Dirac Cohomology and classical branching problems

Pavle Pandžić, University of Zagreb

Jacobs University Bremen June 18, 2014 Joint work with

Jing-Song Huang (HKUST) and Fuhai Zhu (Nankai).

(Amer. J. Math. 2013.)

▶ *G*: a connected real reductive Lie group.

- ▶ *G*: a connected real reductive Lie group.
- Θ: a Cartan involution.

- ► *G*: a connected real reductive Lie group.
- Θ: a Cartan involution.
- $K = G^{\Theta}$: a maximal compact subgroup of G.

- ► *G*: a connected real reductive Lie group.
- Θ: a Cartan involution.
- $K = G^{\Theta}$: a maximal compact subgroup of G.
- ▶ $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$: Cartan decomposition of $\mathfrak{g}_0 = \text{Lie } G$.

- ▶ *G*: a connected real reductive Lie group.
- Θ: a Cartan involution.
- $K = G^{\Theta}$: a maximal compact subgroup of G.
- $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$: Cartan decomposition of $\mathfrak{g}_0 = \text{Lie } G$.
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: complexifications.

- ► *G*: a connected real reductive Lie group.
- Θ: a Cartan involution.
- $K = G^{\Theta}$: a maximal compact subgroup of G.
- ▶ $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$: Cartan decomposition of $\mathfrak{g}_0 = \text{Lie } G$.
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: complexifications.
- ▶ B: a nondegenerate invariant symmetric bilinear form on g.

- ► *G*: a connected real reductive Lie group.
- Θ: a Cartan involution.
- $K = G^{\Theta}$: a maximal compact subgroup of G.
- ▶ $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$: Cartan decomposition of $\mathfrak{g}_0 = \text{Lie } G$.
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: complexifications.
- ▶ B: a nondegenerate invariant symmetric bilinear form on g.

$$B < 0$$
 on \mathfrak{k}_0 , $B > 0$ on \mathfrak{p}_0 ; $\mathfrak{k} \perp \mathfrak{p}$.

 $U(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g}

 $U(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g}

 $C(\mathfrak{p})$: the Clifford algebra of \mathfrak{p} with respect to B

```
U(\mathfrak{g}): the universal enveloping algebra of \mathfrak{g} C(\mathfrak{p}): the Clifford algebra of \mathfrak{p} with respect to B assoc. alg. with 1, gen. by \mathfrak{p} relations xy + yx + 2B(x,y) = 0
```

 $U(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g}

 $C(\mathfrak{p})$: the Clifford algebra of \mathfrak{p} with respect to B

assoc. alg. with 1, gen. by \mathfrak{p} relations xy + yx + 2B(x, y) = 0

 b_i any basis of \mathfrak{p} ; d_i the dual basis with respect to B

- $U(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g}
- $C(\mathfrak{p})$: the Clifford algebra of \mathfrak{p} with respect to B

assoc. alg. with 1, gen. by
$$\mathfrak{p}$$
 relations $xy + yx + 2B(x, y) = 0$

 b_i any basis of \mathfrak{p} ; d_i the dual basis with respect to B Dirac operator:

$$D = \sum_{i} b_{i} \otimes d_{i} \qquad \in U(\mathfrak{g}) \otimes C(\mathfrak{p})$$

- $U(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g}
- $C(\mathfrak{p})$: the Clifford algebra of \mathfrak{p} with respect to B

assoc. alg. with 1, gen. by
$$\mathfrak{p}$$
 relations $xy + yx + 2B(x, y) = 0$

 b_i any basis of \mathfrak{p} ; d_i the dual basis with respect to B Dirac operator:

$$D = \sum_{i} b_{i} \otimes d_{i} \qquad \in U(\mathfrak{g}) \otimes C(\mathfrak{p})$$

D is independent of the choice of basis b_i and K-invariant.

 D^2 is the spin Laplacean (Parthasarathy):

$$D^2 = -(\mathsf{Cas}_{\mathfrak{g}} \otimes 1 + \|\rho_{\mathfrak{g}}\|^2) + (\mathsf{Cas}_{\mathfrak{k}_{\Lambda}} + \|\rho_{\mathfrak{k}}\|^2).$$

Here $\mathsf{Cas}_{\mathfrak{g}}$, $\mathsf{Cas}_{\mathfrak{k}_{\Delta}}$ are the Casimir elements of $U(\mathfrak{g})$, $U(\mathfrak{k}_{\Delta})$.

 D^2 is the spin Laplacean (Parthasarathy):

$$D^2 = -(\mathsf{Cas}_{\mathfrak{g}} \otimes 1 + \|\rho_{\mathfrak{g}}\|^2) + (\mathsf{Cas}_{\mathfrak{k}_{\Delta}} + \|\rho_{\mathfrak{k}}\|^2).$$

Here $Cas_{\mathfrak{g}}$, $Cas_{\mathfrak{k}_{\Delta}}$ are the Casimir elements of $U(\mathfrak{g})$, $U(\mathfrak{k}_{\Delta})$.

 \mathfrak{k}_{Δ} is the diagonal copy of \mathfrak{k} in $U(\mathfrak{g})\otimes C(\mathfrak{p})$, defined by $\mathfrak{k}\hookrightarrow U(\mathfrak{g})$ and $\mathfrak{k}\to\mathfrak{so}(\mathfrak{p})\hookrightarrow C(\mathfrak{p})$.

X a (\mathfrak{g}, K) -module, S a spin module for $C(\mathfrak{p})$.

```
X a (\mathfrak{g}, K)-module, S a spin module for C(\mathfrak{p}). (S = \bigwedge \mathfrak{p}^+, \, \mathfrak{p}^+ \text{ max isotropic subspace of } \mathfrak{p}).
```

X a (\mathfrak{g},K) -module, S a spin module for $C(\mathfrak{p})$. $(S=\bigwedge \mathfrak{p}^+,\ \mathfrak{p}^+\ \text{max isotropic subspace of }\mathfrak{p}).$ D acts on $X\otimes S$.

X a (\mathfrak{g}, K) -module, S a spin module for $C(\mathfrak{p})$.

$$(S = \bigwedge \mathfrak{p}^+, \, \mathfrak{p}^+ \text{ max isotropic subspace of } \mathfrak{p}).$$

D acts on $X \otimes S$.

Dirac cohomology of X:

$$H_D(X) = \operatorname{Ker} D / \operatorname{Ker} D \cap \operatorname{Im} D.$$

X a (\mathfrak{g}, K) -module, S a spin module for $C(\mathfrak{p})$.

$$(S = \bigwedge \mathfrak{p}^+, \, \mathfrak{p}^+ \text{ max isotropic subspace of } \mathfrak{p}).$$

D acts on $X \otimes S$.

Dirac cohomology of X:

$$H_D(X) = \operatorname{Ker} D / \operatorname{Ker} D \cap \operatorname{Im} D.$$

 $H_D(X)$ is a module for the spin double cover \widetilde{K} of K.

X a (\mathfrak{g}, K) -module, S a spin module for $C(\mathfrak{p})$.

$$(S = \bigwedge \mathfrak{p}^+, \, \mathfrak{p}^+ \text{ max isotropic subspace of } \mathfrak{p}).$$

D acts on $X \otimes S$.

Dirac cohomology of X:

$$H_D(X) = \operatorname{Ker} D / \operatorname{Ker} D \cap \operatorname{Im} D.$$

 $H_D(X)$ is a module for the spin double cover \widetilde{K} of K.

If X is unitary or finite-dimensional, then

$$H_D(X) = \operatorname{Ker} D = \operatorname{Ker} D^2$$
.

Let $\mathfrak{h}=\mathfrak{t}\oplus\mathfrak{a}$ be a fundamental Cartan subalgebra of $\mathfrak{g}.$

Let $\mathfrak{h}=\mathfrak{t}\oplus\mathfrak{a}$ be a fundamental Cartan subalgebra of $\mathfrak{g}.$

View $\mathfrak{t}^*\subset\mathfrak{h}^*$ via extension by 0 over $\mathfrak{a}.$

Let $\mathfrak{h}=\mathfrak{t}\oplus\mathfrak{a}$ be a fundamental Cartan subalgebra of $\mathfrak{g}.$

View $\mathfrak{t}^* \subset \mathfrak{h}^*$ via extension by 0 over \mathfrak{a} .

The following was conjectured by Vogan, proved by Huang-P.

Let $\mathfrak{h}=\mathfrak{t}\oplus\mathfrak{a}$ be a fundamental Cartan subalgebra of $\mathfrak{g}.$

View $\mathfrak{t}^* \subset \mathfrak{h}^*$ via extension by 0 over \mathfrak{a} .

The following was conjectured by Vogan, proved by Huang-P.

Theorem

Assume X has infinitesimal character χ_{λ} and $H_D(X)$ contains a \widetilde{K} -type E_{γ} of highest weight $\gamma \in \mathfrak{t}^*$.

Let $\mathfrak{h}=\mathfrak{t}\oplus\mathfrak{a}$ be a fundamental Cartan subalgebra of $\mathfrak{g}.$

View $\mathfrak{t}^* \subset \mathfrak{h}^*$ via extension by 0 over \mathfrak{a} .

The following was conjectured by Vogan, proved by Huang-P.

Theorem

Assume X has infinitesimal character χ_{λ} and $H_D(X)$ contains a \widetilde{K} -type E_{γ} of highest weight $\gamma \in \mathfrak{t}^*$.

Then λ is $\gamma + \rho_{\mathfrak{k}}$ up to Weyl group $W_{\mathfrak{g}}$.

Irreducible unitary M with $H_D \neq 0$ are interesting:

Irreducible unitary M with $H_D \neq 0$ are interesting:

discrete series - Parthasarathy;

Irreducible unitary M with $H_D \neq 0$ are interesting:

- discrete series Parthasarathy;
- ▶ most of $A_q(\lambda)$ modules Huang-Kang-P.;

Irreducible unitary M with $H_D \neq 0$ are interesting:

- discrete series Parthasarathy;
- ▶ most of $A_q(\lambda)$ modules Huang-Kang-P.;
- unitary h.wt. modules Enright, Huang-P.-Renard; more directly by Huang-P.-Protsak in special cases (Wallach reps);

Motivation

Irreducible unitary M with $H_D \neq 0$ are interesting:

- discrete series Parthasarathy;
- ▶ most of $A_q(\lambda)$ modules Huang-Kang-P.;
- unitary h.wt. modules Enright, Huang-P.-Renard; more directly by Huang-P.-Protsak in special cases (Wallach reps);
- some unipotent reps Barbasch-P.

Motivation

Irreducible unitary M with $H_D \neq 0$ are interesting:

- discrete series Parthasarathy;
- ▶ most of $A_q(\lambda)$ modules Huang-Kang-P.;
- unitary h.wt. modules Enright, Huang-P.-Renard; more directly by Huang-P.-Protsak in special cases (Wallach reps);
- some unipotent reps Barbasch-P.
- also fd modules Kostant, Huang-Kang-P.

unitarity (Dirac inequality and its improvements)

- unitarity (Dirac inequality and its improvements)
- ▶ irred. unitary M with $H_D \neq 0$ should form a nice part of the unitary dual

- unitarity (Dirac inequality and its improvements)
- ▶ irred. unitary M with $H_D \neq 0$ should form a nice part of the unitary dual
- H_D is related to classical topics like generalized Weyl character formula, generalized Bott-Borel-Weil Theorem, construction of discrete series, multiplicities of automorphic forms

- unitarity (Dirac inequality and its improvements)
- ▶ irred. unitary M with $H_D \neq 0$ should form a nice part of the unitary dual
- H_D is related to classical topics like generalized Weyl character formula, generalized Bott-Borel-Weil Theorem, construction of discrete series, multiplicities of automorphic forms
- Relations to other notions, like n-cohomology, (g, K)-cohomology (more details below), characters and branching

- ▶ Generalizations to other settings:
 - quadratic subalgebras (Kostant),

- Generalizations to other settings:
 - quadratic subalgebras (Kostant),
 - ▶ Lie superalgebras (Huang-P.),

- Generalizations to other settings:
 - quadratic subalgebras (Kostant),
 - ▶ Lie superalgebras (Huang-P.),
 - affine Lie algebras (Kac, Moseneder-Frajria, Papi),

- Generalizations to other settings:
 - quadratic subalgebras (Kostant),
 - ▶ Lie superalgebras (Huang-P.),
 - affine Lie algebras (Kac, Moseneder-Frajria, Papi),
 - graded affine Hecke algebras and p-adic groups (Barbasch-Ciubotaru-Trapa),

- Generalizations to other settings:
 - quadratic subalgebras (Kostant),
 - Lie superalgebras (Huang-P.),
 - affine Lie algebras (Kac, Moseneder-Frajria, Papi),
 - graded affine Hecke algebras and p-adic groups (Barbasch-Ciubotaru-Trapa),
 - noncommutative equivariant cohomology (Alekseev-Meinrenken, Kumar).

- Generalizations to other settings:
 - quadratic subalgebras (Kostant),
 - Lie superalgebras (Huang-P.),
 - affine Lie algebras (Kac, Moseneder-Frajria, Papi),
 - graded affine Hecke algebras and p-adic groups (Barbasch-Ciubotaru-Trapa),
 - noncommutative equivariant cohomology (Alekseev-Meinrenken, Kumar).
- ► Can construct reps with $H_D \neq 0$ via "algebraic Dirac induction" (P.-Renard; Prlić)

- Generalizations to other settings:
 - quadratic subalgebras (Kostant),
 - Lie superalgebras (Huang-P.),
 - ▶ affine Lie algebras (Kac, Moseneder-Frajria, Papi),
 - graded affine Hecke algebras and p-adic groups (Barbasch-Ciubotaru-Trapa),
 - noncommutative equivariant cohomology (Alekseev-Meinrenken, Kumar).
- ► Can construct reps with $H_D \neq 0$ via "algebraic Dirac induction" (P.-Renard; Prlić)
- ▶ There is a translation principle for the Euler characteristic of H_D , i.e., the Dirac index (Mehdi-P.-Vogan).

n-cohomology

Assume G is Hermitian: $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}^+\oplus\mathfrak{p}^-$, \mathfrak{p}^\pm are \mathfrak{k} -invariant abelian subalgebras.

n-cohomology

Assume G is Hermitian: $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}^+ \oplus \mathfrak{p}^-$, \mathfrak{p}^\pm are \mathfrak{k} -invariant abelian subalgebras.

For a (\mathfrak{g}, K) -module X,

$$X \otimes S = X \otimes \bigwedge \mathfrak{p}^+ = \mathsf{Hom}(\bigwedge \mathfrak{p}^-, X)$$

is the (co)chain space for \mathfrak{p}^+ -homology and \mathfrak{p}^- -cohomology; differentials are d and ∂ ;

n-cohomology

Assume G is Hermitian: $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}^+ \oplus \mathfrak{p}^-$, \mathfrak{p}^\pm are \mathfrak{k} -invariant abelian subalgebras.

For a (\mathfrak{g}, K) -module X,

$$X \otimes S = X \otimes \bigwedge \mathfrak{p}^+ = \mathsf{Hom}(\bigwedge \mathfrak{p}^-, X)$$

is the (co)chain space for \mathfrak{p}^+ -homology and \mathfrak{p}^- -cohomology; differentials are d and ∂ ;

$$D = d + \partial$$
.

If X is unitary, there is an inner product on $X \otimes S$ such that d and ∂ are the adjoints of each other. It follows:

If X is unitary, there is an inner product on $X \otimes S$ such that d and ∂ are the adjoints of each other. It follows:

$$\operatorname{\mathsf{Ker}} D = \operatorname{\mathsf{Ker}} D^2 = \operatorname{\mathsf{Ker}} d \cap \operatorname{\mathsf{Ker}} \partial;$$

If X is unitary, there is an inner product on $X \otimes S$ such that d and ∂ are the adjoints of each other. It follows:

$$\operatorname{\mathsf{Ker}} D = \operatorname{\mathsf{Ker}} D^2 = \operatorname{\mathsf{Ker}} d \cap \operatorname{\mathsf{Ker}} \partial;$$

$$X \otimes S = \operatorname{Ker} d \oplus \operatorname{Im} \partial = \operatorname{Ker} \partial \oplus \operatorname{Im} d =$$

$$\operatorname{Ker} D^2 \oplus \operatorname{Im} d \oplus \operatorname{Im} \partial$$

In particular,

$$H_D(X) = H_*(\mathfrak{p}^+, X) = H^*(\mathfrak{p}^-, X),$$

up to a shift by $\rho(\mathfrak{p}^-)$ (passing from the spin action to the adjoint action).

In particular,

$$H_D(X) = H_*(\mathfrak{p}^+, X) = H^*(\mathfrak{p}^-, X),$$

up to a shift by $\rho(\mathfrak{p}^-)$ (passing from the spin action to the adjoint action).

In fact, $H_D(X) = \operatorname{Ker} D = \operatorname{Ker} D^2$ is the space of harmonic representatives for \mathfrak{p}^+ -homology and \mathfrak{p}^- -cohomology.

In particular,

$$H_D(X) = H_*(\mathfrak{p}^+, X) = H^*(\mathfrak{p}^-, X),$$

up to a shift by $\rho(\mathfrak{p}^-)$ (passing from the spin action to the adjoint action).

In fact, $H_D(X) = \text{Ker } D = \text{Ker } D^2$ is the space of harmonic representatives for \mathfrak{p}^+ -homology and \mathfrak{p}^- -cohomology.

Similar result can be proved for $\mathfrak{q}=\mathfrak{l}\oplus\mathfrak{u}$ such that $\mathfrak{l}\subset\mathfrak{k}$ and $\mathfrak{u}\supset\mathfrak{p}^+.$

Let X be a (\mathfrak{g}, K) -module with the same infinitesimal character as a finite-dimensional module F.

Let X be a (\mathfrak{g}, K) -module with the same infinitesimal character as a finite-dimensional module F.

(Twisted) (g, K)-cohomology of X is the cohomology of the complex

$$\operatorname{\mathsf{Hom}}_{\mathcal{K}}(\bigwedge \mathfrak{p}, X \otimes F^*) = \operatorname{\mathsf{Hom}}_{\mathcal{K}}(S \otimes S^*, X \otimes F^*) = \operatorname{\mathsf{Hom}}_{\mathcal{K}}(F \otimes S, X \otimes S).$$

(Exactly this if dim \mathfrak{p} is even, or twice this if dim \mathfrak{p} is odd.)

Let X be a (\mathfrak{g}, K) -module with the same infinitesimal character as a finite-dimensional module F.

(Twisted) (g, K)-cohomology of X is the cohomology of the complex

$$\operatorname{\mathsf{Hom}}_{\mathcal{K}}(\bigwedge \mathfrak{p}, X \otimes F^*) = \operatorname{\mathsf{Hom}}_{\mathcal{K}}(S \otimes S^*, X \otimes F^*) = \operatorname{\mathsf{Hom}}_{\mathcal{K}}(F \otimes S, X \otimes S).$$

(Exactly this if $\dim \mathfrak{p}$ is even, or twice this if $\dim \mathfrak{p}$ is odd.)

If X is unitary, the differential of this complex is 0 (Wallach). Moreover, $D^2 \ge 0$ on $X \otimes S$ and $D^2 \le 0$ on $F \otimes S$. It follows that

Let X be a (\mathfrak{g}, K) -module with the same infinitesimal character as a finite-dimensional module F.

(Twisted) (g, K)-cohomology of X is the cohomology of the complex

$$\operatorname{\mathsf{Hom}}_{\mathcal{K}}(\bigwedge \mathfrak{p}, X \otimes F^*) = \operatorname{\mathsf{Hom}}_{\mathcal{K}}(S \otimes S^*, X \otimes F^*) = \operatorname{\mathsf{Hom}}_{\mathcal{K}}(F \otimes S, X \otimes S).$$

(Exactly this if $\dim \mathfrak{p}$ is even, or twice this if $\dim \mathfrak{p}$ is odd.)

If X is unitary, the differential of this complex is 0 (Wallach). Moreover, $D^2 \ge 0$ on $X \otimes S$ and $D^2 \le 0$ on $F \otimes S$. It follows that

$$H(\mathfrak{g}, K; X) = \operatorname{Hom}_K(H_D(F), H_D(X)).$$

(Or twice this if dim p is odd.)

Assume rank $\mathfrak{g}=\operatorname{rank}\mathfrak{k}$. So $\dim\mathfrak{p}$ is even.

Assume rank $\mathfrak{g} = \operatorname{rank} \mathfrak{k}$. So dim \mathfrak{p} is even.

$$S$$
 is graded: $S = S^+ \oplus S^- \quad (= \bigwedge^{even} \mathfrak{p}^+ \oplus \bigwedge^{odd} \mathfrak{p}^+)$

Assume rank $\mathfrak{g} = \operatorname{rank} \mathfrak{k}$. So dim \mathfrak{p} is even.

$$S$$
 is graded: $S = S^+ \oplus S^- \quad (= \bigwedge^{even} \mathfrak{p}^+ \oplus \bigwedge^{odd} \mathfrak{p}^+)$
 $\deg_{C(\mathfrak{p})} D = 1 \Rightarrow D$ interchanges $X \otimes S^+$ and $X \otimes S^-$

Assume rank $\mathfrak{g} = \operatorname{rank} \mathfrak{k}$. So dim \mathfrak{p} is even.

$$S$$
 is graded: $S = S^+ \oplus S^- \quad (= \bigwedge^{even} \mathfrak{p}^+ \oplus \bigwedge^{odd} \mathfrak{p}^+)$ $\deg_{C(\mathfrak{p})} D = 1 \Rightarrow D$ interchanges $X \otimes S^+$ and $X \otimes S^-$ Hence $H_D(X) = H_D(X)^+ \oplus H_D(X)^-$

Assume rank $\mathfrak{g} = \operatorname{rank} \mathfrak{k}$. So dim \mathfrak{p} is even.

$$S$$
 is graded: $S = S^+ \oplus S^- \quad (= \bigwedge^{even} \mathfrak{p}^+ \oplus \bigwedge^{odd} \mathfrak{p}^+)$

$$\deg_{C(\mathfrak{p})}D=1\Rightarrow D$$
 interchanges $X\otimes S^+$ and $X\otimes S^-$

Hence
$$H_D(X) = H_D(X)^+ \oplus H_D(X)^-$$

Dirac index of X: the virtual K-module

$$I(X) = H_D(X)^+ - H_D(X)^-$$

If X has infinitesimal character, then

$$X\otimes S^+-X\otimes S^-=I(X).$$

If X has infinitesimal character, then

$$X \otimes S^+ - X \otimes S^- = I(X).$$

It follows that

$$\operatorname{ch} X(\operatorname{ch} S^+ - \operatorname{ch} S^-) = \operatorname{ch} I(X),$$

where ch denotes the \widetilde{K} -character.

Partitions

A partition σ : $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k > 0$. (Sometimes allow zeros at the end.)

Partitions

A partition σ : $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k > 0$. (Sometimes allow zeros at the end.)

 σ corresponds to a Young diagram.

Partitions

A partition σ : $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k > 0$. (Sometimes allow zeros at the end.)

 σ corresponds to a Young diagram.

 σ' : the partition obtained by flipping the Young diagram of σ over the main diagonal.

 $\boldsymbol{\sigma}$ a partition with at most k parts.

 σ a partition with at most k parts.

 F^{σ} is the irreducible finite-dimensional representation of GL(k) with highest weight $\sigma=(\sigma_1,\ldots,\sigma_k)$ (in standard coordinates.)

 σ a partition with at most k parts.

 F^{σ} is the irreducible finite-dimensional representation of GL(k) with highest weight $\sigma = (\sigma_1, \dots, \sigma_k)$ (in standard coordinates.)

For k even, V^{σ} is the irreducible representation of Sp(k) with highest weight σ .

 σ a partition with at most k parts.

 F^{σ} is the irreducible finite-dimensional representation of GL(k) with highest weight $\sigma=(\sigma_1,\ldots,\sigma_k)$ (in standard coordinates.)

For k even, V^{σ} is the irreducible representation of Sp(k) with highest weight σ .

For σ with $(\sigma')_1 + (\sigma')_2 \leq k$, E^{σ} is the irreducible representation of O(k) with highest weight obtained from σ by adjusting the first column (which encodes the action of the component group).

 σ , μ , ν : partitions with at most k parts.

 σ , μ , ν : partitions with at most k parts.

$$c_{\mu
u}^{\sigma}=\dim\operatorname{Hom}_{\mathit{GL}(k)}(\mathit{F}^{\sigma},\mathit{F}^{\mu}\otimes\mathit{F}^{
u}).$$

 σ , μ , ν : partitions with at most k parts.

$$c_{\mu
u}^{\sigma}=\dim\operatorname{\mathsf{Hom}}_{\mathit{GL}(k)}(\mathit{F}^{\sigma},\mathit{F}^{\mu}\otimes\mathit{F}^{
u}).$$

 P_R (resp. P_C): set of Young diagrams with even rows (resp. columns).

 σ , μ , ν : partitions with at most k parts.

$$c_{\mu
u}^{\sigma}=\operatorname{dim}\operatorname{\mathsf{Hom}}_{\mathit{GL}(k)}(\mathit{F}^{\sigma},\mathit{F}^{\mu}\otimes\mathit{F}^{
u}).$$

 P_R (resp. P_C): set of Young diagrams with even rows (resp. columns).

$$\mathcal{C}^{\sigma}_{\mu} := \sum_{
u \in \mathcal{P}_R} \mathcal{c}^{\sigma}_{\mu
u} \qquad \qquad \mathcal{D}^{\sigma}_{\mu} := \sum_{
u \in \mathcal{P}_C} \mathcal{c}^{\sigma}_{\mu
u}.$$

LRF for $O(k,\mathbb{C}) \subset GL(k,\mathbb{C})$:

LRF for
$$O(k,\mathbb{C})\subset GL(k,\mathbb{C})$$
:
For partitions σ and μ with at most $\frac{k}{2}$ parts,
$$\dim \operatorname{Hom}_{O(k,\mathbb{C})}(E^{\mu},F^{\sigma})=C^{\sigma}_{\mu}.$$

LRF for
$$O(k,\mathbb{C})\subset GL(k,\mathbb{C})$$
:
For partitions σ and μ with at most $\frac{k}{2}$ parts,
$$\dim \operatorname{Hom}_{O(k,\mathbb{C})}(E^{\mu},F^{\sigma})=C^{\sigma}_{\mu}.$$

LRF for $Sp(k,\mathbb{C})\subset GL(k,\mathbb{C})$, k even:

LRF for
$$O(k,\mathbb{C}) \subset GL(k,\mathbb{C})$$
:

For partitions σ and μ with at most $\frac{k}{2}$ parts,

$$\dim \operatorname{Hom}_{O(k,\mathbb{C})}(E^{\mu},F^{\sigma})=C^{\sigma}_{\mu}.$$

LRF for $Sp(k,\mathbb{C}) \subset GL(k,\mathbb{C})$, k even:

For partitions σ and μ with at most $\frac{k}{2}$ parts,

$$\dim\operatorname{\mathsf{Hom}}_{\mathcal{Sp}(k,\mathbb{C})}(V^\mu,F^\sigma)=D^\sigma_\mu.$$

Gavarini proved a generalization of the LRF by Brauer algebra methods in 1999.

Gavarini proved a generalization of the LRF by Brauer algebra methods in 1999.

Further generalization was achieved by Enright and Willenbring in 2004 using Howe duality and BGG-type resolutions of unitary highest weight modules. Their formula is valid for all σ .

Gavarini proved a generalization of the LRF by Brauer algebra methods in 1999.

Further generalization was achieved by Enright and Willenbring in 2004 using Howe duality and BGG-type resolutions of unitary highest weight modules. Their formula is valid for all σ .

Similar results were also recently obtained by Wenzl.

Gavarini proved a generalization of the LRF by Brauer algebra methods in 1999.

Further generalization was achieved by Enright and Willenbring in 2004 using Howe duality and BGG-type resolutions of unitary highest weight modules. Their formula is valid for all σ .

Similar results were also recently obtained by Wenzl.

We prove a formula equivalent to that of Enright and Willenbring using Dirac cohomology.

Further notation

For any *n*-tuple σ , define

$$\sigma^{\diamond} = \sigma + (\underbrace{\frac{k}{2}, \dots, \frac{k}{2}}_{n})$$
 and $\sigma^{-\diamond} = \sigma - (\underbrace{\frac{k}{2}, \dots, \frac{k}{2}}_{n}).$

Let σ and μ be partitions with at most k parts. Assume $(\mu')_1 + (\mu')_2 \leq k$.

Let σ and μ be partitions with at most k parts. Assume $(\mu')_1 + (\mu')_2 \leq k$.

Let $L(\mu^{\diamond})$ be the unitary lowest weight module for the Hermitian symmetric pair $(\mathfrak{sp}(2k,\mathbb{R}),\mathfrak{u}(k))$ with lowest weight $w_0\mu^{\diamond}$.

Let σ and μ be partitions with at most k parts. Assume $(\mu')_1 + (\mu')_2 \leq k$.

Let $L(\mu^{\diamond})$ be the unitary lowest weight module for the Hermitian symmetric pair $(\mathfrak{sp}(2k,\mathbb{R}),\mathfrak{u}(k))$ with lowest weight $w_0\mu^{\diamond}$.

(Here w_0 is the longest element of the Weyl group of $\mathfrak{k} = \mathfrak{gl}(k)$. Thus the lowest K-type of $L(\mu^{\diamond})$ has highest weight μ^{\diamond} .)

Let σ and μ be partitions with at most k parts. Assume $(\mu')_1 + (\mu')_2 \leq k$.

Let $L(\mu^{\diamond})$ be the unitary lowest weight module for the Hermitian symmetric pair $(\mathfrak{sp}(2k,\mathbb{R}),\mathfrak{u}(k))$ with lowest weight $w_0\mu^{\diamond}$.

(Here w_0 is the longest element of the Weyl group of $\mathfrak{k} = \mathfrak{gl}(k)$. Thus the lowest K-type of $L(\mu^{\diamond})$ has highest weight μ^{\diamond} .)

Assume that

$$H^+_D(L(\mu^\diamond)) = \sum_\xi F^\xi \qquad ext{ and } \qquad H^-_DL(\mu^\diamond) = \sum_\eta F^\eta.$$

Let σ and μ be partitions with at most k parts. Assume $(\mu')_1 + (\mu')_2 \leq k$.

Let $L(\mu^{\diamond})$ be the unitary lowest weight module for the Hermitian symmetric pair $(\mathfrak{sp}(2k,\mathbb{R}),\mathfrak{u}(k))$ with lowest weight $w_0\mu^{\diamond}$.

(Here w_0 is the longest element of the Weyl group of $\mathfrak{k} = \mathfrak{gl}(k)$. Thus the lowest K-type of $L(\mu^{\diamond})$ has highest weight μ^{\diamond} .)

Assume that

$$H_D^+(L(\mu^\diamond)) = \sum_{\xi} F^{\xi}$$
 and $H_D^-L(\mu^\diamond) = \sum_{\eta} F^{\eta}$.

(Known explicitly by Enright's formula for $\mathfrak n$ -cohomology and the relationship between $\mathfrak n$ -cohomology and Dirac cohomology.)

Let σ and μ be partitions with at most k parts. Assume $(\mu')_1 + (\mu')_2 \leq k$.

Let $L(\mu^{\diamond})$ be the unitary lowest weight module for the Hermitian symmetric pair $(\mathfrak{sp}(2k,\mathbb{R}),\mathfrak{u}(k))$ with lowest weight $w_0\mu^{\diamond}$.

(Here w_0 is the longest element of the Weyl group of $\mathfrak{k} = \mathfrak{gl}(k)$. Thus the lowest K-type of $L(\mu^{\diamond})$ has highest weight μ^{\diamond} .)

Assume that

$$H_D^+(L(\mu^\diamond)) = \sum_{\xi} F^{\xi}$$
 and $H_D^-L(\mu^\diamond) = \sum_{\eta} F^{\eta}$.

(Known explicitly by Enright's formula for \mathfrak{n} -cohomology and the relationship between \mathfrak{n} -cohomology and Dirac cohomology.)

Then

$$\dim \mathsf{Hom}_{\mathcal{O}(k,\mathbb{C})}(E^{\mu},F^{\sigma}) = \sum_{\xi} C^{\sigma}_{\xi^{-\diamond}+\rho_n} - \sum_{\eta} C^{\sigma}_{\eta^{-\diamond}+\rho_n}.$$

Let k be even. Let σ (respectively μ) be a partition with at most k (respectively at most $\frac{k}{2}$) parts.

Let k be even. Let σ (respectively μ) be a partition with at most k (respectively at most $\frac{k}{2}$) parts.

Let $L(\mu^{\diamond})$ denote the unitary lowest weight module for the Hermitian symmetric pair $(\mathfrak{so}^*(2k),\mathfrak{u}(k))$ with lowest weight $w_0\mu^{\diamond}$. $(w_0$ is as before.)

Let k be even. Let σ (respectively μ) be a partition with at most k (respectively at most $\frac{k}{2}$) parts.

Let $L(\mu^{\diamond})$ denote the unitary lowest weight module for the Hermitian symmetric pair $(\mathfrak{so}^*(2k),\mathfrak{u}(k))$ with lowest weight $w_0\mu^{\diamond}$. $(w_0$ is as before.)

Assume that

$$H^+_D(L(\mu^\diamond)) = \sum_{\xi} F^{\xi}$$
 and $H^-_D L(\mu^\diamond) = \sum_{\eta} F^{\eta}.$

Let k be even. Let σ (respectively μ) be a partition with at most k (respectively at most $\frac{k}{2}$) parts.

Let $L(\mu^{\diamond})$ denote the unitary lowest weight module for the Hermitian symmetric pair $(\mathfrak{so}^*(2k),\mathfrak{u}(k))$ with lowest weight $w_0\mu^{\diamond}$. $(w_0$ is as before.)

Assume that

$$H^+_D(L(\mu^\diamond)) = \sum_\xi F^\xi$$
 and $H^-_DL(\mu^\diamond) = \sum_\eta F^\eta.$

Then

$$\dim \operatorname{\mathsf{Hom}}_{\mathit{Sp}(k,\mathbb{C})}(V^{\mu},F^{\sigma}) = \sum_{\xi} D^{\sigma}_{\xi^{-\diamond}+\rho_{n}} - \sum_{\eta} D^{\sigma}_{\eta^{-\diamond}+\rho_{n}}.$$

Howe duality for $GL(k, \mathbb{C}) \times \mathfrak{u}(n)$

Howe duality for $GL(k, \mathbb{C}) \times \mathfrak{u}(n)$

Under the natural $GL(k,\mathbb{C}) \times \mathfrak{u}(n)$ -action, $\mathcal{P}(M_{k \times n})$ decomposes as

$$\mathcal{P}(M_{k\times n})\cong \bigoplus_{\sigma}(F^{\sigma})^*\otimes F^{\sigma},$$

with the sum over all partitions σ with at most min(k, n) parts. (As usual, σ is extended by adding zeros at the end if necessary.)

Howe duality for $O(k,\mathbb{C}) \times \mathfrak{sp}(2n,\mathbb{R})$

Howe duality for $O(k,\mathbb{C}) \times \mathfrak{sp}(2n,\mathbb{R})$

$$\mathcal{P}(M_{k \times n}) \cong \bigoplus_{\mu} E^{\mu} \otimes L(\mu^{\diamond}) \cong \bigoplus_{\mu} (E^{\mu})^* \otimes L(\mu^{\diamond}),$$

with the sum over all partitions μ with at most $r = \min(k, n)$ parts and such that $(\mu')_1 + (\mu')_2 \le k$.

Howe duality for $O(k,\mathbb{C}) imes \mathfrak{sp}(2n,\mathbb{R})$

$$\mathcal{P}(M_{k \times n}) \cong \bigoplus_{\mu} E^{\mu} \otimes L(\mu^{\diamond}) \cong \bigoplus_{\mu} (E^{\mu})^* \otimes L(\mu^{\diamond}),$$

with the sum over all partitions μ with at most $r = \min(k, n)$ parts and such that $(\mu')_1 + (\mu')_2 \le k$.

The modules $L(\mu^{\diamond})$ appearing in this decomposition are all unitary.

Howe duality for $Sp(k,\mathbb{C}) \times \mathfrak{so}^*(2n)$, k even

Howe duality for $Sp(k,\mathbb{C}) \times \mathfrak{so}^*(2n)$, k even

$$\mathcal{P}(M_{k \times n}) \cong \bigoplus_{\mu} V^{\mu} \otimes L(\mu^{\diamond}) \cong \bigoplus_{\mu} (V^{\mu})^* \otimes L(\mu^{\diamond}),$$

with the sum over all partitions μ with at most $r = \min(\frac{k}{2}, n)$ parts.

Howe duality for $Sp(k, \mathbb{C}) \times \mathfrak{so}^*(2n)$, k even

$$\mathcal{P}(M_{k \times n}) \cong \bigoplus_{\mu} V^{\mu} \otimes L(\mu^{\diamond}) \cong \bigoplus_{\mu} (V^{\mu})^* \otimes L(\mu^{\diamond}),$$

with the sum over all partitions μ with at most $r = \min(\frac{k}{2}, n)$ parts.

The modules $L(\mu^{\diamond})$ appearing in this decomposition are all unitary.

Since $GL(k,\mathbb{C}) \times \mathfrak{u}(k)$ and $O(k,\mathbb{C}) \times \mathfrak{sp}(2k,\mathbb{R})$ are see-saw dual pairs, it follows that

$$[F_{\sigma}: E_{\mu}] = [(F_{\sigma}^*): (E_{\mu}^*)] = [L(\mu^{\diamond}): F_{\sigma}].$$

Since $GL(k,\mathbb{C}) \times \mathfrak{u}(k)$ and $O(k,\mathbb{C}) \times \mathfrak{sp}(2k,\mathbb{R})$ are see-saw dual pairs, it follows that

$$[F_{\sigma}: E_{\mu}] = [(F_{\sigma}^*): (E_{\mu}^*)] = [L(\mu^{\diamond}): F_{\sigma}].$$

Thus the LRF for $O(k) \subset GL(k)$ will follow if we can find K-type multiplicities for the unitary lowest weight module $L(\mu^{\diamond})$ for $(\mathfrak{sp}(2k,\mathbb{R}),\mathfrak{u}(k))$.

Since $GL(k,\mathbb{C}) \times \mathfrak{u}(k)$ and $O(k,\mathbb{C}) \times \mathfrak{sp}(2k,\mathbb{R})$ are see-saw dual pairs, it follows that

$$[F_{\sigma}: E_{\mu}] = [(F_{\sigma}^*): (E_{\mu}^*)] = [L(\mu^{\diamond}): F_{\sigma}].$$

Thus the LRF for $O(k) \subset GL(k)$ will follow if we can find K-type multiplicities for the unitary lowest weight module $L(\mu^{\diamond})$ for $(\mathfrak{sp}(2k,\mathbb{R}),\mathfrak{u}(k))$.

Likewise, $GL(k,\mathbb{C}) \times \mathfrak{u}(k)$ and $Sp(k,\mathbb{C}) \times \mathfrak{so}^*(2k)$ are see-saw dual pairs, and hence the LRF for $Sp(k) \subset GL(k)$ will follow if we can find K-type multiplicities for the unitary lowest weight module $L(\mu^{\diamond})$ for $(\mathfrak{so}^*(2k,\mathbb{R}),\mathfrak{u}(k))$.

Let F^{μ} be the irreducible finite-dimensional representation of \mathfrak{k} with highest weight μ . Let \mathfrak{p}^- act on F^{μ} by zero.

Let F^{μ} be the irreducible finite-dimensional representation of \mathfrak{k} with highest weight μ . Let \mathfrak{p}^- act on F^{μ} by zero.

The corresponding lowest weight generalized Verma module is

$$N(\mu) = U(\mathfrak{g}) \otimes_{U(\mathfrak{k} \oplus \mathfrak{p}^-)} F^{\mu} = S(\mathfrak{p}^+) \otimes F^{\mu}.$$

Let F^{μ} be the irreducible finite-dimensional representation of \mathfrak{k} with highest weight μ . Let \mathfrak{p}^- act on F^{μ} by zero.

The corresponding lowest weight generalized Verma module is

$$N(\mu) = U(\mathfrak{g}) \otimes_{U(\mathfrak{k} \oplus \mathfrak{p}^-)} F^{\mu} = S(\mathfrak{p}^+) \otimes F^{\mu}.$$

Assume that

$$H^+_D(L(\mu)) = \sum_{\xi} F^{\xi}$$
 and $H^-_D(L(\mu)) = \sum_{\eta} F^{\eta}$.

Let F^{μ} be the irreducible finite-dimensional representation of \mathfrak{k} with highest weight μ . Let \mathfrak{p}^- act on F^{μ} by zero.

The corresponding lowest weight generalized Verma module is

$$N(\mu) = U(\mathfrak{g}) \otimes_{U(\mathfrak{k} \oplus \mathfrak{p}^-)} F^{\mu} = S(\mathfrak{p}^+) \otimes F^{\mu}.$$

Assume that

$$H_D^+(L(\mu)) = \sum_{\xi} F^{\xi}$$
 and $H_D^-(L(\mu)) = \sum_{\eta} F^{\eta}$.

Then

$$\operatorname{ch} L(\mu) = \sum_{\xi} \operatorname{ch} N(\xi + \rho_n) - \sum_{\eta} \operatorname{ch} N(\eta + \rho_n).$$
 (*)

The K-structure of $S(\mathfrak{p}^+)$ is known explicitly by results of Schmid. In particular:

The K-structure of $S(\mathfrak{p}^+)$ is known explicitly by results of Schmid. In particular:

For the Hermitian symmetric pair $(\mathfrak{sp}(2k,\mathbb{R}),\mathfrak{u}(k))$,

$$S(\mathfrak{p}^+) = \bigoplus_{\nu \in P_R, l(\nu) \le k} F^{\nu}.$$

The K-structure of $S(\mathfrak{p}^+)$ is known explicitly by results of Schmid. In particular:

For the Hermitian symmetric pair $(\mathfrak{sp}(2k,\mathbb{R}),\mathfrak{u}(k))$,

$$S(\mathfrak{p}^+) = \bigoplus_{\nu \in P_R, l(\nu) \le k} F^{\nu}.$$

Tensoring with F^{μ} we see that the multiplicity of F^{σ} in $N(\mu)$ is the sum of the Littlewood-Richardson coefficients C^{σ}_{μ} .

For the Hermitian symmetric pair $(\mathfrak{so}^*(2k),\mathfrak{u}(k))$,

$$S(\mathfrak{p}^+) = \bigoplus_{\nu \in P_C, l(\nu) \le k} F^{\nu}.$$

For the Hermitian symmetric pair $(\mathfrak{so}^*(2k),\mathfrak{u}(k))$,

$$S(\mathfrak{p}^+) = \bigoplus_{\nu \in P_C, l(\nu) \le k} F^{\nu}.$$

Tensoring with F^{μ} we see that the multiplicity of F^{σ} in $N(\mu)$ is the sum of the Littlewood-Richardson coefficients D^{σ}_{μ} .

For the Hermitian symmetric pair $(\mathfrak{so}^*(2k),\mathfrak{u}(k))$,

$$S(\mathfrak{p}^+) = \bigoplus_{\nu \in P_C, l(\nu) \le k} F^{\nu}.$$

Tensoring with F^{μ} we see that the multiplicity of F^{σ} in $N(\mu)$ is the sum of the Littlewood-Richardson coefficients D^{σ}_{μ} .

This finishes the proof modulo the character formula (*).

To prove (*), we first note that the Dirac index of $N(\mu)$ is $F^{\mu-\rho_n}$, and hence

$$\operatorname{ch} N(\mu)(\operatorname{ch} S^+ - \operatorname{ch} S^-) = \operatorname{ch} F^{\mu-\rho_n}.$$

To prove (*), we first note that the Dirac index of $N(\mu)$ is $F^{\mu-\rho_n}$, and hence

$$ch N(\mu)(ch S^{+} - ch S^{-}) = ch F^{\mu-\rho_n}.$$

This follows from the Koszul complex identity

$$\operatorname{ch} S(\mathfrak{p}^+)(\operatorname{ch} S^+ - \operatorname{ch} S^-) = \operatorname{ch} \mathbb{C}_{-\rho_n}.$$

To prove (*), we first note that the Dirac index of $N(\mu)$ is $F^{\mu-\rho_n}$, and hence

$$\operatorname{ch} N(\mu)(\operatorname{ch} S^+ - \operatorname{ch} S^-) = \operatorname{ch} F^{\mu - \rho_n}.$$

This follows from the Koszul complex identity

$$\operatorname{ch} S(\mathfrak{p}^+)(\operatorname{ch} S^+ - \operatorname{ch} S^-) = \operatorname{ch} \mathbb{C}_{-\rho_n}.$$

We conclude that

$$\left(\operatorname{ch} L(\mu) - \sum_{\xi} \operatorname{ch} N(\xi + \rho_n) + \sum_{\eta} \operatorname{ch} N(\eta + \rho_n) \right) (\operatorname{ch} S^+ - \operatorname{ch} S^-) = 0.$$

Now (*) follows by adapting an argument used by Hecht and Schmid in the proof of the Blattner formula.

Now (*) follows by adapting an argument used by Hecht and Schmid in the proof of the Blattner formula.

The point is that the K-types appearing in the virtual K-module

$$V=\operatorname{ch} L(\mu)-\sum_{\xi}\operatorname{ch} N(\xi+
ho_n)+\sum_{\eta}\operatorname{ch} N(\eta+
ho_n)$$

are bounded from below.

Now (*) follows by adapting an argument used by Hecht and Schmid in the proof of the Blattner formula.

The point is that the K-types appearing in the virtual K-module

$$V = \operatorname{ch} L(\mu) - \sum_{\xi} \operatorname{ch} N(\xi + \rho_n) + \sum_{\eta} \operatorname{ch} N(\eta + \rho_n)$$

are bounded from below.

In other words, when F^{ν} runs through the K-types occurring in V, the numbers $\langle \nu, \rho_n \rangle$ are bounded from below.