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1. INTRODUCTION

The simplest example of an ind-Grassmannian is the infinite projective space P*°. The Barth-
Van de Ven-Tyurin (BVT) Theorem, proved more than 30 years ago [BV], [T}, [Sal] (see also
a recent proof by A. Coanda and G. Trautmann, [CT]), claims that any vector bundle of finite
rank on P is isomorphic to a direct sum of line bundles. In the last decade natural examples
of infinite flag varieties (or flag ind-varieties) have arisen as homogeneous spaces of locally linear
ind-groups, [DPW], [DiP]. In the present paper we concentrate our attention to the special case
of ind-Grassmannians, i.e. to inductive limits of Grassmannians of growing dimension. If V =
U V™ is a countable-dimensional vector space, then the ind-variety G(k; V) = 1i_r>n G(k; V™)
n>k
(or simply G(k;o0)) of k-dimensional subspaces of V' is of course an ind-Grassmannian: this is
the simplest example beyond P> = G(1;00). A significant difference between G(k; V') and a
general ind-Grassmannian X = 1i_r>n G(k;; V™) defined via a sequence of embeddings

(1) Gk V™) 25 Gha; VT2) 25 2% Gl V) 255

is that in general the morphisms ¢,, can have arbitrary degrees. We say that the ind-
Grassmannian X is twisted if degy,, > 1 for infinitely many m, and that X is linear if
deg ., = 1 for almost all m.

Conjecture 1.1. Let the ground field be C, and let E be a vector bundle of rank r € Z~y on
an ind-grasmannian X = lim G(k,,; V"), i.e. E = lim E,,,, where {E,,} is an inverse system
— —

of vector bundles of (fized) rank r on G(ky; V™). Then

(i) E is semisimple: it is isomorphic to a direct sum of simple vector bundles on X, i.e.
vector bundles on X with no non-trivial subbundles;

(ii) for m > 0 the restriction of each simple bundle E to G(k,, V™) is a homogeneous
vector bundle;

(iii) each simple bundle E' has rank 1 unless X is isomorphic G(k;o0) for some k: in the
latter case E, twisted by a suitable line bundle, is isomorphic to a simple subbundle of
the tensor algebra T"(S), S being the tautological bundle of rank k on G(k;oc0);

(iv) each simple bundle E (and thus each vector bundle of finite rank on X) is trivial when-
ever X 1s a twisted ind-Grassmannian.

The BVT Theorem and Sato’s theorem about finite rank bundles on G(k;o00), [Sall, [Sa2],
as well as the results in [DP], are particular cases of the above conjecture. The purpose of the
present note is to prove Conjecture [LL1l for vector bundles of rank 2, and also for vector bundles
of arbitrary rank r on linear ind-Grassmannians X.

In the 70’s and 80’s Yuri Ivanovich Manin taught us mathematics in (and beyond) his seminar,
and the theory of vector bundles was a reoccuring topic (among many others). In 1980, he asked
one of us (I.P.) to report on A. Tyurin’s paper [T], and most importantly to try to understand
this paper. The present note is a very preliminary progress report.
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partial support from Jacobs University Bremen. Finally, we thank the referee for a number of
sharp comments.

2. NOTATION AND CONVENTIONS

The ground field is C. Our notation is mostly standard: if X is an algebraic variety, (over
C), Ox denotes its structure sheaf, Q% (respectively T ) denotes the cotangent (resp. tangent)
sheaf on X under the assumption that X is smooth etc. If F'is a sheaf on X, its cohomologies
are denoted by H'(F), h'(F) := dim H(F), and x(F) stands for the Euler characteristic of
F. The Chern classes of F' are denoted by ¢;(F). If f: X — Y is a morphism, f* and f,
denote respectively the inverse and direct image functors of O-modules. All vector bundles are
assumed to have finite rank. We denote the dual of a sheaf of Ox-modules F' (or that of a
vector space) by the superscript V. Furthermore, in what follows for any ind-Grassmannian X
defined by (I), no embedding ¢; is an isomorphism.

We fix a finite dimensional space V' and denote by X the Grassmannian G(k;V) for k <
dim V. In the sequel we write sometimes G(k;n) indicating simply the dimension of V. Below
we will often consider (parts of) the following diagram of flag varieties:

2)
Z:=Fllk—-1kE+1,V)
/ \
Y =Fl(k—1,k+1,V) X =G(k;V),
Y =Gk-1;V) Y2:=G(k+1;V)

under the assumption that £ + 1 < dim V. Moreover we reserve the letters X, Y, Z for the
varieties in the above diagram. By Sy, Si_1, Sk+1 we denote the tautological bundles on XY
and Z, whenever they are defined (S}, is defined on X and Z, Sp_; is defined on Y!, Y and
Z, etc.). By Ox(i), i € Z, we denote the isomorphism class (in the Picard group Pic X) of
the line bundle (A*(S)Y))®% where A* stands for the k™" exterior power (in this case maximal
exterior power as rkS) = k). The Picard group of Y is isomorphic to the direct product of
the Picard groups of Y! and Y2, and by Oy (i,j) we denote the isomorphism class of the line
bundle pj(A1(SY_,))® @0, ph(AF1(SY,,)%.

Ifo: X =Gk V)— X :=G(k;V') is an embedding, then ¢*Ox/ (1) ~ Ox(d) for some
d € Z>y: by definition d is the degree deg ¢ of . We say that ¢ is linear if degyp = 1. By
a projective subspace (in particular a line, i.e. a l-dimensional projective subspace) of X we
mean a linearly embedded projective space into X. It is well known that all such are Schubert
varieties of the form {V* € X|V*!1 c VF C V'} or {VF € X|Vi c Vk C VFF1} where VF
is a variable k-dimensional subspace of V, and V¥~ VA1 V! Vi are fixed subspaces of V
of respective dimensions k — 1, k + 1, ¢, . (Here and in what follows V' always denotes a
vector space of dimension ¢). In other words, all projective subspaces of X are of the form
G(1;V/VEY) or G(k — i, V¥ /VT). Note also that Y = Fl(k — 1,k + 1; V) is the variety of
lines in X = G(k; V).

3. THE LINEAR CASE

We consider the cases of linear and twisted ind-Grassmannians separately. In the case of a
linear ind-Grassmannian, we show that Conjecture [[.Tlis a straightforward corollary of existing
results combined with the following proposition. We recall, [DP], that a standard extension of
Grassmannians is an embedding of the form

(3) GkV) = Ghk+a:VaWw), {VEcC'}—{VFeWcVeaeWw},
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where W is a fixed a-dimensional subspace of a finite dimensional vector space W.

Proposition 3.1. Let ¢ : X = G(k; V) — X' :== G(K'; V') be an embedding of degree 1. Then
v is a standard extension, or ¢ factors through a standard extension P™ — G(k'; V') for some
T

Proof. We assume that K < n —k, k <n’ — kK, where n = dimV and n’ = dimV’, and use
induction on k. For k = 1 the statement is obvious as the image of ¢ is a projective subspace
of G(K'; V') and hence ¢ is a standard extension. Assume that the statement is true for k — 1.
Since deg ¢ = 1, ¢ induces an embedding ¢y : Y — Y’ where Y = Fl(k — 1,k + 1;V) is the
variety of lines in X and Y = FI(k' — 1,k + 1;V’) is the variety of lines in X’. Moreover,
clearly we have a commutative diagram of natural projections and embeddings

/\ /\
\></

where Z := Fl(k — 1,k,k+1;V) and Z" := FI(k' — 1,/€’, K +1;V").
We claim that there is an isomorphism

(4) (p;Oy/(l, 1) ~ Oy(l, 1)

Indeed, ¢} Oy (1,1) is determined up to isomorphism by its restriction to the fibers of p; and
po (see diagram (2))), and therefore it is enough to check that

(5) @;Oy/(l, 1)‘p;1(vk71) =~ Opl—l(vkﬂ)(l),

(6) @;Oyl(l’ 1)‘p;1(vk+1) ~ Opgl(kafl)(l)

for some fixed subspaces V*¥~1 C V, V¥*1 C V. Note that the restriction of ¢ to the projec-
tive subspace G(1;V/V*~1) C X is simply an isomorphism of G(1;V/V*~1) with a projective
subspace of X', hence the map induced by ¢ on the variety G(2;V/V*~1) of projective lines
in G(1;V/V*1) is an isomorphism with the Grassmannian of 2-dimensional subspaces of an
appropriate subquotient of V’. Note furthermore that p;'(V*1) is nothing but the variety of
lines G(2; V/V*1)in G(1; V/V*71), and that the image of G(2; V/V*~1) under ¢ is nothing but
@y (py(VE1)). This shows that the restriction of ¢% Oy (1,1) to G(2; V/V* 1) is isomorphic
to the restriction of Oy (1,1) to G(2; V/V*71), and we obtain (B). The isomorphism (@) follows
from a very similar argument.
The isomorphism () leaves us with two alternatives:

(7) SO;OY’(L O) = OY or QO;OY’((L 1) = OY’
or
(8) 25 0v:(1,0) = Oy (1,0) or Oy (1,0) = Oy (0, 1).

Let (@) hold, more precisely let ¢} Oy (1,0) ~ Oy. Then py maps each fiber of p, into a single
point in Y (depending on the image in Y2 of this fiber), say ((V’)kl_1 C (V’)kl+1), and moreover
the space (V)" ! is constant. Thus ¢ maps X into the projective subspace G(1;V’/(V')¥'™)
of X'. If ¢10y/(0,1) ~ Oy, then ¢ maps X into the projective subspace G(1; (V/)¥ ') of X".
Therefore, the Proposition is proved in the case () holds.

We assume now that (§) holds. It is easy to see that (8) implies that ¢ induces a linear
embedding ¢y1 of Y1 := G(k — 1;V) into G(K' — 1; V') or G(K' + 1;V’). Assume that @y :
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Y1 = (V) := G(K' — 1; V") (the other case is completely similar). Then, by the induction
assumption, py1 is a standard extension or factors through a standard extension P" — (Y’ )1.
If py1 is a standard extension corresponding to a fixed subspace W C W, then 31 Sw_1 ~
Sk—1® (W ®c Oy1) and we have a vector bundle monomorphism

9) 0 — TPy 1 Sk—1 — Ty@* Sk

By restricting (@) to the fibers of 7; we see that the quotient line bundle 75¢* Sy /77131 Sk -1
is isomorphic to Sy/Sk_1 ® 7ipiL, where L is a line bundle on Y. Applying m, we obtain
(10) 0= W c Ox = Mou(m50"Sir) = p*Spr — Tou((Sk/Sk_1) @ Tipi L) — 0.

Since rkp*Sp = k' and dim W = k' — k, rkmo.((Sk/Sk—1) ® m{piL) = k, which implies im-
mediately that £ is trivial. Hence (I0) reduces to 0 — W ®c Ox — ¢*Sp — S — 0, and
thus

(11) ©* Sp = S & (W ®c Ox)

as there are no non-trivial extensions of Si by a trivial bundle. Now (Il implies that ¢ is a
standard extension.

It remains to consider the case when py1 maps Y'! into a projective subspace P* of (Y’ )1. Then
P* is of the form G(1; V'/(V')¥72) for some (V')* 2 c V', or of the form G(K — 1; (V)" for
some (V' )k, C V'. The second case is clearly impossible because it would imply that ¢ maps X
into the single point (V') . Hence P* = G(1;V’/(V')" ) and ¢ maps X into the Grassmannian
G(2;V'/(V)* ™) in G(K';V"). Let S} be the rank 2 tautological bundle on G(2;V'/(V')¥'7?).
Then its restriction S” := ¢*S) to any line [ in X is isomorphic to O; & O,;(—1), and we claim
that this implies one of the two alternatives:

(12) S// ~ OX @D Ox(—l)
or
(13) S"~Syand k=2, or " ~ (V®cOx)/Sy and k =n —k = 2.

Let £ > 2. The evaluation map 7im,7m5S"” — 735" is a monomorphism of the line bundle
i L= mimmsS” into 55" (here L := m,735"). Restricting this monomorphism to the fibers
of my we see immediately that 77 L is trivial when restricted to those fibers and is hence trivial.
Therefore L is trivial, i.e. 7L = Oz. Push-down to X yields

(14) 0= O0x = 5" = 0x(-1) =0,

and hence (I4) splits as Ext'(Ox(—1),Ox) = 0. Therefore (I2) holds. For k = 2, there is an
additional possibility for the above monomorphisms to be of the form 77Oy (—1,0) — 735 (or
of the form 7Oy (0, —1) — 73S if n — k = 2) which yields the option (I3]).

If (T2) holds, ¢ maps X into an appropriate projective subspace of G(2;V'/(V’ )kl_z) which
is then a projective subspace of X', and if (I3) holds, ¢ is a standard extension corresponding
to a zero dimensional space W. The proof is now complete. 0

We are ready now to prove the following theorem.
Theorem 3.2. Conjecture 1.1l holds for any linear ind-Grassmannian X.

Proof. Assume that deg p,, = 1 for all m, and apply Proposition 3.1l If infinitely many ¢,,’s
factor through respective projective subspaces, then X is isomorphic to P> and the BVT
Theorem implies Conjecture [Tl Otherwise, all ¢,,’s are standard extensions of the form (3]).

There are two alternatives: lim k,, = lim (n,, — k,,) = 0o, or one of the limits lim k,, or
m— m—00 m—00

lim (n,, — k) equals [ for some [ € N. In the first case the claim of Conjecture [[.T]is proved
m—

in [DP]: Theorem 4.2. In the second case X is isomorphic to G([; 00), and therefore Conjecture
[LTlis proved in this case by E. Sato in [Sa2]. O
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4. AUXILIARY RESULTS

In order to prove Conjecture [[L1] for rank 2 bundles E on a twisted ind-Grassmannian X =
lim G (ky,; V™™™), we need to prove that the vector bundle E = lim F,, of rank 2 on X is trivial,
— —

i.e. that E,, is a trivial bundle on G(ky,; V™) for each m. From this point on we assume
that none of the Grassmannians G(k,,; V™) is a projective space, as for a twisted projective
ind-space Conjecture 1.1 is proved in [DP] for bundles of arbitrary rank r.

The following known proposition gives a useful triviality criterion for vector bundles of arbi-
trary rank on Grassmannians.

Proposition 4.1. A vector bundle E on X = G(k;n) is trivial iff its restriction Ej; is trivial
for every line l in G(k;n), l €Y = Fl(k—1,k+ 1;n).

Proof. We recall the proof given in [P]. It uses the well known fact that the Proposition holds
for any projective space, [OSS, Theorem 3.2.1]. Let first k = 2, n = 4, i.e. X = G(2;4).
Since E is linearly trivial, 7} £ is trivial along the fibers of m; (we refer here to diagram (2)).
Moreover, 7,75 E is trivial along the images of the fibers of 7, in Y. These images are of the
form P} x Pi, where | (respectively P}) are lines in Y! := G(1;4) and Y? := G(3;4). The
fiber of p, is filled by lines of the form P, and thus 7,75 E is linearly trivial, and hence trivial
along the fibers of p;. Finally the lines of the form P! fill Y, hence p;,m.m3E is also a trivial
bundle. This implies that £ = mo.mp] (pr.m1.m3 E£) is also trivial.

The next case is the case when k£ = 2 and n is arbitrary, n > 5. Then the above argument
goes through by induction on n since the fiber of p; is isomorphic to G(2;n — 1). The proof
is completed by induction on k for k£ > 3: the base of p; is G(k — 1;n) and the fiber of p; is
G(2;n—1). O

If ¢ C N is a smooth rational curve in an algebraic variety N and F is a vector bundle
on N, then by a classical theorem of Grothendieck, Ejc is isomorphic to @, Oc(d;) for some
dy > dy > -+ > dwg. We call the ordered rkE-tuple (di,...,dwg) the splitting type of Ejc
and denote it by dg(C). If N = X = G(k;n), then the lines on N are parametrized by points
[ € Y, and we obtain a map

Y — ZF ¢ e dp(D).

By semicontinuity (cf. [OSS, Ch.I, Lemma 3.2.2]), there is a dense open set Ug C Y of lines
with minimal splitting type with respect to the lexicographical ordering on Z™¥. Denote this
minimal splitting type by dg. By definition, Up = {l € Y| dg(l) = dg} is the set of non-
jumping lines of E, and its complement Y \ Ug is the proper closed set of jumping lines.

A coherent sheaf I’ over a smooth irreducible variety N is called normal if for every open
set U C N and every closed algebraic subset A C U of codimension at least 2 the restriction
map F(U) — F(U \ A) is surjective. It is well known that, since N is smooth, hence normal,
a normal torsion-free sheaf F' on N is reflexive, i.e. FYY = F. Therefore, by [OSS, Ch.II,
Theorem 2.1.4] F' is necessarily a line bundle (see [OSS| Ch.II, 1.1.12 and 1.1.15]).

Theorem 4.2. Let E be a rank r vector bundle of splitting type dg = (dy, ..., d,), d1 > ... > d,,
on X = G(k;n). If ds — dsy1 > 2 for some s < r, then there is a normal subsheaf FF C E

of rank s with the following properties: over the open set mo(my*(Ug)) C X the sheaf F is a
subbundle of E, and for anyl € Ug

B~ Poi(d,).
i=1
Proof. 1t is similar to the proof of Theorem 2.1.4 of [OSS| Ch.II|. Consider the vector bundle

E' = EQ Ox(—ds) and the evaluation map ® : mim,m3E" — w5E’. The definition of Ug
implies that QJ‘W;l(UE) is a morphism of constant rank s and that its image Im® C 73 E’ is a
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subbundle of rank s over 7, '(Ug). Let M := 75 E'/im®, let T(M) be the torsion subsheaf of
M, and F' := ker(msE' — M’ := M/T(M)). Consider the singular set Sing F" of the sheaf F’
and set A := Z ~ Sing F'. By the above, A is an open subset of Z containing 7, *(Ug) and
f=ma:A— B:=m(A) is a submersion with connected fibers.

Next, take any point [ € Y and put L := 7, *(I). By definition, L ~ P!, and we have
(15) TZ/X|L ~ OL(—]_)EB(H_2),
where T/ x is the relative tangent bundle of Z over X. The construction of the sheaves F" and M
implies that for any [ € Ug: F'|;, = ®5_,0p(—=di+d,), M' ), = @j_,,,01(d;—d,). This, together
with (I8) and the condition ds — dgy1 > 2, immediately implies that HO(QQ/B QR F" ® M) =

0Ol v

0. Hence H (QA/B QR F"' ® M/wfl(UE)
Hom(T/p, Hom(F', M|,)) = H(Q )5 @ FV'® M],) = 0. Now we apply the Descent Lemma
(see [OSS, Ch.II, Lemma 2.1.3]) to the data (fj.—1,) m  (Ug) = Vg, F|’7r1,1(UE) C E\/wfl(UE))'
Then F' := (m.[F") @ Ox(—dy) is the desired sheaf.

) = 0, and thus, since 7;'(Ug) is dense open in Z,

5. THE CASE RKE = 2

In what follows, when considering a twisted ind-Grassmannian X = lim G(k,,; V") we set
_>
G(kp; V') = X,,. Theorem yields now the following corollary.

Corollary 5.1. Let E = lim E,, be a rank 2 vector bundle on a twisted ind-Grassmannian
(_
X =lim X,,. Then there exists mg > 1 such that dg,, = (0,0) for any m > my.
—

Proof. Note first that the fact that X is twisted implies
(16) a(En)=0, m>1.

Indeed, c;(FE,,) is nothing but the integer corresponding to the line bundle A?(E,,) in the identi-
fication of Pic X, with Z. As X is twisted, ¢1(E,,) = deg v, deg @i - - - deg ©mirci (Emirs1)
for any k£ > 1, in other words ¢i(FE,,) is divisible by larger and larger integers and hence
c1(Ey) = 0 (cf. [DP, Lemma 3.2]). Suppose that for any my > 1 there exists m > mg such
that dg,, = (am, —a,,) with a,, > 0. Then Theorem applies to E,, with s = 1, and hence
E,, has a normal rank-1 subsheaf F,, such that

(17) Foi >~ Oy(am)

for a certain line [ in X,,. Since F}, is a torsion-free normal subsheaf of the vector bundle F,
the sheaf F}, is a line bundle, i.e. F,,, ~ Ox, (a,,). Therefore we have a monomorphism:

(18) 0— Ox,,(am) = En,  ap > 1.

This is clearly impossible. In fact, this monomorphism implies in view of (I€]) that any rational
curve C' C X, of degree §,, := degy; - ... - deg ¢,,,—1 has splitting type dg,, (C) = (al,, —al,),

where a, > a0, > d,,. Hence, by semiconinuity, any line [ € X has splitting type dg, (1) =
(b, —b), b > d,,. Since 6, — oo as my — oo, this is a contradiction. O

We now recall some standard facts about the Chow rings of X,,, = G(k,,; V"™™), (see, e.g., [F,
14.7]):

(i) AY(X,,) = Pic(X,,) = Z[V,,.], A%(X,,) = Z[W1 ) ® Z|W,,,], where V,,,, W1 ,,,, Wy, are
the following Schubert varieties: V,, := {V*~ € X,,| dim(V*» Q V""" > 1 for a
fixed subspace Vg *m=t of V) W, = {VFn € X, | dim(VE» AV —Fmmt) > 1 for
a fixed subspace V' 1 in Vil W, o= {VFn € X,,| dim(VFm O Vgim—ketl) > 9
for a fixed subspace V[)"’”_k'”l of Vnm}:

(i) [Viu)? = [Wym] + [Wa,,] in A%(X,,);
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(ili) Az(Xy) = Z[P},,|®Z[P3,,], where the projective planes P} (called a-planes) and P35,
(called §-planes) are respectively the Schubert varieties P}, = {VF" € X,,| Vit
Vhn C V2 for a fixed flag Vi ~' C Vgt in Vimy PR = {VEr € X, | VTP C
Vhn C Vimt for a fixed flag V=2 € Vit in Vom

(iv) the bases [W;,,] and [P%,] are dual in the standard sense that [W; ] - [P%,,] = d; ;.

Lemma 5.2. There exists my € Zi~q such that for any m > my one of the following holds:
(1) 62(Em‘]P’%m) > Oa CQ(Em‘]P’%’m) S 0;
(2) c2(Empz, ) >0, ca( Empz ) <0,
(3) Cg(Em‘pim) = 0, 02(Em|]P>§’m> =0.

Proof. According to (i), for any m > 1 there exist Aj,,, Aoy € Z such that

(19) c2(Em) = Mim [Wim] + Aom[Wa ).
Moreover, (iv) implies

(20) Njm = (B2 ), j=1,2.
Next, (i) yields:

(21)

o[ Wimia] = a1 (m)[Wim] + a1 (m)[Woml, 07, [Wamia] = a12(m)[Wim] + g (m)[Wom,

where a;;(m) € Z. Consider the 2 x 2-matrix A(m) = (a;;(m)) and the column vector A, =
(A Aopn)t. Then, in view of (iv), the relation 2I)) gives: A,, = A(m)A,,41. Iterating this
equation and denoting by A(m, ) the 2 x 2-matrix A(m)- A(m+1)-...- A(m +1), i > 1, we
obtain
(22) Am - A(m, Z.)Am-i-’i-i-l'
The twisting condition ¢*,[V,,11] = deg@,[Vim] together with (ii) implies: ¢f ([Wy mi1] +
(Waomi1]) = (deg@m)?([Wim] + [Wa,n]). Substituting (21) into the last equality, we have:
ar1(m) + az(m) = ag (m) + azg(m) = (degp,,)?,  m > 1. This means that the column vector
v = (1,1)" is an eigenvector of A(m) with eigenvalue (deg ¢,,)?. Hence, it is an eigenvector of
A(m, i) with the eigenvalue d,,; = (deg ¥,)?(deg Pmi1)?...(deg Ymii)? :

(23) A(m,i)v = dy, 0.

Notice that the entries of A(m), m > 1, are nonnegative integers (in fact, from the definition
of the Schubert varieties W ,,,11 it immediately follows that ¢}, [W; ,41] is an effective cycle
on Xp,, so that 2I) and (iv) give 0 < ¢ [W; 1] - [PF,,] = a;;(m)); hence also the entries
of A(m,i), m,i > 1, are nonnegative integers). Besides, clearly d,,; — oo as i — oo for any
m > 1. This, together with (22]) and (23]), implies that, for m > 1, Ay, and Ag,, cannot both
be nonzero and have the same sign. This together with (20) is equivalent to the statement of
the Lemma. O

In what follows we denote the a-planes and the S-planes on X = G(2;4) respectively by P?
and P2.
B

Proposition 5.3. There exists no rank 2 vector bundle E on the Grassmannian X = G(2;4)
such that:

(a) c2(E) = alPg), a>0,

(b) E“P% is trivial for a generic B-plane P% on X.

Proof. Now assume that there exists a vector bundle F on X satisfying the conditions (a) and
(b) of the Proposition. Fix a S-plane P C X such that

(24) Ep~O%.
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As X is the Grassmannian of lines in P3, the plane P is the dual plane of a certain plane
P in P?. Next, fix a point 2o € P? ~ P and denote by S the variety of lines in P® which
contain xo. Consider the variety Q = {(z,1) € P> x X | 2 € I N P} with natural projections
p:Q — S :(zx,]) — Span(x,z¢) and 0 : Q — X : (z,l) — [. Clearly, o is the blowing up
of X at the plane P, and the exceptional divisor Dp = ¢~1(P) is isomorphic to the incidence
subvariety of P x P. Moreover, one easily checks that Q ~ P(Og(1) @ T(—1)), so that the
projection p : @ — S coincides with the structure morphism P(Og(1) & Ts(—1)) — S. Let
Oq(1) be the Grothendieck line bundle on @ such that p,Og(1) = Os(1) ® Ts(—1). Using the
Euler exact triple on @)

(25) 0= Qg5 = P (Os(1) @ Ts(—1)) ® Og(—1) = Og — 0,
we find the p-relative dualizing sheaf wq/s := det(Q, /8):
(26) wo/s ~ Og(—3) ® p*Os(2).
Set £ := ¢*FE. By construction, for each y € S the fiber @, = p~'(y) is a plane such that
l, = Q, N Dp is a line, and, by (24)),
(27) &, (91632.
Furthermore, 0(Q,) is an a-plane in X, and from (27) it follows clearly that h°(&q,(—1)) =

E‘éy(—l)) = 0. Hence, in view of condition (a) of the Proposition, the sheaf &, is the
cohomology sheaf of a monad

(28) 0— Og,(—1)%* — (’)852“”) — Og,(1)** = 0
(see JOSS, Ch. II, Ex. 3.2.3]). This monad immediately implies the equalities
(29) W (&g, (—1) = 1 (Eq,(=2)) = a, h'(Eq, ® Q) =2a+2,

W(E,(~1) = K€, (=2)) = (€, ® 2h) =0, i #1.
Consider the sheaves of Og-modules
(30) E_1:= R'p.(£®04(—2)®@p*0s(2)), Eo:=R'p.(E2Q45), Er = R'p.(E004(-1)).
The equalities (29)) together with Cohomology and Base Change imply that F_;, F; and Ej
are locally free Og-modules, and rk(E_;) = rk(E}) = a, and rk(Ey) = 2a + 2. Moreover,
(31) R'p.(€ ® Og(—2)) = R'p.(€ @ Qps) = R'p.(E ® Og(~1)) =0
for i # 1. Note that &Y ~ £ as ¢;(£) = 0 and rk€ = 2. Furthermore, (26) implies that the
nondegenerate pairing (p-relative Serre duality) R'p,(E®0qg(—1))@R'p.(EY@04(1)®@wg/s) —
R?p.wg/s = Og can be rewritten as £y @ E_; — Og, thus giving an isomorphism
Similarly, since €Y ~ £ and Qég /5 To/s@wq/s, p-relative Serre duality yields a nondegenerate
pairing Ey®Ey = Rlp*(5®Qé/5)®R1p*(5®Qé/S) = Rlp*(5®Qé/s)®Rlp*(5V®TQ/S®MQ/S) —
R?’p.wqs = Og. Therefore Ej is self-dual, i.e. Ey ~ E, and in particular ¢;(Ep) = 0.

Now, let J denote the fiber product @ xg Q with projections Q %= J %3 Q such that
popr; =popry. Put Fy X F, := priF} ® priF, for sheaves Fy and F5 on (), and consider the
standard O -resolution of the structure sheaf Oa of the diagonal A — J
(33) 0= Og(—1) ®@p*0s(2) K Og(—2) = Q' q/s(1) K Og(—1) = Oy — Op — 0.

Twist this sequence by the sheaf (€ ® Og(—1)) K Og(1) and apply the functor R'pra. to the
resulting sequence. In view of (80) and (31I]) we obtain the following monad for &:

(34) 0> p'E_1®0o(—1) D p'Ey 5 pEL @ Og(1) = 0, ker(y)/im(\) = €.
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Put R := p*h, where h is the class of a line in S. Furthermore, set H := o*Hx, [P,] := o*[P2],

«

[Ps] := o*[P3], where Hy is the class of a hyperplane section of X (via the Pliicker embedding),
and respectively, [P2] and [P3] are the classes of an a- and $-plane. Note that, clearly, Oq(H) =~
O¢(1). Thus, taking into account the duality (32), we rewrite the monad ([B4]) as

(35) 0= p*EY @ Og(—H) > p*Ey 5 p"Ey ® Og(H) — 0, ker(u)/im(\) ~ .

In particular, it becomes clear that (B84)) is a relative version of the monad (28]).

As a next step, we are going to express all Chern classes of the sheaves in (3H) in terms
of a. We start by writing down the Chern polynomials of the bundles p*E; ® Og(H) and
p*EY @ Og(—H) in the form

(36) c(p"Er®Og(H)) = [[(1+ (6 + H)t), e(p EY © Og(=H)) = [ [(1 = (6 + H)1),

i=1 i=1
where §; are the Chern roots of the bundle p*E;. Thus

(37) cR? = i(sf, dR = 25
i=1 i=1

for some ¢, d € Z. Next we invoke the following easily verified relations in A'(Q):

(38) H'=RH®=2pt], R*H’= R’[P,] = RH[P,] = H?[P,] = RH[Ps] = H*[P3] = [pt],
[Po][Ps] = R*[Ps] = R* = R°H =0,

where [pt] is the class of a point. This, together with ([B81), gives

(39)
S o= Y (a0 H =0, S G0 H? = %(Cﬁ—c)[p LS (46, P = 2(a—1)d[pt].
1<i<j<a 1<i<j<a 1<i<j<a 1<i<a
Note that, since ¢;(Ey) = 0,
(40) ci(p*Ey) = 1+ bR
for some b € Z. Furthermore,
(41) ci(€) =1+ a[P,)t?

by the condition of the Proposition. Substituting ([40) and (4Il) into the polynomial f(t) :=
a(E)a(p*Ey @ Og(H))er(p*EY @ Og(—H)), we have f(t) = (1+a[Pa]t?) [Ti, (1 — (0; + H)?*t?).
Expanding f(¢) in ¢ and using (37)-(39), we obtain

(42) ft) =1+ (a[Py] — cR*> — 2dRH — aH*)t* + e[pt]t*,

where

(43) e=—3c—a(2d+a)+ (a—1)(a+4d) + 2d°.

Next, the monad (B3]) implies f(t) = ¢;(p*Ep). A comparison of ([42]) with (40) yields
(44) co(€) = a[P,) = (b+ ¢)R* + 2dRH + aH?,

(45) e = cy(p*Ep) = 0.

The relation (43]) is the crucial relation which enables us to express the Chern classes of all
sheaves in (30)) just in terms of a. More precisely, ([#4) and [B8) give 0 = c2(E)[Pg] = 2d + a,
hence a = —2d. Substituting these latter equalities into (A3)) we get e = —a(a — 2)/2 — 3c.
Hence ¢ = —a(a — 2)/6 by ([@H). Since a = —2d, (37) and the equality ¢ = —a(a — 2)/6 give
ci(Ey) = —a/2, c(E)) = (d* —¢)/2 = a(ba — 4)/24. Substituting this into the standard

formulas ey := ¢ (p*E1 @ Og(H)) = Y2, (Z:Z) RH*c;(E)), 1<k <4, we obtain

(46) e1 = —aR/2+aH, ey = (5a*/24 —a/6)R? + (a* — a)(—RH + H?)/2,
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es = (5a/24 — 7a*/12 + a/3)R*H + (—a®/4 + 3a®/4 — a/2)RH? + (a® /6 — a*/2 + a/3) H?,
ey = (—7a" /144 + 43a® /144 — 410 /72 + a/3)[pt].

It remains to write down explicitely co(p*Ep): (B8), (44]) and the relations a = —2d, ¢ =
—a(a —2)/6 give a = c2(E)[Ps] = b+ ¢, hence

(47) cs(Ep) = b= (a® +4a) /6

by (E0).

Our next and final step will be to obtain a contradiction by computing the Euler characteristic
of the sheaf £ and two different ways. We first compute the Todd class td(7g) of the bundle
Ty. From the exact triple dual to (25) we find ¢;(Tq/s) = 1+ (—2R + 3H)t + (2R* — 4RH +
3H?)t?. Next, ¢t(Tg) = a(Tgs)c(p*Ts). Hence ¢i(Tg) = R+ 3H, ¢»(Tg) = —R* +5RH +
3H? c3(Tg) = —3R?*H + 9H?R, c4(Tg) = 9[pt]. Substituting into the formula for the Todd
class of Ty, td(Tg) = 14 5¢1 + 15(f + ¢2) + 95¢102 — =55 (¢} — 4cfea — 3¢ — cie3 + ¢4), where
¢; = ¢;(Tp) (see, e.g., [H, p.432]), we get

3 11 5 1 5 3.5 3 4

2H+ 12RH+H + 12HR +4H R+8H + [pt].
Next, by the hypotheses of Proposition ¢1(€) = 0, c2(€) = a[Ps], c3(€) = c4(€) = 0. Substi-
tuting this into the general formula for the Chern character of a vector bundle F,

ch(F) = 1k(F) 4 ¢ + (¢] — 2¢3) /2 + (3 — 3cica — 3¢3) /6 + (¢ — 4cfca + dejes + 265 — dey) /24,

¢; = ¢;(F) (see, e.g., [H, p.432]), and using (8)), we obtain by the Riemann-Roch Theorem for
F=¢&

(49) X(€)=—=a"— —a+2.

1
(48) td(To) = 1+ 3R+

In a similar way, using (46]), we obtain

D 29 1 113
B H *E\/ —H - - 4_ = 3 - 2 .
(50) (0B ® O(H)) + X(p'BY © Og(~H)) = oot — ooia — a4 0

Next, in view of (d7]) and the equality c¢;(Fy) = 0 the Riemann-Roch Theorem for Ej easily
gives

51) (0" Bo) = x(Bo) = —ga? + ga+2.
Together with (49) and (B0) this yields
B(a) = X(p" Bo)— (x(E) (" FrEOg(H)) + (v B @Og(~H)) = —5 a(a—2)(a—3)(a—3).

The monad (B5) implies now ®(a) = 0. The only positive integer roots of the polynomial
®(a) are @ = 2 and a = 3. However, [@J) implies x(£) = —2 for a = 2, and (EI) implies
X(p*Ey) = § for a = 3. This is a contradiction as the values of x(€) and x(p*E,) are integers
by definition. O

We need a last piece of notation. Consider the flag variety Fi(k,, — 2, k,, + 2; V™). Any
point u = (Vkn=2 Vknt2) ¢ Fi(k,, — 2, ky, + 2; V™) determines a standard extension

(52) iy X =G(2;4) = X,

(53) W2 o VEn=2 g W2 c Vint2 cyim = VEn=2 g Wt C Vi,

where W2 € X = G(2; W*) and an isomorphism V*=n=2 @ W4 ~ Vkn+2 ig fixed (clearly 4, does
not depend on the choice of this isomorphism modulo Aut(X,,)). We clearly have isomorphisms
of Chow groups

~

(54) it AN X)) & AYXD),  due s Ao(X) D Ax(X),

u
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and the flag variety Y, := Fl(k,, — 1, k,, + 1; V™) (respectively, Y := FI(1,3;4)) is the set of
lines in X, (respectively, in X).

Theorem 5.4. Let X = lim X,, be a twisted ind-Grassmannian. Then any vector bundle
—
E =lim E,, on X of rank 2 is trivial, and hence Conjecture [I1l(1v) holds for vector bundles of
F
rank 2.

Proof. Fix m > max{mo, m1}, where mgy and m; are as in Corollary 5.1l and Lemma For
j=1,2, let EU) denote the restriction of E,, to a projective plane of type IP’j s T9 = Fl(ky, —
J» km=+3—74, V") be the variety of planes of the form %, in X,,, and Il := {IP%, € T7| Enpez
is properly unstable (i.e. not semistable)}. As semistability is an open condition, I/ is a closed
subset of 7.

(i) Assume that c(EM) > 0. Then, since m > my, Lemma [5.2 implies cy(E®) < 0.

(i.1) Suppose that co(E®) = 0. If IT* # T, then for any P}, € T? \ II* the corresponding
bundle £? is semistable, hence E® is trivial as cy(E®) = 0, see [DIJ, Prop. 2.3,(4)]. Thus,
for a generic point v € Fl(k,, — 2, kp, + 2; V™), the bundle E =i E,,, on X = G(2;4) satisfies
the conditions of Proposition [5.3], which is a contradiction.

We therefore assume I1? = T2. Then for any IP’2 € T? the corresponding bundle E® has
a maximal destabilizing subsheaf 0 — Opz (a) = E(2). Moreover a > 0. In fact, otherwise
the condition ¢;(E®) = 0 would imply that a = 0 and E®/Op; = Opz , i.e. E® would be
trivial, in particular semistable. Hence
(55) dE(z) = (a, —a).

Since any line in X, is contained in a plane P3,, € 7%, (63) implies dg,, = (a, —a) with a >0
for m > myg, contrary to Corollary Bl

(i.2) Assume cp(E?) < 0. Since E®@ is not stable for any P, € T2, its maximal destabilizing
subsheaf 0 — Opz (a) — E@ clearly satisfies the condition a > 0,i.e. E® is properly unstable,
hence II1? = T2. Then we again obtain a contradiction as above

(ii) Now we assume that cy(E®) > 0. Then, replacing £® by EM) and vice versa, we arrive
to a contradiction by the same argument as in case (i).

(iii) We must therefore assume co(EW) = co(E@) = 0. Set D(E,,) := {l € Y| dg,, (1) #
(0,0)} and D(E) :={l € Y| dg(l) # (0,0)}. By Corollary 5.1l dg,, = (0,0), hence dg = (0,0)
for a generic embedding i, : X < X,,. Then by deformation theory [B], D(E,,) (respectively,
D(FE)) is an effective divisor on Y, (respectively, on Y). Hence, Oy (D(F)) = pjOyi(a) ®
p5Oy2(b) for some a,b > 0, where py, pp are as in diagram @). Note that each fiber of p;
(respectively, of py) is a plane P? dual to some a-plane P? (respectively, a plane IP% dual
to some (-plane P%). Thus, setting D(Ejpz) := {l € P2| dp(l) # (0,0)}, D(Ejpz) = {l €
B3| de(l) # (0,0)}, we obtain Ogy(D(Erz)) = Ov(D(ENgs = On (D). Os(D(Eisy)) =
OY(D(E))“@% = Of@%(a). Now if Ejps is semistable, a theorem of Barth [OSS, Ch. II, Theorem
2.2.3] implies that D(Ejp2 ) is a divisor of degree c(Ejp2) = a on P2. Hence a = co(E™W) = 0 for
a semistable Ejpz. If Ejp2 is not semistable, it is unstable and the equality dz () = (0, 0) yields
dg 2 = (0,0). Then the maximal destabilizing subsheaf of Ejp is isomorphic to Op2 and, since
CQ(EUpz) = 0, we obtain an exact triple 0 — Opz — Ejpz — Opz — 0, so that Epz ~ OHD2 is

semistable, a contradiction. This shows that a = 0 whenever cy(EM) = ¢o(E®) = 0. Similarly,
b=0. Therefore D(E,,) = 0, and Proposition 1] implies that E,, is trivial. Therefore E is
trivial as well. O

In [DP] Conjecture [Tl (iv) was proved not only when X is a twisted projective ind-space,
but also for finite rank bundles on special twisted ind-Grassmannians defined through certain
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homogeneous embeddings ¢,,. These include embeddings of the form

G(k;n) — G(ka;nb)
VECV e VieWrcV oW,
where W C W? is a fixed pair of finite-dimensional spaces with a > b, or of the form

mmmae(ﬁ%ﬂﬂﬁ)

VECV s S2(VH cV eV

More precisely, Conjecture [l (iv) was proved in [DP] for twisted ind-Grassmannians whose
defining embeddings are homogeneous embeddings satisfying some specific numerical conditions
relating the degrees deg p,, with the pairs of integers (k;,,n,,). There are many twisted ind-
Grassmannians for which those conditions are not satisfied. For instance, this applies to the
ind-Grassmannians defined by iterating each of the following embeddings:

k%+1)Mn+D)
2 7

VFC Ve S5V c S2(V),
G(k;n)%G(k(k_l nn—l)

G(k;n) — G(

2

VCVHﬁwﬂQVW
Therefore the resulting ind-Grassmannians G(k,n, S?) and G(k,n, A?) are examples of twisted

ind-Grassmannians for which Theorem [£.4] is new.
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