ is singular but still antidominant, the Trauber resolution D · is
still a resolution of the limits of discrete series V . Since the
n-homology of each summand J(w , λ) in Dq for regular λ is
concentrated in one degree and one-dimensional, the tensoring
spectral sequence collapses. This implies that n-homology is
concentrated in one degree and one-dimensional even in singular
case.
If λ is WK -regular, the n-homologies of Dq have different weights
for different q. Hence the above argument still works. This implies
that Schmid’s result holds in this case too. This is the result of
Williams.
If λ is not WK -regular, the differentials in E 1 term can be
nontrivial. Still, the complex has additional structure which could
lead to a precise result in general.



The example of SU(2, 1)
I G0 = SU(2, 1);
I K = GL(2,C).

Three closed orbits – three families of discrete series.

I holomorphic;
I antiholomorphic;
I nonholomorphic.

For first two and third for λ 6= 0, we have only nondegenerate limits
of discrete series.
The third one has a degenerate discrete series for λ = 0. This is
also the corresponding spherical principal series.
Pick n so that b is in Q (other two choices correspond to
holomorphic n).
In this case, the positive compact root γ is not simple.

Q = DQ(1) ∪ DQ(sγ).



Trauber resolution:

0→ V → J(sγ , 0)→ J(1, 0)→ 0.

We get

Hp(n, J(1, 0)) =

{
0 for p 6= 3;

Cγ for p = 3,

and

Hp(n, J(sγ , 0)) =

{
0 for p 6= 1;

Cγ for p = 1.

Using long exact sequence of n-homology we get

H0(n,V ) = H3(n,V ) = 0 and H1(n,V ) = H2(n,V ) = Cγ .

This was found by Carayol by brutal computation.
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