Geometry, n-homology and (limits of) discrete series

Dragan Miličić

Department of Mathematics University of Utah

Jacobs University Bremen June 16-18, 2014

Formulation of the problem

Let

- $ightharpoonup G_0$ connected real semisimple Lie group with finite center;
- ▶ K_0 a maximal compact subgroup of G_0 ;
- ▶ T_0 a maximal torus in K_0 ;
- ▶ \mathfrak{g} , \mathfrak{t} and \mathfrak{t} complexified Lie algebras of G_0 , K_0 and T_0 respectively.

We assume that G_0 and K_0 have equal rank, i.e., T_0 is a compact Cartan subgroup of G_0 .

Let

- ▶ b a Borel subalgebra containing t;
- $\mathfrak{n} = [\mathfrak{b}, \mathfrak{b}]$ nilpotent radical of \mathfrak{b} .

Let V be an irreducible Harish-Chandra module for G_0 . Then the Lie algebra homology $H_p(\mathfrak{n},V)$, $0 \le p \le \dim \mathfrak{n}$, are finite-dimensional representations of T_0 .

Let

- ▶ R the root system of (g, t) in t*;
- ► R⁺ the set of positive roots such that their root subspaces span n;
- ho half-sum of roots in R^+ ;
- ▶ W the Weyl group of R.

Then, by a result of Casselman-Osborne, we have

$$H_p(\mathfrak{n}, V) = \bigoplus_{w \in W} H_p(\mathfrak{n}, V)_{(w\lambda + \rho)}$$

for some $\lambda \in \mathfrak{t}^*$. Hence, one has to determine just $\dim H_p(\mathfrak{n}, V)_{(w\lambda + \rho)}$ for $w \in W$ and $p \in \mathbb{Z}_+$.

Special cases

- ▶ If G_0 is compact and V a finite-dimensional representation, this is a famous result of Kostant;
- if V is a discrete series representation, this is a result of Schmid;
- if V is a nondegenerate limit of discrete series, Williams observed that Schmid's argument still works;
- ▶ if n is holomorphic, and V arbitrary limit of discrete series, Mirković proved that n-homology vanishes;
- Soergel published a proof of a result for arbitrary limits of discrete series, but his published proof is incorrect.

We are going to discuss ongoing joint work with Wilfried Schmid on \mathfrak{n} -homology of limits of discrete series. Since the theme of this conference is geometric, we will discuss the approach based on D-module theory, which should contain all above results as special cases.

This work was inspired by a question by Phillip Griffiths to Schmid.

Localization of modules

Let

- ▶ $\mathcal{U}(\mathfrak{g})$ the enveloping algebra of \mathfrak{g} ;
- $\mathcal{Z}(\mathfrak{g})$ the center of $\mathcal{U}(\mathfrak{g})$.

Let X be the flag variety of \mathfrak{g} , i.e., the variety of all Borel subalgebras of \mathfrak{g} . Then X is a smooth projective variety.

For any $x \in X$ we denote by \mathfrak{b}_x the corresponding Borel subalgebra in \mathfrak{g} .

Let \mathcal{B} be the vector subbundle of the trivial bundle $X \times \mathfrak{g}$ over X such that the fiber over x is equal to $\{x\} \times \mathfrak{b}_x$.

Let $\mathfrak{n}_x = [\mathfrak{b}_x, \mathfrak{b}_x]$ and \mathcal{N} the vector subbundle of \mathcal{B} such that the fiber over x is equal to $\{x\} \times \mathfrak{n}_x$.

The vector bundle \mathcal{B}/\mathcal{N} is trivial, therefore it has the form $X \times \mathfrak{h}$. We call \mathfrak{h} the abstract Cartan algebra of \mathfrak{g} .

Let $x \in X$. Let $\mathfrak c$ be a Cartan subalgebra of $\mathfrak g$ such that $\mathfrak c \subset \mathfrak b_x$. Then we have the natural isomorphism $\mathfrak c \longrightarrow \mathfrak h$. The dual map $\mathfrak h^* \longrightarrow \mathfrak c^*$ is called the *specialization* at x.

There exists a reduced root system Σ in \mathfrak{h}^* which by specialization corresponds to the root system of the pair $(\mathfrak{g},\mathfrak{c})$.

Also, there exists a set of positive roots Σ^+ in Σ such that the span of root subspaces for the corresponding positive roots of $(\mathfrak{g},\mathfrak{c})$ spans \mathfrak{n}_x .

The pair (Σ, Σ^+) is independent of the choice of x. We call Σ the abstract root system of \mathfrak{g} .

Let W be the Weyl group of Σ .

Harish-Chandra homomorphism $\gamma: \mathcal{Z}(\mathfrak{g}) \longrightarrow S(\mathfrak{h})$ establishes an isomorphism of $\mathcal{Z}(\mathfrak{g})$ with the Weyl group invariants $S(\mathfrak{h})^W$ of $S(\mathfrak{h})$.

We can view elements of $S(\mathfrak{h})^W$ as W-invariant polynomials on \mathfrak{h}^* . Therefore, to any orbit θ of W in \mathfrak{h}^* we attach a unique maximal ideal I_θ of $\mathcal{Z}(\mathfrak{g})$ which corresponds to invariant polynomials which vanish on θ . We put

$$\mathcal{U}_{\theta} = \mathcal{U}(\mathfrak{g})/I_{\theta}\mathcal{U}(\mathfrak{g}).$$

Denote by $\mathcal{M}(\mathcal{U}_{\theta})$ the category of \mathcal{U}_{θ} -modules.

Beilinson and Bernstein constructed a family \mathcal{D}_{λ} , $\lambda \in \mathfrak{h}^*$, of twisted sheaves of differential operators on X together with natural homomorphisms $\mathcal{U}(\mathfrak{g}) \longrightarrow \Gamma(X, \mathcal{D}_{\lambda})$ which induce isomorphisms

$$\mathcal{U}_{\theta} = \Gamma(X, \mathcal{D}_{\lambda})$$

for $\theta = W \cdot \lambda$.

Denote by $\mathcal{M}(\mathcal{D}_{\lambda})$ the category of (quasicoherent) \mathcal{D}_{λ} -modules. We define the functors

$$\mathcal{M}(\mathcal{D}_{\lambda})$$
 $\xrightarrow{\Gamma(X,-)}$ $\mathcal{M}(\mathcal{U}_{\theta})$

where $\Gamma(X, -)$ is the functor of global sections and

$$\Delta_{\lambda}(V) = \mathcal{D}_{\lambda} \otimes_{\mathcal{U}_{\theta}} V$$

for a module V in $\mathcal{M}(\mathcal{U}_{\theta})$.

The functor Δ_{λ} is called the *localization at* λ . The functor Δ_{λ} is a left adjoint of $\Gamma(X, -)$.

Let Σ be the dual root system of Σ . Let α be the dual root of α . We say that $\lambda \in \mathfrak{h}^*$ is antidominant if α $(\lambda) \notin \{1, 2, ...\}$ for all $\alpha \in \Sigma^+$.

We say that $\lambda \in \mathfrak{h}^*$ is regular if $\alpha \check{}(\lambda) \neq 0$ for any $\alpha \in \Sigma$.

Theorem (Equivalence of Categories)

Let $\lambda \in \mathfrak{h}^*$ be antidominant and regular. Then the functors

$$\mathcal{M}(\mathcal{D}_{\lambda})$$
 $\xrightarrow{\Gamma(X,-)}$ $\mathcal{M}(\mathcal{U}_{\theta})$

are (mutually quasi-inverse) equivalences of categories. This is a vast generalization of the Borel-Weil theorem.

A formula for n-homology

The geometric fibers of the localization of a $\mathcal{U}_{ heta}$ -module V are

$$T_{\mathsf{x}}(\Delta_{\lambda}(V)) = H_0(\mathfrak{n}_{\mathsf{x}},V)_{(\lambda+\rho)}$$

for any $x \in X$.

Let B be the Borel subgroup of $Int(\mathfrak{g})$ corresponding to \mathfrak{b} . The Bruhat cells, i.e. B-orbits in X, are parametrized by the Weyl group W.

- ▶ C(w) the Bruhat cell attached to $w \in W$;
- ▶ $\ell: W \longrightarrow \mathbb{Z}$ the *length function* on W; we have dim $C(w) = \ell(w)$.
- ▶ $i_w : C(w) \longrightarrow X$ the inclusion of C(w) into X;
- ▶ $\pi_w : C(w) \longrightarrow \{pt\}$ the projection of C(w) into a point.

The above formula translates in

$$H_0(\mathfrak{n}, V)_{(\lambda+\rho)} = i_1^+(\Delta_{\lambda}(V)).$$

This generalizes to

Lemma

Let λ be antidominant and regular. Let $\theta = W \cdot \lambda$. For any \mathcal{U}_{θ} -module V we have

$$H_p(\mathfrak{n}, V)_{(w\lambda+\rho)} = H^{-p}(\pi_{w,+}(Li_w^+(D(\Delta_\lambda(V)))))$$

for all $p \in \mathbb{Z}$.

Here,

- ▶ $D: \mathcal{M}(\mathcal{D}_{\lambda}) \longrightarrow D^b(\mathcal{D}_{\lambda})$ the natural functor attaching to a module \mathcal{U} the complex which is \mathcal{U} in degree 0 and 0 elsewhere;
- ► $Li_w^+: D^b(\mathcal{D}_\lambda) \longrightarrow D^b(\mathcal{D}_{C(w)})$ derived D-module inverse image corresponding to i_w ;
- $\pi_{w,+}: D^b(\mathcal{D}_{C(w)}) \longrightarrow D^b(\mathbb{C})$ the D-module direct image of π_w .

An example

Let F be the irreducible finite-dimensional representation of $\mathfrak g$ with lowest weight λ . Then its infinitesimal character is $\chi_{\lambda-\rho}$ and

$$\Delta_{\lambda-\rho}(F)=\mathcal{O}(\lambda).$$

We have

$$Li_w^+(D(\mathcal{O}(\lambda))) = D(\mathcal{O}_{C(w)})$$

and

$$\pi_{w,+}(D(\mathcal{O}_{C(w)})) = D(\mathbb{C})[\ell(w)].$$

Hence, we have

$$H_p(\mathfrak{n},F)_{(w(\lambda-\rho)+\rho)} = \begin{cases} \mathbb{C} & \text{if } p = \ell(w); \\ 0 & \text{if } p \neq \ell(w). \end{cases}$$

for any $w \in W$. This is the theorem of Kostant.

The n-homology of discrete series

Now we discuss the case of discrete series. Let

▶ K – complexification of K_0 . Acts on X with finitely many orbits.

Let λ be antidominant and regular. Let

- \triangleright Q a closed orbit of K in X;
- τ an irreducible K-equivariant connection on Q compatible with λ + ρ;
- ▶ $i_Q: Q \longrightarrow X$ the inclusion of Q into X;
- ▶ $\mathcal{I}(Q,\tau) = i_{Q,+}(\tau)$ the standard Harish-Chandra sheaf on Q D-module direct image of τ .

Localizations of discrete series with infinitesimal character χ_{λ} are exactly standard Harish-Chandra sheaves $\mathcal{I}(Q,\tau)$.

Let $x \in Q$. Then $\mathfrak{b}_x \cap \mathfrak{k}$ is a Borel subalgebra of \mathfrak{k} .

The map $x \longmapsto \mathfrak{b}_x \cap \mathfrak{k}$ is an isomorphism of the orbit Q and the flag variety X_K of \mathfrak{k} .

Let B_K be the subgroup of B corresponding to the Borel subalgebra $\mathfrak{b} \cap \mathfrak{k}$.

A root $\alpha \in R$ is called *compact*, if the root subspace corresponding to it is in \mathfrak{k} . Compact roots form a root subsystem of the root system R.

- ▶ W_K the Weyl group of K, i.e., the subgroup of W generated by compact reflections;
- ▶ $\ell_K : W_K \longrightarrow \mathbb{Z}$ the length function on W_K ;
- ▶ $C_K(w)$ Bruhat cell, i.e., B_K -orbit in X_K corresponding to $w \in W_K$;
- ▶ $D_Q(w)$ the corresponding B_K -orbit in Q under above K-equivariant isomorphism.

Clearly, for any $w \in W$, $Q \cap C(w)$ is B_K -invariant. Hence it is either empty or a union of $D_Q(v)$.

Lemma (Geometric Lemma)

There exists $v \in W$ such that $Q \cap C(v) = D_Q(1)$. Moreover, we have

$$D_Q(w) = Q \cap C(wv)$$

for all $w \in W_K$.

This allows the calculation of \mathfrak{n} -homology for the discrete series representation $V = \Gamma(X, \mathcal{I}(Q, \tau))$.

Theorem (Schmid)

We have

$$H_p(\mathfrak{n}, V)_{(u\lambda+\rho)}=0$$

if $u \notin W_K v$. For $w \in W_K$, we have

$$H_p(\mathfrak{n}, V)_{(wv\lambda+\rho)} = \begin{cases} 0 & \text{if } p \neq \dim X - \dim X_K - \ell(wv) + 2\ell_K(w); \\ \mathbb{C} & \text{if } p = \dim X - \dim X_K - \ell(wv) + 2\ell_K(w). \end{cases}$$

If G_0 is compact this result specializes to the result of Kostant. We see that the homology classes correspond to the elements of W_K . We want a geometric explanation of this.

Trauber resolution

Let

▶ N_K – the unipotent radical of B_K .

Then $D_Q(w)$ admits unique irreducible N_K -equivariant connection $\mathcal{O}_{D_Q(w)}$.

- ▶ $\mathcal{J}(w,\lambda)$ the standard \mathcal{D}_{λ} -module attached to $\mathcal{D}_{Q}(w)$;
- ▶ $W_K(q)$ the subset of W_K consisting of elements of length $\ell_K(w) = q$.

The *Cousin resolution* of $\mathcal{I}(Q, \tau)$ is a complex \mathcal{D} such that

$$\mathcal{D}^p = \bigoplus_{w \in W_K(\dim Q - p)} \mathcal{J}(w, \lambda)$$

for any $0 \le p \le \dim X_K$, with explicitly given differentials. In $D^b(\mathcal{D}_\lambda)$, the complex $D(\mathcal{I}(Q,\tau))$ is isomorphic to

$$\cdots \to 0 \to \mathcal{D}^0 \to \mathcal{D}^1 \to \cdots \to \mathcal{D}^{\dim X_K} \to 0 \to \cdots$$

Since the functor Γ is exact for antidominant λ , $D^{\cdot} = \Gamma(X, \mathcal{D}^{\cdot})$ is isomorphic to D(V) in $D^{b}(\mathcal{U}_{\theta})$, i.e., we get a resolution of V by modules D^{p} , $0 \leq p \leq \dim X_{K}$.

This is the *Trauber resolution* of the discrete series V.

If G_0 is compact, this is just the dual of the BGG-resolution of an irreducible finite-dimensional representation.

Put

▶
$$J(w, \lambda) = \Gamma(X, \mathcal{J}(w, \lambda))$$
 for any $w \in W_K$.

Then we have

Lemma

Let λ be an antidominant and regular. Then

$$H_p(\mathfrak{n}, J(w, \lambda)) = \begin{cases} \mathbb{C}_{wv\lambda + \rho} & \text{if } p = \dim X - \ell(wv) + \ell_K(w); \\ 0 & \text{if } p \neq \dim X - \ell(wv) + \ell_K(w). \end{cases}$$

Therefore, the n-homology of V is given by the hypercohomology of the n-homology functor for the complex D. Since λ is regular, all weights $wv\lambda + \rho$, for $w \in W_K$, are different. Hence, all differentials in E^1 term of the hypercohomology spectral sequence for D vanish — the spectral sequence collapses. This immediately implies Schmid's theorem.

Moreover, this calculation shows that each module $J(w, \lambda)$ in the Trauber resolution contributes exactly one cohomology class in \mathfrak{n} -homology of V.

Limits of discrete series

If λ is singular but still antidominant, the Trauber resolution D is still a resolution of the limits of discrete series V. Since the \mathfrak{n} -homology of each summand $J(w,\lambda)$ in D^q for regular λ is concentrated in one degree and one-dimensional, the tensoring spectral sequence collapses. This implies that \mathfrak{n} -homology is concentrated in one degree and one-dimensional even in singular case.

If λ is W_K -regular, the n-homologies of D^q have different weights for different q. Hence the above argument still works. This implies that Schmid's result holds in this case too. This is the result of Williams.

If λ is not W_K -regular, the differentials in E^1 term can be nontrivial. Still, the complex has additional structure which could lead to a precise result in general.

The example of SU(2,1)

- $G_0 = SU(2,1);$
- $ightharpoonup K = GL(2, \mathbb{C}).$

Three closed orbits – three families of discrete series.

- holomorphic;
- antiholomorphic;
- nonholomorphic.

For first two and third for $\lambda \neq 0$, we have only nondegenerate limits of discrete series.

The third one has a degenerate discrete series for $\lambda=0$. This is also the corresponding spherical principal series.

Pick $\mathfrak n$ so that $\mathfrak b$ is in Q (other two choices correspond to holomorphic $\mathfrak n$).

In this case, the positive compact root γ is not simple.

$$Q = D_Q(1) \cup D_Q(s_{\gamma}).$$

Trauber resolution:

$$0 o V o J(s_\gamma,0) o J(1,0) o 0.$$

We get

$$H_p(\mathfrak{n},J(1,0)) = egin{cases} 0 & ext{ for } p
eq 3; \ \mathbb{C}_{\gamma} & ext{ for } p = 3, \end{cases}$$

and

$$H_p(\mathfrak{n},J(s_{\gamma},0)) = \begin{cases} 0 & \text{for } p \neq 1; \\ \mathbb{C}_{\gamma} & \text{for } p = 1. \end{cases}$$

Using long exact sequence of n-homology we get

$$H_0(\mathfrak{n},V)=H_3(\mathfrak{n},V)=0$$
 and $H_1(\mathfrak{n},V)=H_2(\mathfrak{n},V)=\mathbb{C}_{\gamma}.$

This was found by Carayol by brutal computation.