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The setting

I G : a connected real reductive Lie group.

I Θ: a Cartan involution.

I K = G Θ: a maximal compact subgroup of G .

I g0 = k0 ⊕ p0: Cartan decomposition of g0 = Lie G .

I g = k⊕ p: complexifications.

I B: a nondegenerate invariant symmetric bilinear form on g.

B < 0 on k0, B > 0 on p0; k ⊥ p.
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The Dirac operator

U(g): the universal enveloping algebra of g

C (p): the Clifford algebra of p with respect to B

assoc. alg. with 1, gen. by p
relations xy + yx + 2B(x , y) = 0

bi any basis of p; di the dual basis with respect to B
Dirac operator:

D =
∑
i

bi ⊗ di ∈ U(g)⊗ C (p)

D is independent of the choice of basis bi and K -invariant.
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D2 is the spin Laplacean (Parthasarathy):

D2 = −(Casg⊗1 + ‖ρg‖2) + (Cask∆
+‖ρk‖2).

Here Casg, Cask∆
are the Casimir elements of U(g), U(k∆).

k∆ is the diagonal copy of k in U(g)⊗ C (p), defined by k ↪→ U(g)
and k→ so(p) ↪→ C (p).
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Dirac cohomology

X a (g,K )-module, S a spin module for C (p).

(S =
∧
p+, p+ max isotropic subspace of p).

D acts on X ⊗ S .

Dirac cohomology of X :

HD(X ) = Ker D/Ker D ∩ Im D.

HD(X ) is a module for the spin double cover K̃ of K .

If X is unitary or finite-dimensional, then

HD(X ) = Ker D = Ker D2.
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Vogan’s conjecture

Let h = t⊕ a be a fundamental Cartan subalgebra of g.

View t∗ ⊂ h∗ via extension by 0 over a.

The following was conjectured by Vogan, proved by Huang-P.

Theorem
Assume X has infinitesimal character χλ and HD(X ) contains a
K̃ -type Eγ of highest weight γ ∈ t∗.

Then λ is γ + ρk up to Weyl group Wg.
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Motivation

Irreducible unitary M with HD 6= 0 are interesting:

I discrete series - Parthasarathy;

I most of Aq(λ) modules - Huang-Kang-P.;

I unitary h.wt. modules - Enright, Huang-P.-Renard;
more directly by Huang-P.-Protsak in special cases (Wallach
reps);

I some unipotent reps - Barbasch-P.

I also fd modules - Kostant, Huang-Kang-P.
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Further motivation

I unitarity (Dirac inequality and its improvements)

I irred. unitary M with HD 6= 0 should form a nice part of the
unitary dual

I HD is related to classical topics like generalized Weyl character
formula, generalized Bott-Borel-Weil Theorem, construction
of discrete series, multiplicities of automorphic forms

I Relations to other notions, like n-cohomology,
(g,K )-cohomology (more details below), characters and
branching
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I Generalizations to other settings:
I quadratic subalgebras (Kostant),

I Lie superalgebras (Huang-P.),

I affine Lie algebras (Kac, Moseneder-Frajria, Papi),

I graded affine Hecke algebras and p-adic groups
(Barbasch-Ciubotaru-Trapa),

I noncommutative equivariant cohomology
(Alekseev-Meinrenken, Kumar).

I Can construct reps with HD 6= 0 via “algebraic Dirac
induction” (P.-Renard; Prlić)

I There is a translation principle for the Euler characteristic of
HD , i.e., the Dirac index (Mehdi-P.-Vogan).



I Generalizations to other settings:
I quadratic subalgebras (Kostant),

I Lie superalgebras (Huang-P.),

I affine Lie algebras (Kac, Moseneder-Frajria, Papi),

I graded affine Hecke algebras and p-adic groups
(Barbasch-Ciubotaru-Trapa),

I noncommutative equivariant cohomology
(Alekseev-Meinrenken, Kumar).

I Can construct reps with HD 6= 0 via “algebraic Dirac
induction” (P.-Renard; Prlić)
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n-cohomology

Assume G is Hermitian: g = k⊕ p+ ⊕ p−, p± are k-invariant
abelian subalgebras.

For a (g,K )-module X ,

X ⊗ S = X ⊗
∧
p+ = Hom(

∧
p−,X )

is the (co)chain space for p+-homology and p−-cohomology;
differentials are d and ∂;

D = d + ∂.
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If X is unitary, there is an inner product on X ⊗ S such that d and
∂ are the adjoints of each other. It follows:

Ker D = Ker D2 = Ker d ∩ Ker ∂;

X ⊗ S = Ker d ⊕ Im ∂ = Ker ∂ ⊕ Im d =

Ker D2 ⊕ Im d ⊕ Im ∂
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In particular,

HD(X ) = H∗(p
+,X ) = H∗(p−,X ),

up to a shift by ρ(p−) (passing from the spin action to the adjoint
action).

In fact, HD(X ) = Ker D = Ker D2 is the space of harmonic
representatives for p+-homology and p−-cohomology.

Similar result can be proved for q = l⊕ u such that l ⊂ k and
u ⊃ p+.
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(g,K )-cohomology

Let X be a (g,K )-module with the same infinitesimal character as
a finite-dimensional module F .

(Twisted) (g,K )-cohomology of X is the cohomology of the
complex

HomK (
∧·p,X⊗F ∗) = HomK (S⊗S∗,X⊗F ∗) = HomK (F⊗S ,X⊗S).

(Exactly this if dim p is even, or twice this if dim p is odd.)

If X is unitary, the differential of this complex is 0 (Wallach).
Moreover, D2 ≥ 0 on X ⊗ S and D2 ≤ 0 on F ⊗ S . It follows that

H(g,K ; X ) = HomK (HD(F ),HD(X )).

(Or twice this if dim p is odd.)



(g,K )-cohomology

Let X be a (g,K )-module with the same infinitesimal character as
a finite-dimensional module F .

(Twisted) (g,K )-cohomology of X is the cohomology of the
complex

HomK (
∧·p,X⊗F ∗) = HomK (S⊗S∗,X⊗F ∗) = HomK (F⊗S ,X⊗S).

(Exactly this if dim p is even, or twice this if dim p is odd.)

If X is unitary, the differential of this complex is 0 (Wallach).
Moreover, D2 ≥ 0 on X ⊗ S and D2 ≤ 0 on F ⊗ S . It follows that

H(g,K ; X ) = HomK (HD(F ),HD(X )).

(Or twice this if dim p is odd.)



(g,K )-cohomology

Let X be a (g,K )-module with the same infinitesimal character as
a finite-dimensional module F .

(Twisted) (g,K )-cohomology of X is the cohomology of the
complex

HomK (
∧·p,X⊗F ∗) = HomK (S⊗S∗,X⊗F ∗) = HomK (F⊗S ,X⊗S).

(Exactly this if dim p is even, or twice this if dim p is odd.)

If X is unitary, the differential of this complex is 0 (Wallach).
Moreover, D2 ≥ 0 on X ⊗ S and D2 ≤ 0 on F ⊗ S . It follows that

H(g,K ; X ) = HomK (HD(F ),HD(X )).

(Or twice this if dim p is odd.)



(g,K )-cohomology

Let X be a (g,K )-module with the same infinitesimal character as
a finite-dimensional module F .

(Twisted) (g,K )-cohomology of X is the cohomology of the
complex

HomK (
∧·p,X⊗F ∗) = HomK (S⊗S∗,X⊗F ∗) = HomK (F⊗S ,X⊗S).

(Exactly this if dim p is even, or twice this if dim p is odd.)

If X is unitary, the differential of this complex is 0 (Wallach).
Moreover, D2 ≥ 0 on X ⊗ S and D2 ≤ 0 on F ⊗ S . It follows that

H(g,K ; X ) = HomK (HD(F ),HD(X )).

(Or twice this if dim p is odd.)



Dirac index

Assume rank g = rank k. So dim p is even.

S is graded: S = S+ ⊕ S− (=
∧even p+ ⊕

∧odd p+)

degC(p) D = 1 ⇒ D interchanges X ⊗ S+ and X ⊗ S−

Hence HD(X ) = HD(X )+ ⊕ HD(X )−

Dirac index of X : the virtual K̃ -module

I (X ) = HD(X )+ − HD(X )−
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Dirac index

If X has infinitesimal character, then

X ⊗ S+ − X ⊗ S− = I (X ).

It follows that

ch X (ch S+ − ch S−) = ch I (X ),

where ch denotes the K̃ -character.
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Partitions

A partition σ: σ1 ≥ σ2 ≥ . . . ≥ σk > 0. (Sometimes allow zeros at
the end.)

σ corresponds to a Young diagram.

σ′: the partition obtained by flipping the Young diagram of σ over
the main diagonal.
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Finite-dimensional representations

σ a partition with at most k parts.

F σ is the irreducible finite-dimensional representation of GL(k)
with highest weight σ = (σ1, . . . , σk) (in standard coordinates.)

For k even, V σ is the irreducible representation of Sp(k) with
highest weight σ.

For σ with (σ′)1 + (σ′)2 ≤ k , Eσ is the irreducible representation
of O(k) with highest weight obtained from σ by adjusting the first
column (which encodes the action of the component group).
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Littlewood-Richardson coefficients

σ, µ, ν: partitions with at most k parts.

cσµν = dim HomGL(k)(F σ,Fµ ⊗ F ν).

PR (resp. PC ): set of Young diagrams with even rows (resp.
columns).

Cσ
µ :=

∑
ν∈PR

cσµν Dσ
µ :=

∑
ν∈PC

cσµν .
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Littlewood Restriction Formula

LRF for O(k ,C) ⊂ GL(k ,C):

For partitions σ and µ with at most k
2 parts,

dim HomO(k,C)(Eµ,F σ) = Cσ
µ .

LRF for Sp(k,C) ⊂ GL(k ,C), k even:

For partitions σ and µ with at most k
2 parts,

dim HomSp(k,C)(V µ,F σ) = Dσ
µ .
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Generalizations

Gavarini proved a generalization of the LRF by Brauer algebra
methods in 1999.

Further generalization was achieved by Enright and Willenbring in
2004 using Howe duality and BGG-type resolutions of unitary
highest weight modules. Their formula is valid for all σ.

Similar results were also recently obtained by Wenzl.

We prove a formula equivalent to that of Enright and Willenbring
using Dirac cohomology.
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Further notation

For any n-tuple σ, define

σ� = σ + (
k

2
, . . . ,

k

2︸ ︷︷ ︸
n

) and σ−� = σ − (
k

2
, . . . ,

k

2︸ ︷︷ ︸
n

).



The result
Let σ and µ be partitions with at most k parts. Assume
(µ′)1 + (µ′)2 ≤ k .

Let L(µ�) be the unitary lowest weight module for the Hermitian
symmetric pair (sp(2k,R), u(k)) with lowest weight w0µ

�.

(Here w0 is the longest element of the Weyl group of k = gl(k).
Thus the lowest K -type of L(µ�) has highest weight µ�.)

Assume that

H+
D (L(µ�)) =

∑
ξ

F ξ and H−D L(µ�) =
∑
η

F η.

(Known explicitly by Enright’s formula for n-cohomology and the
relationship between n-cohomology and Dirac cohomology.)

Then

dim HomO(k,C)(Eµ,F σ) =
∑
ξ

Cσ
ξ−�+ρn

−
∑
η

Cσ
η−�+ρn
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The result

Let k be even. Let σ (respectively µ) be a partition with at most k
(respectively at most k
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Howe duality for GL(k ,C)× u(n)

Under the natural GL(k ,C)×u(n)-action, P(Mk×n) decomposes as

P(Mk×n) ∼=
⊕
σ

(F σ)∗ ⊗ F σ,

with the sum over all partitions σ with at most min(k, n) parts.
(As usual, σ is extended by adding zeros at the end if necessary.)
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Howe duality for O(k ,C)× sp(2n,R)

P(Mk×n) ∼=
⊕
µ

Eµ ⊗ L(µ�) ∼=
⊕
µ

(Eµ)∗ ⊗ L(µ�),

with the sum over all partitions µ with at most r = min(k , n) parts
and such that (µ′)1 + (µ′)2 ≤ k .

The modules L(µ�) appearing in this decomposition are all unitary.
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We take n = k in the above decompositions.

Since GL(k ,C)× u(k) and O(k ,C)× sp(2k,R) are see-saw dual
pairs, it follows that

[Fσ : Eµ] = [(F ∗σ ) : (E ∗µ)] = [L(µ�) : Fσ].

Thus the LRF for O(k) ⊂ GL(k) will follow if we can find K -type
multiplicities for the unitary lowest weight module L(µ�) for
(sp(2k ,R), u(k)).

Likewise, GL(k ,C)× u(k) and Sp(k ,C)× so∗(2k) are see-saw dual
pairs, and hence the LRF for Sp(k) ⊂ GL(k) will follow if we can
find K -type multiplicities for the unitary lowest weight module
L(µ�) for (so∗(2k ,R), u(k)).
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K -character formulas

Let Fµ be the irreducible finite-dimensional representation of k
with highest weight µ. Let p− act on Fµ by zero.

The corresponding lowest weight generalized Verma module is

N(µ) = U(g)⊗U(k⊕p−) Fµ = S(p+)⊗ Fµ.

Assume that

H+
D (L(µ)) =

∑
ξ

F ξ and H−D (L(µ)) =
∑
η

F η.

Then

ch L(µ) =
∑
ξ

ch N(ξ + ρn)−
∑
η

ch N(η + ρn). (*)
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Assume that

H+
D (L(µ)) =

∑
ξ

F ξ and H−D (L(µ)) =
∑
η

F η.

Then

ch L(µ) =
∑
ξ

ch N(ξ + ρn)−
∑
η

ch N(η + ρn). (*)



K -character formulas

The K -structure of S(p+) is known explicitly by results of Schmid.
In particular:

For the Hermitian symmetric pair (sp(2k ,R), u(k)),

S(p+) =
⊕

ν∈PR ,l(ν)≤k

F ν .

Tensoring with Fµ we see that the multiplicity of F σ in N(µ) is the
sum of the Littlewood-Richardson coefficients Cσ

µ .
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K -character formulas

To prove (*), we first note that the Dirac index of N(µ) is Fµ−ρn ,
and hence

ch N(µ)(ch S+ − ch S−) = ch Fµ−ρn .

This follows from the Koszul complex identity

ch S(p+)(ch S+ − ch S−) = chC−ρn .

We conclude thatch L(µ)−
∑
ξ

ch N(ξ + ρn) +
∑
η

ch N(η + ρn)

 (ch S+−ch S−) = 0.
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K -character formulas

Now (*) follows by adapting an argument used by Hecht and
Schmid in the proof of the Blattner formula.

The point is that the K -types appearing in the virtual K -module

V = ch L(µ)−
∑
ξ

ch N(ξ + ρn) +
∑
η

ch N(η + ρn)

are bounded from below.

In other words, when F ν runs through the K -types occurring in V ,
the numbers 〈ν, ρn〉 are bounded from below.



K -character formulas

Now (*) follows by adapting an argument used by Hecht and
Schmid in the proof of the Blattner formula.

The point is that the K -types appearing in the virtual K -module

V = ch L(µ)−
∑
ξ

ch N(ξ + ρn) +
∑
η

ch N(η + ρn)

are bounded from below.

In other words, when F ν runs through the K -types occurring in V ,
the numbers 〈ν, ρn〉 are bounded from below.



K -character formulas

Now (*) follows by adapting an argument used by Hecht and
Schmid in the proof of the Blattner formula.

The point is that the K -types appearing in the virtual K -module

V = ch L(µ)−
∑
ξ

ch N(ξ + ρn) +
∑
η

ch N(η + ρn)

are bounded from below.

In other words, when F ν runs through the K -types occurring in V ,
the numbers 〈ν, ρn〉 are bounded from below.


