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Abstract

Let V and V∗ be the natural and conatural representation of the
complex finitary Lie algebra gl∞, respectively. We study the rigidity
of the indecomposable direct summands of the tensor representations
V ⊗p⊗V ⊗q

∗ of gl∞. The main result is that for p, q ≥ 3 at least one direct
summand of V ⊗p ⊗ V ⊗q

∗ is not rigid in the sense that the socle filtration
does not coincide with the radical filtration.
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1 Introduction

When studying a category of modules, and one is presented with a class of in-
decomposable modules, it is often essential to understand whether the modules
in this class are rigid or not. An important example is Irving’s rigidity theorem
for Verma modules, see [B], [BB] and [I].

In [PS], I. Penkov and K. Styrkas introduced the tensor representations
V ⊗(p,q) of the locally finite countable dimensional Lie algebras gl∞, sl∞ so∞
and sp∞. Moreover, they found the decomposition of V ⊗(p,q) into indecom-
posable summands and socle filtrations of the indecomposables. Very recently,
Penkov, E. Dan-Cohen and V. Serganova in [DPS] proved that those inde-
composable tensor representations are injective modules. In addition, it was
observed by Serganova (oral communication), that some indecomposable direct
summands of V ⊗(p,q) cannot be rigid as gl∞-modules.

In this thesis, I’m building on this observation and generalize it to a suf-
ficient condition for non-rigidity of an indecomposable direct summand of
V ⊗(p,q). I also show that this condition is satisfied by at least one direct
summand of V ⊗(p,q) if p, q ≥ 3. This is a starting point for the investigation of
the radical filtration of the indecomposable direct summands of V ⊗(p,q).

2 Loewy filtrations

Let M be a module over a ring or a Lie algebra R. M is called simple if it
does not contain a proper submodule. M is called semisimple, if it satisfies
any of the following three equivalent definitions:

(1) M is the direct sum of simple submodules.

(2) M is the sum of some of its simple submodules.

(3) For any submodule N ⊂ M , there exists a complement, i.e. a submodule
K ⊂M with M = N ⊕K.

Proof of their equivalence. (Adapted from [Bu]) The implication (1) ⇒ (2) is
clear. To see the implication (2)⇒ (3), let N be a submodule of M . Consider
all those submodules of M that are sum of simple modules and intersect N
only in {0}. The set of such modules is partially ordered by inclusion, and any
chain of nested submodules has an upper bound, namely their union. So we
can apply Zorn’s Lemma to get a maximal submodule K intersecting N only
in {0}. If M is not equal to N ⊕K, then M contains a simple submodule S
that is not contained in N ⊕K. We have S ∩ (N ⊕K) = 0 by the simplicity of
S, hence S+K is another submodule intersecting N trivially and being a sum
of simple modules. This violates the maximality of K. Hence M = N ⊕K.

To show (3) ⇒ (1), first observe that the condition (3) passes down to
submodules: if M satisfies (3), and K ⊂ N are both submodules of M , then
K has a complement in N . Indeed, (3) applied to K and M gives a module L
with M = K ⊕L, which yields the decomposition N = K ⊕ (N ∩L). Thus, N
also satisfies (3).

Now consider all submodules of M that are a direct sum of simple submod-
ules. Again, those modules are partially ordered by inclusion and any chain
contains an upper bound, namely their union. So by Zorn’s Lemma, we pick
a maximal submodule of this kind and call it K. If K ( M we can find an
x ∈ M such that x /∈ K. Pick a maximal submodule P of Ry (using Zorn’s
Lemma once more), and find its complement S in Ry (using property (3) on
Ry). Then S is simple. Otherwise P would not be maximal, then S could be
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added to K, and we have a contradiction with the maximality of P . Hence,
K = M , i.e. M satisfies (1).

A (strict) finite filtration is a sequence of nested modules

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M,

where the quotients Mi+1/Mi are nonzero. Then k is the length of the filtra-
tion. In this thesis, we are interested in semisimple filtrations, meaning that
the quotients Mi+1/Mi are semisimple. All filtrations from now on are assumed
to have this property. In general, a given module M does not necessarily admit
a semisimple filtration, but the modules we will be concerned with will admit
such filtrations.

When a finite filtration has maximal length, it is called composition se-
ries, and the corresponding length is called the length of the module M . The
Jordan-Hölder-theorem tells us that any two composition series are equivalent,
meaning that the quotients are isomorphic up to permutation. On the other
hand, if a filtration has minimal length, it is called Loewy filtration. Two
examples of Loewy filtrations are the socle filtration and the radical filtration,
which we will define below.

As the above equivalence proof shows, any module M contains a maximal
semisimple submodule. It is called the socle of M and is denoted by socM .
Using the socle, one can define the socle filtration of M by setting soc0M :=
0, socn+1M := π−1

n (soc(M/ socnM)), where πn : M → M/ socnM is the
quotient map. The quotients of two successive socles are called layers and are
denoted socnM := socnM/ socn−1M . The layers are always semisimple, by
definition. Hence, the socle filtration of a module is indeed a filtration:

0 = soc0M ⊂ soc1M ⊂ soc2M ⊂ · · · ⊂M.

In the socle filtration, the submodules are as large as they can be while yield-
ing semisimple layers. There is also a second construction, which makes the lay-
ers as large as possible. Define the radical of M as radM :=

⋂
Φ:M→W ker Φ.

Here, Φ runs over all homomorphisms from M to any semisimple module W .
In other words, radM is the smallest submodule of M with M/ radM being
semisimple.

By applying rad repeatedly, one gets the radical filtration. Define rad0M :=
M , radn+1 := rad(radnM). This yields a decreasing sequence of nested sub-
modules, whose quotients are semisimple:

0 ⊂ · · · ⊂ rad2M ⊂ rad1M ⊂ rad0M = M.

The radical filtration is only a filtration in the above sense if it is finite,
i.e. radkM = 0 for some k. If that is the case and we reverse the in-
dices: Mi = radk−iM , then (Mi) is a filtration in the above sense. As with
the socle filtration, we define the layers of a radical filtration via rad

n
M =

radn−1M/ radnM .
It is natural to ask how the radical and socle filtration are related. The

following theorem gives an answer to that:

Theorem 2.1. Let M be a module and assume that socnM = M or radnM =
0 holds for some n ≥ 0, but neither holds for any smaller n. Then the other
equation is also true and the filtrations satisfy radn−iM ⊂ sociM for all 0 ≤
i ≤ n. In other words, if one of the filtrations exhausts M after a finite number
of steps, then both filtrations are finite and have the same length. This length
is called Loewy length of M.
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Proof. First assume that socnM = M . We want to prove radiM ⊂ socn−iM
via induction on i for i ≥ 0. For i = 0, the claim amounts to M ⊂ M ,
which is true. Assuming radiM ⊂ socn−iM , we want to show radi+1M ⊂
socn−i−1M . Let π : socn−iM → socn−iM/ socn−i−1M be the projection
homomorphism. The kernel of this homomorphism is socn−i−1M , and the
range of the homomorphism is semisimple. So we have rad(socn−iM) ⊂ kerπ =
socn−i−1M . Since radiM ⊂ socn−iM , we have radi+1M ⊂ rad(socn−iM) ⊂
socn−i−1M as desired.

Second, assume radnM = 0. Then we will show radiM ⊂ socn−iM by
induction on i for i ≤ n. For i = n, we simply have 0 ⊂ 0. Let radiM ⊂
socn−iM , then we need to show that radi−1M ⊂ socn−i+1M . Let π :
M →M/ socn−iM be the quotient map on M/ socn−iM , then socn−i+1M =
π−1(soc(M/socn−iM)). By definition of rad, the quotient radi−1M/ radiM is
semisimple. Together with radiM ⊂ socn−iM , this implies that radi−1M ⊂
π−1(soc(M/socn−iM)) = socn−i+1.

To summarize, socnM = M implies radiM ⊂ socn−iM for all i ≤ n, espe-
cially radnM ⊂ soc0M = 0, i.e. radnM = 0. On the other hand, radnM = 0
implies the same, hence M = rad0M ⊂ socnM , i.e. socnM = M . Therefore,
socnM = M ⇔ radnM = 0, which means that both filtrations have the same
length.

So, if their length is finite, then the two filtrations have the same length
and the radical filtration “sits inside” the socle filtration. If the socle and the
radical filtrations coincide, the module is called rigid. The common length
of those two filtrations is indeed the minimal length that any filtration can
have, so they are Loewy filtrations. Any other Loewy filtration (Mi) “lies in
between” those two filtrations, i.e. radn−iM ⊂ Mi ⊂ sociM for all i, which
can be shown similarly to Theorem 2.1. In particular, any rigid module M has
a unique Loewy filtration which is given by both the socle and radical filtration.

Example: Let C[x] act on Cn as follows: x·(v1, v2, . . . , vn)ᵀ := (v2, v3, . . . , vn, 0)ᵀ.
Then it is easy to check that all submodules of Cn are of the form xkCn ∼= Cn−k.
The so obtained C[x]-module Cn is rigid with socle and radical filtration given
by sociCn = radn−iCn = xn−iCn. All the layers are isomorphic to C, which is
a simple module over C[x] with zero action of x. We denote this graphically in
the following way: The layers of a filtration are stacked on top of each other,
the smallest modules being in the bottom box, and the successive layers being
on top of it. To mark a filtration as socle or radical filtration, we put a small
soc or rad as index. It is aligned in such a way that a group of boxes from the
bottom form a submodule, and a group of boxes from the top form a quotient.
For Cn, the socle and radical filtrations look like this:

Cn ∼

C
...
C
C

soc

,Cn ∼

C
...
C
C

rad

Socle and radical both behave well with respect to direct sums: The socle
of the sum is the sum of the socles, and the radical of the sum is the sum of
the radicals. This means that one can find a socle filtration of a direct sum by
aligning the indidual filtrations at the lowest level, and the radical filtration
by aligning at the highest level. This enables us to find the filtrations for e.g.
C4 ⊕ C2 ⊕ C1 easily. We have the following situation:
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C4⊕C2⊕C1 ∼

C
C
C
C

soc

⊕ C
C

soc

⊕ C
soc
∼

C
C

C⊕ C
C⊕ C⊕ C

soc

∼

C⊕ C⊕ C
C⊕ C
C
C

rad

Here we can see what we just proved: The submodules of the radical fil-
tration are contained in the corresponding submodules of the socle filtration.
All that can happen when we go from the socle to the radical filtration is that
simple modules can move to higher layers. One needs to keep in mind that this
is just a graphical notation to highlight properties of the modules we study.
Also we note that the layers of a socle filtration do not determine the module
up to isomorphism.

3 A brief survey on tensor representations of
gl∞

Preliminaries

A partition λ is a finite, non-strictly decreasing (also called weakly decreasing)
sequence of positive integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk).

We set |λ| = λ1 + · · ·+λk, and λi = 0 for i > k. The empty partition is denoted
by 0.

Each partition has a Young diagram associated to it, formed by k rows
with λi boxes in the i’th row. A Young tableau is a numbering of those boxes
by the numbers 1 to d := |λ|.

One reason for partitions playing an important role in representation theory,
is that they parametrize the irreducible representations of the symmetric group
Sd. This works as follows. Given a tableau (e.g. the canonical one, counting
row-by-row, left to right) of λ, we define two subgroups of Sd by

Pλ = {g ∈ Sd|g preserves each row},
Qλ = {g ∈ Sd|g preserves each column}.

Within the group algebra C[Sd], we define

aλ =
∑
g∈Pλ

eg,

bλ =
∑
g∈Qλ

sgn(g) · eg.

Finally, we define the Young projector cλ corresponding to some partition λ
as cλ = aλbλ, and denote

Hλ := C[Sd]cλ.

When Sd is acting on V ⊗d by permuting the factors, cλ projects V ⊗d onto

SλV := im(cλ : V ⊗d → V ⊗d),

which is an irreducible representation of gld. Sλ is called the Schur functor
corresponding to λ. For more details see [FH], p.77.
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The Littlewood-Richardson coefficients Nν
λ,µ are nonnegative integers,

determined for any partitions λ, µ, ν by the relation SλSµ =
∑
ν N

ν
λ,µSµ, where

Sλ denotes the Schur symmetric polynomial corresponding to the partition λ.
More on these coefficients can be found in section 4.

Tensor representations of gl∞

The following definitions and theorems work for any algebraically closed field
k with characteristic 0, but we want to restrict ourselves to the case k = C
for this thesis. Let V and V∗ be countable dimensional C-vector spaces, and
let 〈·, ·〉 : V ⊗ V∗ → C be a non-degenerate pairing. Then the Lie algebra
gl∞ is defined to be the vector space V ⊗ V∗, equipped with the Lie bracket
[u⊗ u∗, v⊗ v∗] = 〈u∗, v〉u⊗ v∗ − 〈v∗, u〉 v⊗ u∗, for u, v ∈ V, u∗, v∗ ∈ V∗. sl∞ is
defined as the kernel of the map 〈·, ·〉.

As it was observed by Mackey (see [M]), it is always possible to find dual
bases {ξi}i∈I of V and {ξ∗i }i∈I of V∗ for some countable index set I, such that
we have

〈
ξi, ξ

∗
j

〉
= δi,j . With these bases, an alternative definition of gl∞ is

possible: gl∞ is the Lie algebra with linear basis {Ei,j = ξi ⊗ ξ∗j , i, j ∈ I} and
Lie bracket [Ei,j , Ek,l] = δj,kEi,l − δi,lEk,j .

We call V the natural representation of gl∞, and V∗ its restricted dual.
For non-negative integers p, q, the tensor representation V ⊗(p,q) is defined
as V ⊗p ⊗ V ⊗q∗ , equipped with the structure of a gl∞-module:

(u⊗ u∗)·(v1 ⊗ . . .⊗ vp ⊗ v∗1 ⊗ . . .⊗ v∗q ) =
p∑
i=1

〈u∗, vi〉 v1 ⊗ . . .⊗ vi−1 ⊗ u⊗ vi+1 ⊗ . . .⊗ vp ⊗ v∗1 ⊗ . . .⊗ v∗q

−
q∑
j=1

〈
v∗j , u

〉
v1 ⊗ . . .⊗ vp ⊗ v∗1 ⊗ . . .⊗ v∗i−1 ⊗ u∗ ⊗ v∗i+1 ⊗ . . .⊗ v∗q

for u, vi ∈ V and u∗, v∗j ∈ V∗. The product of the symmetric groups Sp ×Sq

acts on V ⊗(p,q) by permuting the factors. This action commutes with the
gl∞-action: we say that V ⊗(p,q) is a (gl∞,Sp ×Sq)-module.

The purpose of this section is to present the result of Penkov and Styrkas
in [PS] on the structure of V ⊗(p,q), i.e. the decomposition into indecomposable
modules, and their socle filtration. The Jordan-Hölder constituents are iden-
tified and described as highest weight modules. The definitions and theorems
are taken from section 2 of [PS], where their proofs can be found as well.

For any pair of indices I = (i, j) with i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , q},
define the contraction

ΦI : V ⊗(p,q) → V ⊗(p−1,q−1)

v1⊗. . .⊗vp⊗v∗1⊗. . .⊗v∗q 7→
〈
v∗j , vi

〉
v1⊗. . .⊗v̂i⊗. . .⊗vp⊗v∗1⊗. . .⊗v̂∗j⊗. . .⊗v

∗
q

(Here, the hat on v̂i means to leave out this term.)
Consider the (gl∞,Sp ×Sq)-submodule V {p,q} of V ⊗(p,q),

V {p,q} :=
⋂
I

ker
(

ΦI : V ⊗(p,q) → V ⊗(p−1,q−1)
)

and furthermore, set V {p,0} := V ⊗p and V
{0,q}
∗ := V ⊗q∗ . For any partitions λ,

µ with |λ| = p and |µ| = q, define the gl∞-submodule Γλ,µ of V {p,q} as

Γλ,µ := V {p,q} ∩ (SλV ⊗ SµV∗).
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Highest weight modules

As we will see in the next section, all Jordan-Hölder constituents of V ⊗(p,q) have
the form Γλ,µ for |λ| ≤ p, |µ| ≤ q. An important property of the gl∞-modules
Γλ;µ is that they are highest weight modules for a certain Borel subalgebra of
gl∞. The meaning of this statement is explained in this section.

An element of gl∞ is called semisimple if it acts semisimply on gl∞ via the
adjoint representation. A subalgebra of gl∞ is called toral if all of its non-zero
elements are semisimple. It is a standard lemma that a toral subalgebra is
abelian.

Let M be a gl∞-module, let t be a toral subalgebra of gl∞, and let t∗ be
the dual. Then for α ∈ t∗, we call

Mα := {m ∈M |∀t ∈ t : tm = α(t)m}

the t-weight space of M of weight α. M is called a t-weight gl∞-module
if as a t-module, M decomposes as the direct sum

⊕
α∈t∗M

α.
A splitting Cartan subalgebra h of gl∞ is a maximal toral subalgebra

such that gl∞ is an h-weight module. If h is a splitting Cartan subalgebra, then
glα∞ for α 6= 0 are called the root spaces of gl∞, ∆ := {α ∈ h∗\{0}|glα∞ 6= 0}
is the set of roots of gl∞, and the decomposition

gl∞ = h⊕
⊕

α∈h∗\{0}

glα∞

is called the root decomposition of gl∞.
A decomposition of the set ∆ into two disjoint sets ∆+ and ∆− is called

triangular decomposition of ∆ if and only if α, β ∈ ∆+, α+ β ∈ ∆ implies
α+ β ∈ ∆+ and α ∈ ∆± implies −α ∈ ∆∓.

A Lie subalgebra b of g is called a Borel subalgebra of g if there is a
triangular decomposition such that b = (

⊕
α∈∆+ glα∞)⊂+ h, where ⊂+ denotes

semidirect sum.
If M is a g-module, and 0 6= v ∈ M , then we call v a highest weight

vector if it generates a one-dimensional b-submodule. Any such v must satisfy
(
⊕

α∈∆+ glα∞)v = 0 and ∀H ∈ h : Hv = χ(H)v for some fixed weight χ ∈ h∗.
M is called highest weight module if it is generated by a highest weight
vector, χ is called the highest weight of M . The highest weight vector v of
M is determined uniquely up to multiplication by a complex number.

In our case, the modules Γλ,µ are highest weight modules if we pick the
triangular decomposition in the right way. For gl∞, we have the root decom-
position gl∞ = h⊕ (

⊕
α∈∆CXα), where:

h =
⊕
i∈I

CEi,i ∆ = {εi − εj |i, j ∈ I, i 6= j} , Xεi−εj = Ei,j

and εi ∈ h∗ is determined by εi(Ej,j) = δi,j . If we identify the index set I with
Z\{0}, then the triangular decomposition is given by

∆+ = {εi − εj |0 < i < j} ∪ {εi − εj |i < j < 0} ∪ {εi − εj |j < 0 < i}.

With respect to the corresponding b, Γλ,µ are indeed irreducible highest weight
modules with the weight given in Theorem 3.2 below.

One feature of highest weight modules Γλ,µ that will become important
later is the following.

Lemma 3.1. Any automorphism φ of Γλ,µ is of the form φ(v) = cv for some
fixed constant c ∈ C\{0}.
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Proof. Γλ,µ is a highest weight module, and is therefore generated by its highest
weight vector v. Because v is unique up to multiplication by a constant, any
automorphism of Γλ,µ will send v to some cv, c ∈ C. But since v generates
Γλ,µ, this is already enough to determine the automorphism uniquely: Every
vector in Γλ,µ is multiplied by c.

Results about the tensor representations

Now we have all definitions that we need to state the following results about
the structure of the tensor representations of gl∞.

Theorem 3.2. For any p,q there is an isomorphism of (gl∞,Sp×Sq)-modules

V {p,q} ∼=
⊕
|λ|=p

⊕
|µ|=q

Γλ;µ ⊗ (Hλ ⊗Hµ) (1)

For any partitions λ, µ, the gl∞-module Γλ;µ is an irreducible highest weight
module with highest weight χ =

∑
i∈N λiεi −

∑
i∈N µiε−i.

For p = 0 or q = 0, we get the following isomorphisms, which are infinite-
dimensional versions of the Schur-Weyl duality for gl∞:

V ⊗p ∼=
⊕
|λ|=p

Γλ;0 ⊗Hλ,

V ⊗q∗
∼=
⊕
|µ|=q

Γ0;µ ⊗Hµ.

By taking the tensor product of those two isomorphisms, we arrive at a
decomposition of V ⊗(p,q). The following theorems state that this is indeed a
decomposition into indecomposable modules, and describe their socle filtra-
tions.

First, we come to a theorem that describes the socle filtration of V ⊗(p,q)

explicitely as intersection of kernels of the contraction map ΦI and its iterations.

Theorem 3.3. Let p,q be nonnegative integers, and let l = min(p, q). Then
the Loewy length of the gl∞-module V ⊗(p,q) is l+ 1 and for each r from 1 to l,
we have

socr V ⊗(p,q) =
⋂

I1,...,Ir

ker
(

ΦI1,...,Ir : V ⊗(p,q) → V ⊗(p−r,q−r)
)

(2)

This is used in the proof of the following theorem, which gives a precise
description about the direct summands of V ⊗(p,q) and its layers:

Theorem 3.4. For any partitions λ, µ, the gl∞-module Γλ;0⊗Γ0;µ is indecom-
posable, and

soc(r+1)(Γλ;0 ⊗ Γ0;µ) ∼=
⊕
λ′,µ′

∑
|γ|=r

Nλ
λ′,γN

µ
µ′,γ

Γλ′;µ′ (3)

Theorems 3.2 and 3.4 taken together yield the following result:

Corollary 3.5. The decomposition of V ⊗(p,q) into indecomposable gl∞ modules
is given by

V ⊗(p,q) ∼=
⊕
|λ|=p

⊕
|µ|=q

(dimHλ dimHµ)Γλ;0 ⊗ Γ0;µ (4)
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4 Littlewood-Richardson coefficients

In this section, we want to discuss the coefficients in the isomorphism (3), their
basic properties and how they can be computed.

The key to compute the coefficients are the following definitions.
Let λ, µ, γ be partitions. A skew diagram of shape λ/µ is the set theoretic

difference of the Young diagram with shape λ and the one with shape µ. Here
it is required that µi ≤ λi for all i, i.e. that the smaller diagram is contained in
the bigger one. A semistandard skew tableau of shape λ/µ and weight γ is
a skew diagram of shape λ/µ, where each box is filled with a positive integer,
such that:

(i) the number i appears exactly γi times,

(ii) the numbers along each column are strictly increasing, and

(iii) the numbers along each row are weakly increasing.

A semistandard skew tableau is called Littlewood-Richardson tableau if it
satisfies one more condition:

(iv) Any tableau obtained by removing 0 or more of the leftmost columns is
again a semistandard skew tableau. In other words, the reduced tableau
has a weight that is again a partition, and therefore weakly decreasing.

These tableaux can be used to characterize the Littlewood-Richardson coeffi-
cients, according to the following rule.

Theorem 4.1 (Littlewood-Richardson Rule). For partitions λ, µ, γ, the Littlewood-
Richardson coefficient Nλ

µ,γ is equal to the number of Littlewood-Richardson
tableaux of shape λ/µ and of weight γ.

Figure 1: The only two Littlewood-Richardson tableaux of shape (4, 3, 2)/(2, 1)

and weight (3, 2, 1), implying N
(4,3,2)
(2,1),(3,2,1) = 2. The gray boxes are not part of

the tableaux.

Here are some basic properties of Littlewood-Richardson tableaux and co-
efficients that can be easily checked from the definition and will be useful later
on.

• Tableaux of shape λ/µ and weigth γ satisfy |λ| = |µ|+ |γ|.

• Every column contains a given number at most once. Together with the
fact that γ is decreasing, this implies γi ≤ λi for all i.

• The rightmost column of any Littlewood-Richardson tableau is filled from
top to bottom with consecutive numbers starting from one. This is a
consequence of properties (ii) and (iv).

• The first nonempty row of a Littlewood-Richardson tableau is completely
filled with ones. This follows from the previous bullet point and from the
fact that numbers in the row are weakly increasing.
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• The argument in the previous bullet point can be extended to show that
the λ1−µ1 rightmost columns can be filled in only one way: with number
i filling up row i completely.

• Hence, for µ = 0, there is only one tableau of shape λ/0, and its weight
is γ = λ.

• The only tableau of shape λ/λ is the empty one with weight 0, and any
tableau with weigth 0 has such a shape, i.e.

Nλ
λ,γ =

{
1 if γ = 0

0 if γ 6= 0
, Nλ

µ,0 =

{
1 if λ = µ

0 if λ 6= µ
.

• If the k rightmost columns of a diagram and the top m boxes of the k+1th
column are completely filled with numbers satisfying all conditions, then
the m + 1 box in the k + 1th column can also be filled according to all
rules by adding 1 to number m in that column (or, if m = 0, by writing
a 1 into that box). Hence any partial filling of a diagram from the right
can be completed to a valid tableau in at least one way.

The second to last property has an immediate consequence for our socle
filtrations: the isomorphism (3) for r=0 becomes

soc(Γλ;0 ⊗ Γ0;µ) ∼= Γλ;µ,

so the socle of Γλ;0 ⊗ Γ0;µ is always simple.
The property from the last bullet point is useful for effectively computing

the coefficients Nλ
µ,γ . To compute a certain layer of a socle filtration using

formula (3), one needs to find all Littlewood-Richardson tableaux of shape
λ/λ′ (and µ/µ′) for all possible λ′, µ′ and weights of a given length.

One way to do it is the following: Iterate over all possible partitions λ′,
for which λi ≥ λ′i for all i, and |λ| − |λ′| = r, where r + 1 is the number
of the layer we want to compute. For each diagram of shape λ/λ′, construct
all possible Littlewood-Richardson tableaux and count how often each weight
appears. To construct the tableaux, start at the rightmost column from the top.
For each cell, find out what values can be held in it. The row-condition and the
decreasing-weight-condition gives an upper bound, the column-condition gives
a lower bound, so there are only finitely many values possible. For each value,
proceed recursively with the next cell, top to bottom, column by column.

This recursive algorithm never runs into a dead end (that is exactly what
the last bullet point tells us), and all tableaux are constructed in this way since
all possible entries are tried out. By keeping track of the used weights, Nλ

λ′,γ

can be computed for all γ with one run-through of this algorithm.
I implemented this algorithm in C++ and used it to compute all socle

filtrations of our modules for small p and q. The results can be found in the
appendix.

5 Results about the radical filtration

This section contains the main result of this paper. We start by looking at
some examples of socle filtrations of tensor modules.

The modules V ⊗(p,q) for p = 2, q = 0 and p = 0, q = 2 are semisimple and
decompose into the sum of symmetric and antisymmetric tensors:

V ⊗ V ∼= Γ(2);0 ⊕ Γ(1,1);0
∼= S2V ⊕ Λ2V

V∗ ⊗ V∗ ∼= Γ0;(2) ⊕ Γ0;(1,1)
∼= S2V∗ ⊕ Λ2V∗
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The module V ⊗(1,1) (which is isomorphic to gl∞) has socle filtration of length
2, and looks like this:

V ⊗(1,1) ∼ Γ0;0

Γ(1);(1) soc

∼ C
sl∞ soc

It is easy to see that the radical filtration coincides with socle filtration in this
case. Indeed, the radical of V ⊗(1,1) is contained in its socle, but the socle is
simple. Hence, the bottom layer of the radical filtration is equal to the socle,
and, since V ⊗(1,1) has length 2, the socle and radical filtration coincide. This
can be generalized to the following statement.

Lemma 5.1. If all layers except the top layer of a socle filtration are simple,
then the module is rigid.

This can be applied for all modules of type Γ(p),0 ⊗ Γ0,(q) or Γ(1,...,1),0 ⊗
Γ0,(1,...,1). For example, the socle filtration of Γ(4),0 ⊗ Γ0,(3) is

Γ(4),0 ⊗ Γ0,(3) ∼

Γ(1);(0)

Γ(2);(1)

Γ(3);(2)

Γ(4);(3) soc

Now consider V ⊗(3,3). It decomposes into nine different modules, one of
which is M = Γ(2,1);0 ⊗ Γ0;(2,1). This is a module of Loewy length 4 and has
the following socle filtration.

Γ0;0

2Γ(1);(1)

Γ(1,1);(1,1) ⊕ Γ(1,1);(2) ⊕ Γ(2);(1,1) ⊕ Γ(2);(2)

Γ(2,1);(2,1) soc

This is the smallest example for a socle filtration with a simple constituent
of multiplicity greater than one. As it turns out, this multiplicity together with
the simple top layer makes it impossible for this module to be rigid.

Before we come to the main results of this thesis, we need a lemma that
will be useful later on.

Lemma 5.2. Let M be a module of Loewy length 2. If M contains a submodule
N that does not contain socM and satisfies N + socM = M , then M = N ⊕A
for some semisimple module A.

Proof. By assumption, B := socM ∩ N is a proper submodule of socM . By
the semisimplicity of the socle, there is a complement to B inside socM , i.e. a
module A with socM = A⊕B. We claim that M = N ⊕A.

We need to show two things: A and N have zero intersection, and together
they span all of M . The first condition is clear from the definition: A lies inside
socM and is complement to B = socM ∩N .

The second condition is evident from the assumptions: socM = A ⊕ B is
contained in N + A, so N + A also contains N + socM = M , i.e. N and A
generate M .

Now we are well prepared to prove the following statement:

Proposition 5.3. If λ and µ are partitions of p and q, respectively, and l =
min(p, q), such that:

11



• socl+1Γλ,0 ⊗ Γ0,µ is nonzero and simple, and

• the decomposition of soclΓλ,0⊗Γ0,µ into simple modules contains at least
one module with a multiplicity of at least 2,

then Γλ,0 ⊗ Γ0,µ is not rigid.

Proof. Since there is a natural isomorphism between V ⊗(p,q) and V ⊗(q,p), we
can restrict ourselves to the case p ≥ q.

Assume that on the contrary, Γλ,0 ⊗ Γ0,µ is rigid. Consider the quotient
M = Γλ,0 ⊗ Γ0,µ/ socl−1(Γλ,0 ⊗ Γ0,µ). M is by assumption a rigid module of
Loewy length 2 with simple top isomorphic to Γλ′′,0, and some module Γλ′,(1)

in the socle with multiplicity n ≥ 2. Let X be the quotient of M by the
complement of nΓλ′,(1) inside the socle. What remains is a module with the
socle filtration

X ∼ Γλ′′,0
nΓλ′,(1) soc

,

that is supposed to be rigid. We show below that no such module can be rigid.
It suffices to show that X is decomposable. Indeed, then one of the two

summands will be semisimple, otherwise the second layer of X could not be
simple. This semisimple summand has to appear in the socle of X, thus it is
isomorphic to kΓλ′,(1) for some 1 ≤ k ≤ n. If we succeed, we know that X has
the form

X ∼ Γλ′′,0
(n− k)Γλ′,(1) soc

⊕ kΓλ′,(1) soc
,

and hence its radical filtration would be

X ∼ Γλ′′,0 ⊕ kΓλ′,(1)

(n− k)Γλ′,(1) rad

.

To show the decomposability of X, we use the fact that all V ⊗(p,q), and
hence also their direct summands, are injective modules. This follows from
Corollary 4.6 in [DPS].

We now construct an embedding of X into Y ⊕ · · · ⊕ Y (n summands),
where Y := Γλ′,0 ⊗ Γ0,(1), as follows. X and nY both have socles isomorphic
to nΓλ′,(1), hence we can embed socX into nY . This embedding can be ex-
tended to all of X by using the injectivity of Γλ′,0 ⊗ Γ0,(1) (Γλ′,0 ⊗ Γ0,(1) is

a direct summand of V ⊗(|λ′|,1), and therefore injective). Thus, there exists a
homomorphism j : X → nY , which becomes an isomorphism when restricted
to the socles. The homomorphism j is injective, because its kernel intersects
trivially with the socle.

The homomorphism j induces a map of the quotients

j∗ : X/ socX → (nY )/ soc(nY ) ∼= n(Y/ socY ).

Since j restricts to an isomorphism of socX and soc(nY ), the injectivity of
j implies the injectivity of j∗. Moreover, Y/ soc(Y ) is a semisimple module,
whose decomposition into simple modules contains Γλ′′,0 with multiplicity one,

since its coefficient is Nλ′

λ′′,(1) ·N
(1)
0,(1) = 1.

Let Y/ socY ∼=
⊕a

i=0Ai be a decomposition into simple modules, where
A0
∼= Γλ′′,0 and Ai � Γλ′′,0 for i > 0. This decomposition comes with a family

of projections π1,i, . . . , πn,i mapping from nY into one of the n copies of Ai.
Now we look at the composition πk,i ◦ j∗. Its image is a submodule of Ai,

hence by simplicity either 0 or Ai itself. In the latter case, the isomorphism
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theorem tells us that the quotient of Γλ′′,0 by the kernel is isomorphic to Ai. If
i > 0, this contradicts the fact that Γλ′′,0 and Ai are simple and not isomorphic.
Thus, πk,i ◦ j∗ is the zero map for all i > 0.

Let j∗k = πk,0 ◦ j∗, then j∗ = (j∗1 , . . . , j
∗
n, 0, . . . , 0). As we just saw, the maps

j∗k mapping into A0 = Γλ′′,0 are either zero maps or surjective. A surjective
endomorphism of a simple module must be injective by the first isomorphism
theorem, so the maps j∗k are either zero or automorphisms.

Now is the time to use our knowledge from section 3: Lemma 3.1 tells us that
if j∗k are automorphisms, they are simply multiplication by a nonzero complex
number. If they are not automorphisms, they are simply multiplication by
0. Thus, in any case there are n complex numbers c1, . . . , cn ∈ C, such that
j∗k(v) = ckv. Since j∗ is injective, c1 to cn cannot all be 0 at the same time.

Those numbers can now be used to explicitely write down the submodule
of im j, to which we will then apply Lemma 5.2 to show the decomosability of
X. Let π denote the projection π : Y → Y/ socY , and define

N :=
{

(c1v, . . . , cnv)|v ∈ π−1(Γλ′′,0)
}
.

Then N is a submodule of nY and isomorphic to π−1(Γλ′′,0). Hence its socle
filtration is

N ∼ Γλ′′,0
Γλ′,(1) soc

⊂ nY ∼ nΓλ′′,0 ⊕ · · ·
nΓλ′,(1) soc

We need to show that N lies in the image of X under j. For any v ∈
π−1(Γλ′′,0), let (v1, . . . , vn) ∈ im j such that (π(v1), . . . , π(vn)) = (π(c1v), . . . , π(cnv)).
Such vk have to exist because (c1π(v), . . . , cnπ(v)) lies in the image of j∗. Then

(π(c1v − v1), . . . , π(cnv − vn)) = (π(c1v)− π(v1), . . . , π(cnv)− π(vn)) = 0,

thus (c1v − v1, . . . , cnv − vn) ∈ soc(nY ) ⊂ im j. Since im j is closed under
addition, (v1, . . . , vn) + (c1v − v1, . . . , cnv − vn) = (c1v, . . . , cnv) is also inside,
thus N ⊂ im j as desired.

Therefore, we showed that j−1(N) is a submodule of X, has Loewy length
2 and a simple socle. Because the top layer of X is simple, j−1(N) + socX has
to cover all of X, hence j−1(N) satisfies the conditions of lemma 5.2. We can
conclude that X decomposes as described earlier, and is therefore not rigid.

The proof could have been done by setting n = 2 and dividing X by the
additional modules in the socle. But in this generality, more was shown:

Lemma 5.4. If X is a module of Loewy length 2 with top of the form Γλ′′,0
and socle of the form nΓλ′,(1), then X contains a submodule with top Γλ′′,0 and
socle Γλ′,(1).

This can be used to prove the following generalization of Proposition 5.3.

Proposition 5.5. If λ and µ are partitions of p and q, respectively, and l =
min(p, q), such that:

• socl+1(Γλ,0⊗Γ0,µ) is nonzero and is the direct sum of n− 1 simple mod-
ules, and

• the decomposition of socl(Γλ,0 ⊗ Γ0,µ) into simple modules contains at
least one module with a multiplicity of a least n,

then Γλ,0 ⊗ Γ0,µ is not rigid.
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Proof. As in the proof of Proposition 5.3, define X as appropriate quotient.
Let the top layer of the socle filtration of X be

⊕n−1
i=1 Bi, where each Bi is of

the form Γλi,µi , and let the socle be nA, where A is Γλ′,µ′ . Let π : X → soc2X
be the projection onto the top layer, πi : X → Bi be the projections onto the
simple constituents of X/ socX. Define

Xi :=
⋂

1≤k≤n−1
k 6=i

kerπk.

Each Xi is a submodule of X with simple top layer isomorphic to Bi and
socXi = socX. Thus, we can apply lemma 5.4, which gives us n−1 submodules
Yi ⊂ Xi with π(Yi) = Bi and socYi ∼= A.

The module generated by all those submodules Y :=
∑n−1
i=1 Yi satisfies

π(Y ) = soc2X, and its socle is the sum of n− 1 copies of A. Hence, it does not
cover socX. By lemma 5.2, this gives us a decomposition of X into Y ⊕ kA
for some k. Hence X is not rigid, and neither is Γλ,0 ⊗ Γ0,µ.

We have shown that Γλ,0⊗Γ0,µ is not rigid if a simple constituent of Γλ,0⊗
Γ0,µ has multiplicity in the second top layer of its socle filtration that is larger
than the top layer’s length. This is in fact not a rare phenomenon, it occurs
for any p, q, as long as they are large enough (more precisely, for p, q ≥ 3).

If min(p, q) = 0, then V ⊗(p,q) decomposes into a direct sum of simple con-
stituents, hence it is rigid for a trivial reason. If min(p, q) = 1, then each direct
summand of V ⊗(p,q) has Loewy length 2 with simple bottom layer, hence all di-
rect summands are rigid. For min(p, q) = 2, the direct summands have Loewy
length 2 and 3, hence V ⊗(p,q) as a whole cannot be rigid, but that is always
the case for min(p, q) > 1. The more interesting question is whether the direct
summands by themselves are rigid. For min(p, q) = 2, all multiplicities in the
socle filtration are 1, as it can be checked from theorem 3.4 and the Littlewood-
Richardson rule. So the theorems above do not yield any answers in that case.
But for min(p, q) ≥ 3, we find the following, which is the main result of this
thesis:

Theorem 5.6. Let l = min(p, q) be the Loewy length of V ⊗(p,q). For l ≥ 3,
the decomposition of V ⊗(p,q) into indecomposable modules contains at least one
nonrigid direct summand.

Proof. As before, we restrict ourselves to the case p ≥ q.

For l ≥ 3, we give an explicit example for a direct summand of V ⊗(p,q) that
is not rigid. Let λ = (2, 1, . . . , 1) and µ = (2, 1, . . . , 1) with |λ| = p and |µ| = q.
Then we claim that Γλ,0 ⊗ Γ0,µ satisfies the condition of Proposition 5.3, and
is therefore not rigid.

Assuming p ≥ q as before, the top layer of the socle filtration is

soc(l+1)(Γλ;0 ⊗ Γ0;µ) ∼=
⊕
λ′,µ′

∑
|γ|=l

Nλ
λ′,γN

µ
µ′,γ

Γλ′;µ′

∼=
⊕
λ′

(
Nλ
λ′,µN

µ
0,µ

)
Γλ′;0

∼=
⊕
λ′

Nλ
λ′,µΓλ′;0.

This is because Nµ
µ′,γ , for |γ| = q = |µ|, is nonzero only if µ′ = 0 and γ = µ.
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Next, note that Nλ
λ′,µ > 0 precisely when there are Littlewood-Richardson

tableaux of shape λ/λ′ = (2, 1, . . . , 1)/λ′ and weight µ = (2, 1, . . . , 1). There-
fore, the tableau has two columns, and this implies λ′1 < 2. But this makes
the tableau already unique: λ′ has to be a column of length |λ′| = p − q, (i.e.
λ′ = (1, ..., 1)), and the numbers are distributed in the only way: The left col-
umn of the diagram contains the numbers from 1 to q− 1 from top to bottom,
and the single field in the second column contains the second 1. Hence, the top
layer of Γλ;0 ⊗ Γ0;µ is simple.

In the second top layer, we need to show the existence of a simple constituent
with multiplicity ≥ 2. Such a constituent is Γλ′,µ′ with λ′ = (1, ..., 1), |λ| =
p − q + 1, and µ′ = (1), as shown in Figure 2. In general, one needs to set
γ = (2, 1, ..., 1) and γ′ = (1, ..., 1), where both partitions have length q− 1 (the
condition q ≥ 3 is used here). The multiplicity of Γλ′,µ′ in the second to top
layer in the socle filtration of Γλ;0 ⊗ Γ0;µ is Nλ

λ′,γ ·N
µ
µ′,γ +Nλ

λ′,γ′ ·N
µ
µ′,γ′ = 2.

Figure 2: Littlewood-Richardson tableaux for p = 6, q = 5, illustrating (from
left to right) Nλ

λ′,γ = 1, Nµ
µ′,γ = 1, Nλ

λ′,γ′ = 1, Nµ
µ′,γ′ = 1 with λ′ = (1, 1), µ′ =

(1), γ = (2, 1, 1) on the left, γ′ = (1, 1, 1, 1) on the right.

Thus, all conditions of Proposition 5.3 are satisfied, and it can be concluded
that Γλ;0 ⊗ Γ0;µ is not rigid.

6 Conclusion and open questions

We have shown in this thesis that some direct summands of the tensor rep-
resentations of gl∞ are not rigid, if they have a simple contituent with high
enough multiplicity in the second to top layer, and that this actually occures
for all p, q ≥ 3. What is still left to do is the actual computation of the rad-
ical filtration of those modules. All we know as of now is that the additional
modules in the second top layer of the socle filtration move to the top.

Another open question is: What can be said about the direct summends of
the mixed tensor algebra that do not have a high multiplicity in the socle filtra-
tion? Abstractly, rigid modules with those socle filtrations can be constructed
in most cases, but that does not mean that those constituents of V ⊗(p,q) are
actually rigid. This is still unknown territory.

Another question that we will try to tackle in the future are the radical
filtrations of the direct summands of the tensor algebra corresponding to other
locally finite Lie algebras, such as so(∞) and sp(∞). Penkov and Styrkas found
the socle filtrations of these tensor algebras as well, as it can be seen in [PS]. I
will try to find out whether the results of this thesis can be extended to those
modules as well.

15



7 Appendix

In the following, we list the socle filtrations of Γλ;0 ⊗ Γ0;µ in the notation
described in section 2 (all filtrations here are socle filtrations, so we refrain
from marking all of them with soc). We restrict ourselves to the case |λ| ≥ |µ|,
the other case is gained by exchanging the indices in all simple constituents.

For any λ, µ, Γλ;0 ⊗ Γ0;µ is the module with socle Γλ;µ.

V ⊗(1,0) :

Γ(1);(0)

V ⊗(2,0) :

Γ(2);(0) , Γ(1,1);(0)

V ⊗(1,1) :

Γ(0);(0)

Γ(1);(1)

V ⊗(3,0) :

Γ(3);(0) , Γ(2,1);(0) , Γ(1,1,1);(0)

V ⊗(2,1) :

Γ(1);(0)

Γ(2);(1)
,

Γ(1);(0)

Γ(1,1);(1)

V ⊗(4,0) :

Γ(4);(0) , Γ(3,1);(0) , Γ(2,2);(0) , Γ(2,1,1);(0) , Γ(1,1,1,1);(0)

V ⊗(3,1) :

Γ(2);(0)

Γ(3);(1)
,

Γ(1,1);(0) ⊕ Γ(2);(0)

Γ(2,1);(1)
,

Γ(1,1);(0)

Γ(1,1,1);(1)

V ⊗(2,2) :

Γ(0);(0)

Γ(1);(1)

Γ(2);(2)

,
Γ(1);(1)

Γ(2);(1,1)
,

Γ(1);(1)

Γ(1,1);(2)
,

Γ(0);(0)

Γ(1);(1)

Γ(1,1);(1,1)
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V ⊗(5,0)

Γ(5);(0) , Γ(4,1);(0) , Γ(3,2);(0) , Γ(3,1,1);(0) , Γ(2,2,1);(0) , Γ(2,1,1,1);(0) , Γ(1,1,1,1,1);(0)

V ⊗(4,1)

Γ(3);(0)

Γ(4);(1)
,

Γ(2,1);(0) ⊕ Γ(3);(0)

Γ(3,1);(1)
,

Γ(2,1);(0)

Γ(2,2);(1)
,

Γ(1,1,1);(0) ⊕ Γ(2,1);(0)

Γ(2,1,1);(1)
,

Γ(1,1,1);(0)

Γ(1,1,1,1);(1)

V ⊗(3,2)

Γ(1);(0)

Γ(2);(1)

Γ(3);(2)

,
Γ(2);(1)

Γ(3);(1,1)
,

Γ(1);(0)

Γ(1,1);(1) ⊕ Γ(2);(1)

Γ(2,1);(2)

,

Γ(1);(0)

Γ(1,1);(1) ⊕ Γ(2);(1)

Γ(2,1);(1,1)

,
Γ(1,1);(1)

Γ(1,1,1);(2)
,

Γ(1);(0)

Γ(1,1);(1)

Γ(1,1,1);(1,1)

V ⊗(6,0)

Γ(6);(0) , Γ(5,1);(0) , Γ(4,2);(0) , Γ(4,1,1);(0) , Γ(3,3);(0) , Γ(3,2,1);(0) , Γ(3,1,1,1);(0)

, Γ(2,2,2);(0) , Γ(2,2,1,1);(0) , Γ(2,1,1,1,1);(0) , Γ(1,1,1,1,1,1);(0)

V ⊗(5,1)

Γ(4);(0)

Γ(5);(1)
,

Γ(3,1);(0) ⊕ Γ(4);(0)

Γ(4,1);(1)
,

Γ(2,2);(0) ⊕ Γ(3,1);(0)

Γ(3,2);(1)
,

Γ(2,1,1);(0) ⊕ Γ(3,1);(0)

Γ(3,1,1);(1)

,
Γ(2,1,1);(0) ⊕ Γ(2,2);(0)

Γ(2,2,1);(1)
,

Γ(1,1,1,1);(0) ⊕ Γ(2,1,1);(0)

Γ(2,1,1,1);(1)
,

Γ(1,1,1,1);(0)

Γ(1,1,1,1,1);(1)

V ⊗(4,2)

Γ(2);(0)

Γ(3);(1)

Γ(4);(2)

,
Γ(3);(1)

Γ(4);(1,1)
,

Γ(1,1);(0) ⊕ Γ(2);(0)

Γ(2,1);(1) ⊕ Γ(3);(1)

Γ(3,1);(2)

,

Γ(2);(0)

Γ(2,1);(1) ⊕ Γ(3);(1)

Γ(3,1);(1,1)

,

Γ(2);(0)

Γ(2,1);(1)

Γ(2,2);(2)

,

Γ(1,1);(0)

Γ(2,1);(1)

Γ(2,2);(1,1)

,

Γ(1,1);(0)

Γ(1,1,1);(1) ⊕ Γ(2,1);(1)

Γ(2,1,1);(2)

,

Γ(1,1);(0) ⊕ Γ(2);(0)

Γ(1,1,1);(1) ⊕ Γ(2,1);(1)

Γ(2,1,1);(1,1)

,
Γ(1,1,1);(1)

Γ(1,1,1,1);(2)
,

Γ(1,1);(0)

Γ(1,1,1);(1)

Γ(1,1,1,1);(1,1)

V ⊗(3,3)

Γ(0);(0)

Γ(1);(1)

Γ(2);(2)

Γ(3);(3)

,

Γ(1);(1)

Γ(2);(1,1) ⊕ Γ(2);(2)

Γ(3);(2,1)

,
Γ(2);(1,1)

Γ(3);(1,1,1)
,

Γ(1);(1)

Γ(1,1);(2) ⊕ Γ(2);(2)

Γ(2,1);(3)

,

Γ(0);(0)

2Γ(1);(1)

Γ(1,1);(1,1) ⊕ Γ(1,1);(2) ⊕ Γ(2);(1,1) ⊕ Γ(2);(2)

Γ(2,1);(2,1)

,

Γ(1);(1)

Γ(1,1);(1,1) ⊕ Γ(2);(1,1)

Γ(2,1);(1,1,1)

,
Γ(1,1);(2)

Γ(1,1,1);(3)
,

Γ(1);(1)

Γ(1,1);(1,1) ⊕ Γ(1,1);(2)

Γ(1,1,1);(2,1)

,

Γ(0);(0)

Γ(1);(1)

Γ(1,1);(1,1)

Γ(1,1,1);(1,1,1)
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V ⊗(7,0) :

Γ(7);(0) , Γ(6,1);(0) , Γ(5,2);(0) , Γ(5,1,1);(0) , Γ(4,3);(0) , Γ(4,2,1);(0) ,

Γ(4,1,1,1);(0) , Γ(3,3,1);(0) , Γ(3,2,2);(0) , Γ(3,2,1,1);(0) , Γ(3,1,1,1,1);(0) , Γ(2,2,2,1);(0) ,

Γ(2,2,1,1,1);(0) , Γ(2,1,1,1,1,1);(0) , Γ(1,1,1,1,1,1,1);(0)

V ⊗(6,1) :

Γ(5);(0)

Γ(6);(1)
,

Γ(4,1);(0) ⊕ Γ(5);(0)

Γ(5,1);(1)
,

Γ(3,2);(0) ⊕ Γ(4,1);(0)

Γ(4,2);(1)
,

Γ(3,1,1);(0) ⊕ Γ(4,1);(0)

Γ(4,1,1);(1)
,

Γ(3,2);(0)

Γ(3,3);(1)
,

Γ(2,2,1);(0) ⊕ Γ(3,1,1);(0) ⊕ Γ(3,2);(0)

Γ(3,2,1);(1)
,

Γ(2,1,1,1);(0) ⊕ Γ(3,1,1);(0)

Γ(3,1,1,1);(1)
,

Γ(2,2,1);(0)

Γ(2,2,2);(1)
,

Γ(2,1,1,1);(0) ⊕ Γ(2,2,1);(0)

Γ(2,2,1,1);(1)
,

Γ(1,1,1,1,1);(0) ⊕ Γ(2,1,1,1);(0)

Γ(2,1,1,1,1);(1)
,

Γ(1,1,1,1,1);(0)

Γ(1,1,1,1,1,1);(1)

V ⊗(5,2) :

Γ(3);(0)

Γ(4);(1)

Γ(5);(2)

,
Γ(4);(1)

Γ(5);(1,1)
,

Γ(2,1);(0) ⊕ Γ(3);(0)

Γ(3,1);(1) ⊕ Γ(4);(1)

Γ(4,1);(2)

,

Γ(3);(0)

Γ(3,1);(1) ⊕ Γ(4);(1)

Γ(4,1);(1,1)

,

Γ(2,1);(0) ⊕ Γ(3);(0)

Γ(2,2);(1) ⊕ Γ(3,1);(1)

Γ(3,2);(2)

,
Γ(2,1);(0)

Γ(2,2);(1) ⊕ Γ(3,1);(1)

Γ(3,2);(1,1)

,
Γ(1,1,1);(0) ⊕ Γ(2,1);(0)

Γ(2,1,1);(1) ⊕ Γ(3,1);(1)

Γ(3,1,1);(2)

,

Γ(2,1);(0) ⊕ Γ(3);(0)

Γ(2,1,1);(1) ⊕ Γ(3,1);(1)

Γ(3,1,1);(1,1)

,
Γ(2,1);(0)

Γ(2,1,1);(1) ⊕ Γ(2,2);(1)

Γ(2,2,1);(2)

,
Γ(1,1,1);(0) ⊕ Γ(2,1);(0)

Γ(2,1,1);(1) ⊕ Γ(2,2);(1)

Γ(2,2,1);(1,1)

,

Γ(1,1,1);(0)

Γ(1,1,1,1);(1) ⊕ Γ(2,1,1);(1)

Γ(2,1,1,1);(2)

,

Γ(1,1,1);(0) ⊕ Γ(2,1);(0)

Γ(1,1,1,1);(1) ⊕ Γ(2,1,1);(1)

Γ(2,1,1,1);(1,1)

,
Γ(1,1,1,1);(1)

Γ(1,1,1,1,1);(2)
,

Γ(1,1,1);(0)

Γ(1,1,1,1);(1)

Γ(1,1,1,1,1);(1,1)

V ⊗(4,3) :

Γ(1);(0)

Γ(2);(1)

Γ(3);(2)

Γ(4);(3)

,

Γ(2);(1)

Γ(3);(1,1) ⊕ Γ(3);(2)

Γ(4);(2,1)

,
Γ(3);(1,1)

Γ(4);(1,1,1)
,

Γ(1);(0)

Γ(1,1);(1) ⊕ Γ(2);(1)

Γ(2,1);(2) ⊕ Γ(3);(2)

Γ(3,1);(3)

,

Γ(1);(0)

Γ(1,1);(1) ⊕ 2Γ(2);(1)

Γ(2,1);(1,1) ⊕ Γ(2,1);(2) ⊕ Γ(3);(1,1) ⊕ Γ(3);(2)

Γ(3,1);(2,1)

,

Γ(2);(1)

Γ(2,1);(1,1) ⊕ Γ(3);(1,1)

Γ(3,1);(1,1,1)

,

Γ(2);(1)

Γ(2,1);(2)

Γ(2,2);(3)

,

Γ(1);(0)

Γ(1,1);(1) ⊕ Γ(2);(1)

Γ(2,1);(1,1) ⊕ Γ(2,1);(2)

Γ(2,2);(2,1)

,

Γ(1,1);(1)

Γ(2,1);(1,1)

Γ(2,2);(1,1,1)

,

Γ(1,1);(1)

Γ(1,1,1);(2) ⊕ Γ(2,1);(2)

Γ(2,1,1);(3)

,

Γ(1);(0)

2Γ(1,1);(1) ⊕ Γ(2);(1)

Γ(1,1,1);(1,1) ⊕ Γ(1,1,1);(2) ⊕ Γ(2,1);(1,1) ⊕ Γ(2,1);(2)

Γ(2,1,1);(2,1)

,

Γ(1);(0)

Γ(1,1);(1) ⊕ Γ(2);(1)

Γ(1,1,1);(1,1) ⊕ Γ(2,1);(1,1)

Γ(2,1,1);(1,1,1)

,

Γ(1,1,1);(2)

Γ(1,1,1,1);(3)
,

Γ(1,1);(1)

Γ(1,1,1);(1,1) ⊕ Γ(1,1,1);(2)

Γ(1,1,1,1);(2,1)

,

Γ(1);(0)

Γ(1,1);(1)

Γ(1,1,1);(1,1)

Γ(1,1,1,1);(1,1,1)
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