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Introduction

This paper combines a review of some results on locally finite Lie algebras, mostly
from [PStyr], [PS] and [DPS], with new results about categories of representations of
a class of (non-locally finite) infinite-dimensional Lie algebras which we call Mackey
Lie algebras. Locally finite Lie algebras (i.e. Lie algebras in which any finite set of
elements generates a finite-dimensional Lie subalgebra) and their representations
have been gaining the attention of researchers in the past 20 years. An incomplete list
of references in this topic is: [BA1], [BB], [BS], [DiP1], [DiP3], [DPS], [DPSn], [DPW],
[DaPW] [N], [Na], [NP], [NS], [O], [PS], [PStyr], [PZ]. In particular, in [PStyr], [PS]
and [DPS] integrable representations of the three classical locally finite Lie algebras
g = sl(∞), o(∞), sp(∞) have been studied from various points of view. An important
step in the development of the representation theory of these Lie algebras has been
the introduction of the category of tensor modules Tg in [DPS].

In the present article we shift the focus to understanding a natural generality
in which the category Tg is defined. In particular, we consider the finitary locally
simple Lie algebras g = sl(V,W), o(V), sp(V), where V is an arbitrary vector space (not
necessarily of countable dimension), and either a non-degenerate pairing V ×W → C
is given, or V is equipped with a non-degenerate symmetric, or antisymmetric, form.
In sections 1-5 we reproduce the most important results from [PStyr] and [DPS]
in this greater generality. In fact, we study five different categories of integrable
modules, see subsection 3.6, but pay maximum attention to the category Tg. The
central new result in this part of the paper is Theorem 5.5, claiming that the category
Tg for g = sl(V,W), o(V), sp(V) is canonically equivalent, as a monoidal category, to the
respective category Tsl(∞),To(∞) or Tsp(∞). It is shown in [DPS] that each of the latter
categories is Koszul and that Tsl(∞) is self-dual Koszul, while To(∞) and Tsp(∞) are not
self-dual but are equivalent.

In the second part of the paper, starting with section 6, we explore several new
ideas. The first one is that, given a non-degenerate pairing V ×W → C between two
vector spaces, or a non-degenerate symmetric or antisymmetric form on a vector space
V, there is a canonical, in general non-locally finite, Lie algebra attached to this datum.
Indeed, fix a pairing V ×W → C. Then the Mackey Lie algebra glM(V,W) is the Lie
algebra of all endomorphisms of V whose duals keep W stable (this definition is given
in a more precise form at the beginning of section 6). Similarly, if V is equipped with
a non-degenerate form, the respective Lie algebra oM(V) or spM(V) is the Lie algebra
of all endomorphisms of V for which the form is invariant.

The Lie algebras glM(V,W), oM(V), spM(V) are not simple as they have obvious
ideals: these are respectively gl(V,W) ⊕ CId, o(∞), and sp(∞). However, we prove
that, if both V and W are countable dimensional, the quotients glM(V,W)/(gl(V,W) ⊕
CId), oM(V)/o(V), spM(V)/sp(V) are simple Lie algebras. This result is an algebraic
analogue of the simplicity of the Calkin algebra in functional analysis.

Despite the fact that the Lie algebras glM(V,W), oM(V), spM(V) are completely nat-
ural objects, the representation theory of these Lie algebras has not yet been explored.
We are undertaking the first step of such an exploration by introducing the categories
of tensor modules TgM for gM = glM(V,W), oM(V), spM(V). Our main result about these
categories is Theorem 7.10 which implies that TglM(V,W) is equivalent to Tsl(∞), and
ToM(V) and TspM(V) are equivalent respectively to To(∞) and Tsp(∞).

A further idea is to consider dense subalgebras a of the Lie algebras gM (see the
definition in section 7). We show that if a ⊂ g is a dense subalgebra, the category
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Ta, whose objects are tensor modules of g considered as a−modules, is canonically
equivalent toTgM , and hence to one of the categoriesTsl(∞) orTo(∞). It is interesting that
this result applies to the Lie algebra of generalized Jacobi matrices (infinite matrices
with “finitely many non-zero diagonals”) which has been studied for over 30 years,
see for instance [FT].

In short, the main point of the present paper is that the categories of tensor modules
Tsl(∞),To(∞),Tsp(∞) introduced in [DPS] are in some sense universal, being naturally
equivalent to the respective categories of tensor representations of a large class of,
possibly non-locally finite, infinite-dimensional Lie algebras.
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1 Preliminaries

The ground field is C. By M∗ we denote the dual space of a vector space M,
i.e. M∗ = HomC(M,C). Sn stands for the symmetric group on n letters. The sign ⊂
denotes not necessarily strict inclusion. By definition, a natural representaion (or a
natural module) of a classical simple finite-dimensional Lie algebra is a simple non-
trivial finite-dimensional representation of minimal dimension.

In this paper g denotes a locally simple locally finite Lie algebra, i.e. an infinite-
dimensional Lie algebra g obtained as the direct limit lim

−−→
gα of a directed system of

embeddings (i.e. injective homomorphisms) gα ↪→ gβ of finite-dimensional simple Lie
algebras parametrized by a directed set of indices. It is clear that any such g is a simple
Lie algebra. If g is countable dimensional, then the above directed set can always be
chosen as Z≥1, and the corresponding directed system can be chosen as a chain

g1 ↪→ g2 ↪→ · · · ↪→ gi ↪→ gi+1 ↪→ . . . . (1)

In this case we write g = lim
−−→
gi. Moreover, if gi = sl(i + 1), then up to isomorphism

there is only one such Lie algebra which we denote by sl(∞). Similarly, if gi = o(i) or
gi = sp(2i), up to isomorphism one obtains only two Lie algebras: o(∞) and sp(∞).
The Lie algebras sl(∞), o(∞), sp(∞) are often referred to as the finitary locally simple Lie
algebras [BA1], [BA2], [BS], or as the classical locally simple Lie algebras [PS].

A more general (and very interesting) class of locally finite locally simple Lie
algebras are the diagonal locally finite Lie algebras introduced by Y. Bahturin and H.
Strade in [BhS]. We recall that an injective homomorphism g1 ↪→ g2 of simple classical
Lie algebras of the same type sl, o, sp, is diagonal if the pull-back Vg2↓g1 of a natural
representation Vg2 of g2 to g1 is isomorphic to a direct sum of copies of a natural
representation Vg1 , of its dual V∗g1 , and of the trivial 1−dimensional representation.
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In this paper, by a diagonal Lie algebra g we mean an infinite-dimensional Lie algebra
obtained as the limit of a directed system of diagonal homomorphisms of classical
simple Lie algebras gα. We say that a diagonal Lie algebra is of type sl (resprectively, o
or sp) if all gα can be chosen to have type sl (respectively, o or sp).

Countable-dimensional diagonal Lie algebras have been classified up to isomor-
phism by A. Baranov and A. Zhilinskii [BaZh]. S. Markouski [Ma] has determined
when there is an embedding g ↪→ g′ for given countable-dimensional diagonal Lie
algebras g and g′. If both g and g′ are classical locally simple Lie algebras, then an
embedding g ↪→ g′ always exists, and such embeddings have been studied in detail
in [DiP2].

Let V and W be two infinite-dimensional vector spaces with a non-degenerate
pairing V ×W → C. G. Mackey calls such a pair V, W a linear system and was the
first to study linear systems in depth [M]. The tensor product V ⊗W is an associative
algebra (without identity), and we denote the corresponding Lie algebra by gl(V,W).
The pairing V ×W → C induces a homomorphism of Lie algebras tr : gl(V,W) → C.
The kernel of this homomorphism is denoted by sl(V,W). The Lie algebra sl(V,W) is a
locally simple locally finite Lie algebra. A corresponding directed system is given by
{sl(V f ,W f )}, where V f and W f run over all finite-dimensional subspaces V f ⊂ V,W f ⊂

W such that the restriction of the pairing V×W → C to V f ×W f is non-degenerate. If V
and W are countable dimensional, then sl(V,W) is isomorphic to sl(∞). In what follows
we call a pair of finite-dimensional subspaces V f ⊂ V, W f ⊂W a finite-dimensional non-
degenerate pair if the restriction of the pairing V×W → C to V f ×W f is non-degenerate.
We can also define gl(V,W) as a Lie algebra of finite rank linear operators in V ⊕W
preserving V,W and the pairing V ×W → C.

There is an obvious notion of isomorphism of linear systems: given two linear systems
V × W → C and V′ × W′

→ C, an isomorphism of these linear systems is a pair
of isomorphisms of vector spaces φ : V → V′, ψ : W → W′ or φ : V → W′,
ψ : W → V′, commuting with the respective pairings. If V and W are countable
dimensional then, as shown by G. Mackey [Ma], there exists a basis {v1, v2, . . . } of V
such that V∗ = span{v∗1, v

∗

2, . . . }, where {v∗1, v
∗

2, . . . } is the set of linear functionals dual
to {v1, v2, . . . }, i.e. v∗i (v j) = δi j. Consequently, up to isomorphism, there exists only one
linear system V×W → C such that V and W are countable dimensional. The choice of
a basis of V as above identifies gl(V,W) with the Lie algebra gl(∞) consisting of infinite
matrices X = (xi j)i≥1, j≥1 with finitely many non-zero entries. The Lie algebra sl(V,W)
is identified with sl(∞) realized as the Lie algebra of traceless matrices X = (xi j)i≥1, j≥1

with finitely many non-zero entries.
Now let V be a vector space endowed with a non-degenerate symmetric (re-

spectively, antisymmetric) form (·, ·). Then Λ2V (respectively, S2V) has a Lie algebra
structure, defined by

[v1 ∧ v2,w1 ∧w2] = −(v1,w1)v2 ∧w2 + (v2,w1)v1 ∧w2 + (v1,w2)v2 ∧w1 − (v2,w2)v1 ∧w1

(respectively, by

[v1v2,w1w2] = (v1,w1)v2w2 + (v2,w1)v1w2 + (v1,w2)v2w1 + (v2,w2)v1w1.

We denote the Lie algebra Λ2V by o(V), and the Lie algebra S2V by sp(V). Let V f ⊂ V
be an n-dimensional subspace such that the restriction of the form on V f is non-
degenerate. Then o(V f ) ⊂ o(V) (respectively, sp(V f ) ⊂ sp(V)) is a simple subalgebra
isomorphic to o(n) (respectively, sp(n)). Therefore, o(V) (respectively, sp(V)) is the
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direct limit of all its subalgebras o(V f ) (respectively, sp(V f )). This shows that both
o(V) and sp(V) are locally simple locally finite Lie algebras. We can also identify o(V)
(respectively, sp(V) with the Lie subalgebra of all finite rank operators in V under
which the form (·, ·) is invariant.

If V is countable dimensional, there always is a basis {vi,w j}i, j∈Z of V such that
span{vi}i∈Z and span{w j} j∈Z are isotropic spaces and (vi,w j) = 0 for i , j, (vi,wi) = 1.
Therefore, in this case o(V) ≃ o(∞) and sp(V) ≃ sp(∞).

Note that, if V is not finite or countable dimensional, then V may have several
inequivalent non-degenerate symmetric forms. Indeed, let for instance V := W ⊕W∗

for some countable-dimensional space W. Extend the pairing between W and W∗ to
a non-degenerate symmetric form (·, ·) on V for which W and W∗ are both isotropic.
It is clear that W is a maximal isotropic subspace of V. On the other hand, choose a
basis b in V and let (·, ·)′ be the symmetric form on V for which b is an orthonormal
basis. Then V does not have countable-dimensional maximal isotropic subspaces for
the form (·, ·)′. Hence the forms (·, ·) and (·, ·)′ are not equivalent.

Proposition 1.1 a) Two Lie algebras sl(V,W) and sl(V′,W′) are isomorphic if and only if the
linear systems V ×W → C and V′ ×W′

→ C are isomorphic.
b) Two Lie algebras o(V) and o(V′) (respectively, sp(V) and sp(V′)) are isomorphic if and

only if there is an isomorphism of vector spaces V ≃ V′ transferring the form defining o(V)
(respectively sp(V)) into the form defining o(V′) (respectively, sp(V′)).

We first prove a lemma.

Lemma 1.2 (cf. Proposition 2.3 in [DiP2])
a) Let g1 ⊂ g3 be an inclusion of classical finite-dimensional simple Lie algebras such

that a natural g3-module restricts to g1 as the direct sum of a natural g1-module and a trivial
g1-module. If g2 is an intermediate classical simple subalgebra, g1 ⊆ g2 ⊆ g3, then a natural
g3-module restricts to g2 as the direct sum of a natural g2-module and a trivial module.

b) Assume rkg1 > 4. If g1 ≃ sl(i), then g2 is isomorphic to sl(k) for some k ≥ i. If g3 ≃ o( j)
(respectively, sp(2 j)), then g2 is isomorphic to o(k) (respectively, sp(2k)) for some k ≤ j.

Proof Let V3 be a natural g3−module. We have a decomposition of g1−modules,
V3 = V1 ⊕ W, where V1 is a natural g1−module and W is a trivial g1-module. Let
V′ ⊂ V3 be the minimal g2-submodule containing V1. Then V3 = V′ ⊕W′, where W′

is a complementary g2-submodule. Since g1 acts trivially on W′ and g2 is simple, we
obtain that W′ is a trivial g2-module and V′ is a simple g2-module.

We now prove that V′ is a natural g2-module. Recall that for an arbitrary non-
trivial module M over a simple Lie algebra k the symmetric form BM(X,Y) = trM(XY)
for X,Y ∈ k is non-degenerate. Moreover, BM = tMB, where B is the Killing form. If M
is a simple k-module with highest weight λ, then

tM =
dimM
dimk

(λ + 2ρ, λ),

where ρ is the half-sum of positive roots and (·, ·) is the form on the weight lattice
of k induced by B. It is easy to check that a natural module is a simple module with
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minimal tM. Let V2 be a natural g2-module. Note that the restriction of BV′ on g1 equals
BV1 and the restriction of BV2 on g1 equals tBV1 for some t ≥ 1. On the other hand,

t =
tV2
tV′

. Since tV2 is minimal, we have t = 1 and tV2 = tV′ . Hence, V′ is a natural module,
i.e. a) is proved.

To prove b), note that a classical simple Lie algebra of rank greater than 4 admits,
up to isomorphism, two (mutually dual) natural representations when it is of type sl,
and one natural representation when it is of type o or sp. Moreover, in the orthogonal
(respectively, symplectic) case the natural module admits an invariant symmetric
(respectively, skew-symmetric) bilinear form.

Now, assume g1 ≃ sl(i). We claim that g2 ≃ sl(k) for some i ≤ k ≤ j. Indeed, if g2 is
not isomorphic to sl(k), then V′ is self-dual. Therefore its restriction to g1 is self-dual,
and we obtain a contradiction as V1 is not a self-dual sl(i)-module for i ≥ 3.

Finally, assume g3 ≃ o( j) (respectively, sp(2 j)). Then V′ ⊕W′, and hence V′, ad-
mits an invariant symmetric (respectively, skew-symmetric) form. Therefore g2 ≃ o(k)
(respectively, sp(2k)). □

Corollary 1.3 (cf. [DiP2, Corollary 2.4]) Let g = sl(V,W) and g = lim
−−→
gα for some directed

system {gα} of simple finite-dimensional Lie subalgebras gα ⊂ g. Then there exists a subsystem
{gα′ } such that g = lim

−−→
gα′ and, for every α′, gα′ = sl(Vα′ ,Wα′ ) for some finite-dimensional

non-degenerate pair Vα′ ⊂ V,Wα′ ⊂W. Similarly, if g = o(V) (respectively, sp(V)), then there
exists a subsystem {gα′ } such that g = lim

−−→
gα′ and, for every α′, gα′ = o(Vα′ ) (respectively,

sp(Vα′ )) for some finite-dimensional non-degenerate Vα′ ⊂ V.

Proof Let g = sl(V,W). One fixes a Lie subalgebra sl(V f ,W f ) ⊂ gwhere V f ⊂ V,W f ⊂

W is a finite-dimensional non-degenerate pair, and considers the directed subsystem
{gα′ } of all gα′ such that sl(V f ,W f ) ⊂ gα′ . There exists another finite-dimensional non-
degenerate pair V′f ,W

′

f such that sl(V f ,W f ) ⊂ gα′ ⊂ sl(V′f ,W
′

f ). Then, by Lemma 1.2,
gα′ = sl(Vα′ ,Wα′ ) for appropriate Vα′ ⊂ V,Wα′ ⊂ W. The cases g = o(V), sp(V) are
similar. □

Proof of Proposition 1.1 We consider the case g = sl(V,W) and leave the re-
maining cases to the reader. Let g = sl(V,W) be isomorphic to sl(V′,W′). Then
g = lim
−−→
sl(V f ,W f ) over all finite-dimensional non-degenerate pairs V f ⊂ V,W f ⊂ W,

and at the same time g = lim
−−→
sl(V′f ,W

′

f ) over all finite-dimensional non-degenerate
pairs V′f ⊂ V′,W′

f ⊂W′. By Corollary 1.3 and Lemma 1.2, for each V f ⊂ V,W f ⊂W one
can find V′f ⊂ V′,W′

f ⊂ W′ and an embedding of Lie algebras sl(V f ,W f ) ⊂ sl(V′f ,W
′

f )
as in Lemma 1.2. That implies the existence of embeddings V f ↪→ V′f ,W f ↪→ W′

f or
V f ↪→ W′

f ,W f ↪→ V′f preserving the pairing. After a twist by transposition we may
assume that V f ↪→ V′f ,W f ↪→ W′

f . Therefore we have embeddings V = lim
−−→

V f ↪→

V′,W = lim
−−→

W f ↪→ W′ preserving the pairing. On the other hand, both maps are
surjective since sl(V′,W′) = lim

−−→
sl(V f ,W f ). Therefore the linear systems V ×W → C

and V′ ×W′
→ C are isomorphic. □

Assume next that g is an arbitrary locally finite locally simple Lie algebra. If we
can choose a Cartan subalgebra hα ⊂ gα such that hα ↪→ hβ for any embedding gα ↪→ gβ,
then h := lim

−−→
hα is called a local Cartan subalgebra.
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In general, a local Cartan subalgebra may not exist. For example, the following
proposition implies that the Lie algebra g = sl(V,V∗) does not have a local Cartan
subalgebra.

Proposition 1.4 Let g = sl(V,W). Then a local Cartan subalgebra of g exists if and only if
V admits a basis

{
vγ

}
such that W = span

{
v∗γ

}
, where v∗γ̃(vγ) = δγ̃γ. In this case, every local

Cartan subalgebra of g is of the form span
{
vγ ⊗ v∗γ − vγ̃ ⊗ v∗γ̃

}
γ,γ̃

for a basis
{
vγ

}
as above.

Proof By Corollary 1.3 we may assume

g = sl(V,W) = lim
−−→
gα = lim

−−→
sl(Vα,Wα),

where Vα ⊂ V, Wα ⊂W are certain non-degenerate finite-dimensional pairs, and that
h = lim
−−→
hα where hα is a Cartan subalgebra of gα. Note that for anyαwe have hα ·Vα = Vα

and hα ·Wα = Wα. Since h is abelian, we have h · Vα = Vα and h ·Wα = Wα. Therefore
V and W are semisimple h−modules. This means that V is the direct sum of non-
trivial one-dimensional h−submodules Vγ, i.e. V =

⊕
γ Vγ; similarly, W =

⊕
γ′ Wγ′ .

Since however, for any α, the spaces Vα and Wα are dual to each other, γ′ and γ
run over the same set of indices and Wγ(Vγ̃) , 0 precisely for γ = γ̃. This yields
a basis vγ as required: vγ can be chosen as any non-zero vector in Vγ and v∗γ is the

unique vector in Wγ with v∗γ(vγ) = 1. Finally, h = span
{
vγ ⊗ v∗γ − vγ̃ ⊗ v∗γ̃

}
as, clearly,

h ∩ gα = span
{
vγ ⊗ v∗γ − vγ̃ ⊗ v∗γ̃

}
for vγ, vγ̃ ∈ Vα.

In the other direction, given a basis vγ of V such that
{
v∗γ

}
is a basis of W, it is

clear that g = lim
−−→
sl

(
span

{
vγ

}
γ∈A

, span
{
v∗γ

}
γ∈A

)
for all finite sets of indices A, and that

h = lim
−−→

(
h ∩ span

{
vγ ⊗ v∗γ − vγ̃ ⊗ v∗γ̃

}
γ,γ̃∈A

)
. □

In [DPSn] (and also in earlier work, see the references in [DPSn]) Cartan subalgebras
are defined as maximal toral subalgebras of g (i.e. as subalgebras each vector in which
is ad-semisimple). Splitting Cartan subalgebras are Cartan subalgebras for which the
adjoint representation is semisimple. It is shown in [PStr] that a countable dimensional
locally finite locally simple Lie algebra g admits a splitting Cartan subalgebra if and
only if g ≃ sl(∞), o(∞), sp(∞). Proposition 1.4 determines when Lie algebras of the
form g = sl(V,W), o(V), sp(V) admit local Cartan subalgebras and implies that the
notions of local Cartan subalgebra and of splitting Cartan subalgebra coincide for
these Lie algebras.

In what follows, we denote by V,V∗ a pair of infinite-dimensional spaces (of not
necessarily countable dimension) arising from a linear system V × V∗ → C for which
there is a basis {vγ} of V such that V∗ = span({v∗γ}) where v∗γ̃(vγ) = δγ̃γ.

2 The category Intg

Let g be an arbitrary locally simple locally finite Lie algebra. An integrable
g−module is a g−module M which is locally finite as a module over any finite-
dimensional subalgebra g′ of g. In other words, dimU(g′) · m < ∞ ∀m ∈ M. We
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denote the category of integrable g−modules by Intg : Intg is a full subcategory of the
category g−mod of all g−modules. It is clear that Intg is an abelian category and a
monoidal category with respect to usual tensor product. Note that the adjoint repre-
sentation of g is an object of Intg.

The functor of g−integrable vectors

Γg : g −mod⇝ Intg,

Γg(M) :=
{
m ∈M |dimU(g′) ·m < ∞ ∀ finite-dim. subalgebras g′ ⊂ g

}
is a well defined left-exact functor. This follows from the fact that the functor of
g′−finite vectors Γg′ is well defined for any finite-dimensional subalgebra g′ ⊂ g, see
for instance [Z], and that g equals the direct limit of its finite-dimensional subalgebras.

Theorem 2.1 a) Let M be an object of Intg. Then Γg(M∗) is an injective object of Intg.
b) Intg has enough injectives. More precisely, for any object M of Intg there is a canonical

injective homomorphism of g−modules

M→ Γg(Γg(M∗)∗).

Proof In [PS], see Proposition 3.2 and Corollary 3.3, the proof is given under the
assumption that g is countable dimensional. The reader can check that this assumption
is inessential. □

3 Five subcategories of Intg

3.1 The category Intalg
g

We start by defining the full subcategory Intalg
g ⊂ Intg. Its objects are integrable

g−modules M such that, for any simple finite-dimensional subalgebra g′ ⊂ g, the
restriction of M to g′ is a direct sum of finitely many g′−isotypic components. Clearly,
if dim M = ∞, at least one of these isotypic components must be infinite dimensional.
If g is diagonal, the adjoint representation of g is easily seen to be an object of Intalg

g .
The following proposition provides equivalent definitions of Intalg

g .

Proposition 3.1 a) M ∈ Intalg
g iffM and M∗ are integrable.

b) An integrable g−module M is an object of Intalg
g iff for any X ∈ g there exists a non-zero

polynomial p(t) ∈ C[t] such that p(X) ·M = 0.

Proof a) In the countable-dimensional case the statement is proven in [PS, Lemma 4.1].
In general, let g′ ⊂ g be a finite-dimensional simple subalgebra and M = ⊕αMα be the
decomposition of M into g′-isotypic components. Then it is straightforward to check
that M∗ =

∏
α M∗

α is an integrable g′-module iff the direct product is finite. This proves
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a), since a g−module is integrable iff it is g′−integrable for all finite-dimensional Lie
subalgebras g′ ⊂ g.

b) Let M ∈ Intalg
g . Any X ∈ g lies in some finite-dimensional Lie subalgebra g′ ⊂ g.

For each g′-isotypic component Mi of M there exists pi(t) such that pi(X) · Mi = 0.
Since there are finitely many g′−isotypic components, we can set p(t) =

∏
i pi(t). Then

p(X) ·M = 0.
On the other hand, if M < Intalg

g then there are infinitely many isotypic components
for some finite-dimensional simple g′ ⊂ g. That implies the existence of a semisimple
X ∈ g′ which has infinitely many eigenvalues in M. Therefore p(X) ·M , 0 for any
0 , p(t) ∈ C[t]. □

It is obvious that Intalg
g is an abelian monoidal subcategory of g−mod. It is also

closed under dualization.

Proposition 3.2 Intalg
g contains a non-trivial module iff g is diagonal.

Proof Again, for a countable dimensional g the statement is proven in [PS] (see Propo-
sition 4.3). In fact, we prove in [PS] that if g = lim

−−→
gi has a non-trivial integrable

module such that M∗ is also integrable, then the embedding gi ↪→ gi+1 is diagonal for
all sufficiently large i.

To give a general proof, it remains to show that if g is not diagonal, then Intalg
g

contains no non-trivial modules. Assume that g = lim
−−→
gα is not diagonal. Fix a simple

finite-dimensional Lie algebra gα1 and a simple g−module M ∈ Intalg
g such that M↓gα1

is non-trivial. We claim that one can find a chain of proper embeddings of simple
finite-dimensional Lie algebras

gα1 ↪→ gα2 ↪→ · · · ↪→ gαi ↪→ gαi+1 ↪→ · · ·

such that the embeddings gαi ↪→ gαi+1 are not diagonal. Indeed, otherwise there will
exist β0 so that the embedding gβ0 ↪→ gα is diagonal for all α > β0. Then, since
g = lim
−−→α>β0

gα, g is diagonal. This shows that the existence of β0 is contradictory. Now
Proposition 4.3 in [PS] implies that M↓lim

−→
gαi

is a trivial module, which shows that the
assumption that M↓gα1

is non-trivial is false. □

Let g = sl(V,W) (respectively, g = o(V), sp(V)). Then the tensor products Tm,n :=
V⊗m
⊗W⊗n (respectively, Tm := V⊗m) and their subquotients are objects of Intalg

g .
Here is a less trivial example of a simple object of Intalg

g for gl = sl(V,V∗) where V is
a countable-dimensional vector space. Let g = lim

−−→
gi where gi = sl(Vi),dim Vi = i + 1,

and lim
−−→

Vi = V. Define Λ[∞2 ]V as the direct limit lim
−−→

Λ[ i
2 ](Vi) for i ≥ 2. Then Λ[∞2 ]V is

a simple object of Intalg
g and is not isomorphic to a subquotient of a tensor product of

the form Tm,n.
Given a g−module M ∈ Intalg

g , where g = lim
−−→
gα, for each α we can assign to

gα the finite set of isomorphism classes of simple finite-dimensional gα−modules
which occur in the restriction M↓gα . A. Zhilinskii has defined a coherent local system
of finite-dimensional representations of g = lim

−−→
gα as a function of α with values in

the set of isomorphism classes of finite-dimensional gα−modules, with the following
compatibility condition: if β < α then the representations assigned to β are obtained by
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restriction from the representations assigned to α. Thus, every M ∈ Intalg
g determines

a coherent local system of finite type, i.e. a local system containing finitely many
isomorphism classes for any α.

Zhilinskii has classified all coherent local systems under the condition that g is
countable dimensional [Zh1], [Zh2] (see also [PP] for an application of Zhilinskii’s
result). In particular, he has proved that proper coherent local systems, i.e. coherent
local systems different from the ones assigning the trivial 1−dimensional module to
all α, or all finite-dimensional gα−modules to α, exist only if g is diagonal. This leads
to another proof of Proposition 3.2.

The category Intalg
g has enough injectives: this follows immediately from Propo-

sition 3.1 a) and Theorem 2.1. We know of no classification of simple modules in
Intalg
g .

3.2 The category Intwt
g,h

Given a local Cartan subalgebra h ⊂ g, we define Intwt
g,h as the full subcategory

of Intg consisting of h−semisimple integrable g−modules, i.e. integrable g−modules M
admitting an h−weight decomposition

M = ⊕λ∈h∗Mλ (2)

where
Mλ := {m ∈M | h ·m = λ(h)m ∀h ∈ h} .

If g = sl(V,W), o(V), sp(V) for countable-dimensional V,W, then V (and W in case
g = sl(V,W)) is a simple object of Intwt

g,h for any h. Moreover, if g is a countable-
dimensional locally simple Lie algebra, it is proved in [PStr] that the adjoint represen-
tation of g is an object of Intwt

g,h iff g ≃ sl(∞), o(∞), sp(∞). The simple modules of Intwt
g,h for

g = sl(∞), o(∞), sp(∞) have been studied in [DiP1], however there is no classification
of such modules.

Assume that g is a locally simple diagonal countable-dimensional Lie algebra.
Without loss of generality, assume that g = lim

−−→
gi, where all gi are of the same type

A,B,C, or D. The very definition of g implies that there is a well-defined chain

Vg1
κ1↪→ Vg2

κ2↪→ · · · ↪→ Vgi
κi↪→ Vgi+1 ↪→ . . . (3)

of embeddings of natural gi-modules, and we call its direct limit V a natural represen-
tation of g. Moreover, a fixed natural representation V is a simple object of Intwt

g,h for
some local Cartan subalgebra h. To see this, we use induction to define a local Cartan
subalgebra h ⊂ g so that V ∈ Intwt

g,h. Given hi ⊂ gi and an hi−eigenbasis bi of Vi, let hi+1 be
a Cartan subalgebra of gi+1 whose eigenbasis bi+1 of Vi+1 contains bi. The assumption
that gi and gi+1 are of the same type A,B,C or D (in the sense of the classification of
simple Lie algebras [Bou]) implies that hi+1 exists as required. Moreover, h := lim

−−→
hi is

a well-defined local Cartan subalgebra of g and V ∈ Intwt
g,h.

Assume next that g is a locally simple Lie algebra which admits a local Cartan
subalgebra h such that the adjoint representation belongs to Intwt

g,h. This certainly holds
for g = sl(∞), o(∞), sp(∞), but also for instance for g = sl(V,V∗) where V is an arbitrary
vector space. In this case we can define a left exact functor Γwt

h
: Intg⇝ Intwt

g,h by setting

Γwt
h

(M) := ⊕λ∈h∗Mλ,
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where Mλ is given by (3). It is easy to see that Γwt
h

is right adjoint to the inclusion
functor Intwt

g,h ⇝ Intg. Hence Γwt
h

maps injectives to injectives, and therefore Intwt
g,h has

enough injectives. We do not know whether Intwt
g,h has enough injectives in the case

when the adjoint representation is not an object of Intwt
g,h.

We conjecture that for non-diagonal Lie algebras g the category Intwt
g,h consists of

trivial modules only.

3.3 The category Intfin
g,h

By Intfin
g,hwe denote the full subcategory of Intwt

g,h consisting of integrable g−modules
satisfying dimMλ < ∞ ∀λ ∈ h∗.

Note that for g = sl(V,V∗) (respectively, for g = o(∞), sp(∞)) the tensor products
Tm,0 = V⊗m and T0,n =W⊗n (respectively, Tm = V⊗m) are objects of Intfin

g,h for every local
Cartan subalgebra g. However, the adjoint representation is not in Intfin

g,h for any h.
If g is countable dimensional diagonal then, as shown above, for each natural

representation V there is a local Cartan subalgebra h so that V (and more generally
V⊗m) is an object of Intwt

g,h. In fact, V⊗m
∈ Intfin

g,h for any m ≥ 0.
Here is a more interesting example of a simple module in Intfin

g,h for g = sl(V,V∗),
where V is a countable-dimensional vector space. Fix a chain of embeddings

g1 ↪→ g2 ↪→ · · · ↪→ gi ↪→ gi+1 ↪→ · · ·

so that g = sl(Vi) for dim Vi = i+1,V = lim
−−→

Vi, g = lim
−−→
gi. Note that there is a canonical

injection of gi−modules Si+1(Vi) ↪→ Si+2(Vi+1), and set ∆ := lim
−−→

Si+1(Vi). Then one can
check that∆ is a multiplicity free h−module, where h is such that hi := h∩gi is a Cartan
subalgebra of gi.

The following result is proved in [PS].

Proposition 3.3 Let g = sl(∞), o(∞), sp(∞). Then the category Intfin
g,h is semisimple.

This result should be considered an extension of Weyl’s semisimplicity theorem to
the case of direct limit Lie algebras. It is an interesting question whether the category
Intfin
g,h is semisimple whenever it is well defined.

3.4 The category T̃ensg

Let M be a g−module. Recall that the socle soc M = soc1 M of M is the unique
maximal semisimple submodule of M, and

sockM := π−1(soc(M/sock−1M))

for k ≥ 2, where π : M→M/sockM is the natural projection. The ascending chain

0 ⊂ soc M = soc1 M ⊂ soc2 M ⊂ · · · ⊂ sock M ⊂ . . .

is by definition the socle filtration of M. The g−module M has finite Loewy length if it
has a finite and exhaustive socle filtration, i.e.
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M = soclM

for some l.
By definition, T̃ensg is the full subcategory of Intg whose objects are integrable

g−modules with the property that both M and Γg(M∗) have finite Loewy length.
The category T̃ensg is studied in detail in [PS] for g = sl(∞), o(∞), sp(∞), where it

is shown in particular that Γg(M∗) = M∗ for any object M of T̃ensg. A major result of
[PS] is that, up to isomorphism, the simple objects of T̃ensg are precisely the simple
subquotients of the tensor algebra T(V⊕V∗) for g = sl(V,V∗) ≃ sl(∞), and of the tensor
algebra T(V) for g = o(V) ≃ o(∞) or g = sp(V) ≃ sp(∞). These simple modules are
discussed in more detail in section 4 below. Note that the objects of T̃ensg have in
general infinite length and are not objects of Intwt

g,h for any h. An example of infinite
length module in T̃ensg for g = sl(V,V∗) ≃ sl(∞) is V∗: there is a non-splitting exact
sequence of g−modules

0→ V∗ = soc V∗ → V∗ → V∗/V∗ → 0

and V∗/V∗ is a trivial module of uncountable dimension.
For g = sl(∞), o(∞), sp(∞), the category T̃ensg has enough injectives [PS, Corollary

6.7a)].

3.5 The category Tg

The fifth subcategory we would like to introduce in this section is the category
of tensor modules Tg. We define this category only for g = sl(V,W), o(V), sp(V), and
discuss it in detail in section 5.

We call a subalgebra k ⊂ sl(W,V) a finite-corank subalgebra if it contains the subal-
gebra sl(W⊥

0 ,V
⊥

0 ) for some finite-dimensional non-degenerate pair V0 ⊂ V,W0 ⊂ W.
Similarly, we call k ⊂ o(V) (respectively, sp(V)) a finite corank subalgebra if it contains
o(V⊥) (respectively, sp(V⊥0 )) for some finite-dimensional V0 ⊂ V such that the restric-
tion of the form on V0 is non-degenerate.

We say that a g-module L satisfies the large annihilator condition if the annihilator in g
of any l ∈ L contains a finite-corank subalgera. It follows immediately from definition
that if L1 and L2 satisfy the large annihilator condition, then the same holds also for
L1 ⊕ L2 and L1 ⊗ L2.

By Tg we denote the category of finite length integrable g−modules which satisfy
the large annihilator condition. By definition,Tg is a full subcategory of Intg. It is clear
that Tg is a monoidal category with respect to usual tensor product ⊗.

3.6 Inclusion pattern

The following diagram summarizes the inclusion pattern for the five subcategories
of Intg introduced above:
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.

Note that all categories except Tg are defined for any locally simple Lie algebra
g, while Tg is defined only for g = sl(V,W), o(V), sp(V). Moreover, under the latter
assumption all inclusions are strict. We support this claim by a list of examples and
leave it to the reader to complete the proof.

Examples

Let g = sl(V,V∗), o(V), sp(V), where V is countable dimensional. The simple objects
of Tg and T̃ensg are the same, however V∗ ∈ T̃ensg while V∗ < Tg. Moreover, V∗ < Intwt

g,h

for any local Cartan subalgebra h. The module ∆ from subsection 3.3 is an object of
Intfin
g,h but not an object of Intalg

g . The adjoint representation is an object of Intwt
g,h but not

of Intfin
g,h.

4 Mixed tensors

In this section g = sl(V,W), o(V), sp(V). By definition, V is a g−module. For g =
sl(V,W),W is also a g−module.

Consider the tensor algebra T(V) of V. Then, as it is easy to see, finite-dimensional
Schur duality implies that

T(V) =
⊕
λ

Cλ ⊗ Vλ, (4)

where λ runs over all Young diagrams (i.e. over all partitions of all integers m ∈ Z≥0),
Cλ denotes the irreducible S|λ|−module (where |λ| is the degree of λ) corresponding to
λ, and Vλ is the image of the Schur projector corresponding to λ. For g = sl(V,W),Vλ

is an irreducible g−module as it is isomorphic to the direct limit lim
−−→

(V f )λ of the
directed system {(V f )λ} of irreducible sl(V f ,W f )−modules for sufficiently large non-
degenerate finite-dimensional pairs V f ⊂ V,W f ⊂ W. For g = o(V), sp(V),Vλ is in
general a reducible g−module.

Similarly, for g = sl(V,W),

T(W) =
⊕
λ

Cλ ⊗Wλ.

Let g = sl(V,W). Recall that Tm,n = V⊗m
⊗W⊗n. Then
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Tm,n =
⊕

|λ|=n, |µ|=m

Cλ ⊗ Cµ ⊗ Vλ ⊗Wµ.

Note that, as a g−module T(V,W) :=
⊕

m,n≥0 Tm,n is not completely reducible. This
follows simply from the observation that the exact sequence

0→ g→ V ⊗W → C→ 0

does not split as V ⊗W has no trivial submodule. In [PStyr] the structure of T(V,W)
has been studied in detail for countable-dimensional V and W.

For each ordered set I =
{
i1, . . . , ik, j1, . . . , jk

}
, where i1, . . . , ik ∈ {1, . . . ,m} , j1, . . . , jk ∈

{1, . . . ,n} , k ≤ min {m,n} , there is a well-defined surjective morphism of g−modules

φI : Tm,n
−→ Tm−k,n−k

such that

φI(v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn) =
∏

s

φ(vis ⊗ w js )(⊗i,is vi) ⊗ (⊗ j, js w j)

for s = 1, . . . , k, where φ : V ⊗W → C is the linear operator induced by the pairing
V ×W → C.

We now define a filtration of Tm,n by setting

Fm,n
0 := 0, Fm,n

k := ∩I kerφI for k = 1, . . . ,min{m,n}, Fm,n
min{m,n}+1 := Tm,n, (5)

where I runs over all ordered sets
{
i1, . . . , ik, j1, . . . , jk

}
as above.

Let |λ| = m, |µ| = n. We set

Vλ,µ := Fm,n
1 ∩ (Vλ ⊗Wµ).

Note that, for sufficiently large finite-dimensional non-degenerate pairs V f ⊂ V,W f ⊂

W, the sl(V f ,W f )-module T(V f ,W f )∩Vλ,µ is simple. Therefore Vλ,µ is a simple sl(V,W)-
module.

Theorem 4.1 {Fm,n
k }0≤k≤min{m,n}+1 is the socle filtration of Tm,n as a sl(V,W)−module.

Proof In [PStyr] this theorem is proven in the countable-dimensional case. Here
we give a proof for arbitrary V and W.

Recall that if M is a g−module, Mg stands for the space of g−invariants in M.

Lemma 4.2 Let g = sl(V,W) (respectively, o(V) or sp(V)). Then (Tm,n)g = 0 for m + n > 0
(respectively, (Tm)g = 0 for m > 0).

Proof We prove the statement for g = sl(V,W) and m > 0. The other cases are similar.
Let u ∈ Tm,n = V⊗m

⊗W⊗n, u , 0. Then u ∈ V⊗m
f ⊗W⊗n

f for some finite-dimensional
non-degenerate pair V f ⊂ V,W f ⊂W. Choose bases in V f and W f and write

u =
t∑

i=1

civi
1 ⊗ · · · ⊗ vi

m ⊗ wi
1 ⊗ · · · ⊗ wi

n
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where all vi
j and wi

j are basis vectors respectively of V f and W f . Pick w ∈ W such that
tr(v1

1 ⊗ w) = 1 and tr(vi
j ⊗ w) = 0 for all vi

j , v1
1. Let v ∈ V\V f and w ∈W⊥

f . Then

(v ⊗ w) · u =
t∑

i=1

m∑
j=1

citr(vi
j ⊗ w)vi

1 ⊗ · · · ⊗ vi
j−1 ⊗ v ⊗ vi

j+1 ⊗ · · · ⊗ vi
m ⊗ wi

1 ⊗ · · · ⊗ wi
n.

Our choice of v and w ensures that at least one term in the right-hand side is not
zero and there is no repetition in the tensor monomials appearing with non-zero
coefficients. That implies (v ⊗ w) · u , 0. Hence u < (V⊗m

⊗W⊗n)g. □

Lemma 4.3 Let g = sl(V,W). If Homg(Vλ,µ,Tm,n) , 0 then |λ| = m, |µ| = n.

Proof Choose a finite-dimensional non-degenerate pair V f ⊂ V,W f ⊂W such that
dim V f ≥ max{m,n, |λ|, |µ|}. Then (V f )λ,µ := T(V f ,W f )∩Vλ,µ is annihilated by the finite
corank subalgebra k = sl(W⊥

f ,V
⊥

f ) of g. Let l = sl(V f ,W f ) ⊕ k. Then

Homl((V f )λ,µ,Tm,n) = Homsl(V f ,W f )((V f )λ,µ, (Tm,n)k)

= Homsl(V f ,W f )((V f )λ,µ,V⊗m
f ⊗W⊗n

f ).

Therefore a homomorphism φ ∈ Homg(Vλ,µ,Tm,n) has a well-defined restriction
φ f ∈ Homsl(V f ,W f )((V f )λ,µ,V⊗m

f ⊗W⊗n
f ). According to finite-dimensional representation

theory, φ f , 0 implies that φ f is a composition

(V f )λ,µ → (V⊗|λ|f ⊗W⊗|µ|

f ) ⊗ (V⊗(m−|λ|)
f ⊗W⊗(n−|µ|)

f )sl(V f ,W f )
−→ V⊗m

f ⊗W⊗n
f .

Since φ is the inverse limit of φ f , φ is a composition

Vλ,µ → T|λ|,|µ| ⊗ (Tm−|λ|,n−|µ|)sl(V,W)
−→ Tm,n.

However, by Lemma 4.2, (Tm−|λ|,n−|µ|)sl(V,W) , 0 only if |λ| = m, |µ| = n. □
Note that Lemma 4.3 implies

socTm,n = soc1Tm,n = Fm,n
1 . (6)

Consider now the exact sequence

0→ Fm,n
k−1 → Tm,n

→

⊕
I

Tm−k+1,n−k+1, (7)

where I runs over the same set as in (5). It follows from (6) that (7) induces an exact
sequence

0→ Fm,n
k−1 → Fm,n

k →

⊕
I

Fm−k+1,n−k+1
1 .

Therefore induction on k yields sock Tm,n = Fm,n
k . Theorem 4.1 is proved. □

As a corollary we obtain that the sl(V,W)−module Vλ⊗Wµ is indecomposable since
its socle Vλ,µ is simple. Further one shows that any simple subquotient of T(V,W) is
isomorphic to Vλ,µ for an appropriate pair of partitions λ, µ. The k−th layer of the socle
filtration of Vλ ⊗Wµ, i.e. the quotient sock(Vλ ⊗Wµ)/sock−1(Vλ ⊗Wµ), can have only
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simple constituents isomorphic to Vλ′ ,µ′ where λ′ is obtained from λ by removing k−1
boxes and µ′ is obtained from µ by removing k − 1 boxes. An explicit formula for the
multiplicity of Vλ′µ′ in sock(Vλ ⊗Wµ)/sock−1(Vλ ⊗Wµ) is given in [PStyr].

Next, consider the associative algebra Asl(V,W) ⊂ Endsl(V,W)(T(V,W)) generated by
all contractions φi, j and by the direct sum of group algebras

⊕
m,n≥0 C[Sm × Sn]. It is

clear that Asl(V,W) does not depend on the choice of the linear system V ×W → C.
In what follows we use the notation Asl. One can equip Asl with a Z≥0-grading
Asl =

⊕
q≥0(Asl)q by setting (Asl)q :=

⊕
m,n≥0 Homsl(V,W)(Tm,n,Tm−q,n−q) ∩ Asl. If

we set T≤r(V,W) :=
⊕

m+n≤r Tm,n and denote by A(r)
sl

the intersection of Asl with
Endsl(V,W)(T≤r(V,W)), then, obviously,Asl = lim

−−→
A

(r)
sl

.
The following statement is a central result in [DPS].

Proposition 4.4 a) If V is countable dimensional, then

(Asl)q =
⊕
m,n≥0

Homsl(V,V∗) (Tm,n,Tm−q,n−q).

b) A(r)
sl

is a Koszul self-dual ring for any r ≥ 0.

Now let g = o(V) (respectively, sp(V)). Recall that Tm = V⊗m. Assume m ≥ 2. For
a pair of indices 1 ≤ i < j ≤ m we have a contraction map φi, j ∈ Homg(V⊗m,V⊗m−2).
If V is countable dimensional, the socle filtration of T(V) considered as a g−module
is described in [PStyr]. Recall the decomposition (4). Each Vλ is an indecomposable
g-module with simple socle which we denote by Vλ,g. Moreover,

sock Vλ = sock (Vλ ∩ V⊗|λ|) = Vλ ∩ (∩I1 ,...,Ik ker (φI1 ,...,Ik : V⊗|λ| → V⊗|λ|−2k)),

where I1, . . . , Ik run over all sets of k distinct pairs of indices 1, . . . , |λ| and φI1 ,...,Ik =
φI1 ◦ · · · ◦ φIk .

Next, let Ag ⊂ Endg(T(V)) be the graded subalgebra of Endg(T(V)) generated by⊕
m≥0 C[Sm] and the contractions φi, j. We define a Z≥0− grading Ag =

⊕
q≥0(Ag)q by

setting
(Ag)q :=

⊕
m≥0

Homg(Tm,Tm−2q) ∩Ag.

If we set T≤r(V) :=
⊕

m≤r Tm and denote by A(r)
g the intersection of Ag with

Endg(T≤r(V)), then Ag = lim
→

A
(r)
g . It is clear that the algebra Ag can depend only

on the symmetry type of the form on V but not on V and the form itself. This justifies
the notationsAo andAsp.

Proposition 4.5 [DPS]

a) A(r)
o ≃ A

(r)
sp for each r ≥ 0, andAo ≃ Asp.

b) If V is countable dimensional, then (Ao)q =
⊕

m≥0 Homo(V)(Tm,Tm−2q), (Asp)q =⊕
m≥0 Homsp(V)(Tm,Tm−2q).

c) A(r)
o ≃ A

(r)
sp is a Koszul ring for any r ≥ 0.

In each of the three cases g = sl(∞), o(∞), sp(∞) we call the modules Vλ,µ, respec-
tively Vλ,g, the simple tensor modules of g.
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5 The category Tg

5.1 The countable-dimensional case

In this subsection we assume that g = sl(V,V∗), o(V) or sp(V) for a countable-
dimensional space V. The category Tg has been studied in [DPS], and here we review
some key results.

Denote by G̃ the group of automorphisms of V under which V∗ is stable for
g = sl(V,V∗), and the group of automorphisms of V which keep fixed the form on
V which defines g. The group G̃ is a subgroup of Autg and therefore acts naturally
on isomorphism classes of g−modules: to each g−module M one assigns the twisted
g−module Mg̃ for g̃ ∈ G̃. A g−module M is G̃−invariant if M ≃Mg̃ for all g̃ ∈ G̃.

Furthermore, define a g−module M to be an absolute weight module if the decom-
position 2 holds for any local Cartan subalgebra of g, i.e. if M is a weight module for
any local Cartan subalgebra h of g. In [DPS] we have given five equivalent character-
izations of the objects of Tg.

Theorem 5.1 [DPS] The following conditions on a g−module M of finite length are equiva-
lent:

i) M is an object of Tg;
ii) M is a weight module for some local Cartan subalgebra h ⊂ g and M is G̃−invariant;

iii) M is a subquotient of T(V ⊕ V∗) for g = sl(V,V∗) (respectively, of T(V) for g =
o(V), sp(V));

iv) M is a submodule of T(V⊕V∗) for g = sl(V,V∗) (respectively, of T(V) for g = o(V), sp(V));
v) M is an absolute weight module.

Furthermore, the following two theorems are crucial for understanding the struc-
ture of Tg.

Theorem 5.2 [PS] [DPS] The simple objects in the categories T̃ensg and Tg coincide and are
all of the form Vλ,µ for g = sl(V,V∗), or respectively Vλ,g for g = o(V), sp(V).

Theorem 5.3 [DPS] a) Tg has enough injectives. If g = sl(V,V∗), then Vλ ⊗ (V∗)µ is an
injective hull of Vλ,µ. If g = o(V) or sp(V), then Vλ is an injective hull of Vλ,g.

b)Tg is anti-equivalent to the category of locally unitary finite-dimensionalAg−modules.

Theorem 5.3 means that the category Tg is “Koszul” in the sense that it is anti-
equivalent to a module category over the infinite-dimensional Koszul algebraAg.

Corollary 5.4 To(∞) and Tsp(∞) are equivalent abelian categories.

In fact, the stronger result that To(∞) and Tsp(∞) are equivalent as monoidal cate-
gories also holds, see [SS] and [S].
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5.2 The general case

In this subsection we prove the following result.

Theorem 5.5 Let g = sl(V,W), o(V), sp(V). Then, as a monoidal category, Tg is equivalent
to Tsl(∞) or To(∞).

The proof of Theorem 5.5 is accomplished by proving several lemmas and corol-
laries.

Lemma 5.6 a) Let g = sl(V,W) and Cm,n := Homg(Tm,n,C). If m , n, then Cm,n = 0, and if
m = n, then Cm,m is spanned by τπ for all π ∈ Sm, where

τπ(v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wm) =
m∏

i=1

tr(vi ⊗ wπ(i)).

b) Let g = o(V) or sp(V). Then Homg(T2m+1,C) = 0 and Homg(T2m,C) is spanned by
σπ for all π ∈ Sm, where

σπ(v1 ⊗ · · · ⊗ v2m) =
m∏

i=1

(vi, vm+π(i)).

Proof In the finite-dimensional case the same statement is the fundamental theorem
of invariant theory. Since Tm,n for g = sl(V,W) (respectively, Tm for g = o(V), sp(V))
is a direct limit of finite-dimensional representations of the same type, the statement
follows from the fundamental theorem of invariant theory. □

Let L be a g-module and let g′ denote a subalgebra of gof the form sl(V′,W′) (respec-
tively, o(V′), sp(V′)) for some non-degenerate pair V′ ⊂ V,W′

⊂ W (respectively, non-
degenerate subspace V′ ⊂ V). Let (V′f ,W

′

f ) be a finite-dimensional non-degenerate pair
satisfying V′f ⊂ V′,W′

f ⊂ W′ (respectively, V′f ⊂ V′) and let k′ = sl((W′

f )
⊥, (V′f )

⊥) ⊂ g
(respectively k′ = o((V′f )

⊥), sp(V′f )
⊥)). Then Lk′ is an sl(W′

f ,V
′

f )−module (respectively,
an o(V′f )− or sp(V′f )−module), and moreover if we let k′ vary, the corresponding
sl(V′f ,W

′

f )−modules (respectively, o(V′f )− or sp(V′f )−modules) form a directed system
whose direct limit

Γann
g′

(L) = lim
−−→

Lk
′

is a g′−module. Note that Γann
g′

(L) may simply be defined as the union
⋃
k′ Lk′ of

subspaces Lk′ ⊂ L.
It is easy to check that Γann

g′
is a well-defined functor from the category g−mod

to its subcategory of g′-mod consisting of modules satisfying the large annihilator
condition. In particular, Γann

g is a well-defined functor from g−mod to the category of
g−modules satisfying the large annihilator condition, and the restriction of Γann

g to Tg
is the identity functor.

In the case when g′ is finite dimensional the functor Γann
g′

and its right derived
functors are studied in detail in [SSW].
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Lemma 5.7 a) Let g = sl(V,W), then

Γann
g ((Tm,n)∗) ≃

⊕
k≥0

bkTn−k,m−k

where bk =
(m

k

)(n
k

)
k!.

b) Let g = o(V) or sp(V), then

Γann
g ((Tm)∗) ≃

⊕
k≥0

ckTm−2k

where ck =
(m

2k

)
k!.

Proof We prove a) and leave b) to the reader. Choose a finite-dimensional non-
degenerate pair V f ⊂ V,W f ⊂ W, and let k = sl(W⊥

f ,V
⊥

f ). There is an isomorphism of
k-modules

(Tm,n)∗ = (V⊗m
⊗W⊗n)∗ ≃

⊕
k≥0,l≥0

dk,l(W⊗m−k
f ⊗ V⊗n−l

f ) ⊗ ((V⊥f )⊗k
⊗ (W⊥

f )⊗l)∗ (8)

where dk,l =
(m

k

)(n
l

)
.

Using (8) and Lemma 5.6 a) applied to k in place of g, we compute that

((Tm,n)∗)k ≃
⊕

k≥0

bk(W⊗m−k
f ⊗ V⊗n−k

f ).

Now the statement follows by taking the direct limit of k−invariants over all non-
degenerate finite-dimensional pairs V f ⊂ V,W f ⊂W. □

Corollary 5.8 Tm,n is an injective object of Tsl(V,W), and Tm is an injective object of Tg for
g = o(V), sp(V).

Proof We consider only the case g = sl(V,W). Recall (Theorem 2.1) that if M is an
integrable module such that M∗ is integrable, then M∗ is injective in Intg. In particular,
(Tm,n)∗ is injective in Intg. Next, note that Γann

g is right adjoint to the inclusion functor
Tg⇝ Intg, i.e. for any L ∈ Tg and any Y ∈ Intg, we have

Homg(L,Y) = Homg(L, Γann
g (Y)).

Hence,Γann
g transforms injectives in Intg to injectives inTg. This implies thatΓann

g ((Tn,m)∗)
is injective in Tg. By Lemma 5.7, Tm,n is a direct summand in Γann

g ((Tn,m)∗), and the
statement follows. □

Next we impose the condition that our fixed subalgebra g′ ⊂ g is countable
dimensional. In the rest of the paper we set gc := g′. More precisely, we choose
strictly increasing chains of finite-dimensional subspaces

V1 ⊂ V2 ⊂ ... ⊂ Vi ⊂ Vi+1 ⊂ ..., W1 ⊂W2 ⊂ ... ⊂Wi ⊂Wi+1 ⊂ ...

and set gc = sl(Vc,Wc) where Vc := lim
−−→

Vi,Wc := lim
−−→

Wi. It is clear that Vc ×Wc → C
is a countable-dimensional linear system, hence gc ≃ sl(∞). If g = o(V), sp(V), choose



20 Ivan Penkov and Vera Serganova

a strictly increasing chain of non-degenerate finite-dimensional subspaces V1 ⊂ V2 ⊂

... ⊂ Vi ⊂ Vi+1 ⊂ ... and set Vc := lim
−−→

Vi, gc = o(Vc), sp(Vc).
By Φ we denote the restriction of Γann

gc
to Tg. Note that for any L ∈ Tg, Φ(L) is a

gc−submodule of L.

Lemma 5.9 Let L,L′ ∈ Tg.
a) Φ(L) generates L.
b) The homomorphism Φ(L,L′) : Homg(L,L′)→ Homgc (Φ(L), Φ(L′)) is injective.

Proof Again we consider only the case g = sl(V,W) since the other cases are similar.
Let SL(V,W) denote the direct limit group lim

−−→
SL(V f ,W f ) for all non-degenerate finite-

dimensional pairs V f ⊂ V,W f ⊂W, where SL(V f ,W f ) ≃ SL(dim V f ).
a) Since L has finite length and satisfies the large annihilator condition, there is

a finite-dimensional non-degenerate pair V f ⊂ V,W f ⊂ W and a finite-dimensional
gl(V f ,W f )-submodule L f ⊂ L annihilated by sl((W f )⊥, (V f )⊥) such that L is generated
by L f over g. Choose i so that dim V f < dim Vi. Then there exists g ∈ SL(V,W) such that
g(V f ) ⊂ Vi, g(W f ) ⊂ Wi. Note that g = exp x for some x ∈ sl(V,W). By the integrability
of L as a g−module, the action of g is well defined on L, and g(L f ) also generates L
over g. On the other hand, by construction g(L f ) is annihilated by gsl((W f )⊥, (V f )⊥)g−1.
Observe that

sl((Wi)⊥, (Vi)⊥) ⊂ sl(g(W f )⊥, g(V f )⊥) = gsl((W f )⊥, (V f )⊥)g−1.

Hence g(L f ) ⊂ Φ(L). The statement follows.
b) follows immediately from a). □

Lemma 5.10 a) Φ(Tm,n) = V⊗m
c ⊗W⊗n

c for g = sl(V,W), and Φ(Tm) = V⊗m
c for g = o(V),

sp(V);
b) The homomorphisms

Φ(Tm,n,Tk,l) : Homg(Tm,n,Tk,l)→ Homgc (V
⊗m
c ⊗W⊗n

c ,V
⊗k
c ⊗W⊗l

c )

for g = sl(V,W), and

Φ(Tm,Tk) : Homg(Tm,Tk)→ Homgc (V
⊗k
c ,V

⊗k
c )

for g = o(V) or sp(V), are isomorphisms.
c) Let X ⊂

⊕
i V⊗mi

c ⊗ W⊗ni
c , (respectively, X ⊂

⊕
i Vmi

c for g = o(V), sp(V)) be a
gc-submodule. Then Φ(U(g) · X) = X.

d) If X ⊂ V⊗m
c ⊗ W⊗n

c (respectively, X ⊂
⊕

i Vmi
c for g = o(V), sp(V)) is a simple

submodule, then U(g) · X is a simple g−module.

Proof a) follows easily from the observation that

(Tm,n)k = V⊗m
i ⊗W⊗n

i

for any finite corank subalgebra k = sl(W⊥

i ,V
⊥

i ). This observation is a straightforward
consequence of Lemma 4.2.
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To prove b), note that the injectivity of the homomorphisms Φ(Tm,n,Tk,l) fol-
lows from a) and Lemma 5.9 b). To prove surjectivity, we observe that Homgc (V⊗m

c ⊗

W⊗n
c ,V⊗k

c ⊗W⊗l
c ) is generated by permutations and contractions according to Proposi-

tion 4.5 b). Both are defined in Homg(Tm,n,Tk,l) by the same formulae. Therefore the
homomorphisms Φ(Tm,n,Tk,l) are surjective.

We now prove c). Note that X = kerα for someα ∈ Homgc (
⊕

i V⊗mi
c ⊗W⊗ni

c ,
⊕

j V
⊗m j
c ⊗

W
⊗n j
c ). Using b) we have U(g) · X ⊂ kerΦ−1(α). Hence, Φ(U(g) · X) ⊂ kerα = X. Since

the inclusion X ⊂ Φ(U(g) · X) is obvious, the statement follows.
To prove d), suppose U(g) · X is not simple, i.e. there is an exact sequence

0→ L→ U(g) · X→ L′ → 0

for some non-zero L,L′. By the exactness of Φ and by c), we have an exact sequence

0→ Φ(L)→ X→ Φ(L′)→ 0.

By Lemma 5.9 a), Φ(L) and Φ(L′) are both non-zero. This contradicts the assumption
that X is simple. □

Lemma 5.11 For g = sl(V,W) (respectively, for g = o(V), sp(V)) any simple object in the
category Tg is isomorphic to a submodule in Tm,n for suitable m and n (respectively, in Tm for
a suitable m).

Proof We assume that g = sl(V,W) and leave the other cases to the reader. Let L be a
simple module inTg. By Lemma 5.9 a),Φ(L) , 0. Let Li = Lsl(W

⊥

i ,V
⊥

i ) , 0 for some i, and
let L′ ⊂ Li be a simple sl(Vi,Wi)-submodule. Consider the Z-grading g = g−1

⊕ g0
⊕ g1

where g0 = gl(Vi,Wi) ⊕ sl(W⊥

i ,V
⊥

i ), g1 = Vi ⊗ V⊥i , g−1 = W⊥

i ⊗Wi. There exists a finite-
dimensional subspace W′

⊂ V⊥i , such that S(Vi ⊗W′) generates S(g1) as a module over
sl(W⊥

i ,V
⊥

i ). By the integrability of L, (Vi ⊗W′)q
· L′ = 0 for sufficiently large q ∈ Z≥0,

and thus (g1)q
· L′ = 0. Hence, there is a non-zero vector l ∈ Li ⊂ L annihilated by g1,

and consequently there is a simple g0-submodule L′′ ⊂ L annihilated by g1. Therefore
L is isomorphic to a quotient of the parabolically induced module U(g)⊗U(g0⊕g1) L′′ . The
latter module is a direct limit of parabolically induced modules for finite-dimensional
subalgebras of g. Hence it has a unique integrable quotient, and this quotient is
isomorphic to L. On the other hand, L′′ is a simple g0-submodule of Tm,n for some m
and n. Thus, by Frobenius reciprocity, a quotient of U(g) ⊗U(g0⊕g1) L” is isomorphic to
a submodule of Tm,n. Since Tm,n is integrable, this quotient is isomorphic to L. □

Corollary 5.12 a) If g = sl(V,W), then Asl =
⊕

m,n,q Hom g(Tm,n,Tm−q,n−q). If g =
o(V), sp(V), thenAg =

⊕
m,q Hom (Tm,Tm−2q). Furthermore,

Asl = lim
−−→

Endg(
⊕
m+n≤r

Tm,n),

and for g = o(V), sp(V)
Ao = lim

−−→
Endg(

⊕
m≤r

Tm).
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b) Up to isomorphism, the objects ofTg are precisely all finite length submodules of T(V,W)⊕k

for g = sl(V,W), and of T(V)⊕k for g = o(V), sp(V). Equivalently, up to isomorphism, the
objects ofTg are the finite length subquotients of T(V,W)⊕k for g = sl(V,W), and of T(V)⊕k

for g = o(V), sp(V).

Proof Claim a) is a consequence of Lemma 5.10. Claim b) follows from Lemma 5.11
and Corollary 5.8. □

Lemma 5.13 For any L ∈ Tg, Φ(L) ∈ Tgc . Moreover, the functor Φ : Tg → Tgc is fully
faithful and essentially surjective.

Proof By Corollary 5.12 b), L is isomorphic to a submodule in a direct sum of finitely
many copies of T(V,W). Then Φ(L) is isomorphic to a submodule in a direct sum of
finitely many copies of T(Vc,Wc). That implies the first assertion. The fact that Φ is
faithful follows from Lemma 5.9 b).

To prove that Φ is full, consider L,L′ ∈ Tg and let I(L), I(L′) denote respective
injective hulls in Tg. Then

Homg(L,L′) ⊂ Homg(I(L), I(L′))

and
Homgc (Φ(L), Φ(L′)) ⊂ Homgc (Φ(I(L)), Φ(I(L′))).

By Corollary 5.12 a), the homomorphism

Φ(I(L), I(L′)) : Homg(I(L), I(L′))→ Homgc (Φ(I(L)), Φ(I(L′)))

is surjective. Therefore for anyφ ∈ Homgc (Φ(L), Φ(L′)) there existsψ ∈ Homg(I(L), I(L′))
such that ψ(Φ(L)) ⊂ Φ(L′). By Lemma 5.9 Φ(L) and Φ(L′) generate respectively L and
L′. Hence ψ(L) ⊂ L′. Thus, we obtain that the homomorphism

Φ(L,L′) : Homg(L,L′)→ Homgc (Φ(L), Φ(L′))

is also surjective.
To prove that Φ is essentially surjective, we use again Corollary 5.12 b). We note

that any L ∈ Tg is isomorphic to the kernel of φ ∈ Hom(T(V,W)⊕k, (T(V,W)⊕l) for some
k and l and then apply Corollary 5.12 a). □

Observe that Lemma 5.13 implies that

Φ : Tg → Tgc

an equivalence of the abelian categories Tg and Tgc . To prove Theorem 5.5 it remains
to check that Φ is an equivalence of monoidal categories. We therefore prove the
following.

Lemma 5.14 If L,N ∈ Tg, then Φ(L ⊗N) ≃ Φ(L) ⊗Φ(N).
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Proof We just consider the case sl(V,W) as the orthogonal and symplectic cases
are very similar. Let k = sl(W⊥

f ,V
⊥

f ) for some finite-dimensional non-degenerate pair
V f ⊂ V,W f ⊂W. We claim that

(L ⊗N)k = Lk ⊗Nk.

Indeed, using Lemma 4.2 one can easily show that

(Tm,n)k = V⊗m
f ⊗W⊗n

f ,

which implies the statement in the case when L and N are injective. For arbitrary L
and N consider embeddings L ↪→ I and N ↪→ J for some injective I, J ∈ Tg. Then

(L ⊗N)k = (L ⊗N) ∩ (I ⊗ J)k = (L ⊗N) ∩ (Ik ⊗ Jk) = Lk ⊗Nk.

Now we set k = sl(W⊥

i ,V
⊥

i ) and finish the proof by passing to the direct limit. □

The proof of Theorem 5.5 is complete. □

6 Mackey Lie algebras

Let V ×W → C be a linear system. Then each of V and W can be considered as
subspace of the dual of the other:

V ⊂W∗, W ⊂ V∗.

Let EndW(V) denote the algebra of endomorphisms φ : V → V such that φ∗(W) ⊂ W
where φ∗ : V∗ → V∗ is the dual endomorphism. Clearly, there is a canonical anti-
isomorphism of algebras

EndW(V) ∼→ EndV(W), φ 7−→ φ∗
|W .

We call the Lie algebra associated with the associative algebra EndW(V) (or equiva-
lently EndV(W)) a Mackey Lie algebra and denote it by glM(V,W).

Note that if V, W is a linear system, then for any subspaces W′
⊂ V∗ with W ⊂W′,

and V′ ⊂ W∗ with V ⊂ V′, the pairs V, W′ and V′, W are linear systems. In particular
V, V∗ is a linear system and W∗, W is a linear system. Clearly, glM(V,V∗) coincides with
the Lie algebra of all endomorphisms of V (respectively, glM(W∗,W) is the Lie algebra
of all endomorphisms of W). Hence glM(V,W) ⊂ glM(V,V∗), glM(V,W) ⊂ glM(W∗,W). If
V and W = V∗ are countable dimensional, the Lie algebra glM(V,V∗) is identified with
the Lie algebra of all matrices X = (xi j)i≥1, j≥1 such that each row and each column of X
have finitely many non-zero entries. The Mackey Lie algebra glM(V,V∗) (for a countable
dimensional space V) is identified with the Lie algebra of all matrices X = (xi j)i≥1, j≥1

each column of which has finitely many non-zero entries. Alternatively, if a basis of V
as above is enumerated byZ (i.e we consider a basis {v j} j∈Z such that V∗ = span{v∗j} j∈Z
where v∗j(vi) = 0 for j , i, v∗j(v j) = 1), then glM(V,V∗) is identified with the Lie algebra
of all matrices (xi j)i, j∈Z whose rows and columns have finitely many non-zero entries,
and glM(V,V∗) is identified with the Lie algebra of all matrices (xi j)i, j∈Z whose columns
have finitely many non-zero entries.
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Obviously V and W are glM(V,W) - modules. Moreover, V and W are not isomor-
phic as glM(V,W) - modules.

It is easy to see that gl(V,W) = V ⊗W is the subalgebra of glM(V,W) consisting of
operators with finite-dimensional images in both V and W, and that it is an ideal in
gl

M(V,W). Furthemore, the Lie algebra glM(V,W) has a 1-dimensional center consisting
of the scalar operators CId.

We now introduce the orthogonal and symplectic Mackey Lie algebras. Let V be a
vector space endowed with a non-degenerate symmetric (respectively, antisymmetric)
form, then oM(V) (respectively, spM(V)) is the Lie algebra

{X ∈ End(V) | (X · v,w) + (v,X · w) = 0 ∀ v,w ∈ V}.

If V is countable dimensional, there always is a basis {vi,w j}i, j∈Z of V such that
span{vi}i∈Z and span{w j} j∈Z are isotropic spaces and (vi,w j) = 0 for i , j, (vi,wi) = 1.
The corresponding matrix form of oM(V) consists of all matrices(

ai j bkl

crs −a ji

)
(9)

each row and column of which are finite and in addition bkl = −blk, crs = −csr where
i, j, k, l, r, s ∈ Z. The matrix form for spM(V) is similar: here bkl = blk, crs = csr.

It is clear that o(V) ⊂ oM(V) and sp(V) ⊂ spM(V):

(v ∧ w) · x = (v, x)w − (x,w)v for v ∧ w ∈ Λ2V = o(V), x ∈ V

and
(vw) · x = (v, x)w − (x,w)v for vw ∈ S2V = sp(V), x ∈ V.

Moreover, o(V) is an ideal in oM(V) and sp(V) is an ideal in spM(V), since both Λ2V
and S2V consist of the respective operators with finite-dimensional image in V.

In this way we have the following exact sequences of Lie algebras

0→ gl(V,W)→ glM(V,W)→ glM(V,W)/gl(V,W)→ 0,

0→ o(V)→ oM(V)→ oM(V)/o(V)→ 0,
0→ sp(V)→ spM(V)→ spM(V)/sp(V)→ 0.

Lemma 6.1 sl(V,W) (respectively, o(V), sp(V)) is the unique simple ideal in glM(V,W) (re-
spectively, oM(V), spM(V)).

Proof We will prove that if I , CId is a non-zero ideal in glM(V,W), then I contains
sl(V,W). Indeed, assume that X ∈ I and X , cId. Then one can find v ∈ V and w ∈ W
such that X · v is not proportional to v and X∗ · w is not proportional to w. Hence,
Z = [X, v ⊗ w] = (X · v) ⊗ w − v ⊗ (X · w) ∈ gl(V,W) ∩ I and Z , 0. Since sl(V,W) is the
unique simple ideal in gl(V,W) and gl(V,W) ∩ I , 0, we conclude that sl(V,W) ⊂ I.

The two other cases are similar and we leave them to the reader. □

Corollary 6.2 a) Two Lie algebras glM(V,W) and glM(V′,W′) are isomorphic if and only if
the linear systems V ×W → C and V′ ×W′

→ C are isomorphic.
b) Two Lie algebras oM(V) and oM(V′) (respectively, spM(V) and spM(V′)) are isomorphic

if and only if there is an isomorphism of vector spaces V ≃ V′ transferring the form defining
oM(V) (respectively spM(V)) into the form defining oM(V′) (respectively, spM(V′)).
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Proof The statement follows from Proposition 1.1 and Lemma 6.1. □

The following is our main result about the structure of Mackey Lie algebras.

Theorem 6.3 Let V be a countable-dimensional vector space.
a) gl(V,V∗) ⊕ CId is an ideal in glM(V,V∗) and the quotient

gl
M(V,V∗)/ (gl(V,V∗) ⊕ CId)

is a simple Lie algebra.
b) gl(V,V∗) ⊕ CId is an ideal in End(V) and the quotient End(V)/ (gl(V,V∗) ⊕ CId) is a

simple Lie algebra.
c) If V is equipped with a non-degenerate symmetric (respectively, antisymmetric) bilinear

form, then oM(V)/o(V) (respectively spM(V)/sp(V)) is a simple Lie algebra.

Proof The proof is subdivided into lemmas and corollaries.
Note that gl(V,V∗) ⊂ gl(V,V∗) ⊂ glM(V,V∗) = End(V). In what follows we fix

a basis {vi}i≥1 in V and use the respective identification of gl(V,V∗), glM(V,V∗) and
gl

M(V,V∗) = End(V) with infinite matrices. By Ei j we denote the elementary matrix
whose only non-zero entry is 1 at position i, j.

Lemma 6.4 Let gM = glM(V,V∗), End(V). Assume that an ideal I ⊂ gM contains a diagonal
matrix D < gl(V,V∗) ⊕ CId. Then I = gM.

Proof We first assume that D =
∑

i≥1 diEii satisfies di , d j for all i , j. Then
[D, gM] = gM

0 , where gM
0 is the space of all matrices in gM with zeroes on the diagonal.

Consequently, gM
0 ⊂ I. Furthermore, any diagonal matrix

∑
i siEii can be written as the

commutator ∑
i≥1

Ei i+1,
∑
j≥1

t jE j+1 j


with t j =

∑ j
i=1 si. Hence, I = gM.

We now consider the case of an arbitrary D ∈ I. After permuting the basis elements
of V, we can assume that D =

∑
i≥1 diEii with d2m−1 , 0 and d2m−1 , d2m for all m > 0.

Let

X :=
∞∑

m=1

1
d2m − d2m−1

E2m 2m−1, Y :=
∞∑

m=1

smE2m−1 2m,

where sm , ±sl for m , l. Then [Y, [X,D]] = s1E11 − s1E22 + s2E33 − s2E44 + · · · ∈ I, and
we reduce this case to the previous one. □

Lemma 6.5 Let y = (yi j) ∈ gl(n) be a non-scalar matrix. There exist u, v,w ∈ gl(n) such that
[u, [v, [w, y]]] is a non-zero diagonal matrix.

Proof If y is not diagonal, pick i , j such that yi j , 0. Set w = Eii, v = E j j,u = E ji. If y is
diagonal, pick i , j such that yii , y j j and set w = Ei j, v = Eii,u = E ji. □
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Corollary 6.6 Let
∏

i gl(ni) for ni ≥ 2 be a block subalgebra of gM. Suppose that X ∈
(
∏

i gl(ni)) ∩ I for some ideal I ⊂ gM and that X < gl(V,V∗) ⊕ CId. Then I = gM.

Proof Let X =
∏

i Xi, where Xi ∈ gl(ni). Without loss of generality we may assume
that infinitely many Xi are not diagonal, as otherwise X is diagonal modulo gl(V,V∗)
and the result follows from Lemma 6.4. Now pick ui, vi,wi ∈ gi as in Lemma 6.5. Set
u =

∏
i ui, v =

∏
i vi,w =

∏
i wi. Then Z = [u, [v, [w,X]] is diagonal. By normalizing ui

we can ensure that Z < CId. Since Z ∈ I, the statement follows from Lemma 6.4. □

Lemma 6.7 For any X = (xi j)i≥1, j≥1 ∈ gl
M(V,V∗) there exists an increasing sequence i1 <

i2 < . . . such that xi j = 0 unless i, j ∈ [ik, ik+2 − 1] for some k.

Proof Set i1 = 1,
i2 = max{ j | x1 j , 0 or x j1 , 0} + 1,

and construct the sequence recursively by setting

ik = max{ j > ik−1 | xi j , 0 or x ji , 0 for some ik−2 ≤ i < ik−1} + 1.

□
We are now ready to prove Theorem 6.3 a).

Corollary 6.8 (Theorem 6.3 a)) Let an ideal I of glM(V,V∗) be not contained in gl(V,V∗)⊕CId.
Then I = glM(V,V∗).

Proof Let X ∈ I\{gl(V,V∗) ⊕ CId}. Pick i1 < i2 < . . . as in Lemma 6.7 and set

D = diag(1, . . . , 1︸  ︷︷  ︸
i2−1

, 2, . . . , 2︸  ︷︷  ︸
i3−i2

, 3, . . . , 3︸  ︷︷  ︸
i4−i3

, . . . ).

Then X = X−1 + X0 + X1 where [D,Xi] = iXi. If X0 < gl(V,V∗) ⊕ CId we are done by
Corollary 6.6 as X0 is a block matrix. Otherwise, at least one of X1 and X−1 does not
lie in gl(V,V∗).

Assume for example that X1 = (xi j) < gl(V,V∗). Then there exist infinite sequences
{i1 < i2 < . . . } and { j1 < j2 < . . . } such that xis js , 0. Moreover, we may assume that
. . . < is ≤ js < is+1 ≤ js+1 < . . . . Set Y =

∑
s≥1 E jsis . Then [Y,X1] ∈ I is a block matrix and

we can again use Corollary 6.6. □
Next we prove Theorem 6.3 b).
Let I be an ideal in End(V). Assume that I is not contained in gl(V,V∗) ⊕ CId. Let

X ∈ I \ {gl(V,V∗) ⊕ CId} and let VX ⊂ V denote the subspace of all X-finite vectors.
Assume first that VX , V. Then there exists v ∈ V such that v,X · v,X2

· v, . . . are
linearly independent. Let M = span{v,X · v,X2

· v, . . . } and U be a subspace of V such
that V =M⊕U. Let πM be the projector on M with kernel U. Then Y := X+ [X, πM] ∈ I.
A simple calculation shows that both U and M are Y-stable and Y|M = X|M. Let
Z ∈ End(M) be defined by Z(U) = 0, Z(Xi

· v) = iXi−1
· v for i ≥ 0. Then [Z,Y] is a

diagonal matrix with infinitely many distinct entries. Hence I = End(V) by Lemma
6.4.
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Now suppose that VX = V. Then we have a decomposition V =
⊕

λ Vλ, where
Vλ :=

⋃
n ker(X−λId)n are generalized eigenspaces of X. First, we assume that for all λ

there exists n(λ) such that Vλ = ker(X−λId)n(λ). In this case V =
⊕

i Vi is a direct sum
of X−stable finite-dimensional subspaces. Thus X is a block matrix and by Corollary
6.6 we obtain I = End(V). Next, we assume that for some λ the sequence ker(X−λId)n

does not stabilize. In this case there are linearly independent vectors v1, v2, . . . such
that (X − λId) · v1 = 0 and (X − λId) · vi = vi−1 for all i > 1. We repeat the argument
from the previous paragraph. Set M to be the span of vk, let V = M ⊕ U and define
Z ∈ End(M) by setting Z(U) = 0, Z(vi) = ivi+1. Then [Z, ([X, πM] + X)] ∈ I is a diagonal
matrix with infinitely many distinct entries. Hence I = End(V).

To complete the proof of Theorem 6.3 it remains to prove claim c).

Lemma 6.9 If gM = oM(V) (respectively, spM(V), then any non-zero proper ideal I ⊂ gM

equals o(V) (respectively, sp(V).

Proof As follows from (9), one can define aZ-grading gM = gM
−1 ⊕ g

M
0 ⊕ g

M
1 such that

gM
0 ≃ gl

M(V,V∗). This grading is defined by the matrix

D =
(

1
2 Id 0
0 −

1
2 Id

)
,

i.e. [D,X] = iX for X ∈ gM
i . Since D ∈ gM, any ideal I ⊂ gM is homogeneous in this

grading. Note that the ideal generated by D equals the entire Lie algebra gM. Hence
we may assume that D < I, and thus that I0 := I ∩ gM

−1 is a proper ideal in gM
0 .

Assume first that I1 := I ∩ gM
1 is not contained in o(V) (respectively, sp(V) and let

X ∈ I1 \ o(V) (respectively, X ∈ I1 \ sp(V)). By an argument similar to the one at the
end of the proof of Corollary 6.8, there exists Y ∈ gM

−1 such that [Y,X] < gl(V,V∗) ⊕ CD.
Therefore by Corollary 6.8 we obtain a contradiction with our assumption that I0 is a
proper ideal in gM

0 .
Thus, we have proved that I1 ⊂ o(V) (respectively, sp(V)) and, similarly, I−1 :=

I∩ gM
−1 ⊂ o(V) (respectively, sp(V)). Moreover, I0 ⊂ gl(V,V∗) by Corollary 6.8. But then I

is a non-zero ideal in o(V) (respectively, sp(V)). Since both o(V) and sp(V) are simple,
the statement follows. □

The proof of Theorem 6.3 is complete. □

Note that if V is not countable-dimensional, then glM(V,V∗), End(V) and oM(V)
(respectively, spM(V)) have the following ideal:

{X | dim (X · V) is finite or countable}.

Hence, Theorem 6.3 does not hold in this case.

7 Dense subalgebras

7.1 Definition and general results

Definition 7.1 Let l be a Lie algebra, R be an l−module, k ⊂ l be a Lie subalgebra. We say
that k acts densely on R if for any finite set of vectors r1, . . . , rn ∈ R and any l ∈ l there is k ∈ k
such that k · ri = l · ri for i = 1, . . . ,n.
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Lemma 7.2 Let k ⊂ l and let R,N be two l-modules such that k acts densely on R ⊕N. Then
Homl(R,N) = Homk(R,N).

Proof There is an obvious inclusion Homl(R,N) ⊂ Homk(R,N). Suppose there exists
φ ∈ Homk(R,N) \Homl(R,N). Then one can find r ∈ R, l ∈ l such that φ(l · r) , l · φ(r).
Since k acts densely on R⊕N, there exists k ∈ k such that k · r = l · r and k ·φ(r) = l ·φ(r).
Therefore we have

φ(l · r) = φ(k · r) = k · φ(r) = l · φ(r).

Contradiction. □

Lemma 7.3 Let k ⊂ l and R be an l-module on which k acts densely. Then
a) k acts densely on any l−subquotient of R;
b) k acts densely on R⊗n for n ≥ 1;
c) k acts densely on R⊕n for n ≥ 1;
d) k acts densely on T(R)⊕n for n ≥ 1.

Proof a) Let N be an l-submodule of R. It follows immediately from the definition that
k acts densely on N and on R/N. That implies the statement.

b) Let r1, . . . , rq ∈ R⊗n. Write

ri =

s(i)∑
j=1

mi
j1 ⊗ · · · ⊗mi

jn

for some mi
jp ∈ R. For any l ∈ l there exists k ∈ k such that k · mi

jp = l · mi
jp for all i ≤ r,

p ≤ n and j ≤ s(i). Then k · ri = l · ri for all i ≤ q.
Proving c) and d) is similar to proving b) and we leave it to the reader. □

Lemma 7.4 Let k, l and R be as in Lemma 7.3. Then a k-submodule of R is l-stable. Hence any
k-subquotient of R has a natural structure of l-module.

Proof Straightforward from the definition. □

Theorem 7.5 Let Cl be a full abelian subcategory of l −mod such that k acts densely on any
object in C. Let Res : l −mod→ k −mod be the functor of restriction. Let Ck be the image of
Cl under Res. ThenCk is a full abelian subcategory of k−mod and Res induces an equivalence
of Ck and Cl.

Proof The first assertion follows from Lemma 7.2. It also follows from the same
lemma that Res(R) ≃ Res(N) implies R ≃ N. Thus, every object in Ck has a unique (up
to isomorphism) structure of l-module. This provides a quasi-inverse of Res. Hence
the second assertion holds. □

Let R be an l-module. Denote by TR
l

the full subcategory of l-mod consisting of all
finite length subquotients of finite direct sums T(R)⊕n for n ≥ 1.
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Proposition 7.6 Let k, l and R be as in Lemma 8.2. Then the restriction functor

Res : TR
l
⇝ TR

k

is an equivalence of monoidal categories.

Proof By Lemma 7.3, Res(TR
l

) = TR
k

. Thus Res is an equivalence of TR
l

and TR
k

by
Theorem 7.5. In addition, Res clearly commutes with ⊗, hence the statement. □

7.2 Dense subalgebras of Mackey Lie algebras

Let now gM denote one of the Lie algebras glM(V,W), oM(V), spM(V), and g denote
respectively the subalgebra gl(V,W), o(V), sp(V). By R we denote the gM-module V⊕W
(respectively, V).

In what follows we call a Lie subalgebra a ⊂ gM dense if it acts densely on R. It is
easy to see that g is a dense subalgebra of gM.

Here are further examples of dense subalgebras of glM(V,V∗) for a countable-
dimensional space V. We identify glM(V,V∗) with the Lie algebra of matrices (xi j)i≥1, j≥1

each row and column of which are finite.
1. The Lie algebra j(V,V∗) consisting of matrices J = (xi j)i≥1, j≥1 such that xi j = 0 when

|i − j| > mJ for some mJ ∈ Z>0 (generalized Jacobi matrices), is dense in glM(V,V∗).
2. The subalgebra lj(V,V∗) ⊂ glM(V,V∗) consisting of matrices X = (xi j)i≥1, j≥1 satis-

fying the condition xi j = 0 when i − j > cX j for some cX ∈ Z>0, is dense in glM(V,V∗).
3. The subalgebra pj(V,V∗) of matrices Y = (xi j)i≥1, j≥1 satisfying the condition xi j = 0

when i − j > pY( j) for some polynomial pY(t) ∈ Z≥0[t], is dense in glM(V,V∗).
4. Let g be a countable-dimensional diagonal Lie algebra. If g is of type sl, fix a

chain (1) of diagonal embeddings where gi ≃ sl(ni). Observe that given a chain (3), we
can always choose a chain

V∗g1
µ1
↪→ V∗g2

µ2
↪→ · · · ↪→ V∗gi

µi
↪→ V∗gi+1

↪→ . . .

so that the non-degenerate pairing Vgi+1 × V∗gi+1
→ C restricts to a non-degenerate

pairing κi(Vgi ) × µi(V∗gi )→ C. Therefore, by multiplying µi by a suitable constant, we
can assume that κi and µi preserve the natural pairings Vgi × V∗gi → C. This shows
that, given a natural representaion V of g, there always is a natural representation
V∗ such that there is a non-degenerate g-invariant pairing V × V∗ → C. This gives an
embedding of g as a dense subalgebra in glM(V,V∗)

If g is of type o or sp, then a natural representation V of g is defined again by
a chain of embeddings (3). Moreover, V always carries a respective non-degenerate
symmetric or symplectic form. Therefore g can be embedded as a dense subalgebra in
oM(V), or respectively in spM(V).

The following statement is a particular case of Proposition 7.6.

Corollary 7.7 Let a be a dense subalgebra in gM. Then the monoidal categories TR
gM

and TR
a

are equivalent.



30 Ivan Penkov and Vera Serganova

7.3 Finite corank subalgebras of gM and the category TgM

We now generalize the notion of finite corank subalgebra to Mackey Lie algebras.
Let V f ⊂ V,W f ⊂ W be a non-degenerate pair of finite-dimensional subspaces.

Then gl(W⊥

f ,V
⊥

f ) is a subalgebra of glM(W⊥

f ,V
⊥

f ) and also a subalgebra of glM(V,W).
Moreover, the following important relation holds

sl(V,W)/sl(W⊥

f ,V
⊥

f ) = gl(V f ,W f ) ⊕ (V f ⊗ V⊥f ) ⊕ (W⊥

f ⊗W f )

= glM(V,W)/glM(W⊥

f ,V
⊥

f ). (10)

We call a subalgebra k ⊂ glM(V,W) a finite corank subalgebra if it contains glM(W⊥

f ,V
⊥

f )
for some non-degenerate pair V f ⊂ V,W f ⊂W.

Similarly, let V be a vector space equipped with a symmetric (respectively, skew-
symmetric) non-degenerate form and V f be a non-degenerate finite-dimensional sub-
space. We have a well-defined subalgebra oM(V⊥f ) ⊂ oM(V) (respectively, spM(V⊥f ) ⊂
spM(V)). Furthermore,

o(V)/o(V⊥f ) = o(V f ) ⊕ (V f ⊗ V⊥f ) = oM(V)/oM(V⊥f ),

sp(V)/sp(V⊥f ) = sp(V f ) ⊕ (V f ⊗ V⊥f ) = spM(V)/spM(V⊥f ). (11)

We call k ⊂ oM(V) (respectively, spM(V)) a finite corank subalgebra if it contains
oM(V⊥f ) (respectively, spM(V⊥f )) for some V f as above.

Next, we say that gM-module L satisfies the large annihilator condition if the anni-
hilator in gM of any l ∈ L contains a finite corank subalgebra. It follows immediately
from the definition that if L1 and L2 satisfy the large annihilator condition, then the
same is true for L1 ⊕ L2 and L1 ⊗ L2.

Lemma 7.8 Let L be a gM-module which is integrable as a g−module. If L satisfies the large
annihilator condition (as a gM

−module), then g acts densely on L.

Proof Since L satisfies the large annihilator condition as a gM
−module, so does also

L⊕n. It suffices to show that for all n ∈ Z≥1 and all l ∈ L⊕n we have

g · l = gM
· l. (12)

However, as l is annihilated by glM(W⊥

f ,V
⊥

f ) for an appropriate finite-dimensional
non-degenerate pair V f ⊂ V,W f ⊂ W in the case g = sl(V,W) (respectively, by
oM(V⊥f ), spM(V⊥f ) in the case g = o(V), sp(V)), (12) follows from (10), (respectively,
from (11)). □

Lemma 7.9 Let L be a g-module satisfying the large annihilator condition. Then the g-module
structure on L extends in a unique way to a gM-module structure such that L satisfies the large
annihilator condition as a gM-module.
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Proof Consider the case g = sl(V,W). Any l ∈ L is annihilated by sl(W⊥

f ,V
⊥

f ) for
an appropriate finite-dimensional non-degenerate pair V f ⊂ V,W f ⊂ W. Let x ∈
gl

M(V,W). By (10) there exists y ∈ sl(V,W) such that x + glM(W⊥

f ,V
⊥

f ) = y + sl(W⊥

f ,V
⊥

f ).
Moreover, y is unique modulo sl(W⊥

f ,V
⊥

f ). Thus we can set x · l := y · l. It is an easy

check that this yields a well-defined glM(V,W)-module structure on L compatible with
the sl(V,W)−module structure on L.

For g = o(V), sp(V) one uses (11) instead of (10). □

We can now define the category TgM as an analogue of the category Tg. More
precisely, the categoryTgM is the full subcategory of gM-mod consisting of all modules
of finite length, integrable over g and satisfying the large annihilator condition.

The following is our main result in section 7.

Theorem 7.10 a) TgM = TR
gM

, where R = V ⊕ W for g = sl(V,W) and R = V for g =
o(V), sp(V).

b) The functor Res : TgM ⇝ Tg is an equivalence of monoidal categories.

Proof It is clear that TR
gM

is a full subcategory of TgM . We need to show only that any
L ∈ TgM is isomorphic to a subquotient of T(R)⊕n for some n. Obviously, L satisfies
the large annihilator condition as a g−module. Furthermore, by Lemma 7.9 a), g acts
densely on L, hence L has finite length as a g−module. By Corollary 5.12 b), L is
isomorphic to a g−subquotient of T(R)⊕n for some n, and by Proposition 7.6 L is
the restriction to g of some gM

−subquotient L′ of T(R)⊕n. However, since L′ satisfies
the large annihilator condition, Lemma 7.8 implies that there is an isomorphism of
gM
−modules L ≃ L′. This proves a).

b) follows from a) and Proposition 7.6. □

The following diagram summarizes the equivalences of monoidal categories es-
tablished in this paper:

Ta
Res
f TgM = T

R
gM

Res
⇝ Tg

Φ
⇝ Tgc .

Here a is any dense subalgebra of gM and R = V ⊕ W for g = sl(V,W), R = V for
g = o(V), sp(V). In particular, when g = sl(V,V∗) for countable-dimensional V and V∗,
a can be chosen as the Lie algebra j(V,V∗) or as any countable-dimensional diagonal
Lie algebra.

8 Further results and open problems

Theorem 7.10 a) can be considered an analogue of Theorem 5.1 and Corollary 5.12
b) as it provides two equivalent descriptions of the category TgM . It is interesting to
have a longer list of such equivalent descriptions.

The following proposition provides another equivalent condition characterizing
the objects of TgM under the additional assumption that g = sl(V,V∗), o(V), sp(V) is
countable dimensional.
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Proposition 8.1 Let gM = glM(V,V∗), oM(V), spM(V) for a countable dimensional V, and let
L be a gM

−module of finite length which is integrable as a g−module. Then L is an object of
TgM if and only if g acts densely on L.

We first need a lemma.

Lemma 8.2 Let gM = glM(V,V∗), oM(V), spM(V) for a countable dimensional V, and let L
and L′ be gM-modules. Assume that L and L′ have finite length as g-modules. Then

Homg(L,L′) = HomgM (L,L′).

In particular, if L and L′ are isomorphic as g-modules, then L and L′ are isomorphic as
gM-modules.

Proof Observe that HomC(L,L′) has a natural structure of gM-module defined by

(X · φ)(l) := X · φ(l) − φ(X · l) for X ∈ gM, φ ∈ HomC(L,L′), l ∈ L. (13)

Since g is an ideal in gM, Homg(L,L′) is a gM-submodule in HomC(L,L′). Moreover,
Homg(L,L′) is finite dimensional as L and L′ have finite length over g. On the other
hand, Theorem 6.3 implies that gM does not have proper ideals of finite codimension,
hence any finite-dimensional gM-module is trivial. Therefore (13) defines a trivial
gM
−module structure of HomgM (L,L′), which means that any φ ∈ Homg(L,L′) belongs

to HomgM (L,L′). This shows that Homg(L,L′) = HomgM (L,L′). The second assertion
follows immediately. □

Proof of Proposition 8.1 If L ∈ TgM , then g acts densely on L by Lemma 7.9.
Let now g act densely on L. We first prove that L satisfies the large annihilator

condition as a g−module. Assume that g acts densely on L but L does not satisfy
the large annihilator condition as a g−module. Using the matrix realizations of g
and gM one can show that there exists l ∈ L and a sequence {Xi}i∈Z≥1 of commuting
linearly independent elements Xi ∈ g which don’t belong to the annihilator of l.
Furthemore, one can find an infinite subseqence {Y j = Xi j } such that each Y j lies in
an sl(2)-subalgebra ß j ⊂ g with the condition [ß j,ßs] = 0 for j , s. Then

∏
j ß j is a Lie

subalgebra in gM, and let ß be the diagonal subalgebra in
∏

j ß j. If x ∈ ß, we denote by
x j its component in ß j.

Since g acts densely on L, there exists a linear map θ : ß→ g such that θ(y) · l = y · l
for all y ∈ ß. On the other hand, there exists n ∈ Z≥1 such that [θ(y), x j] = 0 for all
y, x ∈ ß and j > n. Let dy := y − θ(y). Then dy · l = 0 and

[dy, x j] = [y, x j] = [y j, x j] for all x, y ∈ ß and j > n. (14)

Set L j := U(ß j) · l. Then (14) implies dy · L j ⊂ L j for all j > n. Moreover, ψy := dy − y j

commutes with ß j, henceψy ∈ Endß j (L j). Considering y j+ψy as an element of EndC(L j),
we obtain in addition that l ∈ ker(y j + ψy) for all y ∈ ß and all j > n.

Choose a standard basis E,H,F ∈ ß. Since L j is a finite-dimensional β j ≃ sl(2)-
module, we obtain easily

ker(E j + ψE) ∩ L j = L
E j
j , ker(F j + ψF) ∩ L j = L

F j
j .
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Since
l ∈ ker(E j + ψE) ∩ ker(F j + ψF) ∩ L j = L

ß j
j ,

we conclude that L j is a trivial ß j-module for all j > n, which contradicts our orig-
inal assumption that Y j · l , 0. Thus, L satisfies the large annihilator condition as a
g−module.

Note that, as g acts densely on L, the length of L as a g−module is the same as the
length of L as a gM

−module. Since L satisfies the large annihilator condition for g and
has finite length as g−module, we conclude that L↓g is a tensor module, i.e. an object
ofTg. By Theorem 7.10 b), L↓g = L′

↓g
for some L′ ∈ TgM . Finally, Lemma 8.2 implies that

the gM modules L′ and L are isomorphic, i.e. L ∈ TgM . □

Next, under the assumption that V is countable dimensional, consider maximal
subalgebras hM of gM which act semisimply on V and V∗ (respectively only on V for
g = o(V), sp(V)). It is strightforward to show that the centralizer in gM of any local
Cartan subalgebra h of g is such a subalgebra of gM. If gM = glM(V,V∗) is realized as
the Lie algebra of matrices X = (xi j)i, j∈Z with finite rows and columns, then hM can be
chosen as the subalgebra of diagonal matrices.

The following statement looks plausible to us.

Conjecture 8.3 Let g = sl(V,V∗), o(V), sp(V) for a countable-dimensional V. Let M be a
finite length gM-module which is integrable as a g−module. The following conditions on M
are equivalent:

a) M ∈ TgM ;
b) M is countable dimensional;
c) M is a semisimple hM

−module for some subalgebra hM
⊂ gM;

d) M is a semisimple hM
−module for any subalgebra hM

⊂ gM.

Consider now the inclusion of Lie algebras

g = sl(V,V∗) ⊂ glM(V,V∗) = End(V)

where V is an arbitrary vector space. The subalgebra g is not dense in End(V), nev-
ertheless the monoidal categories Tg and TEnd(V) are equivalent by Theorem 5.1 and
Theorem 7.10. Here is a functor which most likely also provides such an equivalence.
Let M ∈ TEnd(V). Set

Γwt
g (M) := ∩h⊂g Γwt

h
(M)

where h runs over all local Cartan subalgebras of g.

Conjecture 8.4 Γwt
g : TEnd(V) ⇝ Tg is an equivalence of monoidal categories.

If V is countable dimensional, it is easy to check that V∗/V∗ is a simple gM =
gl

M(V,V∗)−module. Hence V∗ is a gM
−module of length 2. This raises the natural

question of whether the entire categoryTEnd(V) consists of gM
−modules of finite length.

A further problem is to compute the socle filtration as a gM
−module of a simple

End(V)−module in TEnd(V).
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Another open question is whether there is an analogue of the category T̃ensg when
we replace g by gM. More precisely, what can be said about the abelian monoidal cate-
gory of gM

−modules obtained from TgM by iterated dualization in addition to taking
submodules, quotients and applying ⊗ ? In particular, the adjoint representation, and
therefore the coadjoint representation are objects of T̃ensgM . How can one describe the
coadjoint representation (gM)∗ of gM?

Note added in proof: While this paper was under review, Alexandru Chirvasitu
gave a proof of Conjecture 8.4 and computed the gM

−module socle filtration of any
simple module in TEnd(V). His results appear in the article [C] in the present volume.
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