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» G: a connected real reductive Lie group.
» ©: a Cartan involution.

K = G®: a maximal compact subgroup of G.

v

v

go = o @ po: Cartan decomposition of go = Lie G.

v

g = t @ p: complexifications.

v

B: a nondegenerate invariant symmetric bilinear form on g.

B <0on¢ty, B>0onpg; &t Lp.
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The Dirac operator

U(g): the universal enveloping algebra of g
C(p): the Clifford algebra of p with respect to B

assoc. alg. with 1, gen. by p
relations xy + yx +2B(x,y) =0

b; any basis of p; d; the dual basis with respect to B
Dirac operator:

D:Zbi®di € U(g) ® C(p)

D is independent of the choice of basis b; and K-invariant.



D? is the spin Laplacean (Parthasarathy):
D? = —(Casy @1 + [|pg|*) + (Case, +pe1*)-

Here Casy, Casg, are the Casimir elements of U(g), U(ta).



D? is the spin Laplacean (Parthasarathy):
D? = —(Casy @1 + [|pg|*) + (Case, +pe1*)-

Here Casy, Casg, are the Casimir elements of U(g), U(ta).

€a is the diagonal copy of € in U(g) ® C(p), defined by ¢ — U(g)
and ¢ — so(p) — C(p).
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Dirac cohomology

X a (g, K)-module, S a spin module for C(p).
(S = ApTt, p™ max isotropic subspace of p).
D actson X ® S.

Dirac cohomology of X:

Hp(X) = KerD/Ker DN Im D.

Hp(X) is a module for the spin double cover K of K.

If X is unitary or finite-dimensional, then

Hp(X) = Ker D = Ker D2
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Vogan's conjecture

Let h =t ® a be a fundamental Cartan subalgebra of g.
View t* C h* via extension by 0 over a.

The following was conjectured by Vogan, proved by Huang-P.
Theorem

Assume X has infinitesimal character x\ and Hp(X) contains a
K-type E, of highest weight v € t*.

Then X\ is v + pg up to Weyl group W.
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discrete series - Parthasarathy;
most of Ag(\) modules - Huang-Kang-P;

unitary h.wt. modules - Enright, Huang-P.-Renard;
more directly by Huang-P.-Protsak in special cases (Wallach

reps);
some unipotent reps - Barbasch-P.

also fd modules - Kostant, Huang-Kang-P.
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Further motivation

» unitarity (Dirac inequality and its improvements)

> irred. unitary M with Hp # 0 should form a nice part of the
unitary dual

» Hp is related to classical topics like generalized Weyl character
formula, generalized Bott-Borel-Weil Theorem, construction
of discrete series, multiplicities of automorphic forms

» Relations to other notions, like n-cohomology,
(g, K)-cohomology (more details below), characters and
branching
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> Generalizations to other settings:
» quadratic subalgebras (Kostant),
» Lie superalgebras (Huang-P.),
» affine Lie algebras (Kac, Moseneder-Frajria, Papi),

» graded affine Hecke algebras and p-adic groups
(Barbasch-Ciubotaru-Trapa),

» noncommutative equivariant cohomology
(Alekseev-Meinrenken, Kumar).

» Can construct reps with Hp # 0 via “algebraic Dirac
induction” (P.-Renard; Prli¢)

» There is a translation principle for the Euler characteristic of
Hp, i.e., the Dirac index (Mehdi-P.-Vogan).
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Assume G is Hermitian: g = ¢ @ pt @ p~, pT are £-invariant
abelian subalgebras.

For a (g, K)-module X,
X®@S=X®Ap" =Hom(Ap~, X)

is the (co)chain space for p-homology and p~-cohomology;
differentials are d and 0;

D=d+0.
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If X is unitary, there is an inner product on X ® S such that d and
0 are the adjoints of each other. It follows:

Ker D = Ker D? = Kerd N Ker 9:

XRS=Kerd®@Imd=Ker0 @ Imd =
Ker D> @ Imd @ Imd
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In particular,

HD(X) = H*(p+,X) = H*(p_,X),
up to a shift by p(p~) (passing from the spin action to the adjoint
action).

In fact, Hp(X) = Ker D = Ker D? is the space of harmonic
representatives for p*-homology and p~-cohomology.

Similar result can be proved for ¢ = [ @& u such that [ C ¢ and
udpr.
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Let X be a (g, K)-module with the same infinitesimal character as
a finite-dimensional module F.

(Twisted) (g, K)-cohomology of X is the cohomology of the
complex

Homk (A'p, X®@F*) = Homk (S®S5*, X®F*) = Homk (F®S, X®5).

(Exactly this if dimp is even, or twice this if dimp is odd.)

If X is unitary, the differential of this complex is 0 (Wallach).
Moreover, D2 >0on X® S and D2 <0on F® S. It follows that

H(g, K; X) = Homk(Hp(F), Hp(X)).

(Or twice this if dimp is odd.)
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Dirac index

Assume rank g = rank £. So dimp is even.

Sisgraded: S=ST @S~ (= A\""pt @ \°pT)
degc(p) D =1 = D interchanges X ® STand X® S~
Hence Hp(X) = Hp(X)™ @ Hp(X)~

Dirac index of X: the virtual K-module

I(X) = Hp(X)" = Hp(X)~
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Dirac index

If X has infinitesimal character, then
X®ST-X®sS =I(X).
It follows that
chX(chST —chS™) =chlI(X),

where ch denotes the K-character.
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Partitions

A partition o: 01 > 03 > ... > o, > 0. (Sometimes allow zeros at
the end.)

o corresponds to a Young diagram.

o’: the partition obtained by flipping the Young diagram of o over
the main diagonal.
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Finite-dimensional representations

0 a partition with at most k parts.

F? is the irreducible finite-dimensional representation of GL(k)
with highest weight 0 = (01, ...,0x) (in standard coordinates.)

For k even, V7 is the irreducible representation of Sp(k) with
highest weight o.

For o with (¢)1 + (¢/)2 < k, E is the irreducible representation
of O(k) with highest weight obtained from o by adjusting the first
column (which encodes the action of the component group).
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Littlewood-Richardson coefficients

o, |4, v: partitions with at most k parts.
CZV = dim HomGL(k)(F”, FF'® FV)

Pr (resp. Pc): set of Young diagrams with even rows (resp.
columns).

g .__ g o .__ (o}
¢, = E C D = E -

vePR vePc
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Littlewood Restriction Formula

LRF for O(k,C) C GL(k,C):

For partitions ¢ and p with at most g parts,

dim Homo(,c)(E", F7) = C.

LRF for Sp(k,C) C GL(k,C), k even:

For partitions ¢ and p with at most g parts,

dim Homg,(x oy (V*, F7) = Dj.
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Generalizations

Gavarini proved a generalization of the LRF by Brauer algebra
methods in 1999.

Further generalization was achieved by Enright and Willenbring in
2004 using Howe duality and BGG-type resolutions of unitary
highest weight modules. Their formula is valid for all .

Similar results were also recently obtained by Wenzl.

We prove a formula equivalent to that of Enright and Willenbring
using Dirac cohomology.
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The result
Let o and p be partitions with at most k parts. Assume
(1)1 + (W)2 < k.

Let L(1°) be the unitary lowest weight module for the Hermitian
symmetric pair (sp(2k,R), u(k)) with lowest weight wou®.

(Here wy is the longest element of the Weyl group of € = gl(k).
Thus the lowest K-type of L(1®) has highest weight °.)

Assume that
HE (L(1®)) ZFE and HpL(u®) =Y _F".
n

(Known explicitly by Enright's formula for n-cohomology and the
relationship between n-cohomology and Dirac cohomology.)

Then

dim Homo(k(c) E“ F Z £=%4pn ZC ~O4pp”
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The result

Let k be even. Let o (respectively p) be a partition with at most k
(respectively at most ) parts.

Let L(1°) denote the unitary lowest weight module for the
Hermitian symmetric pair (so*(2k), u(k)) with lowest weight wou®.
(wp is as before.)

Assume that

HE(L(p)) =) F¢ and HpL(u®) =Y _F".
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Then

dim Homsykc) (V*, F7) Z Df-cip, = 2 Diorpy:
n
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Under the natural GL(k,C) x u(n)-action, P(Myx,) decomposes as

P(Mixn) = E@D(F7)" @ F7,

[

with the sum over all partitions o with at most min(k, n) parts.
(As usual, o is extended by adding zeros at the end if necessary.)
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Howe duality for O(k, C) x sp(2n,R)

P(Mixn) = @ E* @ L(p°) = @P(EH)* @ L(n°),

2 Iz

with the sum over all partitions p with at most r = min(k, n) parts
and such that (1)1 + (¢/)2 < k.

The modules L(1°) appearing in this decomposition are all unitary.
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P(Mixn) = P V¥ @ L) = @P(VH)* & L(1),
2 0

with the sum over all partitions 4 with at most r = min(%, n)

parts.

The modules L(1°) appearing in this decomposition are all unitary.
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Since GL(k,C) x u(k) and O(k,C) x sp(2k,R) are see-saw dual
pairs, it follows that

[Fo - Eu] = [(F5) : (EQ)] = [L(k°) - Fol.

Thus the LRF for O(k) C GL(k) will follow if we can find K-type
multiplicities for the unitary lowest weight module L(u°) for
(sp(2k, R), u(k)).

Likewise, GL(k,C) x u(k) and Sp(k, C) x s0*(2k) are see-saw dual
pairs, and hence the LRF for Sp(k) C GL(k) will follow if we can

find K-type multiplicities for the unitary lowest weight module
L(p®) for (so*(2k,R), u(k)).
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K-character formulas

Let F* be the irreducible finite-dimensional representation of ¢
with highest weight u. Let p~ act on F* by zero.

The corresponding lowest weight generalized Verma module is

N(p) = U(g) ®ugeap-) F* = S(p™) @ F".

Assume that
HE(L(u) = > F* and Hp(L(u) =Y F™.
3 n
Then

ch L(u) = Zcth+pn — > " ch N(n+ pn). (*)

n
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K-character formulas

For the Hermitian symmetric pair (s0*(2k), u(k)),

soh) = D F

vePc,I(v)<k

Tensoring with F* we see that the multiplicity of F7 in N(u) is the
sum of the Littlewood-Richardson coefficients Dy .

This finishes the proof modulo the character formula (*).
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To prove (*), we first note that the Dirac index of N(u) is FF*—Pr,
and hence

ch N(u)(chST —chS™) = ch FF—Fn,

This follows from the Koszul complex identity

chS(p*)(chST —chS™)=chC_,,.

We conclude that

chL(u) =D chN(E+pn)+ > chN(n+pn) | (chST—chS™) =0.
3 n
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Now (*) follows by adapting an argument used by Hecht and
Schmid in the proof of the Blattner formula.

The point is that the K-types appearing in the virtual K-module

V= chi(n) = > chN(E+pa) + D ch N(in + pn)
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Now (*) follows by adapting an argument used by Hecht and
Schmid in the proof of the Blattner formula.

The point is that the K-types appearing in the virtual K-module
V =chl(u) = chN(E+pn)+ Y chN(n+pn)
3 n
are bounded from below.

In other words, when F” runs through the K-types occurring in V/,
the numbers (v, p,) are bounded from below.



