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Abstract

Let F' be a generalized flag as defined in [2]. We wish to study the automor-
phism group Aut F¢(F, E) of the ind-variety of generalized flags F{(F, E)
of which F' is a point. In this thesis we describe this automorphism group
in the cases when F' consists only of subspaces of finite dimension or finite
codimension.
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1 Introduction

The study of flag varieties is a classical topic in complex geometry. In this
thesis we recall the automorphism groups of classical complex flag varieties
and then we study the automorphism groups of certain flag ind-varieties.

The simplest type of a flag variety, the Grassmannian, has been previously
studied by Chow in [1].

The automorphism group of a finite-dimensional flag variety has been
determined in |6]. This automorphism group is PGL(V) (where V is the
complex vector space spanned by the flags in the flag variety) in the general
case, and is a group containing PGL(V') as a normal subgroup of index 2
when the flag is 'symmetric’. We shall reprove this result in section [4]

In section 5| we generalize these results by replacing the assumption of
the finite dimension of V' by countable dimension. In that case we define the
notion of a generalized flag and consider the respective ind-varieties following
[2]. We then determine a flag ind-variety’s automorphism group when all of
the flag’s components are either finite dimensional or cofinite dimensional.

In section |3| we briefly consider two specific ind-flag varieties whose auto-
morphism groups have been determined in [4], and prove that they are not
isomorphic as groups.

2 Preliminaries

In this section we introduce the necessary definitions and constructions fol-
lowing [3]. We assume that some general facts of algebraic geometry are
known.

The base field we will be working over is the field C of complex numbers.
Unless otherwise stated, V' is a countable-dimensional complex vector space,
E = {ey,e9,...,€n,...} is a fixed basis of V, V,, := Span{ey,es,...,e,},
E. = {e},e5, ... €., ...} where ef(e;) := 9, (0;; is Kronecker’s delta), and
V. := Span{ej,e5, ..., e:, ...} C V* . Furthermore, in what follows we will

use the identification V., =V given by (ef)* = e;.

Definition 2.1. Let X; — X5 «— -+ — X,, < .-+ be a chain of closed
embeddings of algebraic varieties. We call the direct limit X = lian an
ind-variety. A morphism of ind-varieties ¢ : X — Y is a set of morphisms
¢+ Xy = Y (for some M(n)) that commute with the embeddings. An
isomorphism of ind-varieties is a morphism that admits an inverse. We say
that U C X is open if UN X, is open in X, for each n > 1. Furthermore, we
define the structure sheaf to be Ox = @OXn where -+ — Ox, — -+ —



Ox, — Oy, is the projective system induced by the chain of embeddings
Xi > Xge— o X, — ...

Example 2.2. Consider the chain
GL(Vy) c GL(V,) C --- C GL(V,,) C

where the inclusion ¢, : GL(V,,) C GL(V,41) is given by ¢,(g)(v) = g(v) for
v €V, and 1,,(g)(€n41) = €nt1. Then the ind-variety GL(E, V) = lim GL(V,,)
is well-defined. Note that the elements of GL(E,V) are invertible linear
operators on V that act as identity on almost all elements of F.

Next we define a generalized flag and its corresponding ind-variety.

Let F = {C,}aecr be a chain of pairwise distinct subspaces of V' ordered
by inclusion. Denote by F’ (respectively F”) the set of elements of F' that
have an immediate successor (respectively predecessor). Also denote by F'f
the set of pairs (C”, C”) such that C” is the immediate successor of C” in F'.

Definition 2.3. A generalized flag is a chain of subspaces F' such that F =

F'UF" and
vi{oy= |J o\

(¢, C"YeFt

Note that if we let V' be finite dimensional then the notion of generalized
flag coincides with that of usual flag.

Definition 2.4. Let F' be a generalized flag as above. We say that F' is
E-compatible if for every ¢ € I we have C; = Span F; for some E; C E.

A basic result in [3] proves that any generalized flag F' admits a basis E
such that F'is E-compatible.

In the classical setting where dim V' < oo, we can define a flag variety as
,/TE(F, V) = {(Ul, UQ, ceey U‘[|) S Hie] Gr(dlm Oi7 V) | UZ C Uz'-i—l}' The auto-
morphism groups of such classical flag varieties will be discussed in section

Now we describe the analogous construction of an ind-variety correspond-
ing to a generalized flag.

Let F' be a generalized flag compatible with the basis £ and let F,, =
{C,NV, |C, € F}.

Consider the closed embeddings ¢, : FU(F,,V,) — FU(F,11, Vai1) given
by
U, ®Cepy1 ife,q €C,

U,} — {U'} where U’ =
{Ua} = {Ua} w ¢ {Ua otherwise



By definition, the ind-variety F¢(F, E) is then the inductive limit lim F UFE,, Vy).
Note that as a set F{(F, E) coincides with the orbit of F' under the natu-
ral action of PGL(FE,V') on the generalized flags on V. We shall use this
identification throughout the thesis.

Example 2.5. Consider the generalized flag F' = {0 C U C V'} for a fixed
subspace U spanned by some elements of . We call the generalized flag
ind-variety FU(F, E) an ind-grassmannian and denote it by Gr(U, E).

Although ind-grassmannians are defined by a single subspace U, it can be
shown that they are classified up to isomorphism according to min(dim U, codim U):

e if dimU < oo then the orbit of U under the action of GL(E, V) is the
set of all subspaces U’ with dim U’ = dim U, thus Gr(U, E) depends
only on dim U and is denoted by Gr(dimU).

e if codim U < oo then we have the isomorphisms Gr(U, F) = Gr(U+, E,) =
Gr(codim U, V,) given by W — W+ = {g € V, | g(W) = 0} and thus
Gr(U, E) = Gr(codim U).

e if min(dim U, codim U) = oo then it is proved in Lemma 4.3 of [5] that
Gr(U, E) does not depend up to isomorphism on the choice of U. We
will thus denote it by Gr(oo).

3 Two special cases

The main goal of this thesis is to describe the groups of automorphisms
Aut FL(F, E) in the special case when the generalized flag F' consists only
of finite-dimensional and finite-codimensional subspaces. Such groups have
previously been described for ind-grassmannians of the form Gr(dim U) and
Gr(codimU) for dimU < oo or codimU < oo, and when F' is a maximal
increasing generalized flag with dim F,, < oo for all . In [4] it was proven
that

e for ' = {0 C U C V} with min(dimU,codimU) < oo we have
Aut FU(F, E) = PGL(V);

efor F ={0cCcVycCcV,cC--CV,C..} withdmV, =i we
have Aut F¢(F,E) = P (GL(E,V) - Bg), where By C GL(E,V) is
the stabilizer of " under the action of GL(E, V).

Using the following lemmas, we shall give a brief proof of why these
automorphism groups are not isomorphic as abstract groups.



Lemma 3.1. Every nonabelian simple subgroup of P (GL(E, V') - Bg) gener-
ates the same normal subgroup.

Proof. Set G := P (GL(E,V) - Bg) and let H be the normal subgroup of
G generated by the simple subgroup PGL(FE, V). Note that H corresponds
to linear maps that act as scalar multiplication on the respective cofinite
subspaces, furthermore H = {J (97 PGL(E,V)g). Also H # G, the
linear operator f with by f(e,) = > . e; does not fix any cofinite subspace,
and hence the image of f in G does not belong to H. Consider the subgroup
Gn = (f € Bg | (& f)le;) =0forany 1 <i—j < nand(ef)(e;) = 1)
and its image évn in G/ 77- Then évn < G/ 77 and we obtain a filtration

oo Gov G5 G- - (%)

Furthermore, a straightforward computation shows that the quotients of this
descending normal series are abelian. Consider now a simple subgroup N of
G that is not contained in H. Due to the simplicity of N we obtain that
NNH = (e) and that the image of N in G/H is isomorphic to N/N N =N.
Intersecting the filtration () with the image of N gives

N (NNGo)>(NNG) s (NNGy)b -

Since each (N N @;) is normal in N, it must be either trivial or equal to V.
If NNG, = N for all n then N C N, G, = () thus N is trivial. Otherwise
there exists a minimal n such that N N G, = (e). Considering the abelian
quotient at that term, we obtain that it is isomorphic to N, which implies
that N is trivial.
Thus any simple subgroup N of G is necessarily contained in H. Denote
by N’ the normal subgroup of G generated by N. Since H = UgeG(g‘1 PGL(E,V)g),
N’ must intersect non-trivially some g~! PGL(E, V)g for some g. Fix such a

g. Then using the fact that ¢g7' PGL(E,V)g is simple, we must necessarily
have g7 PGL(FE,V)g C N'. Therefore

h™'PGL(E,V)h = (¢7'h)"'g ' PGL(E, V)g(g 'h) C (¢ 'h)'N'(g"*h) = N,
and by varying h over G we obtain H = N’. O

Lemma 3.2. There exist two nonabelian simple subgroups of PGL(V') that
generate distinct normal subgroups.

Proof. Consider the normal subgroup H in PGL(V') generated by PGL(E, V).
It consists of the images of linear maps that act as the identity on some cofi-
nite subspace of V.



Now consider the embedding SL(2, C) = SL(V,) < GL(V) which maps a
linear map M : Vo — V4 to the linear map M’ : V — V satisfying

M'(aegp i1 + beay) = € (M(aey + bes))eany1 + e5(M(aey + bes))eay,

for any n > 1. Denote the image of the embedding in GL(V') by G. The
nontrivial elements of G do not fix any cofinite subspace of V', and thus the
image in PGL(V) of G intersects H trivially. Therefore this image generates
a normal subgroup of PGL(V') not equal to H. O

Corollary 3.3.
P (GL(E,V) - Bg) 2 PGL(V).

4 Finite Version

We first consider the classical version when V' is finite dimensional.
Consider the embedding F4(F, V) C [[ Gr(d;, V) where d; := dim C;. It
induces the projection morphisms p; : FUF,V) — Gr(d;,V). A classical
result states that PicGr(d;,V) = Z and Pic FUF,V) = @, Z[L;] where
L; := pf(Ocr(a;,vy(1)). We call the set {L;} the preferred set of generators
of Pic FU(F,V).
We assume the following theorem proved by Chow in [1]

Theorem 4.1 (Chow '49). Let 0 C C C V be a subspace, then the following
holds

e [f2dimC =dimV then Aut Gr(dim U, V') is the semidirect product of
PGL(V) and the ’flip’ morphism

fl:C—=Ct={weV,|vC)=0}CV,2V.

o [f2dimC # dimV, then Aut Gr(dim U, V) = PGL(V).
We will make use of the following lemma.

Lemma 4.2. Let 0 C U Cc U C V bea flaginV and f,f :V =V
be invertible linear maps, such that for any flag 0 C W Cc W' C V with
dimW = dimU and dim W' = dim U’ we have f(W) C f'(W’'). Then
f=cf" for some c e C\ {0}.



Proof. Assume otherwise. Let v € V be such that Z := Span{f(v), f'(v)}

has dimension 2. Extend v to a basis £ = {v = vg,v1,...,v,} of V. Then
Z C f'(Span X) for any v € X C E with |X| = dimU’. In particular,
Z C ﬂ f'(Span X) =

vEXCE,|X|=dim U’

1 ﬂ Span X)) =

VEXCE,|X|=dim U’

f'(Span ﬂ X) =

vEXCE,|X|=dim U’
Span f'( N X) = Cf'(v).
vEXCE,|X|=dim U’

This contradicts the assumption that dim Z > 1. O
We can now state our main theorem in the finite case.
Theorem 4.3. Let V' be a finite-dimensional vector space and
F=(CicCyC---CCp)
be a flag. Then the following holds:

o [fdimC; = codim C,, 1, for every i, the group Aut FU(F,V) is the
semi-direct product of PGL(V') and the ’flip” morphism

flL:U= U ={veV*|vU)=0}CV*2V.

e [fdim C; # codim C,,41-; for some i, then Aut FU(F,V) = PGL(V).

In the proof of the main theorem we shall use the following immediate
corollary of [Prop. 2.3 from [7]]:

Corollary 4.4. Let E = (V, C --- C V) and E' = (W, C --- C W)
be flags on finite-dimensional vector spaces VW, and let ¢ : FUE,V) —
FUE' W) be a closed embedding. If 1 < r < k and 1 < s < [ are such
that ¢*(L?) = L! where L} € Pic FU(E,V) and L?> € Pic FU(E',W) are
preferred generators, then there exists a morphism ¢ : Gr(dimV,, V) —
Gr(dim Wy, W) such that the diagram

FUE,V) « ¢ s FUE', W)

| 2

Gr(dimV,,V) v Gr(dim W, W)

15 commutative.



Proof of theorem[{.3. We assume that F' is not a Grassmannian. The case
of a Grassmannian was considered in theorem [4.1] An automorphism ¢ €
Aut FU(F,V) induces an automorphism ¢* € AutPic F¢(F, V). Consider
o*(L;) = Z;n:l «; jL;. Since L; is generated by its global sections, the same
must hold for ¢*(L;). Thus a;; > 0 for all 7,57 € {1,...,m}, and ¢* acts
on Pic FU(F,V) as an invertible matrix whose coefficients are nonnegative
integers. Since the same holds for (¢*)7!, it follows that the automorphism
¢ must act by a permutation on {L;}.

For each i € {1,...,m} let a; € {1,...,m} be such that ¢*(L;) = L.

By corollary , the automorphism ¢ induces morphisms 6; : Gr(dim C,,, V') —
Gr(dim C;, V). Similarly, by applying the corollary to the morphism ¢~
we get morphisms v¢; : Gr(dimC;, V) — Gr(dimC,,, V). Since the pro-
jection maps p; : FUE,V) — Gr(dim C;, V) are surjective, we must have
0; o ¥; = idgr(aimc,,v). Hence ¢; are isomorphisms, and either a; = ¢ or
dim C; = codim C,;,.

Fix an ¢ € {1,...,m}. There are three possibilities:

e q; =i, 2dim C; # dimV, and ¢; € Aut(Gr(dim C;, V)) is induced by
the action of a i, € PGL(V);

e a; =i, 2dim C; = dimV, and ¢; € Aut(Gr(dim C;, V') is induced by
the action of a v; € PGL(V) U fl o PGL(V);

e a; # i,dim C; = codim C,, (and thus 2dim C; # dim V), a,, = i, 9; is
induced by the action of a v; € fl o PGL(V); also 9, = E_l.

The next goal is to determine when do elements {v;} € PGL(V) U fl o
PGL(V) induce well-defined automorphisms ¢. We shall use the fact that
{1;} must preserve the incidence relation 1;(C;) C 1;(C;).

If ¢; € PGL(V) for every i € {1,...,m}, then by lemma all ¢; are
equal and induce an automorphism ¢ € PGL(V).

Similarly, if 1; € fl o PGL(V) for every i € {1,...,m} then dimC; =
codim C,,11—; for every ¢ € {1,...,m}. By the above argument, the elements
flo4; € PGL(V) induce an automorphism fl o ¢ € PGL(V) so that ¢ €
floPGL(V).

If ¥; € PGL(V), ¢; € flo PGL(V) and 2dimC; # dimV for some

i,7 € {1,...,m}, then we have 5 cases:
e If C; C C; C C,;, by the definition of ¢ we have
C; C Cj C Coy — i(Cy) C (¥) 1 (Cyy)
Bi(C) € (@) (C)



Then considering the action of GL(V) on the flag C; C C,,, we obtain

W)=Y e C @y

9€GL(V),9(Ca;)=Ca,

)(Ca,),

which gives a contradiction since dim LHS = dimC,; > dimRHS =
codim C,; = dim Cj.

If ¢; C C; C Cy; with dimC; < codim Cj, by the definition of ¢ we
have
Cy C Ci C Coy = (1)1 (Cay) C (i) Cy(Cy) =
__1 —_— —_—
(V5 )NCa,) Ci(Cy) C (15)(Cy).

Then considering the action of GL(V) on the flag C; C C,,, we obtain

—1 —1

)(Ci) = Yo @ )9(Cay) C (),

9€GL(V),9(Ci)=Ci

(W
which gives a contradiction since dim LHS = codim C; > dim RHS =
It C; C C; C Cy; with dim C; > codim Cj, then by the definition of ¢

we have
C; C C; C Cy, = (1) H(Coy) Ci(C)
(17 )(Ca) € 6i(C)
Then considering the action of GL(V) on the flag C; C Cj, we obtain
weye ) @E)) = @)(C).
g€GL(V),g(C;)=C;

which gives a contradiction since dim LHS = dim C; > dim RHS =
codim C;.

If C; C C; C C,; with dim C; = codim Cj, then we combine the identi-
ties in the two cases above to get

B (Ch) = Bi(Ci) = Ty (C),

so that 1; :E as elements of Aut(Gr(dim Cj,V')). This is a contra-
diction since 1; € PGL(V') but ¢, € fl o PGL(V).

9



e If C; C Cy; C Cj, then by the definition of ¢ we have

C; C Cy, CCy = (1) (Coy) C5(Ch) C (Cy)
(@5 ) (Cay) C (@5)(Cy) C (G

).

Then considering the action of GL(V') on the flag C; C C;, we obtain
()(C;) € f bil9(C)) = ¥i(Cy)
9eGL(V),9(C;5)=C;

which gives a contradiction since dim LHS = codim C; > dim RHS =

We are left with the case where v; € PGL(V), ¥; € fl o PGL(V) and
2dim C; = dim V for some 7,5 € {1,...,m}. Here we have 2 possibilities:

o [f Cl C Cj then
0i(Cy) = > Uig(Ci)) € ¥;(Cy)
g€GL(V),9(C;)=C;

By comparing dimensions we have 1;(C;) = 1;(C;), so that ¢; = v; as
elements of Aut(Gr(dim C},V)) as above. Contradiction.

o If Cj C Cl then
i) = f Di(9(C)) D 9i(Cy)
9eGL(V),9(C5)=C;

By comparing dimensions we have 1;(C;) = 1;(C}), so that ¢; = v; as
elements of Aut(Gr(dim C},V)) as above. Contradiction.

The above analysis allows us to conclude that the automorphism group
Aut FU(F,V) is as claimed. O

5 Infinite Version

In this section, V' will be a countable-dimensional vector space. Recall that
E is a fixed basis of V. We will only consider generalized flags that are E-
compatible and consist of spaces of finite dimension or finite codimension.
We begin by first proving a stronger version of lemma [4.2]

10



Lemma 5.1. Let F = (0 C C C C" C V) be a generalized flag of length 2.
Let f: FUF,E) — FU(F,E) be the automorphism

OcUcU cCcV)=(0Co(U)cCyU)cV)

for some ¢ € GL(V) and v € AutGr(C", E). Then ¢(U') = ¢(U’) and
thus f is determined by ¢. Furthermore, the same holds if ¢ € GL(V) and
¢ € Aut Gr(C, E).

Proof. Fix a point (0 C W C W' C V) € F{(F, E), and note that
> 3(U) = o( > U) = o(W') C (W)
(UU")EFU(F,E)U' =W (UU")EFU(F,E),U' =W’

If dim W’ < oo, then since the LHS and RHS have the same dimension, we get
d(W') = y(W'). Analogously when codim W' < oo we get ¢p(W') = (W').
For the second case of f = (¢, ¢) we have

W(W) C N d(U") = o/ N U') = ¢(W)
(UUNeFUF,E),U=W (UU"eFEF,E),U=W

and the conclusion follows. O

Definition 5.2. We define the Mackey group M(V,V,) to be the group
consisting of {f € GL(V) | f*(Vi) = Vi} € GL(V)

Note that this definition implies that M (V,V,) is isomorphic to M (V,, V)
canonically.

Lemma 5.3. Let FF = (0 C C C V) with codimC' < oo. Let ¢ € GL(V) be
such that it induces a well-defined automorphism

(0CUCV)eFUF,E)— (0C ¢(U)CV) e FUF,E). (%)

Then ¢ € M(V,V,). Consequently, M(V,V,) is the mazimal subgroup of
GL(V) that acts on FU(F, E) via ().

Proof. We have (0 C U C V) € FUF,E) ifft U = U’ @ Span{e,41,- -} for
some U’ C V,, with codimy, U’ = codimy C. Equivalently U+ = {v € V* |
v(U) = 0} is contained in V, and dimy, Ut = dimy, C*. Denote 9 := ¢~ 1.
Then v also satisfies the assumptions in the statement, furthermore we have

Y(U) ={v eV [v(y(V)) = (" (v))(U) =0} = (v*) 7' (U") = ¢"(U") C Vi

11



By varying U we obtain

V.o > gUhH=¢( D UH=¢(V)
(0CUCV)€eFL(F,E) (0CUCV)€eFL(F,E)
Hence ¢ € M(V,V,). For the converse, let ¢ € M(V,V,), then ¢(U)*+ =
(¢*) 1 (U+) C (¢*) (Vi) = V.. Using that (¢*)~! is invertible we have
dimy, ¢(U)*+ = dimy, (¢*)"H(U*) = dimy, U+ = dimy, C*+. Thus ¢ induces a
well-defined automorphism of FU(F, E). O

Corollary 5.4. Let F = (0 C C C C" C V) be a generalized flag of length
2 such that dim C, codim C" < oo. Assume that the pair (¢,¢) € GL(V) x
GL(V.) induces a well-defined automorphism of FU(F, E)

OcUcU cCV)=(0CoU)C floo fI(U)CV)e FUF,E).
Then ¢ belongs to M(V, V).
Proof. Follows from lemma [5.1] and lemma [5.3] O

In the rest of the thesis F' stands for a generalized flag consisting of
subspaces {Cy }aer such that dimC, < oo or codimC, < oo for all a € I.
We shall choose the linearly ordered index set I so that I C Z-o U Z,
a < B whenever a € Z~g, B € Zy, dimC, < oo for a € I N Z~p, and
codim C, < oo for a € I NZy.

Consider the Picard groups of the finite-dimensional flag varieties
Pic FU(F,,V,) = @, Z[L}] where L} = (p?)*(Ocra,,v,)(1)) (as in section
for each i € I. Recall the closed embeddings ¢,, : FU(F,,, V,) < FU(Fn11, Vi)
(introduced in section. Note that ¢ L™ = L? and ¢} : Pic FU(F i1, V1) —
Pic FU(F,,V,) is surjective. This allows us to claim that the Picard group
of the ind-variety Pic F¢(F, E) is naturally isomorphic to the inverse limit
Wm Pic FU(F,, V) = [] Z[Li], where L; := lim L.

This point of view also corresponds to considering the morphism of ind-
varieties p; : FU(F, E) — Gr(C;, E) and L; := p; (Ocr(c;,)(1)).

Definition 5.5. We call a generalized flag F' symmetric if it is of the form
OccCicCycCc---CcC,Cc---CC_, C---CC_y CV) (possibly finite
length) with dim C; = codim C_; < oc.

Theorem 5.6. Let F' be a generalized flag. Then the following statements
hold.

o [f F is symmetric then Aut FU(F,E) is the semi-direct product of a
group PAr C PM(V,V.) and the group Zy corresponding to the ’flip’
morphism

fl:UisUlr={veV,|vl;)=0}CV,2V.

12



e [fdimC < oo for every C € F then Aut FU(F, E) = PAr C PGL(V).

e [f codimC < oo for every C € F then Aut FU(F,E) = PAr C
PGL(V,).

e In the remaining cases, Aut FU(F,E) =2 PAr C PM(V,V,).

Proof. Let ¢ € Aut FU(F,FE). Then ¢ induces an automorphism ¢* on
PicFUF,E). Fix L := L; and let £ := ¢*L = [[a;L;. Since L is gen-
erated by its global sections we must have the same for £’, thus o; > 0 for
all j e I.

Consider the set S := @, Z>o[L;] C Pic FU(F, E) consisting of elements
that are generated by their global sections. Note that S is closed under
addition, hence ¢*(S) = S. Consider S’ := {z € S|z = y + z for some y, z €
S = y =0 or z =0}, then we check that ¢*(S") = 5" and 5" = {0} U{L;}.
Therefore ¢* permutes the basis {L;}. Thus £’ = L, for some j € I.

Note that the automorphism ¢ : FU(F, E) — F{(F, E) of ind-varieties
is induced by closed immersions ¢,, : FU(F,, V) = FUFNn@), Vaw)) of va-
rieties. By corollary we get morphisms 07 : Gr(dim(C; N V,),V,) —
Gr(dim(Ci N VN(n)), VN(n))-

Analogously, considering ¢~! we obtain morphisms ¥? : Gr(dim(C; N
Vi), V) = Gr(dim(CjNVargny), Var(ny)- The morphism 7 ™oy : Gr(dim(Cin
Vo), Vi) — Gr(dim(C; N Vi) Vumy)) induces the ind-variety mor-
phism 6; o ¢; : Gr(C;, E) — Gr(C;, E). Since ¢ is an isomorphism, we con-
dudethat0j0¢i:1&§9y000¢fw:idgﬂ&Jg,anddg:zli Y- Gr(Ci, E) —
Gr(Cj, E) is an isomorphism of ind-varieties. By examp we have either
i = j or dim C; = codim C; and codim C; = dim C}.

If 9*(L;) = L; with dimC; = codimC; < oo then U = floy €
Aut Gr(Cy, E) = PGL(V), and thus t; is induced by fl o ;.

If o*(L;) = L; then i = j, 1; € Aut Gr(C}, E), and we get two cases:

e dim C; < 0o, and ¥ is induced by 1; € PGL(V):
e codim C; < oo, and 7); is induced by fl o zzl o fl with 1;@ € PGL(V,).

If ¢*(L;) = L; for every i € I then by lemma the automorphism ¢
is induced globally by the action of an element in GL(V) (or GL(V,)). In
particular, considering all such elements, we obtain a subgroup Ap C GL(V)
(respectively, Ar C GL(V4)).

If however F is of the foom (C; CcCo C---CC, C---CC_,, C--- C
C_1) with dim C; = codim C_; and ¢*(L;) = L_; for all i then (¢po fl)*(L;) =
L; for all i € I, thus ¢ o fl € Ar by the above.
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We are left with the 'mixed’ case when ¢*(L;) = L; and ¢*(L;) = L_; for
some j,i, —i € I with dim C; = codim C_; < co. We have four possibilities:

o If C; C C; C C_;, then by the definition of ¢ we have
C; C Ci CCly > (C)) C (1hi) 7 (C) C il Ci) =
—~ ~ -1 ~
¥i(C5) € (¥ o f)(C=) C (flo i) (Ch).
By considering the action of GL(E, V') on the flag C; C C_;, we obtain
—~ —~ ~-1
¥ (Coi) = > Vi(9(Cy) € (Wi o f(C-),
gEGL(E,V),g(C—i)=C_;
which gives a contradiction since dim LHS = co > dim RHS = codim C'_;.
o If C; C C; C C_; with dim C; < oo, then by the definition of ¢ we have
C; C O C Oy (i) THC-i) Cy(Cy) Ci(Ci) =
~_1 —~ ~
(Vi o fI)(C=i) C5(C5) C (flowy)(Cy).

By considering the action of GL(E, V') on the flag C; C C_;, we obtain

(i o fI)(Cy) = ST W o fD9(C) C UGy,
geGL(E,V),g(Cj):Cj

which gives a contradiction since dim LHS = oo > dim RHS = dim Cj.

o If C; C C; C C_; with codim C; < oo, then by the definition of ¢ we
have

Ci C C; C Oy (1) H(Ci) Ci(Cy) C hi(C) =
(o fI)(C—s) C &5(Cy) C (flod)(Ch).

By considering the action of GL(E, V') on the flag C; C C}, we obtain

b;(Cy) € N (flod)(g(Ch)) = (flo ) (Cy),

g€GL(E,V),9(C;)=Cj

which gives a contradiction since dim LHS = oo > dim RHS = codim C};.
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o If C; C C_; C C}, then by the definition of ¢ we have
C; CCLi C Gy () 7H(Cy) Ci(Ci) Coy(Cy) =
~_1 ~ —~
(i o f(C) C (floi)(Ci) C ;(C5).

By considering the action of GL(E, V') on the flag C; C C}, we obtain

(flovn)(Cy) C N Vi(9(C)) = (),

gEGL(Evv)vg(Ci):Ci

which gives a contradiction since dim LHS = oo > dim RHS = dim C;.
Thus we get a contradiction to the 'mixed’ case and we are done. O]

Since the action of Ap C GL(V) (or Ap C GL(V4)) is effective, it consists
of all maps ¢ € GL(V) (or GL(V,)) whose usual action on F{(F, E) is well-
defined (i.e. ¢(G) € FU(F,E) for any G € FU(F,E)).

Similarly to example [2.5] we denote by Pz C GL(V) the subgroup of
linear maps that fix F.

For a subgroup H C GL(V,) we set

H :={h": (V.)* - (V.)*| h € H} C End((VL)").
We shall use the following result:

Proposition 5.7. Let ¢ € GL(V) be such that ¢(G) € FU(F,E) for any

Proof. Since ¢(F') € FU(F, E), there is ¢» € GL(E, V) such that ¢ o ¢(F) =
F, i.e. ¢O¢€P(F,E)- HGDCGQSEGL(E,V)'P(F’E). ]

The following is a summary of our results.

Theorem 5.8. Let F' be a generalized flag, denote Fy :={C € F | dimC <
oo} U{V} and F- := {C € F | codimC < oo} U {0} to be the generalized
sub-flags of the finite dimension and cofinite dimension components respec-
tively. Then the following table describes the group Ap:

Fo=(0cV) |Fy] < 00 |Fy| = 00
F=(0cV) 0 GL(V) GL(E,V) - Birop)
F|<oo GL(V,) M(V,V.) GL(E,V) - P,y N M(V,V2)
Fl=oc0 |CGL(E"V.)- Py g | GL(E", Vo) - P oy O M(Vo, V) | (GL(E", V2) - Bip_p))* N GL(E, V) - B,y 0 M(V, V)

The automorphism group Aut FU(F, E) is then isomorphic to P ((Ap, fl))
when F' is symmetric and PAg otherwise.
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6 Conclusion and further questions

We have described in this thesis the automorphism groups of ind-varieties
of generalized flags under the condition that the generalized flags consist
of subspaces of finite dimension and finite codimension. Describing the au-
tomorphism group of a general ind-variety of generalized flags is an open
problem.

A starting question would be to consider a general ind-grassmannian and
calculate its automorphism group.

Another question of interest is to describe the isomorphism classes of the
automorphism groups described here. As we have seen, the connected com-
ponents of unity of the automorphism groups of the Grassmannian and of
the flag ind-variety FU(F,E) for F=(0c Vi Cc Vo C---CV, C...)are
not isomorphic. This is drastically different from the classical case where all
automorphism groups of the flag varieties have isomorphic connected com-
ponents of unity.
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