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Abstract
This paper is a review of results on generalized Harish-Chandra modules
in the framework of cohomological induction. The main results, obtained
during the last 10 years, concern the structure of the fundamental series of
(g, k)−modules, where g is a semisimple Lie algebra and k is an arbitrary
algebraic reductive in g subalgebra. These results lead to a classification of
simple (g, k)−modules of finite type with generic minimal k−types, which
we state. We establish a new result about the Fernando-Kac subalgebra of a
fundamental series module. In addition, we pay special attention to the case
when k is an eligible r−subalgebra (see the definition in section 4) in which
we prove stronger versions of our main results. If k is eligible, the funda-
mental series of (g, k)−modules yields a natural algebraic generalization of
Harish-Chandra’s discrete series modules.
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Introduction

Generalized Harish-Chandra modules have now been actively studied
for more than 10 years. A generalized Harish-Chandra module M over a finite-
dimensional reductive Lie algebra g is a g−module M for which there is a
reductive in g subalgebra k such that as a k−module, M is the direct sum of
finite-dimensional generalized k−isotypic components. If M is irreducible,
k acts necessarily semisimply on M, and in what follows we restrict our-
selves to the study of generalized Harish-Chandra modules on which k acts
semisimply; see [Z] for an introduction to the topic.

In this paper we present a brief review of results obtained in the past 10
years in the framework of algebraic representation theory, more specifically
in the framework of cohomological induction, see [KV] and [Z]. In fact,
generalized Harish-Chandra modules have been studied also with geometric
methods, see for instance [PSZ] and [PS1], [PS2], [PS3], [Pe], but the geometric
point of view remains beyond the scope of the current review. In addition,
we restrict ourselves to finite-dimensional Lie algebras g and do not review
the paper [PZ4], which deals with the case of locally finite Lie algebras. We
omit the proofs of most results which have already appeared.

The cornerstone of the algebraic theory of generalized Harish-Chandra
modules so far is our work [PZ2]. In this work we define the notion of sim-
ple generalized Harish-Chandra modules with generic minimal k−type and
provide a classification of such modules. The result extends in part the Vogan-
Zuckerman classification of simple Harish-Chandra modules. It leaves open
the questions of existence and classification of simple (g, k)−modules of fi-
nite type whose minimal k−types are not generic. While the classification of
such modules presents a major open problem in the theory of generalized
Harish-Chandra modules, in the note [PZ3] we establish the existence of
simple (g, k)−modules with arbitrary given minimal k−type.

In the paper [PZ5] we establish another general result, namely the fact
that each module in the fundamental series of generalized Harish-Chandra
modules has finite length. We then consider in detail the case when k = sl(2).
In this case the highest weights of k−types are just non-negative integers µ,
and the genericity condition is the inequality µ ≥ Γ, Γ being a bound depend-
ing on the pair (g, k). In [PZ5] we improve the bound Γ to an, in general, much
lower bound Λ. Moreover, we show that in a number of low dimensional
examples the bound Λ is sharp in the sense that the our classification results
do not hold for simple (g, k)−modules with minimal k−type V(µ) for µ lower
than Λ. In [PZ5] we also conjecture that the Zuckerman functor establishes
an equivalence of a certain subcategory of the thickening of category O and
a subcategory of the category of (g, k ' sl(2))−modules.

Sections 2 and 3 of the present paper are devoted to a brief review of the
above results. We also establish some new results in terms of the algebra
k̃ := k + C(k) (where C(·) stands for centralizer in g). A notable such result is
Corollary 2.10 which gives a sufficient condition on a simple (g, k)−module
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M for k̃ to be a maximal reductive subalgebra of g which acts locally finitely
on M.

The idea of bringing k̃ into the picture leads naturally to considering a
preferred class of reductive subalgebras kwhich we call eligible: they satisfy
the condition C(t) = t + C(k) where t is Cartan subalgebra of k. In section
5 we study a natural generalization of Harish-Chandra’s discrete series to
the case of an eligible subalgebra k. A key statement here is that under the
assumption of eligibility of k, the isotypic component of the minimal k−type
of a generalized discrete series module is an irreducible k̃−module (Theorem
5.1).
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1 Notation and preliminary results

We start by recalling the setup of [PZ2] and [PZ5].

1.1 Conventions

The ground field is C, and if not explicitly stated otherwise, all vector
spaces and Lie algebras are defined over C. The sign ⊗ denotes tensor prod-
uct over C. The superscript ∗ indicates dual space. The sign ⊂+ stands for
semidirect sum of Lie algebras (if l = l′⊂+ l′′, then l′ is an ideal in l and
l′′ � l/l′). H·(l,M) stands for the cohomology of a Lie algebra l with coeffi-
cients in an l-module M, and Ml = H0(l,M) stands for space of l-invariants
of M. By Z(l) we denote the center of l, and by lss we denote the semisimple
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part of l when l is reductive. Λ·(·) and S·(·) denote respectively the exterior
and symmetric algebra.

If l is a Lie algebra, then U(l) stands for the enveloping algebra of l and
ZU(l) denotes the center of U(l). We identify l-modules with U(l)-modules. It
is well known that if l is finite dimensional and M is a simple l-module (or
equivalently a simple U(l)-module), then ZU(l) acts on M via a ZU(l)-character,
i.e. via an algebra homomorphism θM : ZU(l) → C, see Proposition 2.6.8 in
[Dix].

We say that an l-module M is generated by a subspace M′ ⊆ M if U(l) ·
M′ = M, and we say that M is cogenerated by M′ ⊆ M, if for any non-zero
homomorphism ψ : M→ M̄, M′ ∩ kerψ , {0}.

By SocM we denote the socle (i.e. the unique maximal semisimple sub-
module) of an l-module M. If ω ∈ l∗, we put Mω := {m ∈M | l ·m = ω(l)m ∀l ∈
l}. By supp

l
M we denote the set {ω ∈ l∗ |Mω , 0}.

A finite multiset is a function f from a finite set D intoN. A submultiset of
f is a multiset f ′ defined on the same domain D such that f ′(d) ≤ f (d) for
any d ∈ D. For any finite multiset f , defined on a subset D of a vector space,
we put ρ f := 1

2

∑
d∈D f (d)d.

If dim M < ∞ and M =
⊕

ω∈l∗ Mω, then M determines the finite multiset
chlM which is the function ω 7→ dim Mω defined on supp

l
M.

1.2 Reductive subalgebras, compatible parabolics and generic
k-types

Let g be a finite-dimensional semisimple Lie algebra. By g-mod we denote
the category of g-modules. Let k ⊂ g be an algebraic subalgebra which is
reductive in g. We set k̃ = k+ C(k) and note that k̃ = kss ⊕C(k) where C(·) stands
for centralizer in g. We fix a Cartan subalgebra t of k and let h denote an as
yet unspecified Cartan subalgebra of g. Everywhere, except in subsection 1.3
below, we assume that t ⊆ h, and hence that h ⊆ C(t). By ∆ we denote the set
of h-roots of g, i.e. ∆ = {supp

h
g} \ {0}. Note that, since k is reductive in g, g is a

t-weight module, i.e. g =
⊕

η∈t∗ g
η. We set ∆t := {supp

t
g} \ {0}. Note also that

the R-span of the roots of h in g fixes a real structure on h∗, whose projection
onto t∗ is a well-defined real structure on t∗. In what follows, we denote by
Reη the real part of an element η ∈ t∗. We fix also a Borel subalgebra bk ⊆ k
with bk ⊇ t. Then bk = t⊃+ nk, where nk is the nilradical of bk. We set ρ := ρchtnk .
The quartet g, k, bk, t will be fixed throughout the paper. By W we denote the
Weyl group of g.

As usual, we parametrize the characters of ZU(g) via the Harish-Chandra
homomorphism. More precisely, if b is a given Borel subalgebra of g with
b ⊃ h (b will be specified below), the ZU(g)-character corresponding to ζ ∈ h∗

via the Harish-Chandra homomorphism defined by b is denoted by θζ (θρchhb
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is the trivial ZU(g)-character). Sometimes we consider a reductive subalgebra
l ⊂ g instead of g and apply this convention to the characters of ZU(l). In this
case we write θlζ for ζ ∈ h∗

l
, where hl is a Cartan subalgebra of l.

By 〈· ·〉 we denote the unique g-invariant symmetric bilinear form on g∗

such that 〈α, α〉 = 2 for any long root of g. The form 〈· , ·〉 enables us to
identify g with g∗. Then h is identified with h∗, and k is identified with k∗.
We sometimes consider 〈· , ·〉 as a form on g. The superscript ⊥ indicates
orthogonal space. Note that there is a canonical k-module decomposition
g = k ⊕ k⊥ and a canonical decomposition h = t ⊕ t⊥ with t⊥ ⊆ k⊥. We also set
‖ ζ ‖2:= 〈ζ, ζ〉 for any ζ ∈ h∗.

We say that an element η ∈ t∗ is (g, k)-regular if 〈Reη, σ〉 , 0 for all σ ∈ ∆t.
To any η ∈ t∗ we associate the following parabolic subalgebra pη of g:

pη = h ⊕ (
⊕
α∈∆η

gα),

where ∆η := {α ∈ ∆ | 〈Reη, α〉 ≥ 0}. By mη and nη we denote respectively
the reductive part of p (containing h) and the nilradical of p. In particular
pη = mη⊃+ nη, and if η is bk-dominant, then pη ∩ k = bk. We call pη a t-compatible
parabolic subalgebra. Note that

pη = C(t) ⊕ (
⊕
β∈∆+

t,η

gβ)

where ∆+
t,η := {β ∈ ∆t | 〈Reη, β〉 ≥ 0}. Hence, pη depends upon our choice of t

and η, but not upon the choice of h.
A t-compatible parabolic subalgebra p = m⊃+ n (i.e. p = pη for some η ∈ t∗)

is t-minimal (or simply minimal) if it does not properly contain another t-
compatible parabolic subalgebra. It is an important observation that if p =
m⊃+ n is minimal, then t ⊆ Z(m). In fact, a t-compatible parabolic subalgebra p
is minimal if and only ifm equals the centralizer C(t) of t in g, or equivalently
if and only if p = pη for a (g, k)-regular η ∈ t∗. In this case n ∩ k = nk.

Any t-compatible parabolic subalgebra p = pη has a well-defined opposite
parabolic subalgebra p̄ := p−η; clearly p is minimal if and only if p̄ is minimal.

A k-type is by definition a simple finite-dimensional k-module. By V(µ) we
denote a k-type with bk-highest weight µ. The weight µ is then k-integral (or,
equivalently, kss−integral) and bk-dominant.

Let V(µ) be a k-type such that µ + 2ρ is (g, k)-regular, and let p = m⊃+ n
be the minimal compatible parabolic subalgebra pµ+2ρ. Put ρ̃n := ρchhn and
ρn := ρchtn. Clearly ρn = ρ̃n|t. We define V(µ) to be generic if the following two
conditions hold:

1. 〈Reµ + 2ρ − ρn, α〉 ≥ 0 ∀α ∈ supp
t
nk;

2. 〈Reµ + 2ρ − ρS, ρS〉 > 0 for every submultiset S of chtn.



6 Ivan Penkov and Gregg Zuckerman

It is easy to show that there exists a positive constant C depending only on
g, k and p such that 〈Reµ + 2ρ, α〉 > C for every α ∈ supp

t
n implies pµ+2ρ = p

and that V(µ) is generic.

1.3 Generalities on g−modules

Suppose M is a g−module and l is a reductive subalgebra of g. M is
locally finite over ZU(l) if every vector in M generates a finite-dimensional
ZU(l)−module. Denote by M(g,ZU(l)) the full subcategory of g−modules
which are locally finite over ZU(l).

Suppose M ∈ M(g,ZU(l)) and θ is a ZU(l)−character. Denote by P(l, θ)(M)
the generalized θ−eigenspace of the restriction of M to l. The ZU(l)−spectrum
of M is the set of characters θ of ZU(l) such that P(l, θ)(M) , 0. Denote the
ZU(l) spectrum of M by σ(l,M). We say that θ is a central character of l in M if
θ ∈ σ(l,M). The following is a standard fact.

Lemma 1.1 If M ∈ M(g,ZU(l)), then

M =
⊕
θ∈σ(l,M)

P(l, θ)(M).

A g−module M is locally Artinian over l if for every vector v ∈M, U(l) · v is
an l−module of finite length.

Lemma 1.2 If M is locally Artinian over l, then M ∈ M(g,ZU(l)).

Proof The statement follows from the fact that ZU(l) acts via a character on
any simple l−module. �

If p is a parabolic subalgebra of g, by a (g, p)−module M we mean a
g−module M on which p acts locally finitely. ByM(g, p) we denote the full
subcategory of g−modules which are (g, p)−modules.

In the remainder of this subsection we assume that h is a Cartan subalgebra
of g such that hl := h ∩ l is a Cartan subalgebra of l, and that p is a parabolic
subalgebra of g such that h ⊂ p and p∩l is a parabolic subalgebra of l. By M we
denote a g−module fromM(g, p). Note that M is not necessarily semisimple
as an h−module.

Lemma 1.3 The set supp
h

M is independent of the choice of h ⊆ p, i.e. supp
h

M is
equivariant with respect to inner automorphisms of g preserving p.

Proof As p acts locally finitely on M, the statement is an immediate con-
sequence of the equivariance of the support (set of weights) of a finite-
dimensional p−module. �

Proposition 1.4 M is locally Artinian over l.
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Proof We apply Proposition 7.6.1 in [Dix] to the pair (l, l∩ p). In particular,
if v ∈M, then U(l) · v has finite length as an l−module. �

Corollary 1.5 M ∈ M(g,ZU(l)).

Lemma 1.6 σ(l,M) ⊆ {θl(η|hl )+ρl
| η ∈ supp

h
M}.

Proof The simple l−subquotients of M are (l, l∩p)−modules, and our claim
follows the well-known relationship between the highest weight of a highest
weight module and its central character. �

Let N be a g−module, and let g[N] be the set of elements x ∈ g that act
locally finitely in N. Then g[N] is a Lie subalgebra of g, the Fernando-Kac
subalgebra associated to N. The fact has been proved independently by V. Kac
in [K] and by S. Fernando in [F].

Theorem 1.7 Let M1 be a non-zero subquotient of M. Assume that η|hl is non-
integral relative to l for all η ∈ supp

h
M. Then l * g[M1].

Proof By Lemma 1.6, no central character of l in M1 is l−integral. Therefore,
no non-zero l−submodule of M1 is finite dimensional. But M1 , 0. Hence,
l * g[M1]. �

In agreement with [PZ2], we define a g-module M to be a (g, k)-module if M
is isomorphic as a k-module to a direct sum of isotypic components of k-types.
If M is a (g, k)-module, we write M[µ] for the V(µ)-isotypic component of M,
and we say that V(µ) is a k-type of M if M[µ] , 0. We say that a (g, k)-module
M is of finite type if dim M[µ] , ∞ for every k-type V(µ) of M. Sometimes, we
also refer to (g, k)-modules of finite type as generalized Harish-Chandra modules.

Note that for any (g, k)−module of finite type M and any k−type V(σ) of
M, the finite-dimensional k−module M[σ] is a k̃−module for k̃ = k + C(k). In
particular, M is a (g, k̃)−module of finite type. We will write M〈δ〉 for the
k̃−isotypic components of M where δ ∈ (h ∩ k̃)∗.

If M is a module of finite length, a k-type V(µ) of M is minimal if the
function µ′ 7→‖ Reµ′ + 2ρ ‖2 defined on the set {µ′ ∈ t∗ | M[µ′] , 0} has a
minimum at µ. Any non-zero (g, k)-module M of finite length has a minimal
k-type.

1.4 Generalities on the Zuckerman functor

Recall that the functor of k-finite vectors Γg,t
g,k is a well-defined left-exact

functor on the category of (g, t)-modules with values in (g, k)-modules,

Γg,t
g,k(M) :=

∑
M′⊂M,dim M′=1,dim U(k)·M′<∞

M′.
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By R·Γg,t
g,k :=

⊕
i≥0 RiΓg,t

g,k we denote as usual the total right derived functor of

Γg,t
g,k, see [Z] and the references therein.

Proposition 1.8 If l is any reductive subalgebra of g containing k, then there is a
natural isomorphism of l−modules

R·Γg,t
g,k (N) � R·Γl,t

l,k (N). (1)

Proof See Proposition 2.5 in [PZ4]. �

Proposition 1.9 If Ñ ∈ M(l, t,ZU(l)) :=M(l,ZU(l)) ∩M(l, t), then

R·Γl,t
l,k (Ñ) ∈ M(l, k,ZU(l)).

Moreover,
σ(l,R·Γl,t

l,k (Ñ)) ⊂ σ(l, Ñ).

Proof See Proposition 2.12 and Corollary 2.8 in [Z]. �

Corollary 1.10 If N ∈ M(g, t,ZU(l)) :=M(g,ZU(l)) ∩M(g, t), then

R·Γg,t
g,k (N) ∈ M(g, k,ZU(l)).

Moreover,
σ(l,R·Γg,t

g,k (N)) ⊆ σ(l,N).

Proof Apply Propositions 1.8 and 1.9. �
Note that the isomorphism (1) enables us to write simply Γk,t instead of

Γg,t
g,k.

For g ⊇ l ⊇ k ⊇ t as above, let p be a t−compatible parabolic subalgebra of
g. Then l ∩ p is a t−compatible parabolic subalgebra of l. Let hl ⊂ l ∩ p be a
Cartan subalgebra of l containing t, and let h ⊂ p be a Cartan subalgebra of
g such that hl = h ∩ l. We have the following diagram of subalgebras:

In this setup we have the following result.
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Theorem 1.11 Suppose N ∈ M(g, p) ∩M(g, t), M is a non-zero subquotient of
R·Γk,t (N) and η|hl is not l−integral for all η ∈ supp

h
N. Then l * g[M].

Proof Every central character of l in M is a central character of l in N. This
follows from Corollary 2.8 in [Z]. By our assumptions, no central character
of l in N is l−integral. Hence, no l−submodule of M is finite dimensional,
and thus l * g[M]. �

2 The fundamental series: main results

We now introduce one of our main objects of study: the fundamental
series of generalized Harish-Chandra modules.

We start by fixing some more notation: if q is a subalgebra of g and J is
a q-module, we set indgq J := U(g) ⊗U(q) J and progq J := HomU(q)(U(g), J). For a
finite-dimensional p- or p̄-module E we set Np(E) := Γt,0(progp(E ⊗Λdim n(n))),
Np̄(E∗) := Γt,0(prog

p̄
(E∗⊗Λdim n(n∗))). One can show that both Np(E) and Np̄(E∗)

have simple socles as long as E itself is simple.
The fundamental series of (g, k)-modules of finite type F·(k, p,E) is defined as

follows. Let p = m⊃+ n be a minimal compatible parabolic subalgebra (recall
thatm = C(t)), E be a simple finite-dimensional p-module on which t acts via
a fixed weight ω ∈ t∗, and µ := ω + 2ρ⊥n where ρ⊥n := ρn − ρ. Set

F·(k, p,E) := R·Γk,t(Np(E)).

In the rest of the paper we assume that h ∩ k̃ is a Cartan subalgebra of k̃.

Theorem 2.1 a) F·(k, p,E) is a (g, k)-module of finite type and ZU(g) acts on F·(p,E)
via the ZU(g)-character θν+ρ̃ where ρ̃ := ρchhb for some Borel subalgebra b of g
with b ⊃ h, b ⊂ p and b ∩ k = bk, and where ν is the b-highest weight of E (note
that ν|t = ω).

b) F·(k, p,E) is a (g, k)-module of finite length.
c) There is a canonical isomorphism

F·(k, p,E) ' R·Γk̃,k̃∩m(Γk̃∩m,0(prog
p
(E ⊗ Λdim n(n)))). (2)

Proof Part a) is a recollection of Theorem 2, a) in [PZ2]. Part b) is a recollec-
tion of Theorem 2.5 in [PZ5]. Part c) follows from the comparison principle
(Proposition 2.6) in [PZ4]. �

Corollary 2.2 F·(k, p,E) is a (g, k̃)-module of finite type.

Proof As we observed in subsection 1.3, every (g, k)−module of finite type
is a (g, k̃)−module of finite type. �

Corollary 2.3 Let k1 and k2 be two algebraic reductive in g subalgebras such that
k̃1 = k̃2. Suppose that p is a parabolic subalgebra which is both t1− and t2−compatible
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and t1− and t2−minimal for some Cartan subalgebras t1 of k1 and t2 of k2. Then there
exists a canonical isomorphism

F·(k1, p,E) ' F(k2, p,E).

Proof Consider the isomorphism (2) for k1 and k2, and notice that

R·Γk̃,k̃∩m(Γk̃∩m,0(prog
p
(E ⊗ Λdim n(n))))

depends only on k̃ and p but not on k1 and k2. �

Corollary 2.4 Let M be any non-zero subquotient of F·(k, p,E). If the b−highest
weight ν ∈ h∗ of E is non-integral after restriction to h∩l for any reductive subalgebra
l of g such that l ⊃ k̃, then k̃ is a maximal reductive subalgebra of g[M].

Proof Corollary 2.2 shows that k̃ ⊆ g[M]. Theorem 1.11 shows that if l is a
reductive subalgebra of g such that l is strictly larger than k̃, then l * g[M]. The
assumption on ν implies that all weights in supp

h∩l
(Np(E)) are non-integral

with respect to l. �

Example

Here is an example to Corollary 2.4. Let g = F4, k ' so(3)⊕so(6). Then k = k̃.
By inspection, there is only one proper intermediate subalgebra l, k̃ ⊂ l ⊂ g,
and l is isomorphic to so(9). We have t = h, and ε1, ε2, ε3, ε4 is a standard basis
of h∗, see [Bou]. A weight ν =

∑4
i=1 miεi is k−integral iff m1 ∈ Z or m1 ∈ Z+ 1

2 ,
and (m2,m3,m4) ∈ Z3 or (m2,m3,m4) ∈ Z3 + ( 1

2 ,
1
2 ,

1
2 ). On the other hand, ν

is l−integral if (m1,m2,m3,m4) ∈ Z4 or (m1,m2,m3,m4) ∈ Z4 + ( 1
2 ,

1
2 ,

1
2 ,

1
2 ). So

if the b−highest weight ν of E is not l−integral, Corollary 2.4 implies that
g[M] = k̃ for any simple subquotient M of F·(k, p,E).

Remark

a) In [PZ1] another method, based on the notion of a small subalgebra
introduced by Willenbring and Zuckerman in [WZ], for computing max-
imal reductive subalgebras of the Fernando-Kac subalgebras associated
to simple subquotients of F·(k, p,E) is suggested. Note that the subalgebra
k ' so(3) ⊕ so(6) of F4 considered in the above example is not small in
so(9), so the above conclusion that g[M] = k does not follow from [PZ1].
On the other hand, if one replaces k in the example by k′ ' so(5) ⊕ so(4),
then a conclusion similar to that of the example can be reached both by
the method of [PZ1] and by Corollary 2.4.

b) There are pairs (g, k) to which neither the method of [PZ1] nor Corollary
2.4 apply. Such an example is a pair (g = F4, k ' so(8)). The only proper
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intermediate subalgebra in this case is l ' so(9); however so(8) is not small
in so(9) and any k = k̃−integrable weight is also l−integrable.

If M is a (g, k)-module of finite type, then Γk,0(M∗) is a well-defined (g, k)-
module of finite type and Γk,0(·∗) is an involution on the category of (g, k)-
modules of finite type. We put Γk,0(M∗) := M∗

k
. There is an obvious g-invariant

non-degenerate pairing M ×M∗
k
→ C.

The following five statements are recollections of the main results of [PZ2]
(Theorem 2 through Corollary 4 in [PZ2]).

Theorem 2.5 Assume that V(µ) is a generic k-type and that p = pµ+2ρ (µ is
necessarily bk-dominant and k-integral).

a) Fi(k, p,E) = 0 for i , s := dim nk .
b) There is a k-module isomorphism

Fs(k, p,E)[µ] � Cdim E
⊗ V(µ),

and V(µ) is the unique minimal k-type of Fs(k, p,E).
c) Let F̄s(k, p,E) be the g-submodule of Fs(k, p,E) generated by Fs(k, p,E)[µ].

Then F̄s(k, p,E) is simple and F̄s(k, p,E) = SocFs(k, p,E). Moreover, Fs(k, p,E)
is cogenerated by Fs(k, p,E)[µ]. This implies that Fs(k, p,E)∗

t
is generated by

Fs(k, p,E)∗
t
[wm(−µ)], where wm ∈ Wk is the element of maximal length in the

Weyl group Wk of k.
d) For any non-zero g-submodule M of Fs(k, p,E) there is an isomorphism of m-

modules
Hr(n,M)ω � E,

where r := dim(n ∩ k⊥).

Theorem 2.6 Let M be a simple (g, k)−module of finite type with minimal k−type
V(µ) which is generic . Then p := pµ+2ρ = m⊃+ n is a minimal compatible parabolic
subalgebra. Letω := µ−2ρ⊥n (recall that ρ⊥n = ρcht(n∩k⊥)), and let E be the p−module
Hr(n,M)ω with trivial n−action, where r = dim(n ∩ k⊥). Then E is a simple
p−module, the pair (p,E) satisfies the hypotheses of Theorem 2.5, and M is canoni-
cally isomorphic to F̄s(p,E) for s = dim(n ∩ k).

Corollary 2.7 (Generic version of a theorem of Harish-Chandra). There exist at
most finitely many simple (g, k)−modules M of finite type with a fixed ZU(g)−character
such that a minimal k−type of M is generic. (Moreover, each such M has a unique
minimal k−type by Theorem 2.5 b).)

Proof By Theorems 2.1 a) and 2.6, if M is a simple (g, k)−module of finite
type with generic minimal k−type V(µ) for some µ, then the ZU(g)−character
of M is θν+ρ̃. There are finitely many Borel subalgebras b as in Theorem 2.1
a); thus, if θν+ρ̃ is fixed, there are finitely many possibilities for the weight ν
(as θν+ρ̃ determines ν + ρ̃ up to a finite choice). Hence, up to isomorphism,
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there are finitely many possibilities for the p−module E, and consequently,
up to isomorphism, there are finitely many possibilities for M. �

Theorem 2.8 Assume that the pair (g, k) is regular, i.e. t contains a regular element
of g. Let M be a simple (g, k)−module (a priori of infinite type) with a minimal
k−type V(µ) which is generic. Then M has finite type, and hence by Theorem 2.6,
M is canonically isomorphic to F̄s(p,E) (where p,E and s are as in Theorem 2.6).

Corollary 2.9 Let the pair (g, k) be regular.

a) There exist at most finitely many simple (g, k)−modules M with a fixed
ZU(g)−character, such that a minimal k−type of M is generic. All such M are of
finite type (and have a unique minimal k−type by Theorem 2.5 b)).

b) (Generic version of Harish-Chandra’s admissibility theorem). Every simple
(g, k)−module with a generic minimal k−type has finite type.

Proof The proof of a) is as the proof of Corollary 2.7 but uses Theorem 2.8
instead of Theorem 2.6, and b) is a direct consequence of Theorem 2.8. �

The following statement follows from Corollary 2.4 and Theorem 2.6.

Corollary 2.10 Let M be as in Theorem 2.6. If the b−highest weight of E is not
l−integral for any reductive subalgebra lwith k̃ ⊂ l ⊆ g, then k̃ is a maximal reductive
subalgebra of g[M].

Definition 2.11 Let p ⊃ bk be a minimal t−compatible parabolic subalgebra and
let E be a simple finite dimensional p−module on which t acts by ω. We say that the
pair (p,E) is allowable if µ = ω + 2ρ⊥n is dominant integral for k, pµ+2ρ = p, and
V(µ) is generic.

Theorem 2.6 provides a classification of simple (g, k)−modules with
generic minimal k−type in terms of allowable pairs. Note that for any min-
imal t−compatible parabolic subalgebra p ⊃ bk, there exists a p−module E
such that (p,E) is allowable.

3 The case k ' sl(2)

Let k ' sl(2). In this case there is only one minimal t−compatible parabolic
subalgebra p = m⊃+ n of gwhich contains bk. Furthermore, we can identify the
elements of t∗ with complex numbers, and the bk−dominant integral weights
of t in n∩ k⊥ with non-negative integers. It is shown in [PZ2] that in this case
the genericity assumption on a k−type V(µ), µ ≥ 0, amounts to the condition
µ ≥ Γ := ρ̃(h) − 1 where h ∈ h is the semisimple element in a standard basis
e, h, f of k ' sl(2).

In our work [PZ5] we have proved a different sufficient condition for the
main results of [PZ2] to hold when k ' sl(2). Let λ1 and λ2 be the maximum
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and submaximum weights of t in n∩ k⊥ (if λ1 has multiplicity at least two in
n ∩ k⊥, then λ2 = λ1; if dim n ∩ k⊥ = 1, then λ2 = 0). Set Λ := λ1+λ2

2 .

Theorem 3.1 If k ' sl(2), all statements of section 2 from Theorem 2.5 through
Corollary 2.9 hold if we replace the assumption that µ is generic by the assumption
µ ≥ Λ. As a consequence, the isomorphism classes of simple (g, k)−modules whose
minimal k−type is V(µ) with µ ≥ Λ are parameterized by the isomorphism classes
of simple p−modules E on which t acts via µ − 2ρ⊥n .

The sl(2)−subalgebras of a simple Lie algebra are classified (up to con-
jugation) by Dynkin in [D]. We will now illustrate the computation of the
bound Λ as well as the genericity condition on µ in examples.

We first consider three types of sl(2)−subalgebras of a simple Lie algebra:
long root−sl(2), short root−sl(2) and principal sl(2) (of course, there are short
roots only for the series B,C and for G2 and F4). We compare the bounds Λ
and Γ in the following table.

long root short root principal
An,n ≥ 2 Γ = n − 1 ≥ 1 = Λ not applicable Γ =

n(n+1)(n+2)
6 − 1 ≥ 2n − 1 = Λ

Bn,n ≥ 2 Γ = 2n − 3 ≥ 1 = Λ Γ = 2n − 2 ≥ 2 = Λ Γ =
n(n+1)(4n−1)

6 − 1 > 4n − 3 = Λ

Cn,n ≥ 3 Γ = n − 1 > 1 = Λ Γ = 2n − 2 > 2 = Λ Γ =
n(n+1)(2n+1)

3 − 1 > 4n − 3 = Λ

Dn,n ≥ 4 Γ = 2n − 4 > 1 = Λ not applicable Γ =
2(n−1)n(n+1)

3 − 1 > 4n − 7 = Λ
E6 Γ = 10 > 1 = Λ not applicable Γ = 155 > 21 = Λ
E7 Γ = 16 > 1 = Λ not applicable Γ = 398 > 33 = Λ
E8 Γ = 28 > 1 = Λ not applicable Γ = 1239 > 57 = Λ
F4 Γ = 7 > 1 = Λ Γ = 10 > 2 = Λ Γ = 109 > 21 = Λ
G2 Γ = 2 > 1 = Λ Γ = 4 > 3 = Λ Γ = 15 > 9 = Λ

Table A

Let’s discuss the case g = F4 in more detail. Recall that the Dynkin
index of a semisimple subalgebra s ⊂ g is the quotient of the normal-
ized g−invariant summetic bilinear form on g restricted to s and the
normalized s−invariant symmetric bilinear form on s, where for both g
and s the square length of a long root equals 2. According to Dynkin
[D], the conjugacy class of an sl(2)−subalgebra k of F4 is determined by
the Dynkin index of k in F4. Moreover, for g = F4 the following inte-
gers are Dynkin indices of sl(2)−subalgebras: 1(long root), 2(short root),
3, 4, 6, 8, 9, 10, 11, 12, 28, 35, 36, 60, 156. The bounds Λ and Γ are given in the
following table.
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Dynkin index 1 2 3
Γ = 7 > 1 = Λ Γ = 10 > 2 = Λ Γ = 14 > 3 = Λ

Dynkin index 4 6 8
Γ = 15 > 3 = Λ Γ = 16 > 4 = Λ Γ = 17 > 4 = Λ

Dynkin index 9 10 11
Γ = 25 > 5 = Λ Γ = 26 > 5 = Λ Γ = 28 > 6 = Λ

Dynkin index 12 28 35
Γ = 29 > 6 = Λ Γ = 45 > 9 = Λ Γ = 50 > 10 = Λ

Dynkin index 36 60 156
Γ = 51 > 10 = Λ Γ = 67 > 13 = Λ Γ = 109 > 21 = Λ

Table B

We conclude this section by recalling a conjecture from [PZ5]. Let Cp̄,t,n
denote the full subcategory of g−mod consisting of finite-length modules
with simple subquotients which are p̄−locally finite (g, t)−modules N whose
t−weight spaces Nβ, β ∈ Z, satisfy β ≥ n. Let Ck,n be the full subcategory of
g−mod consisting of finite length modules whose simple subquotients are
(g, k)−modules with minimal k ' sl(2)−type V(µ) for µ ≥ n. We show in [PZ5]
that the functor R1Γk,t is a well-defined fully faithful functor from Cp,t,n+2 to
Ck,n for n ≥ 0. Moreover, we make the following conjecture.

Conjecture 3.2 Let n ≥ Λ. Then R1Γk,t is an equivalence between the categories
Cp̄,t,n+2 and Ck,n.

We have proof of this conjecture for g ' sl(2) and, jointly with V.
Serganova, for g ' sl(3).

4 Eligible subalgebras

In what follows we adopt the following terminology. A root subalgebra of
g is a subalgebra which contains a Cartan subalgebra of g. An r-subalgebra of
g is a subalgebra lwhose root spaces (with respect to a Cartan subalgebra of
l) are root spaces of g. The notion of r-subalgebra goes back to [D]. A root
subalgebra is, of course, an r-subalgebra.

We now give the following key definition.

Definition 4.1 An algebraic reductive in g subalgebra k is eligible if C(t) = t+C(k).

Note that in the above definition one can replace twith any Cartan subal-
gebra of k. Furthermore, if k is eligible then h ⊂ C(t) = t + C(k) ⊂ k̃ = k + C(k),
i.e. h is a Cartan subalgebra of both k̃ and g. In particular, k̃ is a reductive root
subalgebra of g. As k is an ideal in k̃, k is an r-subalgebra of g.
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Proposition 4.2 Assume k is an r−subalgebra of g. The following three conditions
are equivalent:

(i) k is eligible;
(ii) C(k)ss = C(t)ss;
(iii) dim C(k)ss = dim C(t)ss.

Proof The implications (i)⇒(ii)⇒(iii) are obvious. To see that (iii) implies
(i), observe that if k is an r−subalgebra of g, then h ⊆ t+ C(k) ⊆ C(t). Therefore
the inclusion t + C(k) ⊆ C(t) is proper if and only if g±α ∈ C(t)\C(k) for some
root α ∈ ∆, or, equivalently, if the inclusion C(k)ss ⊆ C(t)ss is proper. �

An algebraic, reductive in g, r-subalgebra kmay or may not be eligible. If
k is a root subalgebra, then k is always eligible. If g is simple of types A,C,D
and k is a semisimple r-subalgebra, then k is necessarily eligible. In general, a
semisimple r-subalgebra is eligible if and only if the roots of gwhich vanish
on t are strongly orthogonal to the roots of k. For example, if g is simple of
type B and k is a simple r-subalgebra of type B of rank less or equal than
rkg − 2, then C(k)ss is simple of type D whereas C(t)ss is simple of type B.
Hence in this case k is not eligible.

Note, however that any semisimple r-subalgebra k′ can be extended to
an eligible subalgebra k just by setting k := k′ + hC(k′) where hC(k′) is a Cartan
subalgebra of C(k′). Finally, note that if x is any algebraic regular semisimple
element of C(k′), then k := k′ ⊕ Z(C(k′)) + Cx is an eligible subalgebra of g.
Indeed, if t′ ⊆ k′ is a Cartan subalgebra of k′, and hk := t′ ⊕Z(C(k′)) +Cx is the
corresponding Cartan subalgebra of k, then C(hk) is a Cartan subalgebra of g.
Hence,

C(hk) = hk + C(k) (3)

as the right-hand side of (3) necessarily contains a Cartan subalgebra of g.
To any eligible subalgebra k we assign a unique weight κ ∈ h∗ (the

“canonical weight associated with k”). It is defined by the conditions
κ|(h∩kss) = ρ, κ|(h∩C(k)) = 0.

5 The generalized discrete series

In what follows we assume that k is eligible and h ⊂ k̃. In this case h is a
Cartan subalgebra both of k̃ and g. Let λ ∈ h∗ and set γ := λ|t. Assume that
m := mγ = C(t). Assume furthermore that λ is m-integral and let Eλ be a
simple finite-dimensional m-module with b−highest weight λ. Then

D(k, λ) := Fs(k, pγ,Eλ ⊗ Λdim nγ (n∗γ))

is by definition a generalized discrete series module.
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Note that since D(k, λ) is a fundamental series module, Theorem 2.1 applies
to D(k, λ). In the case when k is a root subalgebra and λ is regular, we have
λ = γ and pγ is a Borel subalgebra of g which we denote by bλ. Then
D(k, λ) = RsΓk,h(Γh(prog

bλ
Eλ)), i.e. D(k, λ) is cohomologically co-induced from

a 1−dimensional bλ−module. If in addition, k is a symmetric subalgebra, λ
is k-integral, and λ− ρ̃ is bλ−dominant regular, then D(k, λ) is a (g, k)-module
in Harish-Chandra’s discrete series, see [KV], Ch.XI.

Suppose k is eligible but k is not a root subalgebra. Suppose further that k̃ is
symmetric. Any simple subquotient M of D(k, λ) is a (g, k̃)−module and thus
a Harish-Chandra module for (g, k̃). However, M may or may not be in the
discrete series of (g, k̃)−modules. This becomes clear in Theorem 5.6 below.

Our first result is a sharper version of the main result of [PZ3] for an
eligible k.

Theorem 5.1 Let k ⊆ g be eligible. Assume that λ−2κ is k̃-integral and dominant.
Then, D(k, λ) , 0. Moreover, if we set µ := (λ− 2κ)|t, then V(µ) is the unique min-
imal k−type of D(k, λ). Finally, there are isomorphisms of simple finite-dimensional
k̃−modules

D(k, λ)[µ] � D(k, λ)〈λ − 2κ〉 ' Vk̃(λ − 2κ).

Proof Note that µ = γ − 2ρ. By Lemma 2 in [PZ3]

dim Homk(V(µ),D(k, λ)) = dim Eλ,

and hence D(k, λ) , 0. In addition, V(µ) is the unique minimal k−type of
D(k, λ). By construction, D(k, λ)[µ] is a finite-dimensional k̃−module. We will
use Theorem 2.1 c) to compute D(k, λ)[µ] as a k̃−module. Since k is eligible,
we havem = t+ C(k). As [t,C(k)] = 0 and t is toral, the restriction of Eλ to C(k)
is simple. We have

k̃ = kss ⊕ C(k),

and hence there is an isomorphism of k̃−modules

Vk̃(λ − 2κ) � (V(µ)|kss ) � Eλ.

Consequently, we have isomorphisms of C(k)−modules

Homk(V(µ),Vk̃(λ − 2κ)) � Homkss ((V(µ)|kss ),Vk̃(λ − 2κ)) � Eλ. (4)

Write pγ = p and note that k̃ ∩ m = m. By Theorem 2.1 c), we have a
canonical isomorphism

D(k, λ) � RsΓk̃,m(Γm,0(prog
p
Eλ)).

According to the theory of the bottom layer [KV], Ch.V, Sec.6, D(k, λ) contains
the k̃−module

RsΓk̃,m(Γm,0(prok̃
k̃∩p

Eλ))
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which is in turn isomorphic to Vk̃(λ − 2κ).
By the above argument, we have a sequence of injections

Vk̃(λ − 2κ) ↪→ D(k, λ)〈λ − 2κ〉 ↪→ D(k, λ)[µ].

We conclude from (4) that the above sequence of injections is in fact a
sequence of isomorphisms of simple k̃−modules. �

Corollary 5.2 Under the assumptions of Theorem 5.1, there exists a simple
(g, k)−module M of finite type over k, such that if V(µ) is a minimal k−type of
M, then V(µ) is the unique minimal k−type of M and there is an isomorphism of
finite-dimensional k̃−modules

M[µ] � Vk̃(λ − 2κ).

In particular, M[µ] is a simple k̃−submodule of M.

Proof First we construct a module M as required. Let D̄(k, λ) be the
U(g)−submodule of D(k, λ) generated by the k̃−isotypic component D(k, λ)〈λ−
2κ〉. Suppose N is a proper g−submodule of D̄(k, λ). Since D(k, λ)〈λ − 2κ〉 is
simple over k̃,

N ∩ (D(k, λ)〈λ − 2κ〉) = 0.

Thus, if N(k, λ) is the maximum proper submodule of D̄(k, λ), the quotient
module

M = D̄(k, λ)/N(k, λ)

is a simple (g, k̃)−module, and M has finite type over k. Theorem 5.1 im-
plies now that V(µ) is the unique minimal k−type of M and that there is an
isomorphism of finite-dimensional k̃−modules,

M[µ] � Vk̃(λ − 2κ).

�
If k is symmetric (and hence k is a root subalgebra due to the eligibility of

k), Theorem 5.1 and Corollary 5.2 go back to [V] (where they are proven by
a different method).

The following two statements are consequences of the main results of
section 2 and Theorem 5.1.

Corollary 5.3 Let k be eligible, λ ∈ h∗ be such that λ− 2κ is k̃-integral and V(µ) is
generic for µ := λ|t − 2ρ.

a) Soc D(k, λ) is a simple (g, k)-module with unique minimal k-type V(µ).
b) There is a canonical isomorphism of C(k)-modules

Homk(V(µ), Soc D(k, λ)) ' Eλ.

c) There is a canonical isomorphism of k̃-modules
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V(µ) ⊗Homk(V(µ), Soc D(k, λ)) ' Vk̃(λ − 2κ),

i.e. the V(µ)-isotypic component of SocD(k, λ) is a simple k̃-module isomorphic
to Vk̃(λ − 2κ).

d) If λ−2κ is not l−integral for any reductive subalgebra l such that k̃ ⊂ l ⊆ g, then
k̃ is a maximal reductive subalgebra of g[M] for any subquotient M of D(k, λ), in
particular of Soc D(k, λ).

Proof
a) Observe that pγ = pµ+2ρ, and D(k, λ) = Fs(k, pµ+2ρ, Eλ ⊗ Λdim n(n∗)). So, a)

follows from Theorem 2.5 c).

b) By Theorem 2.5 c), Homk(V(µ), Soc D(k, λ)) = Homk(V(µ), D(k, λ)),
which in turn is isomorphic to Homk(V(µ),Vk̃(λ − 2κ)) by Theorem 5.1. The
desired isomorphism follows now from (4).

c) This follows from the isomorphism in b) and the isomorphism V(µ) ⊗
Eλ � Vk̃(λ − 2κ) of k̃−modules.

d) Follows from Corollary 2.4. Note that, since k is eligible, k̃ is a root
subalgebra and the condition that λ − 2κ be not l−integral involves only
finitely many subalgebras l. �

Corollary 5.4 Let k be eligible and let V(µ) be a generic k−type.

a) Let M be a simple (g, k)−module of finite type with minimal k−type V(µ). Then
M[µ] is a simple finite-dimensional k̃−module isomorphic to Vk̃(λ) for some
weight λ ∈ h∗ such that λ|t = µ + 2ρ and µ − 2κ is k̃−integral. Moreover,

M � Soc D(k, λ).

If in addition λ is not l−integral for any reductive subalgebra l with k̃ ⊂ l ⊆ g,
then k̃ is a unique maximal reductive subalgebra of g[M].

b) If k is regular in g, then a) holds for any simple (g, k)−module with generic
minimal k−type V(µ). In particular M has finite type over k.

Proof
a) We apply Theorem 2.6. Since V(µ) is generic, p = pµ+2ρ = m⊃+ n is a

minimal t−compatible parabolic subalgebra. Let ω := µ − 2ρ⊥n (recall that
ρ⊥n = ρn − ρ) and let Q be the m−module Hr(n,M)ω where r = dim(k⊥ ∩ n).

Observe that Q is a simplem−module and M is canonically isomorphic to
F̄s(p,Q) = Soc Fs(p,Q). Let λ ∈ h∗ be so that λ − 2ρ̃n is an extreme weight of h
in Q. Thus, Fs(p,Q) = Fs(p, Eλ ⊗Λdim n(n∗)) = D(k, λ). Finally, M � Soc D(k, λ),
and λ|t = µ + 2ρ. It follows that λ − 2κ is both k−integral and C(k)−integral.
Hence, the weight λ − 2κ is k̃−integral.

b) We apply Theorem 2.8. �
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Corollary 5.5 If k ' sl(2), the genericity assumption on V(µ) in Corollaries 5.3
and 5.4 can be replaced by the assumption µ ≥ Λ.

Proof The statement follows directly from Theorem 3.1. �

We conclude this paper by discussing in more detail an example of an
eligible sl(2)−subalgebra. Note first that if g is any simple Lie algebra and k
is a long root sl(2)−subalgebra, then the pair (g, k̃) is a symmetric pair. This is
a well-known fact and it implies in particular that any (g, k)−module of finite
type and of finite length is a Harish-Chandra module for the pair (g, k̃). The
latter modules are classified under the assumption of simplicity see [KV],
Ch.XI; however, in general, it is an open problem to determine which simple
(g, k̃)−modules have finite type over k. Without having been explicitly stated,
this problem has been discussed in the literature, see [GW], [OW] and the
references therein. On the other hand, in this caseΛ = 1, hence Corollaries 5.4
and 5.5 provide a classification of simple (g, k)−modules of finite type with
minimal k−types V(µ) for µ ≥ 1. So the above problem reduces to matching
the above two classifications in the case when µ ≥ 1, and finding all simple
(g, k)−modules of finite type whose minimal k−type equals V(0) among the
simple Harish-Chandra modules for the pair (g, k̃). We do this here in a special
case.

Let g = sp(2n+2) for n ≥ 2. By assumption, k is a long root sl(2)−subalgebra,
and k̃ ' sp(2n)⊕k. Consider simple (g, k̃)−modules with ZU(g)−character equal
to the character of a trivial module. According to the Langlands classification,
there are precisely (n + 1)2 pairwise non-isomorphic such modules, one of
which is the trivial module. Following [Co] (see figure 4.5 on page 93) we
enumerate them as σt for 0 ≤ t ≤ n and σi j for 0 ≤ i ≤ n − 1, 1 ≤ j ≤ 2n, i <
j, i + j ≤ 2n. The modules σt are discrete series modules. The modules σi j are
Langlands quotients of the principal series (all of them are proper quotients
in this case).

We announce the following result which we intend to prove elsewhere.

Theorem 5.6 Let g = sp(2n + 2) for n ≥ 2 and k be a long root sl(2)−subalgebra.
a) Any simple (g, k)−module of finite type is isomorphic to a subquotient of the

generalized discrete series module D(k, λ) for some k̃ = sp(2n) ⊕ k−integral weight
λ − 2κ.

b) The modules σ0, σ0i for i = 1, . . . , 2n, σ12 are, up to isomorphism, all of the
simple (g, k)−modules of finite type whose ZU(g)-character equals that of a trivial
g−module. Moreover, their minimal k−types are as follows:

module minimal k−type
σ0 V(2n)

σ0 j,n + 1 ≤ j ≤ 2n V( j − 1)
σ0 j, 2 ≤ j ≤ n V( j − 2)

σ01 (trivial representation) V(0)
σ12 V(0)

.
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